3dcc2abbfc609f18fb3c4103babc093e0b2ef0bf
[platform/kernel/linux-starfive.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194         struct page *page = pfn_to_page(pfn);
195
196         if (!PageTransCompoundMap(page))
197                 return false;
198
199         return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250         if (unlikely(!cpus))
251                 cpus = cpu_online_mask;
252
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_flush, NULL, wait);
257         return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261                                  struct kvm_vcpu *except,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272                     vcpu == except)
273                         continue;
274
275                 kvm_make_request(req, vcpu);
276                 cpu = vcpu->cpu;
277
278                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279                         continue;
280
281                 if (tmp != NULL && cpu != -1 && cpu != me &&
282                     kvm_request_needs_ipi(vcpu, req))
283                         __cpumask_set_cpu(cpu, tmp);
284         }
285
286         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287         put_cpu();
288
289         return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293                                       struct kvm_vcpu *except)
294 {
295         cpumask_var_t cpus;
296         bool called;
297
298         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302         free_cpumask_var(cpus);
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308         return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315         /*
316          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317          * kvm_make_all_cpus_request.
318          */
319         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321         /*
322          * We want to publish modifications to the page tables before reading
323          * mode. Pairs with a memory barrier in arch-specific code.
324          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325          * and smp_mb in walk_shadow_page_lockless_begin/end.
326          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327          *
328          * There is already an smp_mb__after_atomic() before
329          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330          * barrier here.
331          */
332         if (!kvm_arch_flush_remote_tlb(kvm)
333             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334                 ++kvm->stat.generic.remote_tlb_flush;
335         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344
345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347                                                gfp_t gfp_flags)
348 {
349         gfp_flags |= mc->gfp_zero;
350
351         if (mc->kmem_cache)
352                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
353         else
354                 return (void *)__get_free_page(gfp_flags);
355 }
356
357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
358 {
359         void *obj;
360
361         if (mc->nobjs >= min)
362                 return 0;
363         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
365                 if (!obj)
366                         return mc->nobjs >= min ? 0 : -ENOMEM;
367                 mc->objects[mc->nobjs++] = obj;
368         }
369         return 0;
370 }
371
372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
373 {
374         return mc->nobjs;
375 }
376
377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
378 {
379         while (mc->nobjs) {
380                 if (mc->kmem_cache)
381                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
382                 else
383                         free_page((unsigned long)mc->objects[--mc->nobjs]);
384         }
385 }
386
387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
388 {
389         void *p;
390
391         if (WARN_ON(!mc->nobjs))
392                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
393         else
394                 p = mc->objects[--mc->nobjs];
395         BUG_ON(!p);
396         return p;
397 }
398 #endif
399
400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
401 {
402         mutex_init(&vcpu->mutex);
403         vcpu->cpu = -1;
404         vcpu->kvm = kvm;
405         vcpu->vcpu_id = id;
406         vcpu->pid = NULL;
407         rcuwait_init(&vcpu->wait);
408         kvm_async_pf_vcpu_init(vcpu);
409
410         vcpu->pre_pcpu = -1;
411         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
412
413         kvm_vcpu_set_in_spin_loop(vcpu, false);
414         kvm_vcpu_set_dy_eligible(vcpu, false);
415         vcpu->preempted = false;
416         vcpu->ready = false;
417         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 }
419
420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
421 {
422         kvm_dirty_ring_free(&vcpu->dirty_ring);
423         kvm_arch_vcpu_destroy(vcpu);
424
425         /*
426          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427          * the vcpu->pid pointer, and at destruction time all file descriptors
428          * are already gone.
429          */
430         put_pid(rcu_dereference_protected(vcpu->pid, 1));
431
432         free_page((unsigned long)vcpu->run);
433         kmem_cache_free(kvm_vcpu_cache, vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
436
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
439 {
440         return container_of(mn, struct kvm, mmu_notifier);
441 }
442
443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444                                               struct mm_struct *mm,
445                                               unsigned long start, unsigned long end)
446 {
447         struct kvm *kvm = mmu_notifier_to_kvm(mn);
448         int idx;
449
450         idx = srcu_read_lock(&kvm->srcu);
451         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452         srcu_read_unlock(&kvm->srcu, idx);
453 }
454
455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
456
457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
458                              unsigned long end);
459
460 struct kvm_hva_range {
461         unsigned long start;
462         unsigned long end;
463         pte_t pte;
464         hva_handler_t handler;
465         on_lock_fn_t on_lock;
466         bool flush_on_ret;
467         bool may_block;
468 };
469
470 /*
471  * Use a dedicated stub instead of NULL to indicate that there is no callback
472  * function/handler.  The compiler technically can't guarantee that a real
473  * function will have a non-zero address, and so it will generate code to
474  * check for !NULL, whereas comparing against a stub will be elided at compile
475  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
476  */
477 static void kvm_null_fn(void)
478 {
479
480 }
481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
482
483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484                                                   const struct kvm_hva_range *range)
485 {
486         bool ret = false, locked = false;
487         struct kvm_gfn_range gfn_range;
488         struct kvm_memory_slot *slot;
489         struct kvm_memslots *slots;
490         int i, idx;
491
492         /* A null handler is allowed if and only if on_lock() is provided. */
493         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494                          IS_KVM_NULL_FN(range->handler)))
495                 return 0;
496
497         idx = srcu_read_lock(&kvm->srcu);
498
499         /* The on_lock() path does not yet support lock elision. */
500         if (!IS_KVM_NULL_FN(range->on_lock)) {
501                 locked = true;
502                 KVM_MMU_LOCK(kvm);
503
504                 range->on_lock(kvm, range->start, range->end);
505
506                 if (IS_KVM_NULL_FN(range->handler))
507                         goto out_unlock;
508         }
509
510         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
511                 slots = __kvm_memslots(kvm, i);
512                 kvm_for_each_memslot(slot, slots) {
513                         unsigned long hva_start, hva_end;
514
515                         hva_start = max(range->start, slot->userspace_addr);
516                         hva_end = min(range->end, slot->userspace_addr +
517                                                   (slot->npages << PAGE_SHIFT));
518                         if (hva_start >= hva_end)
519                                 continue;
520
521                         /*
522                          * To optimize for the likely case where the address
523                          * range is covered by zero or one memslots, don't
524                          * bother making these conditional (to avoid writes on
525                          * the second or later invocation of the handler).
526                          */
527                         gfn_range.pte = range->pte;
528                         gfn_range.may_block = range->may_block;
529
530                         /*
531                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
532                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
533                          */
534                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
535                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
536                         gfn_range.slot = slot;
537
538                         if (!locked) {
539                                 locked = true;
540                                 KVM_MMU_LOCK(kvm);
541                         }
542                         ret |= range->handler(kvm, &gfn_range);
543                 }
544         }
545
546         if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
547                 kvm_flush_remote_tlbs(kvm);
548
549 out_unlock:
550         if (locked)
551                 KVM_MMU_UNLOCK(kvm);
552
553         srcu_read_unlock(&kvm->srcu, idx);
554
555         /* The notifiers are averse to booleans. :-( */
556         return (int)ret;
557 }
558
559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
560                                                 unsigned long start,
561                                                 unsigned long end,
562                                                 pte_t pte,
563                                                 hva_handler_t handler)
564 {
565         struct kvm *kvm = mmu_notifier_to_kvm(mn);
566         const struct kvm_hva_range range = {
567                 .start          = start,
568                 .end            = end,
569                 .pte            = pte,
570                 .handler        = handler,
571                 .on_lock        = (void *)kvm_null_fn,
572                 .flush_on_ret   = true,
573                 .may_block      = false,
574         };
575
576         return __kvm_handle_hva_range(kvm, &range);
577 }
578
579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
580                                                          unsigned long start,
581                                                          unsigned long end,
582                                                          hva_handler_t handler)
583 {
584         struct kvm *kvm = mmu_notifier_to_kvm(mn);
585         const struct kvm_hva_range range = {
586                 .start          = start,
587                 .end            = end,
588                 .pte            = __pte(0),
589                 .handler        = handler,
590                 .on_lock        = (void *)kvm_null_fn,
591                 .flush_on_ret   = false,
592                 .may_block      = false,
593         };
594
595         return __kvm_handle_hva_range(kvm, &range);
596 }
597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
598                                         struct mm_struct *mm,
599                                         unsigned long address,
600                                         pte_t pte)
601 {
602         struct kvm *kvm = mmu_notifier_to_kvm(mn);
603
604         trace_kvm_set_spte_hva(address);
605
606         /*
607          * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
608          * and so always runs with an elevated notifier count.  This obviates
609          * the need to bump the sequence count.
610          */
611         WARN_ON_ONCE(!kvm->mmu_notifier_count);
612
613         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
614 }
615
616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
617                                    unsigned long end)
618 {
619         /*
620          * The count increase must become visible at unlock time as no
621          * spte can be established without taking the mmu_lock and
622          * count is also read inside the mmu_lock critical section.
623          */
624         kvm->mmu_notifier_count++;
625         if (likely(kvm->mmu_notifier_count == 1)) {
626                 kvm->mmu_notifier_range_start = start;
627                 kvm->mmu_notifier_range_end = end;
628         } else {
629                 /*
630                  * Fully tracking multiple concurrent ranges has dimishing
631                  * returns. Keep things simple and just find the minimal range
632                  * which includes the current and new ranges. As there won't be
633                  * enough information to subtract a range after its invalidate
634                  * completes, any ranges invalidated concurrently will
635                  * accumulate and persist until all outstanding invalidates
636                  * complete.
637                  */
638                 kvm->mmu_notifier_range_start =
639                         min(kvm->mmu_notifier_range_start, start);
640                 kvm->mmu_notifier_range_end =
641                         max(kvm->mmu_notifier_range_end, end);
642         }
643 }
644
645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
646                                         const struct mmu_notifier_range *range)
647 {
648         struct kvm *kvm = mmu_notifier_to_kvm(mn);
649         const struct kvm_hva_range hva_range = {
650                 .start          = range->start,
651                 .end            = range->end,
652                 .pte            = __pte(0),
653                 .handler        = kvm_unmap_gfn_range,
654                 .on_lock        = kvm_inc_notifier_count,
655                 .flush_on_ret   = true,
656                 .may_block      = mmu_notifier_range_blockable(range),
657         };
658
659         trace_kvm_unmap_hva_range(range->start, range->end);
660
661         __kvm_handle_hva_range(kvm, &hva_range);
662
663         return 0;
664 }
665
666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
667                                    unsigned long end)
668 {
669         /*
670          * This sequence increase will notify the kvm page fault that
671          * the page that is going to be mapped in the spte could have
672          * been freed.
673          */
674         kvm->mmu_notifier_seq++;
675         smp_wmb();
676         /*
677          * The above sequence increase must be visible before the
678          * below count decrease, which is ensured by the smp_wmb above
679          * in conjunction with the smp_rmb in mmu_notifier_retry().
680          */
681         kvm->mmu_notifier_count--;
682 }
683
684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685                                         const struct mmu_notifier_range *range)
686 {
687         struct kvm *kvm = mmu_notifier_to_kvm(mn);
688         const struct kvm_hva_range hva_range = {
689                 .start          = range->start,
690                 .end            = range->end,
691                 .pte            = __pte(0),
692                 .handler        = (void *)kvm_null_fn,
693                 .on_lock        = kvm_dec_notifier_count,
694                 .flush_on_ret   = false,
695                 .may_block      = mmu_notifier_range_blockable(range),
696         };
697
698         __kvm_handle_hva_range(kvm, &hva_range);
699
700         BUG_ON(kvm->mmu_notifier_count < 0);
701 }
702
703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
704                                               struct mm_struct *mm,
705                                               unsigned long start,
706                                               unsigned long end)
707 {
708         trace_kvm_age_hva(start, end);
709
710         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
711 }
712
713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
714                                         struct mm_struct *mm,
715                                         unsigned long start,
716                                         unsigned long end)
717 {
718         trace_kvm_age_hva(start, end);
719
720         /*
721          * Even though we do not flush TLB, this will still adversely
722          * affect performance on pre-Haswell Intel EPT, where there is
723          * no EPT Access Bit to clear so that we have to tear down EPT
724          * tables instead. If we find this unacceptable, we can always
725          * add a parameter to kvm_age_hva so that it effectively doesn't
726          * do anything on clear_young.
727          *
728          * Also note that currently we never issue secondary TLB flushes
729          * from clear_young, leaving this job up to the regular system
730          * cadence. If we find this inaccurate, we might come up with a
731          * more sophisticated heuristic later.
732          */
733         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
734 }
735
736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
737                                        struct mm_struct *mm,
738                                        unsigned long address)
739 {
740         trace_kvm_test_age_hva(address);
741
742         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
743                                              kvm_test_age_gfn);
744 }
745
746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
747                                      struct mm_struct *mm)
748 {
749         struct kvm *kvm = mmu_notifier_to_kvm(mn);
750         int idx;
751
752         idx = srcu_read_lock(&kvm->srcu);
753         kvm_arch_flush_shadow_all(kvm);
754         srcu_read_unlock(&kvm->srcu, idx);
755 }
756
757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
758         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
759         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
760         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
761         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
762         .clear_young            = kvm_mmu_notifier_clear_young,
763         .test_young             = kvm_mmu_notifier_test_young,
764         .change_pte             = kvm_mmu_notifier_change_pte,
765         .release                = kvm_mmu_notifier_release,
766 };
767
768 static int kvm_init_mmu_notifier(struct kvm *kvm)
769 {
770         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
772 }
773
774 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
775
776 static int kvm_init_mmu_notifier(struct kvm *kvm)
777 {
778         return 0;
779 }
780
781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
782
783 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
784 static int kvm_pm_notifier_call(struct notifier_block *bl,
785                                 unsigned long state,
786                                 void *unused)
787 {
788         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
789
790         return kvm_arch_pm_notifier(kvm, state);
791 }
792
793 static void kvm_init_pm_notifier(struct kvm *kvm)
794 {
795         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
796         /* Suspend KVM before we suspend ftrace, RCU, etc. */
797         kvm->pm_notifier.priority = INT_MAX;
798         register_pm_notifier(&kvm->pm_notifier);
799 }
800
801 static void kvm_destroy_pm_notifier(struct kvm *kvm)
802 {
803         unregister_pm_notifier(&kvm->pm_notifier);
804 }
805 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
806 static void kvm_init_pm_notifier(struct kvm *kvm)
807 {
808 }
809
810 static void kvm_destroy_pm_notifier(struct kvm *kvm)
811 {
812 }
813 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
814
815 static struct kvm_memslots *kvm_alloc_memslots(void)
816 {
817         int i;
818         struct kvm_memslots *slots;
819
820         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
821         if (!slots)
822                 return NULL;
823
824         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
825                 slots->id_to_index[i] = -1;
826
827         return slots;
828 }
829
830 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
831 {
832         if (!memslot->dirty_bitmap)
833                 return;
834
835         kvfree(memslot->dirty_bitmap);
836         memslot->dirty_bitmap = NULL;
837 }
838
839 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
840 {
841         kvm_destroy_dirty_bitmap(slot);
842
843         kvm_arch_free_memslot(kvm, slot);
844
845         slot->flags = 0;
846         slot->npages = 0;
847 }
848
849 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
850 {
851         struct kvm_memory_slot *memslot;
852
853         if (!slots)
854                 return;
855
856         kvm_for_each_memslot(memslot, slots)
857                 kvm_free_memslot(kvm, memslot);
858
859         kvfree(slots);
860 }
861
862 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
863 {
864         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
865         case KVM_STATS_TYPE_INSTANT:
866                 return 0444;
867         case KVM_STATS_TYPE_CUMULATIVE:
868         case KVM_STATS_TYPE_PEAK:
869         default:
870                 return 0644;
871         }
872 }
873
874
875 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
876 {
877         int i;
878         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
879                                       kvm_vcpu_stats_header.num_desc;
880
881         if (!kvm->debugfs_dentry)
882                 return;
883
884         debugfs_remove_recursive(kvm->debugfs_dentry);
885
886         if (kvm->debugfs_stat_data) {
887                 for (i = 0; i < kvm_debugfs_num_entries; i++)
888                         kfree(kvm->debugfs_stat_data[i]);
889                 kfree(kvm->debugfs_stat_data);
890         }
891 }
892
893 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
894 {
895         char dir_name[ITOA_MAX_LEN * 2];
896         struct kvm_stat_data *stat_data;
897         const struct _kvm_stats_desc *pdesc;
898         int i;
899         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
900                                       kvm_vcpu_stats_header.num_desc;
901
902         if (!debugfs_initialized())
903                 return 0;
904
905         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
906         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
907
908         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
909                                          sizeof(*kvm->debugfs_stat_data),
910                                          GFP_KERNEL_ACCOUNT);
911         if (!kvm->debugfs_stat_data)
912                 return -ENOMEM;
913
914         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
915                 pdesc = &kvm_vm_stats_desc[i];
916                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
917                 if (!stat_data)
918                         return -ENOMEM;
919
920                 stat_data->kvm = kvm;
921                 stat_data->desc = pdesc;
922                 stat_data->kind = KVM_STAT_VM;
923                 kvm->debugfs_stat_data[i] = stat_data;
924                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
925                                     kvm->debugfs_dentry, stat_data,
926                                     &stat_fops_per_vm);
927         }
928
929         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
930                 pdesc = &kvm_vcpu_stats_desc[i];
931                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
932                 if (!stat_data)
933                         return -ENOMEM;
934
935                 stat_data->kvm = kvm;
936                 stat_data->desc = pdesc;
937                 stat_data->kind = KVM_STAT_VCPU;
938                 kvm->debugfs_stat_data[i] = stat_data;
939                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
940                                     kvm->debugfs_dentry, stat_data,
941                                     &stat_fops_per_vm);
942         }
943         return 0;
944 }
945
946 /*
947  * Called after the VM is otherwise initialized, but just before adding it to
948  * the vm_list.
949  */
950 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
951 {
952         return 0;
953 }
954
955 /*
956  * Called just after removing the VM from the vm_list, but before doing any
957  * other destruction.
958  */
959 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
960 {
961 }
962
963 static struct kvm *kvm_create_vm(unsigned long type)
964 {
965         struct kvm *kvm = kvm_arch_alloc_vm();
966         int r = -ENOMEM;
967         int i;
968
969         if (!kvm)
970                 return ERR_PTR(-ENOMEM);
971
972         KVM_MMU_LOCK_INIT(kvm);
973         mmgrab(current->mm);
974         kvm->mm = current->mm;
975         kvm_eventfd_init(kvm);
976         mutex_init(&kvm->lock);
977         mutex_init(&kvm->irq_lock);
978         mutex_init(&kvm->slots_lock);
979         mutex_init(&kvm->slots_arch_lock);
980         INIT_LIST_HEAD(&kvm->devices);
981
982         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
983
984         if (init_srcu_struct(&kvm->srcu))
985                 goto out_err_no_srcu;
986         if (init_srcu_struct(&kvm->irq_srcu))
987                 goto out_err_no_irq_srcu;
988
989         refcount_set(&kvm->users_count, 1);
990         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
991                 struct kvm_memslots *slots = kvm_alloc_memslots();
992
993                 if (!slots)
994                         goto out_err_no_arch_destroy_vm;
995                 /* Generations must be different for each address space. */
996                 slots->generation = i;
997                 rcu_assign_pointer(kvm->memslots[i], slots);
998         }
999
1000         for (i = 0; i < KVM_NR_BUSES; i++) {
1001                 rcu_assign_pointer(kvm->buses[i],
1002                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1003                 if (!kvm->buses[i])
1004                         goto out_err_no_arch_destroy_vm;
1005         }
1006
1007         kvm->max_halt_poll_ns = halt_poll_ns;
1008
1009         r = kvm_arch_init_vm(kvm, type);
1010         if (r)
1011                 goto out_err_no_arch_destroy_vm;
1012
1013         r = hardware_enable_all();
1014         if (r)
1015                 goto out_err_no_disable;
1016
1017 #ifdef CONFIG_HAVE_KVM_IRQFD
1018         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1019 #endif
1020
1021         r = kvm_init_mmu_notifier(kvm);
1022         if (r)
1023                 goto out_err_no_mmu_notifier;
1024
1025         r = kvm_arch_post_init_vm(kvm);
1026         if (r)
1027                 goto out_err;
1028
1029         mutex_lock(&kvm_lock);
1030         list_add(&kvm->vm_list, &vm_list);
1031         mutex_unlock(&kvm_lock);
1032
1033         preempt_notifier_inc();
1034         kvm_init_pm_notifier(kvm);
1035
1036         return kvm;
1037
1038 out_err:
1039 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1040         if (kvm->mmu_notifier.ops)
1041                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1042 #endif
1043 out_err_no_mmu_notifier:
1044         hardware_disable_all();
1045 out_err_no_disable:
1046         kvm_arch_destroy_vm(kvm);
1047 out_err_no_arch_destroy_vm:
1048         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1049         for (i = 0; i < KVM_NR_BUSES; i++)
1050                 kfree(kvm_get_bus(kvm, i));
1051         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1052                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1053         cleanup_srcu_struct(&kvm->irq_srcu);
1054 out_err_no_irq_srcu:
1055         cleanup_srcu_struct(&kvm->srcu);
1056 out_err_no_srcu:
1057         kvm_arch_free_vm(kvm);
1058         mmdrop(current->mm);
1059         return ERR_PTR(r);
1060 }
1061
1062 static void kvm_destroy_devices(struct kvm *kvm)
1063 {
1064         struct kvm_device *dev, *tmp;
1065
1066         /*
1067          * We do not need to take the kvm->lock here, because nobody else
1068          * has a reference to the struct kvm at this point and therefore
1069          * cannot access the devices list anyhow.
1070          */
1071         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1072                 list_del(&dev->vm_node);
1073                 dev->ops->destroy(dev);
1074         }
1075 }
1076
1077 static void kvm_destroy_vm(struct kvm *kvm)
1078 {
1079         int i;
1080         struct mm_struct *mm = kvm->mm;
1081
1082         kvm_destroy_pm_notifier(kvm);
1083         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1084         kvm_destroy_vm_debugfs(kvm);
1085         kvm_arch_sync_events(kvm);
1086         mutex_lock(&kvm_lock);
1087         list_del(&kvm->vm_list);
1088         mutex_unlock(&kvm_lock);
1089         kvm_arch_pre_destroy_vm(kvm);
1090
1091         kvm_free_irq_routing(kvm);
1092         for (i = 0; i < KVM_NR_BUSES; i++) {
1093                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1094
1095                 if (bus)
1096                         kvm_io_bus_destroy(bus);
1097                 kvm->buses[i] = NULL;
1098         }
1099         kvm_coalesced_mmio_free(kvm);
1100 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1101         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1102 #else
1103         kvm_arch_flush_shadow_all(kvm);
1104 #endif
1105         kvm_arch_destroy_vm(kvm);
1106         kvm_destroy_devices(kvm);
1107         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1108                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1109         cleanup_srcu_struct(&kvm->irq_srcu);
1110         cleanup_srcu_struct(&kvm->srcu);
1111         kvm_arch_free_vm(kvm);
1112         preempt_notifier_dec();
1113         hardware_disable_all();
1114         mmdrop(mm);
1115 }
1116
1117 void kvm_get_kvm(struct kvm *kvm)
1118 {
1119         refcount_inc(&kvm->users_count);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1122
1123 void kvm_put_kvm(struct kvm *kvm)
1124 {
1125         if (refcount_dec_and_test(&kvm->users_count))
1126                 kvm_destroy_vm(kvm);
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1129
1130 /*
1131  * Used to put a reference that was taken on behalf of an object associated
1132  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1133  * of the new file descriptor fails and the reference cannot be transferred to
1134  * its final owner.  In such cases, the caller is still actively using @kvm and
1135  * will fail miserably if the refcount unexpectedly hits zero.
1136  */
1137 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1138 {
1139         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1142
1143 static int kvm_vm_release(struct inode *inode, struct file *filp)
1144 {
1145         struct kvm *kvm = filp->private_data;
1146
1147         kvm_irqfd_release(kvm);
1148
1149         kvm_put_kvm(kvm);
1150         return 0;
1151 }
1152
1153 /*
1154  * Allocation size is twice as large as the actual dirty bitmap size.
1155  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1156  */
1157 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1158 {
1159         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1160
1161         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1162         if (!memslot->dirty_bitmap)
1163                 return -ENOMEM;
1164
1165         return 0;
1166 }
1167
1168 /*
1169  * Delete a memslot by decrementing the number of used slots and shifting all
1170  * other entries in the array forward one spot.
1171  */
1172 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1173                                       struct kvm_memory_slot *memslot)
1174 {
1175         struct kvm_memory_slot *mslots = slots->memslots;
1176         int i;
1177
1178         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1179                 return;
1180
1181         slots->used_slots--;
1182
1183         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1184                 atomic_set(&slots->lru_slot, 0);
1185
1186         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1187                 mslots[i] = mslots[i + 1];
1188                 slots->id_to_index[mslots[i].id] = i;
1189         }
1190         mslots[i] = *memslot;
1191         slots->id_to_index[memslot->id] = -1;
1192 }
1193
1194 /*
1195  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1196  * the new slot's initial index into the memslots array.
1197  */
1198 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1199 {
1200         return slots->used_slots++;
1201 }
1202
1203 /*
1204  * Move a changed memslot backwards in the array by shifting existing slots
1205  * with a higher GFN toward the front of the array.  Note, the changed memslot
1206  * itself is not preserved in the array, i.e. not swapped at this time, only
1207  * its new index into the array is tracked.  Returns the changed memslot's
1208  * current index into the memslots array.
1209  */
1210 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1211                                             struct kvm_memory_slot *memslot)
1212 {
1213         struct kvm_memory_slot *mslots = slots->memslots;
1214         int i;
1215
1216         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1217             WARN_ON_ONCE(!slots->used_slots))
1218                 return -1;
1219
1220         /*
1221          * Move the target memslot backward in the array by shifting existing
1222          * memslots with a higher GFN (than the target memslot) towards the
1223          * front of the array.
1224          */
1225         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1226                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1227                         break;
1228
1229                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1230
1231                 /* Shift the next memslot forward one and update its index. */
1232                 mslots[i] = mslots[i + 1];
1233                 slots->id_to_index[mslots[i].id] = i;
1234         }
1235         return i;
1236 }
1237
1238 /*
1239  * Move a changed memslot forwards in the array by shifting existing slots with
1240  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1241  * is not preserved in the array, i.e. not swapped at this time, only its new
1242  * index into the array is tracked.  Returns the changed memslot's final index
1243  * into the memslots array.
1244  */
1245 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1246                                            struct kvm_memory_slot *memslot,
1247                                            int start)
1248 {
1249         struct kvm_memory_slot *mslots = slots->memslots;
1250         int i;
1251
1252         for (i = start; i > 0; i--) {
1253                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1254                         break;
1255
1256                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1257
1258                 /* Shift the next memslot back one and update its index. */
1259                 mslots[i] = mslots[i - 1];
1260                 slots->id_to_index[mslots[i].id] = i;
1261         }
1262         return i;
1263 }
1264
1265 /*
1266  * Re-sort memslots based on their GFN to account for an added, deleted, or
1267  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1268  * memslot lookup.
1269  *
1270  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1271  * at memslots[0] has the highest GFN.
1272  *
1273  * The sorting algorithm takes advantage of having initially sorted memslots
1274  * and knowing the position of the changed memslot.  Sorting is also optimized
1275  * by not swapping the updated memslot and instead only shifting other memslots
1276  * and tracking the new index for the update memslot.  Only once its final
1277  * index is known is the updated memslot copied into its position in the array.
1278  *
1279  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1280  *    the end of the array.
1281  *
1282  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1283  *    end of the array and then it forward to its correct location.
1284  *
1285  *  - When moving a memslot, the algorithm first moves the updated memslot
1286  *    backward to handle the scenario where the memslot's GFN was changed to a
1287  *    lower value.  update_memslots() then falls through and runs the same flow
1288  *    as creating a memslot to move the memslot forward to handle the scenario
1289  *    where its GFN was changed to a higher value.
1290  *
1291  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1292  * historical reasons.  Originally, invalid memslots where denoted by having
1293  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1294  * to the end of the array.  The current algorithm uses dedicated logic to
1295  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1296  *
1297  * The other historical motiviation for highest->lowest was to improve the
1298  * performance of memslot lookup.  KVM originally used a linear search starting
1299  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1300  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1301  * single memslot above the 4gb boundary.  As the largest memslot is also the
1302  * most likely to be referenced, sorting it to the front of the array was
1303  * advantageous.  The current binary search starts from the middle of the array
1304  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1305  */
1306 static void update_memslots(struct kvm_memslots *slots,
1307                             struct kvm_memory_slot *memslot,
1308                             enum kvm_mr_change change)
1309 {
1310         int i;
1311
1312         if (change == KVM_MR_DELETE) {
1313                 kvm_memslot_delete(slots, memslot);
1314         } else {
1315                 if (change == KVM_MR_CREATE)
1316                         i = kvm_memslot_insert_back(slots);
1317                 else
1318                         i = kvm_memslot_move_backward(slots, memslot);
1319                 i = kvm_memslot_move_forward(slots, memslot, i);
1320
1321                 /*
1322                  * Copy the memslot to its new position in memslots and update
1323                  * its index accordingly.
1324                  */
1325                 slots->memslots[i] = *memslot;
1326                 slots->id_to_index[memslot->id] = i;
1327         }
1328 }
1329
1330 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1331 {
1332         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1333
1334 #ifdef __KVM_HAVE_READONLY_MEM
1335         valid_flags |= KVM_MEM_READONLY;
1336 #endif
1337
1338         if (mem->flags & ~valid_flags)
1339                 return -EINVAL;
1340
1341         return 0;
1342 }
1343
1344 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1345                 int as_id, struct kvm_memslots *slots)
1346 {
1347         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1348         u64 gen = old_memslots->generation;
1349
1350         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1351         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1352
1353         rcu_assign_pointer(kvm->memslots[as_id], slots);
1354
1355         /*
1356          * Acquired in kvm_set_memslot. Must be released before synchronize
1357          * SRCU below in order to avoid deadlock with another thread
1358          * acquiring the slots_arch_lock in an srcu critical section.
1359          */
1360         mutex_unlock(&kvm->slots_arch_lock);
1361
1362         synchronize_srcu_expedited(&kvm->srcu);
1363
1364         /*
1365          * Increment the new memslot generation a second time, dropping the
1366          * update in-progress flag and incrementing the generation based on
1367          * the number of address spaces.  This provides a unique and easily
1368          * identifiable generation number while the memslots are in flux.
1369          */
1370         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1371
1372         /*
1373          * Generations must be unique even across address spaces.  We do not need
1374          * a global counter for that, instead the generation space is evenly split
1375          * across address spaces.  For example, with two address spaces, address
1376          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1377          * use generations 1, 3, 5, ...
1378          */
1379         gen += KVM_ADDRESS_SPACE_NUM;
1380
1381         kvm_arch_memslots_updated(kvm, gen);
1382
1383         slots->generation = gen;
1384
1385         return old_memslots;
1386 }
1387
1388 static size_t kvm_memslots_size(int slots)
1389 {
1390         return sizeof(struct kvm_memslots) +
1391                (sizeof(struct kvm_memory_slot) * slots);
1392 }
1393
1394 static void kvm_copy_memslots(struct kvm_memslots *to,
1395                               struct kvm_memslots *from)
1396 {
1397         memcpy(to, from, kvm_memslots_size(from->used_slots));
1398 }
1399
1400 /*
1401  * Note, at a minimum, the current number of used slots must be allocated, even
1402  * when deleting a memslot, as we need a complete duplicate of the memslots for
1403  * use when invalidating a memslot prior to deleting/moving the memslot.
1404  */
1405 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1406                                              enum kvm_mr_change change)
1407 {
1408         struct kvm_memslots *slots;
1409         size_t new_size;
1410
1411         if (change == KVM_MR_CREATE)
1412                 new_size = kvm_memslots_size(old->used_slots + 1);
1413         else
1414                 new_size = kvm_memslots_size(old->used_slots);
1415
1416         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1417         if (likely(slots))
1418                 kvm_copy_memslots(slots, old);
1419
1420         return slots;
1421 }
1422
1423 static int kvm_set_memslot(struct kvm *kvm,
1424                            const struct kvm_userspace_memory_region *mem,
1425                            struct kvm_memory_slot *old,
1426                            struct kvm_memory_slot *new, int as_id,
1427                            enum kvm_mr_change change)
1428 {
1429         struct kvm_memory_slot *slot;
1430         struct kvm_memslots *slots;
1431         int r;
1432
1433         /*
1434          * Released in install_new_memslots.
1435          *
1436          * Must be held from before the current memslots are copied until
1437          * after the new memslots are installed with rcu_assign_pointer,
1438          * then released before the synchronize srcu in install_new_memslots.
1439          *
1440          * When modifying memslots outside of the slots_lock, must be held
1441          * before reading the pointer to the current memslots until after all
1442          * changes to those memslots are complete.
1443          *
1444          * These rules ensure that installing new memslots does not lose
1445          * changes made to the previous memslots.
1446          */
1447         mutex_lock(&kvm->slots_arch_lock);
1448
1449         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1450         if (!slots) {
1451                 mutex_unlock(&kvm->slots_arch_lock);
1452                 return -ENOMEM;
1453         }
1454
1455         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1456                 /*
1457                  * Note, the INVALID flag needs to be in the appropriate entry
1458                  * in the freshly allocated memslots, not in @old or @new.
1459                  */
1460                 slot = id_to_memslot(slots, old->id);
1461                 slot->flags |= KVM_MEMSLOT_INVALID;
1462
1463                 /*
1464                  * We can re-use the memory from the old memslots.
1465                  * It will be overwritten with a copy of the new memslots
1466                  * after reacquiring the slots_arch_lock below.
1467                  */
1468                 slots = install_new_memslots(kvm, as_id, slots);
1469
1470                 /* From this point no new shadow pages pointing to a deleted,
1471                  * or moved, memslot will be created.
1472                  *
1473                  * validation of sp->gfn happens in:
1474                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1475                  *      - kvm_is_visible_gfn (mmu_check_root)
1476                  */
1477                 kvm_arch_flush_shadow_memslot(kvm, slot);
1478
1479                 /* Released in install_new_memslots. */
1480                 mutex_lock(&kvm->slots_arch_lock);
1481
1482                 /*
1483                  * The arch-specific fields of the memslots could have changed
1484                  * between releasing the slots_arch_lock in
1485                  * install_new_memslots and here, so get a fresh copy of the
1486                  * slots.
1487                  */
1488                 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1489         }
1490
1491         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1492         if (r)
1493                 goto out_slots;
1494
1495         update_memslots(slots, new, change);
1496         slots = install_new_memslots(kvm, as_id, slots);
1497
1498         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1499
1500         kvfree(slots);
1501         return 0;
1502
1503 out_slots:
1504         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1505                 slot = id_to_memslot(slots, old->id);
1506                 slot->flags &= ~KVM_MEMSLOT_INVALID;
1507                 slots = install_new_memslots(kvm, as_id, slots);
1508         } else {
1509                 mutex_unlock(&kvm->slots_arch_lock);
1510         }
1511         kvfree(slots);
1512         return r;
1513 }
1514
1515 static int kvm_delete_memslot(struct kvm *kvm,
1516                               const struct kvm_userspace_memory_region *mem,
1517                               struct kvm_memory_slot *old, int as_id)
1518 {
1519         struct kvm_memory_slot new;
1520         int r;
1521
1522         if (!old->npages)
1523                 return -EINVAL;
1524
1525         memset(&new, 0, sizeof(new));
1526         new.id = old->id;
1527         /*
1528          * This is only for debugging purpose; it should never be referenced
1529          * for a removed memslot.
1530          */
1531         new.as_id = as_id;
1532
1533         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1534         if (r)
1535                 return r;
1536
1537         kvm_free_memslot(kvm, old);
1538         return 0;
1539 }
1540
1541 /*
1542  * Allocate some memory and give it an address in the guest physical address
1543  * space.
1544  *
1545  * Discontiguous memory is allowed, mostly for framebuffers.
1546  *
1547  * Must be called holding kvm->slots_lock for write.
1548  */
1549 int __kvm_set_memory_region(struct kvm *kvm,
1550                             const struct kvm_userspace_memory_region *mem)
1551 {
1552         struct kvm_memory_slot old, new;
1553         struct kvm_memory_slot *tmp;
1554         enum kvm_mr_change change;
1555         int as_id, id;
1556         int r;
1557
1558         r = check_memory_region_flags(mem);
1559         if (r)
1560                 return r;
1561
1562         as_id = mem->slot >> 16;
1563         id = (u16)mem->slot;
1564
1565         /* General sanity checks */
1566         if (mem->memory_size & (PAGE_SIZE - 1))
1567                 return -EINVAL;
1568         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1569                 return -EINVAL;
1570         /* We can read the guest memory with __xxx_user() later on. */
1571         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1572             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1573              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1574                         mem->memory_size))
1575                 return -EINVAL;
1576         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1577                 return -EINVAL;
1578         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1579                 return -EINVAL;
1580
1581         /*
1582          * Make a full copy of the old memslot, the pointer will become stale
1583          * when the memslots are re-sorted by update_memslots(), and the old
1584          * memslot needs to be referenced after calling update_memslots(), e.g.
1585          * to free its resources and for arch specific behavior.
1586          */
1587         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1588         if (tmp) {
1589                 old = *tmp;
1590                 tmp = NULL;
1591         } else {
1592                 memset(&old, 0, sizeof(old));
1593                 old.id = id;
1594         }
1595
1596         if (!mem->memory_size)
1597                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1598
1599         new.as_id = as_id;
1600         new.id = id;
1601         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1602         new.npages = mem->memory_size >> PAGE_SHIFT;
1603         new.flags = mem->flags;
1604         new.userspace_addr = mem->userspace_addr;
1605
1606         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1607                 return -EINVAL;
1608
1609         if (!old.npages) {
1610                 change = KVM_MR_CREATE;
1611                 new.dirty_bitmap = NULL;
1612                 memset(&new.arch, 0, sizeof(new.arch));
1613         } else { /* Modify an existing slot. */
1614                 if ((new.userspace_addr != old.userspace_addr) ||
1615                     (new.npages != old.npages) ||
1616                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1617                         return -EINVAL;
1618
1619                 if (new.base_gfn != old.base_gfn)
1620                         change = KVM_MR_MOVE;
1621                 else if (new.flags != old.flags)
1622                         change = KVM_MR_FLAGS_ONLY;
1623                 else /* Nothing to change. */
1624                         return 0;
1625
1626                 /* Copy dirty_bitmap and arch from the current memslot. */
1627                 new.dirty_bitmap = old.dirty_bitmap;
1628                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1629         }
1630
1631         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1632                 /* Check for overlaps */
1633                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1634                         if (tmp->id == id)
1635                                 continue;
1636                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1637                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1638                                 return -EEXIST;
1639                 }
1640         }
1641
1642         /* Allocate/free page dirty bitmap as needed */
1643         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1644                 new.dirty_bitmap = NULL;
1645         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1646                 r = kvm_alloc_dirty_bitmap(&new);
1647                 if (r)
1648                         return r;
1649
1650                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1651                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1652         }
1653
1654         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1655         if (r)
1656                 goto out_bitmap;
1657
1658         if (old.dirty_bitmap && !new.dirty_bitmap)
1659                 kvm_destroy_dirty_bitmap(&old);
1660         return 0;
1661
1662 out_bitmap:
1663         if (new.dirty_bitmap && !old.dirty_bitmap)
1664                 kvm_destroy_dirty_bitmap(&new);
1665         return r;
1666 }
1667 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1668
1669 int kvm_set_memory_region(struct kvm *kvm,
1670                           const struct kvm_userspace_memory_region *mem)
1671 {
1672         int r;
1673
1674         mutex_lock(&kvm->slots_lock);
1675         r = __kvm_set_memory_region(kvm, mem);
1676         mutex_unlock(&kvm->slots_lock);
1677         return r;
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1680
1681 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1682                                           struct kvm_userspace_memory_region *mem)
1683 {
1684         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1685                 return -EINVAL;
1686
1687         return kvm_set_memory_region(kvm, mem);
1688 }
1689
1690 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1691 /**
1692  * kvm_get_dirty_log - get a snapshot of dirty pages
1693  * @kvm:        pointer to kvm instance
1694  * @log:        slot id and address to which we copy the log
1695  * @is_dirty:   set to '1' if any dirty pages were found
1696  * @memslot:    set to the associated memslot, always valid on success
1697  */
1698 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1699                       int *is_dirty, struct kvm_memory_slot **memslot)
1700 {
1701         struct kvm_memslots *slots;
1702         int i, as_id, id;
1703         unsigned long n;
1704         unsigned long any = 0;
1705
1706         /* Dirty ring tracking is exclusive to dirty log tracking */
1707         if (kvm->dirty_ring_size)
1708                 return -ENXIO;
1709
1710         *memslot = NULL;
1711         *is_dirty = 0;
1712
1713         as_id = log->slot >> 16;
1714         id = (u16)log->slot;
1715         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1716                 return -EINVAL;
1717
1718         slots = __kvm_memslots(kvm, as_id);
1719         *memslot = id_to_memslot(slots, id);
1720         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1721                 return -ENOENT;
1722
1723         kvm_arch_sync_dirty_log(kvm, *memslot);
1724
1725         n = kvm_dirty_bitmap_bytes(*memslot);
1726
1727         for (i = 0; !any && i < n/sizeof(long); ++i)
1728                 any = (*memslot)->dirty_bitmap[i];
1729
1730         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1731                 return -EFAULT;
1732
1733         if (any)
1734                 *is_dirty = 1;
1735         return 0;
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1738
1739 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1740 /**
1741  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1742  *      and reenable dirty page tracking for the corresponding pages.
1743  * @kvm:        pointer to kvm instance
1744  * @log:        slot id and address to which we copy the log
1745  *
1746  * We need to keep it in mind that VCPU threads can write to the bitmap
1747  * concurrently. So, to avoid losing track of dirty pages we keep the
1748  * following order:
1749  *
1750  *    1. Take a snapshot of the bit and clear it if needed.
1751  *    2. Write protect the corresponding page.
1752  *    3. Copy the snapshot to the userspace.
1753  *    4. Upon return caller flushes TLB's if needed.
1754  *
1755  * Between 2 and 4, the guest may write to the page using the remaining TLB
1756  * entry.  This is not a problem because the page is reported dirty using
1757  * the snapshot taken before and step 4 ensures that writes done after
1758  * exiting to userspace will be logged for the next call.
1759  *
1760  */
1761 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1762 {
1763         struct kvm_memslots *slots;
1764         struct kvm_memory_slot *memslot;
1765         int i, as_id, id;
1766         unsigned long n;
1767         unsigned long *dirty_bitmap;
1768         unsigned long *dirty_bitmap_buffer;
1769         bool flush;
1770
1771         /* Dirty ring tracking is exclusive to dirty log tracking */
1772         if (kvm->dirty_ring_size)
1773                 return -ENXIO;
1774
1775         as_id = log->slot >> 16;
1776         id = (u16)log->slot;
1777         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1778                 return -EINVAL;
1779
1780         slots = __kvm_memslots(kvm, as_id);
1781         memslot = id_to_memslot(slots, id);
1782         if (!memslot || !memslot->dirty_bitmap)
1783                 return -ENOENT;
1784
1785         dirty_bitmap = memslot->dirty_bitmap;
1786
1787         kvm_arch_sync_dirty_log(kvm, memslot);
1788
1789         n = kvm_dirty_bitmap_bytes(memslot);
1790         flush = false;
1791         if (kvm->manual_dirty_log_protect) {
1792                 /*
1793                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1794                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1795                  * is some code duplication between this function and
1796                  * kvm_get_dirty_log, but hopefully all architecture
1797                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1798                  * can be eliminated.
1799                  */
1800                 dirty_bitmap_buffer = dirty_bitmap;
1801         } else {
1802                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1803                 memset(dirty_bitmap_buffer, 0, n);
1804
1805                 KVM_MMU_LOCK(kvm);
1806                 for (i = 0; i < n / sizeof(long); i++) {
1807                         unsigned long mask;
1808                         gfn_t offset;
1809
1810                         if (!dirty_bitmap[i])
1811                                 continue;
1812
1813                         flush = true;
1814                         mask = xchg(&dirty_bitmap[i], 0);
1815                         dirty_bitmap_buffer[i] = mask;
1816
1817                         offset = i * BITS_PER_LONG;
1818                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1819                                                                 offset, mask);
1820                 }
1821                 KVM_MMU_UNLOCK(kvm);
1822         }
1823
1824         if (flush)
1825                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1826
1827         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1828                 return -EFAULT;
1829         return 0;
1830 }
1831
1832
1833 /**
1834  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1835  * @kvm: kvm instance
1836  * @log: slot id and address to which we copy the log
1837  *
1838  * Steps 1-4 below provide general overview of dirty page logging. See
1839  * kvm_get_dirty_log_protect() function description for additional details.
1840  *
1841  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1842  * always flush the TLB (step 4) even if previous step failed  and the dirty
1843  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1844  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1845  * writes will be marked dirty for next log read.
1846  *
1847  *   1. Take a snapshot of the bit and clear it if needed.
1848  *   2. Write protect the corresponding page.
1849  *   3. Copy the snapshot to the userspace.
1850  *   4. Flush TLB's if needed.
1851  */
1852 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1853                                       struct kvm_dirty_log *log)
1854 {
1855         int r;
1856
1857         mutex_lock(&kvm->slots_lock);
1858
1859         r = kvm_get_dirty_log_protect(kvm, log);
1860
1861         mutex_unlock(&kvm->slots_lock);
1862         return r;
1863 }
1864
1865 /**
1866  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1867  *      and reenable dirty page tracking for the corresponding pages.
1868  * @kvm:        pointer to kvm instance
1869  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1870  */
1871 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1872                                        struct kvm_clear_dirty_log *log)
1873 {
1874         struct kvm_memslots *slots;
1875         struct kvm_memory_slot *memslot;
1876         int as_id, id;
1877         gfn_t offset;
1878         unsigned long i, n;
1879         unsigned long *dirty_bitmap;
1880         unsigned long *dirty_bitmap_buffer;
1881         bool flush;
1882
1883         /* Dirty ring tracking is exclusive to dirty log tracking */
1884         if (kvm->dirty_ring_size)
1885                 return -ENXIO;
1886
1887         as_id = log->slot >> 16;
1888         id = (u16)log->slot;
1889         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1890                 return -EINVAL;
1891
1892         if (log->first_page & 63)
1893                 return -EINVAL;
1894
1895         slots = __kvm_memslots(kvm, as_id);
1896         memslot = id_to_memslot(slots, id);
1897         if (!memslot || !memslot->dirty_bitmap)
1898                 return -ENOENT;
1899
1900         dirty_bitmap = memslot->dirty_bitmap;
1901
1902         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1903
1904         if (log->first_page > memslot->npages ||
1905             log->num_pages > memslot->npages - log->first_page ||
1906             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1907             return -EINVAL;
1908
1909         kvm_arch_sync_dirty_log(kvm, memslot);
1910
1911         flush = false;
1912         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1913         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1914                 return -EFAULT;
1915
1916         KVM_MMU_LOCK(kvm);
1917         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1918                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1919              i++, offset += BITS_PER_LONG) {
1920                 unsigned long mask = *dirty_bitmap_buffer++;
1921                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1922                 if (!mask)
1923                         continue;
1924
1925                 mask &= atomic_long_fetch_andnot(mask, p);
1926
1927                 /*
1928                  * mask contains the bits that really have been cleared.  This
1929                  * never includes any bits beyond the length of the memslot (if
1930                  * the length is not aligned to 64 pages), therefore it is not
1931                  * a problem if userspace sets them in log->dirty_bitmap.
1932                 */
1933                 if (mask) {
1934                         flush = true;
1935                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1936                                                                 offset, mask);
1937                 }
1938         }
1939         KVM_MMU_UNLOCK(kvm);
1940
1941         if (flush)
1942                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1943
1944         return 0;
1945 }
1946
1947 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1948                                         struct kvm_clear_dirty_log *log)
1949 {
1950         int r;
1951
1952         mutex_lock(&kvm->slots_lock);
1953
1954         r = kvm_clear_dirty_log_protect(kvm, log);
1955
1956         mutex_unlock(&kvm->slots_lock);
1957         return r;
1958 }
1959 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1960
1961 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1962 {
1963         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1964 }
1965 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1966
1967 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1968 {
1969         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1970 }
1971 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1972
1973 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1974 {
1975         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1976
1977         return kvm_is_visible_memslot(memslot);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1980
1981 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1982 {
1983         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1984
1985         return kvm_is_visible_memslot(memslot);
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1988
1989 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1990 {
1991         struct vm_area_struct *vma;
1992         unsigned long addr, size;
1993
1994         size = PAGE_SIZE;
1995
1996         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1997         if (kvm_is_error_hva(addr))
1998                 return PAGE_SIZE;
1999
2000         mmap_read_lock(current->mm);
2001         vma = find_vma(current->mm, addr);
2002         if (!vma)
2003                 goto out;
2004
2005         size = vma_kernel_pagesize(vma);
2006
2007 out:
2008         mmap_read_unlock(current->mm);
2009
2010         return size;
2011 }
2012
2013 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2014 {
2015         return slot->flags & KVM_MEM_READONLY;
2016 }
2017
2018 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2019                                        gfn_t *nr_pages, bool write)
2020 {
2021         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2022                 return KVM_HVA_ERR_BAD;
2023
2024         if (memslot_is_readonly(slot) && write)
2025                 return KVM_HVA_ERR_RO_BAD;
2026
2027         if (nr_pages)
2028                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2029
2030         return __gfn_to_hva_memslot(slot, gfn);
2031 }
2032
2033 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2034                                      gfn_t *nr_pages)
2035 {
2036         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2037 }
2038
2039 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2040                                         gfn_t gfn)
2041 {
2042         return gfn_to_hva_many(slot, gfn, NULL);
2043 }
2044 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2045
2046 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2047 {
2048         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2049 }
2050 EXPORT_SYMBOL_GPL(gfn_to_hva);
2051
2052 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2053 {
2054         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2057
2058 /*
2059  * Return the hva of a @gfn and the R/W attribute if possible.
2060  *
2061  * @slot: the kvm_memory_slot which contains @gfn
2062  * @gfn: the gfn to be translated
2063  * @writable: used to return the read/write attribute of the @slot if the hva
2064  * is valid and @writable is not NULL
2065  */
2066 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2067                                       gfn_t gfn, bool *writable)
2068 {
2069         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2070
2071         if (!kvm_is_error_hva(hva) && writable)
2072                 *writable = !memslot_is_readonly(slot);
2073
2074         return hva;
2075 }
2076
2077 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2078 {
2079         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2080
2081         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2082 }
2083
2084 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2085 {
2086         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2087
2088         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2089 }
2090
2091 static inline int check_user_page_hwpoison(unsigned long addr)
2092 {
2093         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2094
2095         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2096         return rc == -EHWPOISON;
2097 }
2098
2099 /*
2100  * The fast path to get the writable pfn which will be stored in @pfn,
2101  * true indicates success, otherwise false is returned.  It's also the
2102  * only part that runs if we can in atomic context.
2103  */
2104 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2105                             bool *writable, kvm_pfn_t *pfn)
2106 {
2107         struct page *page[1];
2108
2109         /*
2110          * Fast pin a writable pfn only if it is a write fault request
2111          * or the caller allows to map a writable pfn for a read fault
2112          * request.
2113          */
2114         if (!(write_fault || writable))
2115                 return false;
2116
2117         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2118                 *pfn = page_to_pfn(page[0]);
2119
2120                 if (writable)
2121                         *writable = true;
2122                 return true;
2123         }
2124
2125         return false;
2126 }
2127
2128 /*
2129  * The slow path to get the pfn of the specified host virtual address,
2130  * 1 indicates success, -errno is returned if error is detected.
2131  */
2132 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2133                            bool *writable, kvm_pfn_t *pfn)
2134 {
2135         unsigned int flags = FOLL_HWPOISON;
2136         struct page *page;
2137         int npages = 0;
2138
2139         might_sleep();
2140
2141         if (writable)
2142                 *writable = write_fault;
2143
2144         if (write_fault)
2145                 flags |= FOLL_WRITE;
2146         if (async)
2147                 flags |= FOLL_NOWAIT;
2148
2149         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2150         if (npages != 1)
2151                 return npages;
2152
2153         /* map read fault as writable if possible */
2154         if (unlikely(!write_fault) && writable) {
2155                 struct page *wpage;
2156
2157                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2158                         *writable = true;
2159                         put_page(page);
2160                         page = wpage;
2161                 }
2162         }
2163         *pfn = page_to_pfn(page);
2164         return npages;
2165 }
2166
2167 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2168 {
2169         if (unlikely(!(vma->vm_flags & VM_READ)))
2170                 return false;
2171
2172         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2173                 return false;
2174
2175         return true;
2176 }
2177
2178 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2179                                unsigned long addr, bool *async,
2180                                bool write_fault, bool *writable,
2181                                kvm_pfn_t *p_pfn)
2182 {
2183         kvm_pfn_t pfn;
2184         pte_t *ptep;
2185         spinlock_t *ptl;
2186         int r;
2187
2188         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2189         if (r) {
2190                 /*
2191                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2192                  * not call the fault handler, so do it here.
2193                  */
2194                 bool unlocked = false;
2195                 r = fixup_user_fault(current->mm, addr,
2196                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2197                                      &unlocked);
2198                 if (unlocked)
2199                         return -EAGAIN;
2200                 if (r)
2201                         return r;
2202
2203                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2204                 if (r)
2205                         return r;
2206         }
2207
2208         if (write_fault && !pte_write(*ptep)) {
2209                 pfn = KVM_PFN_ERR_RO_FAULT;
2210                 goto out;
2211         }
2212
2213         if (writable)
2214                 *writable = pte_write(*ptep);
2215         pfn = pte_pfn(*ptep);
2216
2217         /*
2218          * Get a reference here because callers of *hva_to_pfn* and
2219          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2220          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2221          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2222          * simply do nothing for reserved pfns.
2223          *
2224          * Whoever called remap_pfn_range is also going to call e.g.
2225          * unmap_mapping_range before the underlying pages are freed,
2226          * causing a call to our MMU notifier.
2227          */ 
2228         kvm_get_pfn(pfn);
2229
2230 out:
2231         pte_unmap_unlock(ptep, ptl);
2232         *p_pfn = pfn;
2233         return 0;
2234 }
2235
2236 /*
2237  * Pin guest page in memory and return its pfn.
2238  * @addr: host virtual address which maps memory to the guest
2239  * @atomic: whether this function can sleep
2240  * @async: whether this function need to wait IO complete if the
2241  *         host page is not in the memory
2242  * @write_fault: whether we should get a writable host page
2243  * @writable: whether it allows to map a writable host page for !@write_fault
2244  *
2245  * The function will map a writable host page for these two cases:
2246  * 1): @write_fault = true
2247  * 2): @write_fault = false && @writable, @writable will tell the caller
2248  *     whether the mapping is writable.
2249  */
2250 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2251                         bool write_fault, bool *writable)
2252 {
2253         struct vm_area_struct *vma;
2254         kvm_pfn_t pfn = 0;
2255         int npages, r;
2256
2257         /* we can do it either atomically or asynchronously, not both */
2258         BUG_ON(atomic && async);
2259
2260         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2261                 return pfn;
2262
2263         if (atomic)
2264                 return KVM_PFN_ERR_FAULT;
2265
2266         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2267         if (npages == 1)
2268                 return pfn;
2269
2270         mmap_read_lock(current->mm);
2271         if (npages == -EHWPOISON ||
2272               (!async && check_user_page_hwpoison(addr))) {
2273                 pfn = KVM_PFN_ERR_HWPOISON;
2274                 goto exit;
2275         }
2276
2277 retry:
2278         vma = find_vma_intersection(current->mm, addr, addr + 1);
2279
2280         if (vma == NULL)
2281                 pfn = KVM_PFN_ERR_FAULT;
2282         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2283                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2284                 if (r == -EAGAIN)
2285                         goto retry;
2286                 if (r < 0)
2287                         pfn = KVM_PFN_ERR_FAULT;
2288         } else {
2289                 if (async && vma_is_valid(vma, write_fault))
2290                         *async = true;
2291                 pfn = KVM_PFN_ERR_FAULT;
2292         }
2293 exit:
2294         mmap_read_unlock(current->mm);
2295         return pfn;
2296 }
2297
2298 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2299                                bool atomic, bool *async, bool write_fault,
2300                                bool *writable, hva_t *hva)
2301 {
2302         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2303
2304         if (hva)
2305                 *hva = addr;
2306
2307         if (addr == KVM_HVA_ERR_RO_BAD) {
2308                 if (writable)
2309                         *writable = false;
2310                 return KVM_PFN_ERR_RO_FAULT;
2311         }
2312
2313         if (kvm_is_error_hva(addr)) {
2314                 if (writable)
2315                         *writable = false;
2316                 return KVM_PFN_NOSLOT;
2317         }
2318
2319         /* Do not map writable pfn in the readonly memslot. */
2320         if (writable && memslot_is_readonly(slot)) {
2321                 *writable = false;
2322                 writable = NULL;
2323         }
2324
2325         return hva_to_pfn(addr, atomic, async, write_fault,
2326                           writable);
2327 }
2328 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2329
2330 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2331                       bool *writable)
2332 {
2333         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2334                                     write_fault, writable, NULL);
2335 }
2336 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2337
2338 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2339 {
2340         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2341 }
2342 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2343
2344 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2345 {
2346         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2347 }
2348 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2349
2350 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2351 {
2352         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2353 }
2354 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2355
2356 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2357 {
2358         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2359 }
2360 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2361
2362 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2363 {
2364         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2365 }
2366 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2367
2368 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2369                             struct page **pages, int nr_pages)
2370 {
2371         unsigned long addr;
2372         gfn_t entry = 0;
2373
2374         addr = gfn_to_hva_many(slot, gfn, &entry);
2375         if (kvm_is_error_hva(addr))
2376                 return -1;
2377
2378         if (entry < nr_pages)
2379                 return 0;
2380
2381         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2382 }
2383 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2384
2385 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2386 {
2387         if (is_error_noslot_pfn(pfn))
2388                 return KVM_ERR_PTR_BAD_PAGE;
2389
2390         if (kvm_is_reserved_pfn(pfn)) {
2391                 WARN_ON(1);
2392                 return KVM_ERR_PTR_BAD_PAGE;
2393         }
2394
2395         return pfn_to_page(pfn);
2396 }
2397
2398 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2399 {
2400         kvm_pfn_t pfn;
2401
2402         pfn = gfn_to_pfn(kvm, gfn);
2403
2404         return kvm_pfn_to_page(pfn);
2405 }
2406 EXPORT_SYMBOL_GPL(gfn_to_page);
2407
2408 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2409 {
2410         if (pfn == 0)
2411                 return;
2412
2413         if (cache)
2414                 cache->pfn = cache->gfn = 0;
2415
2416         if (dirty)
2417                 kvm_release_pfn_dirty(pfn);
2418         else
2419                 kvm_release_pfn_clean(pfn);
2420 }
2421
2422 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2423                                  struct gfn_to_pfn_cache *cache, u64 gen)
2424 {
2425         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2426
2427         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2428         cache->gfn = gfn;
2429         cache->dirty = false;
2430         cache->generation = gen;
2431 }
2432
2433 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2434                          struct kvm_host_map *map,
2435                          struct gfn_to_pfn_cache *cache,
2436                          bool atomic)
2437 {
2438         kvm_pfn_t pfn;
2439         void *hva = NULL;
2440         struct page *page = KVM_UNMAPPED_PAGE;
2441         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2442         u64 gen = slots->generation;
2443
2444         if (!map)
2445                 return -EINVAL;
2446
2447         if (cache) {
2448                 if (!cache->pfn || cache->gfn != gfn ||
2449                         cache->generation != gen) {
2450                         if (atomic)
2451                                 return -EAGAIN;
2452                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2453                 }
2454                 pfn = cache->pfn;
2455         } else {
2456                 if (atomic)
2457                         return -EAGAIN;
2458                 pfn = gfn_to_pfn_memslot(slot, gfn);
2459         }
2460         if (is_error_noslot_pfn(pfn))
2461                 return -EINVAL;
2462
2463         if (pfn_valid(pfn)) {
2464                 page = pfn_to_page(pfn);
2465                 if (atomic)
2466                         hva = kmap_atomic(page);
2467                 else
2468                         hva = kmap(page);
2469 #ifdef CONFIG_HAS_IOMEM
2470         } else if (!atomic) {
2471                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2472         } else {
2473                 return -EINVAL;
2474 #endif
2475         }
2476
2477         if (!hva)
2478                 return -EFAULT;
2479
2480         map->page = page;
2481         map->hva = hva;
2482         map->pfn = pfn;
2483         map->gfn = gfn;
2484
2485         return 0;
2486 }
2487
2488 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2489                 struct gfn_to_pfn_cache *cache, bool atomic)
2490 {
2491         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2492                         cache, atomic);
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2495
2496 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2497 {
2498         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2499                 NULL, false);
2500 }
2501 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2502
2503 static void __kvm_unmap_gfn(struct kvm *kvm,
2504                         struct kvm_memory_slot *memslot,
2505                         struct kvm_host_map *map,
2506                         struct gfn_to_pfn_cache *cache,
2507                         bool dirty, bool atomic)
2508 {
2509         if (!map)
2510                 return;
2511
2512         if (!map->hva)
2513                 return;
2514
2515         if (map->page != KVM_UNMAPPED_PAGE) {
2516                 if (atomic)
2517                         kunmap_atomic(map->hva);
2518                 else
2519                         kunmap(map->page);
2520         }
2521 #ifdef CONFIG_HAS_IOMEM
2522         else if (!atomic)
2523                 memunmap(map->hva);
2524         else
2525                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2526 #endif
2527
2528         if (dirty)
2529                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2530
2531         if (cache)
2532                 cache->dirty |= dirty;
2533         else
2534                 kvm_release_pfn(map->pfn, dirty, NULL);
2535
2536         map->hva = NULL;
2537         map->page = NULL;
2538 }
2539
2540 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2541                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2542 {
2543         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2544                         cache, dirty, atomic);
2545         return 0;
2546 }
2547 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2548
2549 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2550 {
2551         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2552                         map, NULL, dirty, false);
2553 }
2554 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2555
2556 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2557 {
2558         kvm_pfn_t pfn;
2559
2560         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2561
2562         return kvm_pfn_to_page(pfn);
2563 }
2564 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2565
2566 void kvm_release_page_clean(struct page *page)
2567 {
2568         WARN_ON(is_error_page(page));
2569
2570         kvm_release_pfn_clean(page_to_pfn(page));
2571 }
2572 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2573
2574 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2575 {
2576         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2577                 put_page(pfn_to_page(pfn));
2578 }
2579 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2580
2581 void kvm_release_page_dirty(struct page *page)
2582 {
2583         WARN_ON(is_error_page(page));
2584
2585         kvm_release_pfn_dirty(page_to_pfn(page));
2586 }
2587 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2588
2589 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2590 {
2591         kvm_set_pfn_dirty(pfn);
2592         kvm_release_pfn_clean(pfn);
2593 }
2594 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2595
2596 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2597 {
2598         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2599                 SetPageDirty(pfn_to_page(pfn));
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2602
2603 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2604 {
2605         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2606                 mark_page_accessed(pfn_to_page(pfn));
2607 }
2608 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2609
2610 void kvm_get_pfn(kvm_pfn_t pfn)
2611 {
2612         if (!kvm_is_reserved_pfn(pfn))
2613                 get_page(pfn_to_page(pfn));
2614 }
2615 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2616
2617 static int next_segment(unsigned long len, int offset)
2618 {
2619         if (len > PAGE_SIZE - offset)
2620                 return PAGE_SIZE - offset;
2621         else
2622                 return len;
2623 }
2624
2625 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2626                                  void *data, int offset, int len)
2627 {
2628         int r;
2629         unsigned long addr;
2630
2631         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2632         if (kvm_is_error_hva(addr))
2633                 return -EFAULT;
2634         r = __copy_from_user(data, (void __user *)addr + offset, len);
2635         if (r)
2636                 return -EFAULT;
2637         return 0;
2638 }
2639
2640 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2641                         int len)
2642 {
2643         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2644
2645         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2646 }
2647 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2648
2649 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2650                              int offset, int len)
2651 {
2652         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2653
2654         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2655 }
2656 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2657
2658 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2659 {
2660         gfn_t gfn = gpa >> PAGE_SHIFT;
2661         int seg;
2662         int offset = offset_in_page(gpa);
2663         int ret;
2664
2665         while ((seg = next_segment(len, offset)) != 0) {
2666                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2667                 if (ret < 0)
2668                         return ret;
2669                 offset = 0;
2670                 len -= seg;
2671                 data += seg;
2672                 ++gfn;
2673         }
2674         return 0;
2675 }
2676 EXPORT_SYMBOL_GPL(kvm_read_guest);
2677
2678 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2679 {
2680         gfn_t gfn = gpa >> PAGE_SHIFT;
2681         int seg;
2682         int offset = offset_in_page(gpa);
2683         int ret;
2684
2685         while ((seg = next_segment(len, offset)) != 0) {
2686                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2687                 if (ret < 0)
2688                         return ret;
2689                 offset = 0;
2690                 len -= seg;
2691                 data += seg;
2692                 ++gfn;
2693         }
2694         return 0;
2695 }
2696 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2697
2698 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2699                                    void *data, int offset, unsigned long len)
2700 {
2701         int r;
2702         unsigned long addr;
2703
2704         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2705         if (kvm_is_error_hva(addr))
2706                 return -EFAULT;
2707         pagefault_disable();
2708         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2709         pagefault_enable();
2710         if (r)
2711                 return -EFAULT;
2712         return 0;
2713 }
2714
2715 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2716                                void *data, unsigned long len)
2717 {
2718         gfn_t gfn = gpa >> PAGE_SHIFT;
2719         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2720         int offset = offset_in_page(gpa);
2721
2722         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2723 }
2724 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2725
2726 static int __kvm_write_guest_page(struct kvm *kvm,
2727                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2728                                   const void *data, int offset, int len)
2729 {
2730         int r;
2731         unsigned long addr;
2732
2733         addr = gfn_to_hva_memslot(memslot, gfn);
2734         if (kvm_is_error_hva(addr))
2735                 return -EFAULT;
2736         r = __copy_to_user((void __user *)addr + offset, data, len);
2737         if (r)
2738                 return -EFAULT;
2739         mark_page_dirty_in_slot(kvm, memslot, gfn);
2740         return 0;
2741 }
2742
2743 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2744                          const void *data, int offset, int len)
2745 {
2746         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2747
2748         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2749 }
2750 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2751
2752 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2753                               const void *data, int offset, int len)
2754 {
2755         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2756
2757         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2758 }
2759 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2760
2761 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2762                     unsigned long len)
2763 {
2764         gfn_t gfn = gpa >> PAGE_SHIFT;
2765         int seg;
2766         int offset = offset_in_page(gpa);
2767         int ret;
2768
2769         while ((seg = next_segment(len, offset)) != 0) {
2770                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2771                 if (ret < 0)
2772                         return ret;
2773                 offset = 0;
2774                 len -= seg;
2775                 data += seg;
2776                 ++gfn;
2777         }
2778         return 0;
2779 }
2780 EXPORT_SYMBOL_GPL(kvm_write_guest);
2781
2782 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2783                          unsigned long len)
2784 {
2785         gfn_t gfn = gpa >> PAGE_SHIFT;
2786         int seg;
2787         int offset = offset_in_page(gpa);
2788         int ret;
2789
2790         while ((seg = next_segment(len, offset)) != 0) {
2791                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2792                 if (ret < 0)
2793                         return ret;
2794                 offset = 0;
2795                 len -= seg;
2796                 data += seg;
2797                 ++gfn;
2798         }
2799         return 0;
2800 }
2801 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2802
2803 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2804                                        struct gfn_to_hva_cache *ghc,
2805                                        gpa_t gpa, unsigned long len)
2806 {
2807         int offset = offset_in_page(gpa);
2808         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2809         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2810         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2811         gfn_t nr_pages_avail;
2812
2813         /* Update ghc->generation before performing any error checks. */
2814         ghc->generation = slots->generation;
2815
2816         if (start_gfn > end_gfn) {
2817                 ghc->hva = KVM_HVA_ERR_BAD;
2818                 return -EINVAL;
2819         }
2820
2821         /*
2822          * If the requested region crosses two memslots, we still
2823          * verify that the entire region is valid here.
2824          */
2825         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2826                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2827                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2828                                            &nr_pages_avail);
2829                 if (kvm_is_error_hva(ghc->hva))
2830                         return -EFAULT;
2831         }
2832
2833         /* Use the slow path for cross page reads and writes. */
2834         if (nr_pages_needed == 1)
2835                 ghc->hva += offset;
2836         else
2837                 ghc->memslot = NULL;
2838
2839         ghc->gpa = gpa;
2840         ghc->len = len;
2841         return 0;
2842 }
2843
2844 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2845                               gpa_t gpa, unsigned long len)
2846 {
2847         struct kvm_memslots *slots = kvm_memslots(kvm);
2848         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2849 }
2850 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2851
2852 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2853                                   void *data, unsigned int offset,
2854                                   unsigned long len)
2855 {
2856         struct kvm_memslots *slots = kvm_memslots(kvm);
2857         int r;
2858         gpa_t gpa = ghc->gpa + offset;
2859
2860         BUG_ON(len + offset > ghc->len);
2861
2862         if (slots->generation != ghc->generation) {
2863                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2864                         return -EFAULT;
2865         }
2866
2867         if (kvm_is_error_hva(ghc->hva))
2868                 return -EFAULT;
2869
2870         if (unlikely(!ghc->memslot))
2871                 return kvm_write_guest(kvm, gpa, data, len);
2872
2873         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2874         if (r)
2875                 return -EFAULT;
2876         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2877
2878         return 0;
2879 }
2880 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2881
2882 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2883                            void *data, unsigned long len)
2884 {
2885         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2888
2889 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2890                                  void *data, unsigned int offset,
2891                                  unsigned long len)
2892 {
2893         struct kvm_memslots *slots = kvm_memslots(kvm);
2894         int r;
2895         gpa_t gpa = ghc->gpa + offset;
2896
2897         BUG_ON(len + offset > ghc->len);
2898
2899         if (slots->generation != ghc->generation) {
2900                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2901                         return -EFAULT;
2902         }
2903
2904         if (kvm_is_error_hva(ghc->hva))
2905                 return -EFAULT;
2906
2907         if (unlikely(!ghc->memslot))
2908                 return kvm_read_guest(kvm, gpa, data, len);
2909
2910         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2911         if (r)
2912                 return -EFAULT;
2913
2914         return 0;
2915 }
2916 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2917
2918 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2919                           void *data, unsigned long len)
2920 {
2921         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2922 }
2923 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2924
2925 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2926 {
2927         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2928         gfn_t gfn = gpa >> PAGE_SHIFT;
2929         int seg;
2930         int offset = offset_in_page(gpa);
2931         int ret;
2932
2933         while ((seg = next_segment(len, offset)) != 0) {
2934                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2935                 if (ret < 0)
2936                         return ret;
2937                 offset = 0;
2938                 len -= seg;
2939                 ++gfn;
2940         }
2941         return 0;
2942 }
2943 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2944
2945 void mark_page_dirty_in_slot(struct kvm *kvm,
2946                              struct kvm_memory_slot *memslot,
2947                              gfn_t gfn)
2948 {
2949         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2950                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2951                 u32 slot = (memslot->as_id << 16) | memslot->id;
2952
2953                 if (kvm->dirty_ring_size)
2954                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2955                                             slot, rel_gfn);
2956                 else
2957                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
2958         }
2959 }
2960 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2961
2962 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2963 {
2964         struct kvm_memory_slot *memslot;
2965
2966         memslot = gfn_to_memslot(kvm, gfn);
2967         mark_page_dirty_in_slot(kvm, memslot, gfn);
2968 }
2969 EXPORT_SYMBOL_GPL(mark_page_dirty);
2970
2971 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2972 {
2973         struct kvm_memory_slot *memslot;
2974
2975         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2976         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2977 }
2978 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2979
2980 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2981 {
2982         if (!vcpu->sigset_active)
2983                 return;
2984
2985         /*
2986          * This does a lockless modification of ->real_blocked, which is fine
2987          * because, only current can change ->real_blocked and all readers of
2988          * ->real_blocked don't care as long ->real_blocked is always a subset
2989          * of ->blocked.
2990          */
2991         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2992 }
2993
2994 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2995 {
2996         if (!vcpu->sigset_active)
2997                 return;
2998
2999         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3000         sigemptyset(&current->real_blocked);
3001 }
3002
3003 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3004 {
3005         unsigned int old, val, grow, grow_start;
3006
3007         old = val = vcpu->halt_poll_ns;
3008         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3009         grow = READ_ONCE(halt_poll_ns_grow);
3010         if (!grow)
3011                 goto out;
3012
3013         val *= grow;
3014         if (val < grow_start)
3015                 val = grow_start;
3016
3017         if (val > vcpu->kvm->max_halt_poll_ns)
3018                 val = vcpu->kvm->max_halt_poll_ns;
3019
3020         vcpu->halt_poll_ns = val;
3021 out:
3022         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3023 }
3024
3025 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3026 {
3027         unsigned int old, val, shrink;
3028
3029         old = val = vcpu->halt_poll_ns;
3030         shrink = READ_ONCE(halt_poll_ns_shrink);
3031         if (shrink == 0)
3032                 val = 0;
3033         else
3034                 val /= shrink;
3035
3036         vcpu->halt_poll_ns = val;
3037         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3038 }
3039
3040 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3041 {
3042         int ret = -EINTR;
3043         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3044
3045         if (kvm_arch_vcpu_runnable(vcpu)) {
3046                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3047                 goto out;
3048         }
3049         if (kvm_cpu_has_pending_timer(vcpu))
3050                 goto out;
3051         if (signal_pending(current))
3052                 goto out;
3053         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3054                 goto out;
3055
3056         ret = 0;
3057 out:
3058         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3059         return ret;
3060 }
3061
3062 static inline void
3063 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3064 {
3065         if (waited)
3066                 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3067         else
3068                 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3069 }
3070
3071 /*
3072  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3073  */
3074 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3075 {
3076         ktime_t start, cur, poll_end;
3077         bool waited = false;
3078         u64 block_ns;
3079
3080         kvm_arch_vcpu_blocking(vcpu);
3081
3082         start = cur = poll_end = ktime_get();
3083         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3084                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3085
3086                 ++vcpu->stat.generic.halt_attempted_poll;
3087                 do {
3088                         /*
3089                          * This sets KVM_REQ_UNHALT if an interrupt
3090                          * arrives.
3091                          */
3092                         if (kvm_vcpu_check_block(vcpu) < 0) {
3093                                 ++vcpu->stat.generic.halt_successful_poll;
3094                                 if (!vcpu_valid_wakeup(vcpu))
3095                                         ++vcpu->stat.generic.halt_poll_invalid;
3096                                 goto out;
3097                         }
3098                         poll_end = cur = ktime_get();
3099                 } while (kvm_vcpu_can_poll(cur, stop));
3100         }
3101
3102         prepare_to_rcuwait(&vcpu->wait);
3103         for (;;) {
3104                 set_current_state(TASK_INTERRUPTIBLE);
3105
3106                 if (kvm_vcpu_check_block(vcpu) < 0)
3107                         break;
3108
3109                 waited = true;
3110                 schedule();
3111         }
3112         finish_rcuwait(&vcpu->wait);
3113         cur = ktime_get();
3114 out:
3115         kvm_arch_vcpu_unblocking(vcpu);
3116         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3117
3118         update_halt_poll_stats(
3119                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3120
3121         if (!kvm_arch_no_poll(vcpu)) {
3122                 if (!vcpu_valid_wakeup(vcpu)) {
3123                         shrink_halt_poll_ns(vcpu);
3124                 } else if (vcpu->kvm->max_halt_poll_ns) {
3125                         if (block_ns <= vcpu->halt_poll_ns)
3126                                 ;
3127                         /* we had a long block, shrink polling */
3128                         else if (vcpu->halt_poll_ns &&
3129                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3130                                 shrink_halt_poll_ns(vcpu);
3131                         /* we had a short halt and our poll time is too small */
3132                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3133                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3134                                 grow_halt_poll_ns(vcpu);
3135                 } else {
3136                         vcpu->halt_poll_ns = 0;
3137                 }
3138         }
3139
3140         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3141         kvm_arch_vcpu_block_finish(vcpu);
3142 }
3143 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3144
3145 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3146 {
3147         struct rcuwait *waitp;
3148
3149         waitp = kvm_arch_vcpu_get_wait(vcpu);
3150         if (rcuwait_wake_up(waitp)) {
3151                 WRITE_ONCE(vcpu->ready, true);
3152                 ++vcpu->stat.generic.halt_wakeup;
3153                 return true;
3154         }
3155
3156         return false;
3157 }
3158 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3159
3160 #ifndef CONFIG_S390
3161 /*
3162  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3163  */
3164 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3165 {
3166         int me;
3167         int cpu = vcpu->cpu;
3168
3169         if (kvm_vcpu_wake_up(vcpu))
3170                 return;
3171
3172         me = get_cpu();
3173         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3174                 if (kvm_arch_vcpu_should_kick(vcpu))
3175                         smp_send_reschedule(cpu);
3176         put_cpu();
3177 }
3178 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3179 #endif /* !CONFIG_S390 */
3180
3181 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3182 {
3183         struct pid *pid;
3184         struct task_struct *task = NULL;
3185         int ret = 0;
3186
3187         rcu_read_lock();
3188         pid = rcu_dereference(target->pid);
3189         if (pid)
3190                 task = get_pid_task(pid, PIDTYPE_PID);
3191         rcu_read_unlock();
3192         if (!task)
3193                 return ret;
3194         ret = yield_to(task, 1);
3195         put_task_struct(task);
3196
3197         return ret;
3198 }
3199 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3200
3201 /*
3202  * Helper that checks whether a VCPU is eligible for directed yield.
3203  * Most eligible candidate to yield is decided by following heuristics:
3204  *
3205  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3206  *  (preempted lock holder), indicated by @in_spin_loop.
3207  *  Set at the beginning and cleared at the end of interception/PLE handler.
3208  *
3209  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3210  *  chance last time (mostly it has become eligible now since we have probably
3211  *  yielded to lockholder in last iteration. This is done by toggling
3212  *  @dy_eligible each time a VCPU checked for eligibility.)
3213  *
3214  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3215  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3216  *  burning. Giving priority for a potential lock-holder increases lock
3217  *  progress.
3218  *
3219  *  Since algorithm is based on heuristics, accessing another VCPU data without
3220  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3221  *  and continue with next VCPU and so on.
3222  */
3223 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3224 {
3225 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3226         bool eligible;
3227
3228         eligible = !vcpu->spin_loop.in_spin_loop ||
3229                     vcpu->spin_loop.dy_eligible;
3230
3231         if (vcpu->spin_loop.in_spin_loop)
3232                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3233
3234         return eligible;
3235 #else
3236         return true;
3237 #endif
3238 }
3239
3240 /*
3241  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3242  * a vcpu_load/vcpu_put pair.  However, for most architectures
3243  * kvm_arch_vcpu_runnable does not require vcpu_load.
3244  */
3245 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3246 {
3247         return kvm_arch_vcpu_runnable(vcpu);
3248 }
3249
3250 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3251 {
3252         if (kvm_arch_dy_runnable(vcpu))
3253                 return true;
3254
3255 #ifdef CONFIG_KVM_ASYNC_PF
3256         if (!list_empty_careful(&vcpu->async_pf.done))
3257                 return true;
3258 #endif
3259
3260         return false;
3261 }
3262
3263 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3264 {
3265         return false;
3266 }
3267
3268 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3269 {
3270         struct kvm *kvm = me->kvm;
3271         struct kvm_vcpu *vcpu;
3272         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3273         int yielded = 0;
3274         int try = 3;
3275         int pass;
3276         int i;
3277
3278         kvm_vcpu_set_in_spin_loop(me, true);
3279         /*
3280          * We boost the priority of a VCPU that is runnable but not
3281          * currently running, because it got preempted by something
3282          * else and called schedule in __vcpu_run.  Hopefully that
3283          * VCPU is holding the lock that we need and will release it.
3284          * We approximate round-robin by starting at the last boosted VCPU.
3285          */
3286         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3287                 kvm_for_each_vcpu(i, vcpu, kvm) {
3288                         if (!pass && i <= last_boosted_vcpu) {
3289                                 i = last_boosted_vcpu;
3290                                 continue;
3291                         } else if (pass && i > last_boosted_vcpu)
3292                                 break;
3293                         if (!READ_ONCE(vcpu->ready))
3294                                 continue;
3295                         if (vcpu == me)
3296                                 continue;
3297                         if (rcuwait_active(&vcpu->wait) &&
3298                             !vcpu_dy_runnable(vcpu))
3299                                 continue;
3300                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3301                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3302                             !kvm_arch_vcpu_in_kernel(vcpu))
3303                                 continue;
3304                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3305                                 continue;
3306
3307                         yielded = kvm_vcpu_yield_to(vcpu);
3308                         if (yielded > 0) {
3309                                 kvm->last_boosted_vcpu = i;
3310                                 break;
3311                         } else if (yielded < 0) {
3312                                 try--;
3313                                 if (!try)
3314                                         break;
3315                         }
3316                 }
3317         }
3318         kvm_vcpu_set_in_spin_loop(me, false);
3319
3320         /* Ensure vcpu is not eligible during next spinloop */
3321         kvm_vcpu_set_dy_eligible(me, false);
3322 }
3323 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3324
3325 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3326 {
3327 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3328         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3329             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3330              kvm->dirty_ring_size / PAGE_SIZE);
3331 #else
3332         return false;
3333 #endif
3334 }
3335
3336 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3337 {
3338         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3339         struct page *page;
3340
3341         if (vmf->pgoff == 0)
3342                 page = virt_to_page(vcpu->run);
3343 #ifdef CONFIG_X86
3344         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3345                 page = virt_to_page(vcpu->arch.pio_data);
3346 #endif
3347 #ifdef CONFIG_KVM_MMIO
3348         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3349                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3350 #endif
3351         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3352                 page = kvm_dirty_ring_get_page(
3353                     &vcpu->dirty_ring,
3354                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3355         else
3356                 return kvm_arch_vcpu_fault(vcpu, vmf);
3357         get_page(page);
3358         vmf->page = page;
3359         return 0;
3360 }
3361
3362 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3363         .fault = kvm_vcpu_fault,
3364 };
3365
3366 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3367 {
3368         struct kvm_vcpu *vcpu = file->private_data;
3369         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3370
3371         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3372              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3373             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3374                 return -EINVAL;
3375
3376         vma->vm_ops = &kvm_vcpu_vm_ops;
3377         return 0;
3378 }
3379
3380 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3381 {
3382         struct kvm_vcpu *vcpu = filp->private_data;
3383
3384         kvm_put_kvm(vcpu->kvm);
3385         return 0;
3386 }
3387
3388 static struct file_operations kvm_vcpu_fops = {
3389         .release        = kvm_vcpu_release,
3390         .unlocked_ioctl = kvm_vcpu_ioctl,
3391         .mmap           = kvm_vcpu_mmap,
3392         .llseek         = noop_llseek,
3393         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3394 };
3395
3396 /*
3397  * Allocates an inode for the vcpu.
3398  */
3399 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3400 {
3401         char name[8 + 1 + ITOA_MAX_LEN + 1];
3402
3403         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3404         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3405 }
3406
3407 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3408 {
3409 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3410         struct dentry *debugfs_dentry;
3411         char dir_name[ITOA_MAX_LEN * 2];
3412
3413         if (!debugfs_initialized())
3414                 return;
3415
3416         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3417         debugfs_dentry = debugfs_create_dir(dir_name,
3418                                             vcpu->kvm->debugfs_dentry);
3419
3420         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3421 #endif
3422 }
3423
3424 /*
3425  * Creates some virtual cpus.  Good luck creating more than one.
3426  */
3427 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3428 {
3429         int r;
3430         struct kvm_vcpu *vcpu;
3431         struct page *page;
3432
3433         if (id >= KVM_MAX_VCPU_ID)
3434                 return -EINVAL;
3435
3436         mutex_lock(&kvm->lock);
3437         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3438                 mutex_unlock(&kvm->lock);
3439                 return -EINVAL;
3440         }
3441
3442         kvm->created_vcpus++;
3443         mutex_unlock(&kvm->lock);
3444
3445         r = kvm_arch_vcpu_precreate(kvm, id);
3446         if (r)
3447                 goto vcpu_decrement;
3448
3449         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3450         if (!vcpu) {
3451                 r = -ENOMEM;
3452                 goto vcpu_decrement;
3453         }
3454
3455         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3456         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3457         if (!page) {
3458                 r = -ENOMEM;
3459                 goto vcpu_free;
3460         }
3461         vcpu->run = page_address(page);
3462
3463         kvm_vcpu_init(vcpu, kvm, id);
3464
3465         r = kvm_arch_vcpu_create(vcpu);
3466         if (r)
3467                 goto vcpu_free_run_page;
3468
3469         if (kvm->dirty_ring_size) {
3470                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3471                                          id, kvm->dirty_ring_size);
3472                 if (r)
3473                         goto arch_vcpu_destroy;
3474         }
3475
3476         mutex_lock(&kvm->lock);
3477         if (kvm_get_vcpu_by_id(kvm, id)) {
3478                 r = -EEXIST;
3479                 goto unlock_vcpu_destroy;
3480         }
3481
3482         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3483         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3484
3485         /* Fill the stats id string for the vcpu */
3486         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3487                  task_pid_nr(current), id);
3488
3489         /* Now it's all set up, let userspace reach it */
3490         kvm_get_kvm(kvm);
3491         r = create_vcpu_fd(vcpu);
3492         if (r < 0) {
3493                 kvm_put_kvm_no_destroy(kvm);
3494                 goto unlock_vcpu_destroy;
3495         }
3496
3497         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3498
3499         /*
3500          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3501          * before kvm->online_vcpu's incremented value.
3502          */
3503         smp_wmb();
3504         atomic_inc(&kvm->online_vcpus);
3505
3506         mutex_unlock(&kvm->lock);
3507         kvm_arch_vcpu_postcreate(vcpu);
3508         kvm_create_vcpu_debugfs(vcpu);
3509         return r;
3510
3511 unlock_vcpu_destroy:
3512         mutex_unlock(&kvm->lock);
3513         kvm_dirty_ring_free(&vcpu->dirty_ring);
3514 arch_vcpu_destroy:
3515         kvm_arch_vcpu_destroy(vcpu);
3516 vcpu_free_run_page:
3517         free_page((unsigned long)vcpu->run);
3518 vcpu_free:
3519         kmem_cache_free(kvm_vcpu_cache, vcpu);
3520 vcpu_decrement:
3521         mutex_lock(&kvm->lock);
3522         kvm->created_vcpus--;
3523         mutex_unlock(&kvm->lock);
3524         return r;
3525 }
3526
3527 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3528 {
3529         if (sigset) {
3530                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3531                 vcpu->sigset_active = 1;
3532                 vcpu->sigset = *sigset;
3533         } else
3534                 vcpu->sigset_active = 0;
3535         return 0;
3536 }
3537
3538 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3539                               size_t size, loff_t *offset)
3540 {
3541         struct kvm_vcpu *vcpu = file->private_data;
3542
3543         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3544                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3545                         sizeof(vcpu->stat), user_buffer, size, offset);
3546 }
3547
3548 static const struct file_operations kvm_vcpu_stats_fops = {
3549         .read = kvm_vcpu_stats_read,
3550         .llseek = noop_llseek,
3551 };
3552
3553 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3554 {
3555         int fd;
3556         struct file *file;
3557         char name[15 + ITOA_MAX_LEN + 1];
3558
3559         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3560
3561         fd = get_unused_fd_flags(O_CLOEXEC);
3562         if (fd < 0)
3563                 return fd;
3564
3565         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3566         if (IS_ERR(file)) {
3567                 put_unused_fd(fd);
3568                 return PTR_ERR(file);
3569         }
3570         file->f_mode |= FMODE_PREAD;
3571         fd_install(fd, file);
3572
3573         return fd;
3574 }
3575
3576 static long kvm_vcpu_ioctl(struct file *filp,
3577                            unsigned int ioctl, unsigned long arg)
3578 {
3579         struct kvm_vcpu *vcpu = filp->private_data;
3580         void __user *argp = (void __user *)arg;
3581         int r;
3582         struct kvm_fpu *fpu = NULL;
3583         struct kvm_sregs *kvm_sregs = NULL;
3584
3585         if (vcpu->kvm->mm != current->mm)
3586                 return -EIO;
3587
3588         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3589                 return -EINVAL;
3590
3591         /*
3592          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3593          * execution; mutex_lock() would break them.
3594          */
3595         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3596         if (r != -ENOIOCTLCMD)
3597                 return r;
3598
3599         if (mutex_lock_killable(&vcpu->mutex))
3600                 return -EINTR;
3601         switch (ioctl) {
3602         case KVM_RUN: {
3603                 struct pid *oldpid;
3604                 r = -EINVAL;
3605                 if (arg)
3606                         goto out;
3607                 oldpid = rcu_access_pointer(vcpu->pid);
3608                 if (unlikely(oldpid != task_pid(current))) {
3609                         /* The thread running this VCPU changed. */
3610                         struct pid *newpid;
3611
3612                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3613                         if (r)
3614                                 break;
3615
3616                         newpid = get_task_pid(current, PIDTYPE_PID);
3617                         rcu_assign_pointer(vcpu->pid, newpid);
3618                         if (oldpid)
3619                                 synchronize_rcu();
3620                         put_pid(oldpid);
3621                 }
3622                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3623                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3624                 break;
3625         }
3626         case KVM_GET_REGS: {
3627                 struct kvm_regs *kvm_regs;
3628
3629                 r = -ENOMEM;
3630                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3631                 if (!kvm_regs)
3632                         goto out;
3633                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3634                 if (r)
3635                         goto out_free1;
3636                 r = -EFAULT;
3637                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3638                         goto out_free1;
3639                 r = 0;
3640 out_free1:
3641                 kfree(kvm_regs);
3642                 break;
3643         }
3644         case KVM_SET_REGS: {
3645                 struct kvm_regs *kvm_regs;
3646
3647                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3648                 if (IS_ERR(kvm_regs)) {
3649                         r = PTR_ERR(kvm_regs);
3650                         goto out;
3651                 }
3652                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3653                 kfree(kvm_regs);
3654                 break;
3655         }
3656         case KVM_GET_SREGS: {
3657                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3658                                     GFP_KERNEL_ACCOUNT);
3659                 r = -ENOMEM;
3660                 if (!kvm_sregs)
3661                         goto out;
3662                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3663                 if (r)
3664                         goto out;
3665                 r = -EFAULT;
3666                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3667                         goto out;
3668                 r = 0;
3669                 break;
3670         }
3671         case KVM_SET_SREGS: {
3672                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3673                 if (IS_ERR(kvm_sregs)) {
3674                         r = PTR_ERR(kvm_sregs);
3675                         kvm_sregs = NULL;
3676                         goto out;
3677                 }
3678                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3679                 break;
3680         }
3681         case KVM_GET_MP_STATE: {
3682                 struct kvm_mp_state mp_state;
3683
3684                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3685                 if (r)
3686                         goto out;
3687                 r = -EFAULT;
3688                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3689                         goto out;
3690                 r = 0;
3691                 break;
3692         }
3693         case KVM_SET_MP_STATE: {
3694                 struct kvm_mp_state mp_state;
3695
3696                 r = -EFAULT;
3697                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3698                         goto out;
3699                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3700                 break;
3701         }
3702         case KVM_TRANSLATE: {
3703                 struct kvm_translation tr;
3704
3705                 r = -EFAULT;
3706                 if (copy_from_user(&tr, argp, sizeof(tr)))
3707                         goto out;
3708                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3709                 if (r)
3710                         goto out;
3711                 r = -EFAULT;
3712                 if (copy_to_user(argp, &tr, sizeof(tr)))
3713                         goto out;
3714                 r = 0;
3715                 break;
3716         }
3717         case KVM_SET_GUEST_DEBUG: {
3718                 struct kvm_guest_debug dbg;
3719
3720                 r = -EFAULT;
3721                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3722                         goto out;
3723                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3724                 break;
3725         }
3726         case KVM_SET_SIGNAL_MASK: {
3727                 struct kvm_signal_mask __user *sigmask_arg = argp;
3728                 struct kvm_signal_mask kvm_sigmask;
3729                 sigset_t sigset, *p;
3730
3731                 p = NULL;
3732                 if (argp) {
3733                         r = -EFAULT;
3734                         if (copy_from_user(&kvm_sigmask, argp,
3735                                            sizeof(kvm_sigmask)))
3736                                 goto out;
3737                         r = -EINVAL;
3738                         if (kvm_sigmask.len != sizeof(sigset))
3739                                 goto out;
3740                         r = -EFAULT;
3741                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3742                                            sizeof(sigset)))
3743                                 goto out;
3744                         p = &sigset;
3745                 }
3746                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3747                 break;
3748         }
3749         case KVM_GET_FPU: {
3750                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3751                 r = -ENOMEM;
3752                 if (!fpu)
3753                         goto out;
3754                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3755                 if (r)
3756                         goto out;
3757                 r = -EFAULT;
3758                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3759                         goto out;
3760                 r = 0;
3761                 break;
3762         }
3763         case KVM_SET_FPU: {
3764                 fpu = memdup_user(argp, sizeof(*fpu));
3765                 if (IS_ERR(fpu)) {
3766                         r = PTR_ERR(fpu);
3767                         fpu = NULL;
3768                         goto out;
3769                 }
3770                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3771                 break;
3772         }
3773         case KVM_GET_STATS_FD: {
3774                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3775                 break;
3776         }
3777         default:
3778                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3779         }
3780 out:
3781         mutex_unlock(&vcpu->mutex);
3782         kfree(fpu);
3783         kfree(kvm_sregs);
3784         return r;
3785 }
3786
3787 #ifdef CONFIG_KVM_COMPAT
3788 static long kvm_vcpu_compat_ioctl(struct file *filp,
3789                                   unsigned int ioctl, unsigned long arg)
3790 {
3791         struct kvm_vcpu *vcpu = filp->private_data;
3792         void __user *argp = compat_ptr(arg);
3793         int r;
3794
3795         if (vcpu->kvm->mm != current->mm)
3796                 return -EIO;
3797
3798         switch (ioctl) {
3799         case KVM_SET_SIGNAL_MASK: {
3800                 struct kvm_signal_mask __user *sigmask_arg = argp;
3801                 struct kvm_signal_mask kvm_sigmask;
3802                 sigset_t sigset;
3803
3804                 if (argp) {
3805                         r = -EFAULT;
3806                         if (copy_from_user(&kvm_sigmask, argp,
3807                                            sizeof(kvm_sigmask)))
3808                                 goto out;
3809                         r = -EINVAL;
3810                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3811                                 goto out;
3812                         r = -EFAULT;
3813                         if (get_compat_sigset(&sigset,
3814                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3815                                 goto out;
3816                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3817                 } else
3818                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3819                 break;
3820         }
3821         default:
3822                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3823         }
3824
3825 out:
3826         return r;
3827 }
3828 #endif
3829
3830 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3831 {
3832         struct kvm_device *dev = filp->private_data;
3833
3834         if (dev->ops->mmap)
3835                 return dev->ops->mmap(dev, vma);
3836
3837         return -ENODEV;
3838 }
3839
3840 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3841                                  int (*accessor)(struct kvm_device *dev,
3842                                                  struct kvm_device_attr *attr),
3843                                  unsigned long arg)
3844 {
3845         struct kvm_device_attr attr;
3846
3847         if (!accessor)
3848                 return -EPERM;
3849
3850         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3851                 return -EFAULT;
3852
3853         return accessor(dev, &attr);
3854 }
3855
3856 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3857                              unsigned long arg)
3858 {
3859         struct kvm_device *dev = filp->private_data;
3860
3861         if (dev->kvm->mm != current->mm)
3862                 return -EIO;
3863
3864         switch (ioctl) {
3865         case KVM_SET_DEVICE_ATTR:
3866                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3867         case KVM_GET_DEVICE_ATTR:
3868                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3869         case KVM_HAS_DEVICE_ATTR:
3870                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3871         default:
3872                 if (dev->ops->ioctl)
3873                         return dev->ops->ioctl(dev, ioctl, arg);
3874
3875                 return -ENOTTY;
3876         }
3877 }
3878
3879 static int kvm_device_release(struct inode *inode, struct file *filp)
3880 {
3881         struct kvm_device *dev = filp->private_data;
3882         struct kvm *kvm = dev->kvm;
3883
3884         if (dev->ops->release) {
3885                 mutex_lock(&kvm->lock);
3886                 list_del(&dev->vm_node);
3887                 dev->ops->release(dev);
3888                 mutex_unlock(&kvm->lock);
3889         }
3890
3891         kvm_put_kvm(kvm);
3892         return 0;
3893 }
3894
3895 static const struct file_operations kvm_device_fops = {
3896         .unlocked_ioctl = kvm_device_ioctl,
3897         .release = kvm_device_release,
3898         KVM_COMPAT(kvm_device_ioctl),
3899         .mmap = kvm_device_mmap,
3900 };
3901
3902 struct kvm_device *kvm_device_from_filp(struct file *filp)
3903 {
3904         if (filp->f_op != &kvm_device_fops)
3905                 return NULL;
3906
3907         return filp->private_data;
3908 }
3909
3910 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3911 #ifdef CONFIG_KVM_MPIC
3912         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3913         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3914 #endif
3915 };
3916
3917 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3918 {
3919         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3920                 return -ENOSPC;
3921
3922         if (kvm_device_ops_table[type] != NULL)
3923                 return -EEXIST;
3924
3925         kvm_device_ops_table[type] = ops;
3926         return 0;
3927 }
3928
3929 void kvm_unregister_device_ops(u32 type)
3930 {
3931         if (kvm_device_ops_table[type] != NULL)
3932                 kvm_device_ops_table[type] = NULL;
3933 }
3934
3935 static int kvm_ioctl_create_device(struct kvm *kvm,
3936                                    struct kvm_create_device *cd)
3937 {
3938         const struct kvm_device_ops *ops = NULL;
3939         struct kvm_device *dev;
3940         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3941         int type;
3942         int ret;
3943
3944         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3945                 return -ENODEV;
3946
3947         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3948         ops = kvm_device_ops_table[type];
3949         if (ops == NULL)
3950                 return -ENODEV;
3951
3952         if (test)
3953                 return 0;
3954
3955         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3956         if (!dev)
3957                 return -ENOMEM;
3958
3959         dev->ops = ops;
3960         dev->kvm = kvm;
3961
3962         mutex_lock(&kvm->lock);
3963         ret = ops->create(dev, type);
3964         if (ret < 0) {
3965                 mutex_unlock(&kvm->lock);
3966                 kfree(dev);
3967                 return ret;
3968         }
3969         list_add(&dev->vm_node, &kvm->devices);
3970         mutex_unlock(&kvm->lock);
3971
3972         if (ops->init)
3973                 ops->init(dev);
3974
3975         kvm_get_kvm(kvm);
3976         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3977         if (ret < 0) {
3978                 kvm_put_kvm_no_destroy(kvm);
3979                 mutex_lock(&kvm->lock);
3980                 list_del(&dev->vm_node);
3981                 mutex_unlock(&kvm->lock);
3982                 ops->destroy(dev);
3983                 return ret;
3984         }
3985
3986         cd->fd = ret;
3987         return 0;
3988 }
3989
3990 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3991 {
3992         switch (arg) {
3993         case KVM_CAP_USER_MEMORY:
3994         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3995         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3996         case KVM_CAP_INTERNAL_ERROR_DATA:
3997 #ifdef CONFIG_HAVE_KVM_MSI
3998         case KVM_CAP_SIGNAL_MSI:
3999 #endif
4000 #ifdef CONFIG_HAVE_KVM_IRQFD
4001         case KVM_CAP_IRQFD:
4002         case KVM_CAP_IRQFD_RESAMPLE:
4003 #endif
4004         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4005         case KVM_CAP_CHECK_EXTENSION_VM:
4006         case KVM_CAP_ENABLE_CAP_VM:
4007         case KVM_CAP_HALT_POLL:
4008                 return 1;
4009 #ifdef CONFIG_KVM_MMIO
4010         case KVM_CAP_COALESCED_MMIO:
4011                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4012         case KVM_CAP_COALESCED_PIO:
4013                 return 1;
4014 #endif
4015 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4016         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4017                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4018 #endif
4019 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4020         case KVM_CAP_IRQ_ROUTING:
4021                 return KVM_MAX_IRQ_ROUTES;
4022 #endif
4023 #if KVM_ADDRESS_SPACE_NUM > 1
4024         case KVM_CAP_MULTI_ADDRESS_SPACE:
4025                 return KVM_ADDRESS_SPACE_NUM;
4026 #endif
4027         case KVM_CAP_NR_MEMSLOTS:
4028                 return KVM_USER_MEM_SLOTS;
4029         case KVM_CAP_DIRTY_LOG_RING:
4030 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4031                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4032 #else
4033                 return 0;
4034 #endif
4035         case KVM_CAP_BINARY_STATS_FD:
4036                 return 1;
4037         default:
4038                 break;
4039         }
4040         return kvm_vm_ioctl_check_extension(kvm, arg);
4041 }
4042
4043 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4044 {
4045         int r;
4046
4047         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4048                 return -EINVAL;
4049
4050         /* the size should be power of 2 */
4051         if (!size || (size & (size - 1)))
4052                 return -EINVAL;
4053
4054         /* Should be bigger to keep the reserved entries, or a page */
4055         if (size < kvm_dirty_ring_get_rsvd_entries() *
4056             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4057                 return -EINVAL;
4058
4059         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4060             sizeof(struct kvm_dirty_gfn))
4061                 return -E2BIG;
4062
4063         /* We only allow it to set once */
4064         if (kvm->dirty_ring_size)
4065                 return -EINVAL;
4066
4067         mutex_lock(&kvm->lock);
4068
4069         if (kvm->created_vcpus) {
4070                 /* We don't allow to change this value after vcpu created */
4071                 r = -EINVAL;
4072         } else {
4073                 kvm->dirty_ring_size = size;
4074                 r = 0;
4075         }
4076
4077         mutex_unlock(&kvm->lock);
4078         return r;
4079 }
4080
4081 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4082 {
4083         int i;
4084         struct kvm_vcpu *vcpu;
4085         int cleared = 0;
4086
4087         if (!kvm->dirty_ring_size)
4088                 return -EINVAL;
4089
4090         mutex_lock(&kvm->slots_lock);
4091
4092         kvm_for_each_vcpu(i, vcpu, kvm)
4093                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4094
4095         mutex_unlock(&kvm->slots_lock);
4096
4097         if (cleared)
4098                 kvm_flush_remote_tlbs(kvm);
4099
4100         return cleared;
4101 }
4102
4103 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4104                                                   struct kvm_enable_cap *cap)
4105 {
4106         return -EINVAL;
4107 }
4108
4109 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4110                                            struct kvm_enable_cap *cap)
4111 {
4112         switch (cap->cap) {
4113 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4114         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4115                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4116
4117                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4118                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4119
4120                 if (cap->flags || (cap->args[0] & ~allowed_options))
4121                         return -EINVAL;
4122                 kvm->manual_dirty_log_protect = cap->args[0];
4123                 return 0;
4124         }
4125 #endif
4126         case KVM_CAP_HALT_POLL: {
4127                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4128                         return -EINVAL;
4129
4130                 kvm->max_halt_poll_ns = cap->args[0];
4131                 return 0;
4132         }
4133         case KVM_CAP_DIRTY_LOG_RING:
4134                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4135         default:
4136                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4137         }
4138 }
4139
4140 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4141                               size_t size, loff_t *offset)
4142 {
4143         struct kvm *kvm = file->private_data;
4144
4145         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4146                                 &kvm_vm_stats_desc[0], &kvm->stat,
4147                                 sizeof(kvm->stat), user_buffer, size, offset);
4148 }
4149
4150 static const struct file_operations kvm_vm_stats_fops = {
4151         .read = kvm_vm_stats_read,
4152         .llseek = noop_llseek,
4153 };
4154
4155 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4156 {
4157         int fd;
4158         struct file *file;
4159
4160         fd = get_unused_fd_flags(O_CLOEXEC);
4161         if (fd < 0)
4162                 return fd;
4163
4164         file = anon_inode_getfile("kvm-vm-stats",
4165                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4166         if (IS_ERR(file)) {
4167                 put_unused_fd(fd);
4168                 return PTR_ERR(file);
4169         }
4170         file->f_mode |= FMODE_PREAD;
4171         fd_install(fd, file);
4172
4173         return fd;
4174 }
4175
4176 static long kvm_vm_ioctl(struct file *filp,
4177                            unsigned int ioctl, unsigned long arg)
4178 {
4179         struct kvm *kvm = filp->private_data;
4180         void __user *argp = (void __user *)arg;
4181         int r;
4182
4183         if (kvm->mm != current->mm)
4184                 return -EIO;
4185         switch (ioctl) {
4186         case KVM_CREATE_VCPU:
4187                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4188                 break;
4189         case KVM_ENABLE_CAP: {
4190                 struct kvm_enable_cap cap;
4191
4192                 r = -EFAULT;
4193                 if (copy_from_user(&cap, argp, sizeof(cap)))
4194                         goto out;
4195                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4196                 break;
4197         }
4198         case KVM_SET_USER_MEMORY_REGION: {
4199                 struct kvm_userspace_memory_region kvm_userspace_mem;
4200
4201                 r = -EFAULT;
4202                 if (copy_from_user(&kvm_userspace_mem, argp,
4203                                                 sizeof(kvm_userspace_mem)))
4204                         goto out;
4205
4206                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4207                 break;
4208         }
4209         case KVM_GET_DIRTY_LOG: {
4210                 struct kvm_dirty_log log;
4211
4212                 r = -EFAULT;
4213                 if (copy_from_user(&log, argp, sizeof(log)))
4214                         goto out;
4215                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4216                 break;
4217         }
4218 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4219         case KVM_CLEAR_DIRTY_LOG: {
4220                 struct kvm_clear_dirty_log log;
4221
4222                 r = -EFAULT;
4223                 if (copy_from_user(&log, argp, sizeof(log)))
4224                         goto out;
4225                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4226                 break;
4227         }
4228 #endif
4229 #ifdef CONFIG_KVM_MMIO
4230         case KVM_REGISTER_COALESCED_MMIO: {
4231                 struct kvm_coalesced_mmio_zone zone;
4232
4233                 r = -EFAULT;
4234                 if (copy_from_user(&zone, argp, sizeof(zone)))
4235                         goto out;
4236                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4237                 break;
4238         }
4239         case KVM_UNREGISTER_COALESCED_MMIO: {
4240                 struct kvm_coalesced_mmio_zone zone;
4241
4242                 r = -EFAULT;
4243                 if (copy_from_user(&zone, argp, sizeof(zone)))
4244                         goto out;
4245                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4246                 break;
4247         }
4248 #endif
4249         case KVM_IRQFD: {
4250                 struct kvm_irqfd data;
4251
4252                 r = -EFAULT;
4253                 if (copy_from_user(&data, argp, sizeof(data)))
4254                         goto out;
4255                 r = kvm_irqfd(kvm, &data);
4256                 break;
4257         }
4258         case KVM_IOEVENTFD: {
4259                 struct kvm_ioeventfd data;
4260
4261                 r = -EFAULT;
4262                 if (copy_from_user(&data, argp, sizeof(data)))
4263                         goto out;
4264                 r = kvm_ioeventfd(kvm, &data);
4265                 break;
4266         }
4267 #ifdef CONFIG_HAVE_KVM_MSI
4268         case KVM_SIGNAL_MSI: {
4269                 struct kvm_msi msi;
4270
4271                 r = -EFAULT;
4272                 if (copy_from_user(&msi, argp, sizeof(msi)))
4273                         goto out;
4274                 r = kvm_send_userspace_msi(kvm, &msi);
4275                 break;
4276         }
4277 #endif
4278 #ifdef __KVM_HAVE_IRQ_LINE
4279         case KVM_IRQ_LINE_STATUS:
4280         case KVM_IRQ_LINE: {
4281                 struct kvm_irq_level irq_event;
4282
4283                 r = -EFAULT;
4284                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4285                         goto out;
4286
4287                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4288                                         ioctl == KVM_IRQ_LINE_STATUS);
4289                 if (r)
4290                         goto out;
4291
4292                 r = -EFAULT;
4293                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4294                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4295                                 goto out;
4296                 }
4297
4298                 r = 0;
4299                 break;
4300         }
4301 #endif
4302 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4303         case KVM_SET_GSI_ROUTING: {
4304                 struct kvm_irq_routing routing;
4305                 struct kvm_irq_routing __user *urouting;
4306                 struct kvm_irq_routing_entry *entries = NULL;
4307
4308                 r = -EFAULT;
4309                 if (copy_from_user(&routing, argp, sizeof(routing)))
4310                         goto out;
4311                 r = -EINVAL;
4312                 if (!kvm_arch_can_set_irq_routing(kvm))
4313                         goto out;
4314                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4315                         goto out;
4316                 if (routing.flags)
4317                         goto out;
4318                 if (routing.nr) {
4319                         urouting = argp;
4320                         entries = vmemdup_user(urouting->entries,
4321                                                array_size(sizeof(*entries),
4322                                                           routing.nr));
4323                         if (IS_ERR(entries)) {
4324                                 r = PTR_ERR(entries);
4325                                 goto out;
4326                         }
4327                 }
4328                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4329                                         routing.flags);
4330                 kvfree(entries);
4331                 break;
4332         }
4333 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4334         case KVM_CREATE_DEVICE: {
4335                 struct kvm_create_device cd;
4336
4337                 r = -EFAULT;
4338                 if (copy_from_user(&cd, argp, sizeof(cd)))
4339                         goto out;
4340
4341                 r = kvm_ioctl_create_device(kvm, &cd);
4342                 if (r)
4343                         goto out;
4344
4345                 r = -EFAULT;
4346                 if (copy_to_user(argp, &cd, sizeof(cd)))
4347                         goto out;
4348
4349                 r = 0;
4350                 break;
4351         }
4352         case KVM_CHECK_EXTENSION:
4353                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4354                 break;
4355         case KVM_RESET_DIRTY_RINGS:
4356                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4357                 break;
4358         case KVM_GET_STATS_FD:
4359                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4360                 break;
4361         default:
4362                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4363         }
4364 out:
4365         return r;
4366 }
4367
4368 #ifdef CONFIG_KVM_COMPAT
4369 struct compat_kvm_dirty_log {
4370         __u32 slot;
4371         __u32 padding1;
4372         union {
4373                 compat_uptr_t dirty_bitmap; /* one bit per page */
4374                 __u64 padding2;
4375         };
4376 };
4377
4378 static long kvm_vm_compat_ioctl(struct file *filp,
4379                            unsigned int ioctl, unsigned long arg)
4380 {
4381         struct kvm *kvm = filp->private_data;
4382         int r;
4383
4384         if (kvm->mm != current->mm)
4385                 return -EIO;
4386         switch (ioctl) {
4387         case KVM_GET_DIRTY_LOG: {
4388                 struct compat_kvm_dirty_log compat_log;
4389                 struct kvm_dirty_log log;
4390
4391                 if (copy_from_user(&compat_log, (void __user *)arg,
4392                                    sizeof(compat_log)))
4393                         return -EFAULT;
4394                 log.slot         = compat_log.slot;
4395                 log.padding1     = compat_log.padding1;
4396                 log.padding2     = compat_log.padding2;
4397                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4398
4399                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4400                 break;
4401         }
4402         default:
4403                 r = kvm_vm_ioctl(filp, ioctl, arg);
4404         }
4405         return r;
4406 }
4407 #endif
4408
4409 static struct file_operations kvm_vm_fops = {
4410         .release        = kvm_vm_release,
4411         .unlocked_ioctl = kvm_vm_ioctl,
4412         .llseek         = noop_llseek,
4413         KVM_COMPAT(kvm_vm_compat_ioctl),
4414 };
4415
4416 bool file_is_kvm(struct file *file)
4417 {
4418         return file && file->f_op == &kvm_vm_fops;
4419 }
4420 EXPORT_SYMBOL_GPL(file_is_kvm);
4421
4422 static int kvm_dev_ioctl_create_vm(unsigned long type)
4423 {
4424         int r;
4425         struct kvm *kvm;
4426         struct file *file;
4427
4428         kvm = kvm_create_vm(type);
4429         if (IS_ERR(kvm))
4430                 return PTR_ERR(kvm);
4431 #ifdef CONFIG_KVM_MMIO
4432         r = kvm_coalesced_mmio_init(kvm);
4433         if (r < 0)
4434                 goto put_kvm;
4435 #endif
4436         r = get_unused_fd_flags(O_CLOEXEC);
4437         if (r < 0)
4438                 goto put_kvm;
4439
4440         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4441                         "kvm-%d", task_pid_nr(current));
4442
4443         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4444         if (IS_ERR(file)) {
4445                 put_unused_fd(r);
4446                 r = PTR_ERR(file);
4447                 goto put_kvm;
4448         }
4449
4450         /*
4451          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4452          * already set, with ->release() being kvm_vm_release().  In error
4453          * cases it will be called by the final fput(file) and will take
4454          * care of doing kvm_put_kvm(kvm).
4455          */
4456         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4457                 put_unused_fd(r);
4458                 fput(file);
4459                 return -ENOMEM;
4460         }
4461         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4462
4463         fd_install(r, file);
4464         return r;
4465
4466 put_kvm:
4467         kvm_put_kvm(kvm);
4468         return r;
4469 }
4470
4471 static long kvm_dev_ioctl(struct file *filp,
4472                           unsigned int ioctl, unsigned long arg)
4473 {
4474         long r = -EINVAL;
4475
4476         switch (ioctl) {
4477         case KVM_GET_API_VERSION:
4478                 if (arg)
4479                         goto out;
4480                 r = KVM_API_VERSION;
4481                 break;
4482         case KVM_CREATE_VM:
4483                 r = kvm_dev_ioctl_create_vm(arg);
4484                 break;
4485         case KVM_CHECK_EXTENSION:
4486                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4487                 break;
4488         case KVM_GET_VCPU_MMAP_SIZE:
4489                 if (arg)
4490                         goto out;
4491                 r = PAGE_SIZE;     /* struct kvm_run */
4492 #ifdef CONFIG_X86
4493                 r += PAGE_SIZE;    /* pio data page */
4494 #endif
4495 #ifdef CONFIG_KVM_MMIO
4496                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4497 #endif
4498                 break;
4499         case KVM_TRACE_ENABLE:
4500         case KVM_TRACE_PAUSE:
4501         case KVM_TRACE_DISABLE:
4502                 r = -EOPNOTSUPP;
4503                 break;
4504         default:
4505                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4506         }
4507 out:
4508         return r;
4509 }
4510
4511 static struct file_operations kvm_chardev_ops = {
4512         .unlocked_ioctl = kvm_dev_ioctl,
4513         .llseek         = noop_llseek,
4514         KVM_COMPAT(kvm_dev_ioctl),
4515 };
4516
4517 static struct miscdevice kvm_dev = {
4518         KVM_MINOR,
4519         "kvm",
4520         &kvm_chardev_ops,
4521 };
4522
4523 static void hardware_enable_nolock(void *junk)
4524 {
4525         int cpu = raw_smp_processor_id();
4526         int r;
4527
4528         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4529                 return;
4530
4531         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4532
4533         r = kvm_arch_hardware_enable();
4534
4535         if (r) {
4536                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4537                 atomic_inc(&hardware_enable_failed);
4538                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4539         }
4540 }
4541
4542 static int kvm_starting_cpu(unsigned int cpu)
4543 {
4544         raw_spin_lock(&kvm_count_lock);
4545         if (kvm_usage_count)
4546                 hardware_enable_nolock(NULL);
4547         raw_spin_unlock(&kvm_count_lock);
4548         return 0;
4549 }
4550
4551 static void hardware_disable_nolock(void *junk)
4552 {
4553         int cpu = raw_smp_processor_id();
4554
4555         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4556                 return;
4557         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4558         kvm_arch_hardware_disable();
4559 }
4560
4561 static int kvm_dying_cpu(unsigned int cpu)
4562 {
4563         raw_spin_lock(&kvm_count_lock);
4564         if (kvm_usage_count)
4565                 hardware_disable_nolock(NULL);
4566         raw_spin_unlock(&kvm_count_lock);
4567         return 0;
4568 }
4569
4570 static void hardware_disable_all_nolock(void)
4571 {
4572         BUG_ON(!kvm_usage_count);
4573
4574         kvm_usage_count--;
4575         if (!kvm_usage_count)
4576                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4577 }
4578
4579 static void hardware_disable_all(void)
4580 {
4581         raw_spin_lock(&kvm_count_lock);
4582         hardware_disable_all_nolock();
4583         raw_spin_unlock(&kvm_count_lock);
4584 }
4585
4586 static int hardware_enable_all(void)
4587 {
4588         int r = 0;
4589
4590         raw_spin_lock(&kvm_count_lock);
4591
4592         kvm_usage_count++;
4593         if (kvm_usage_count == 1) {
4594                 atomic_set(&hardware_enable_failed, 0);
4595                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4596
4597                 if (atomic_read(&hardware_enable_failed)) {
4598                         hardware_disable_all_nolock();
4599                         r = -EBUSY;
4600                 }
4601         }
4602
4603         raw_spin_unlock(&kvm_count_lock);
4604
4605         return r;
4606 }
4607
4608 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4609                       void *v)
4610 {
4611         /*
4612          * Some (well, at least mine) BIOSes hang on reboot if
4613          * in vmx root mode.
4614          *
4615          * And Intel TXT required VMX off for all cpu when system shutdown.
4616          */
4617         pr_info("kvm: exiting hardware virtualization\n");
4618         kvm_rebooting = true;
4619         on_each_cpu(hardware_disable_nolock, NULL, 1);
4620         return NOTIFY_OK;
4621 }
4622
4623 static struct notifier_block kvm_reboot_notifier = {
4624         .notifier_call = kvm_reboot,
4625         .priority = 0,
4626 };
4627
4628 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4629 {
4630         int i;
4631
4632         for (i = 0; i < bus->dev_count; i++) {
4633                 struct kvm_io_device *pos = bus->range[i].dev;
4634
4635                 kvm_iodevice_destructor(pos);
4636         }
4637         kfree(bus);
4638 }
4639
4640 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4641                                  const struct kvm_io_range *r2)
4642 {
4643         gpa_t addr1 = r1->addr;
4644         gpa_t addr2 = r2->addr;
4645
4646         if (addr1 < addr2)
4647                 return -1;
4648
4649         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4650          * accept any overlapping write.  Any order is acceptable for
4651          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4652          * we process all of them.
4653          */
4654         if (r2->len) {
4655                 addr1 += r1->len;
4656                 addr2 += r2->len;
4657         }
4658
4659         if (addr1 > addr2)
4660                 return 1;
4661
4662         return 0;
4663 }
4664
4665 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4666 {
4667         return kvm_io_bus_cmp(p1, p2);
4668 }
4669
4670 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4671                              gpa_t addr, int len)
4672 {
4673         struct kvm_io_range *range, key;
4674         int off;
4675
4676         key = (struct kvm_io_range) {
4677                 .addr = addr,
4678                 .len = len,
4679         };
4680
4681         range = bsearch(&key, bus->range, bus->dev_count,
4682                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4683         if (range == NULL)
4684                 return -ENOENT;
4685
4686         off = range - bus->range;
4687
4688         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4689                 off--;
4690
4691         return off;
4692 }
4693
4694 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4695                               struct kvm_io_range *range, const void *val)
4696 {
4697         int idx;
4698
4699         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4700         if (idx < 0)
4701                 return -EOPNOTSUPP;
4702
4703         while (idx < bus->dev_count &&
4704                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4705                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4706                                         range->len, val))
4707                         return idx;
4708                 idx++;
4709         }
4710
4711         return -EOPNOTSUPP;
4712 }
4713
4714 /* kvm_io_bus_write - called under kvm->slots_lock */
4715 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4716                      int len, const void *val)
4717 {
4718         struct kvm_io_bus *bus;
4719         struct kvm_io_range range;
4720         int r;
4721
4722         range = (struct kvm_io_range) {
4723                 .addr = addr,
4724                 .len = len,
4725         };
4726
4727         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4728         if (!bus)
4729                 return -ENOMEM;
4730         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4731         return r < 0 ? r : 0;
4732 }
4733 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4734
4735 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4736 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4737                             gpa_t addr, int len, const void *val, long cookie)
4738 {
4739         struct kvm_io_bus *bus;
4740         struct kvm_io_range range;
4741
4742         range = (struct kvm_io_range) {
4743                 .addr = addr,
4744                 .len = len,
4745         };
4746
4747         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4748         if (!bus)
4749                 return -ENOMEM;
4750
4751         /* First try the device referenced by cookie. */
4752         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4753             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4754                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4755                                         val))
4756                         return cookie;
4757
4758         /*
4759          * cookie contained garbage; fall back to search and return the
4760          * correct cookie value.
4761          */
4762         return __kvm_io_bus_write(vcpu, bus, &range, val);
4763 }
4764
4765 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4766                              struct kvm_io_range *range, void *val)
4767 {
4768         int idx;
4769
4770         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4771         if (idx < 0)
4772                 return -EOPNOTSUPP;
4773
4774         while (idx < bus->dev_count &&
4775                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4776                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4777                                        range->len, val))
4778                         return idx;
4779                 idx++;
4780         }
4781
4782         return -EOPNOTSUPP;
4783 }
4784
4785 /* kvm_io_bus_read - called under kvm->slots_lock */
4786 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4787                     int len, void *val)
4788 {
4789         struct kvm_io_bus *bus;
4790         struct kvm_io_range range;
4791         int r;
4792
4793         range = (struct kvm_io_range) {
4794                 .addr = addr,
4795                 .len = len,
4796         };
4797
4798         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4799         if (!bus)
4800                 return -ENOMEM;
4801         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4802         return r < 0 ? r : 0;
4803 }
4804
4805 /* Caller must hold slots_lock. */
4806 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4807                             int len, struct kvm_io_device *dev)
4808 {
4809         int i;
4810         struct kvm_io_bus *new_bus, *bus;
4811         struct kvm_io_range range;
4812
4813         bus = kvm_get_bus(kvm, bus_idx);
4814         if (!bus)
4815                 return -ENOMEM;
4816
4817         /* exclude ioeventfd which is limited by maximum fd */
4818         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4819                 return -ENOSPC;
4820
4821         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4822                           GFP_KERNEL_ACCOUNT);
4823         if (!new_bus)
4824                 return -ENOMEM;
4825
4826         range = (struct kvm_io_range) {
4827                 .addr = addr,
4828                 .len = len,
4829                 .dev = dev,
4830         };
4831
4832         for (i = 0; i < bus->dev_count; i++)
4833                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4834                         break;
4835
4836         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4837         new_bus->dev_count++;
4838         new_bus->range[i] = range;
4839         memcpy(new_bus->range + i + 1, bus->range + i,
4840                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4841         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4842         synchronize_srcu_expedited(&kvm->srcu);
4843         kfree(bus);
4844
4845         return 0;
4846 }
4847
4848 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4849                               struct kvm_io_device *dev)
4850 {
4851         int i, j;
4852         struct kvm_io_bus *new_bus, *bus;
4853
4854         lockdep_assert_held(&kvm->slots_lock);
4855
4856         bus = kvm_get_bus(kvm, bus_idx);
4857         if (!bus)
4858                 return 0;
4859
4860         for (i = 0; i < bus->dev_count; i++) {
4861                 if (bus->range[i].dev == dev) {
4862                         break;
4863                 }
4864         }
4865
4866         if (i == bus->dev_count)
4867                 return 0;
4868
4869         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4870                           GFP_KERNEL_ACCOUNT);
4871         if (new_bus) {
4872                 memcpy(new_bus, bus, struct_size(bus, range, i));
4873                 new_bus->dev_count--;
4874                 memcpy(new_bus->range + i, bus->range + i + 1,
4875                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4876         }
4877
4878         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4879         synchronize_srcu_expedited(&kvm->srcu);
4880
4881         /* Destroy the old bus _after_ installing the (null) bus. */
4882         if (!new_bus) {
4883                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4884                 for (j = 0; j < bus->dev_count; j++) {
4885                         if (j == i)
4886                                 continue;
4887                         kvm_iodevice_destructor(bus->range[j].dev);
4888                 }
4889         }
4890
4891         kfree(bus);
4892         return new_bus ? 0 : -ENOMEM;
4893 }
4894
4895 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4896                                          gpa_t addr)
4897 {
4898         struct kvm_io_bus *bus;
4899         int dev_idx, srcu_idx;
4900         struct kvm_io_device *iodev = NULL;
4901
4902         srcu_idx = srcu_read_lock(&kvm->srcu);
4903
4904         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4905         if (!bus)
4906                 goto out_unlock;
4907
4908         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4909         if (dev_idx < 0)
4910                 goto out_unlock;
4911
4912         iodev = bus->range[dev_idx].dev;
4913
4914 out_unlock:
4915         srcu_read_unlock(&kvm->srcu, srcu_idx);
4916
4917         return iodev;
4918 }
4919 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4920
4921 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4922                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4923                            const char *fmt)
4924 {
4925         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4926                                           inode->i_private;
4927
4928         /* The debugfs files are a reference to the kvm struct which
4929          * is still valid when kvm_destroy_vm is called.
4930          * To avoid the race between open and the removal of the debugfs
4931          * directory we test against the users count.
4932          */
4933         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4934                 return -ENOENT;
4935
4936         if (simple_attr_open(inode, file, get,
4937                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
4938                     ? set : NULL,
4939                     fmt)) {
4940                 kvm_put_kvm(stat_data->kvm);
4941                 return -ENOMEM;
4942         }
4943
4944         return 0;
4945 }
4946
4947 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4948 {
4949         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4950                                           inode->i_private;
4951
4952         simple_attr_release(inode, file);
4953         kvm_put_kvm(stat_data->kvm);
4954
4955         return 0;
4956 }
4957
4958 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4959 {
4960         *val = *(u64 *)((void *)(&kvm->stat) + offset);
4961
4962         return 0;
4963 }
4964
4965 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4966 {
4967         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
4968
4969         return 0;
4970 }
4971
4972 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4973 {
4974         int i;
4975         struct kvm_vcpu *vcpu;
4976
4977         *val = 0;
4978
4979         kvm_for_each_vcpu(i, vcpu, kvm)
4980                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
4981
4982         return 0;
4983 }
4984
4985 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4986 {
4987         int i;
4988         struct kvm_vcpu *vcpu;
4989
4990         kvm_for_each_vcpu(i, vcpu, kvm)
4991                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
4992
4993         return 0;
4994 }
4995
4996 static int kvm_stat_data_get(void *data, u64 *val)
4997 {
4998         int r = -EFAULT;
4999         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5000
5001         switch (stat_data->kind) {
5002         case KVM_STAT_VM:
5003                 r = kvm_get_stat_per_vm(stat_data->kvm,
5004                                         stat_data->desc->desc.offset, val);
5005                 break;
5006         case KVM_STAT_VCPU:
5007                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5008                                           stat_data->desc->desc.offset, val);
5009                 break;
5010         }
5011
5012         return r;
5013 }
5014
5015 static int kvm_stat_data_clear(void *data, u64 val)
5016 {
5017         int r = -EFAULT;
5018         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5019
5020         if (val)
5021                 return -EINVAL;
5022
5023         switch (stat_data->kind) {
5024         case KVM_STAT_VM:
5025                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5026                                           stat_data->desc->desc.offset);
5027                 break;
5028         case KVM_STAT_VCPU:
5029                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5030                                             stat_data->desc->desc.offset);
5031                 break;
5032         }
5033
5034         return r;
5035 }
5036
5037 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5038 {
5039         __simple_attr_check_format("%llu\n", 0ull);
5040         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5041                                 kvm_stat_data_clear, "%llu\n");
5042 }
5043
5044 static const struct file_operations stat_fops_per_vm = {
5045         .owner = THIS_MODULE,
5046         .open = kvm_stat_data_open,
5047         .release = kvm_debugfs_release,
5048         .read = simple_attr_read,
5049         .write = simple_attr_write,
5050         .llseek = no_llseek,
5051 };
5052
5053 static int vm_stat_get(void *_offset, u64 *val)
5054 {
5055         unsigned offset = (long)_offset;
5056         struct kvm *kvm;
5057         u64 tmp_val;
5058
5059         *val = 0;
5060         mutex_lock(&kvm_lock);
5061         list_for_each_entry(kvm, &vm_list, vm_list) {
5062                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5063                 *val += tmp_val;
5064         }
5065         mutex_unlock(&kvm_lock);
5066         return 0;
5067 }
5068
5069 static int vm_stat_clear(void *_offset, u64 val)
5070 {
5071         unsigned offset = (long)_offset;
5072         struct kvm *kvm;
5073
5074         if (val)
5075                 return -EINVAL;
5076
5077         mutex_lock(&kvm_lock);
5078         list_for_each_entry(kvm, &vm_list, vm_list) {
5079                 kvm_clear_stat_per_vm(kvm, offset);
5080         }
5081         mutex_unlock(&kvm_lock);
5082
5083         return 0;
5084 }
5085
5086 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5087 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5088
5089 static int vcpu_stat_get(void *_offset, u64 *val)
5090 {
5091         unsigned offset = (long)_offset;
5092         struct kvm *kvm;
5093         u64 tmp_val;
5094
5095         *val = 0;
5096         mutex_lock(&kvm_lock);
5097         list_for_each_entry(kvm, &vm_list, vm_list) {
5098                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5099                 *val += tmp_val;
5100         }
5101         mutex_unlock(&kvm_lock);
5102         return 0;
5103 }
5104
5105 static int vcpu_stat_clear(void *_offset, u64 val)
5106 {
5107         unsigned offset = (long)_offset;
5108         struct kvm *kvm;
5109
5110         if (val)
5111                 return -EINVAL;
5112
5113         mutex_lock(&kvm_lock);
5114         list_for_each_entry(kvm, &vm_list, vm_list) {
5115                 kvm_clear_stat_per_vcpu(kvm, offset);
5116         }
5117         mutex_unlock(&kvm_lock);
5118
5119         return 0;
5120 }
5121
5122 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5123                         "%llu\n");
5124 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5125
5126 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5127 {
5128         struct kobj_uevent_env *env;
5129         unsigned long long created, active;
5130
5131         if (!kvm_dev.this_device || !kvm)
5132                 return;
5133
5134         mutex_lock(&kvm_lock);
5135         if (type == KVM_EVENT_CREATE_VM) {
5136                 kvm_createvm_count++;
5137                 kvm_active_vms++;
5138         } else if (type == KVM_EVENT_DESTROY_VM) {
5139                 kvm_active_vms--;
5140         }
5141         created = kvm_createvm_count;
5142         active = kvm_active_vms;
5143         mutex_unlock(&kvm_lock);
5144
5145         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5146         if (!env)
5147                 return;
5148
5149         add_uevent_var(env, "CREATED=%llu", created);
5150         add_uevent_var(env, "COUNT=%llu", active);
5151
5152         if (type == KVM_EVENT_CREATE_VM) {
5153                 add_uevent_var(env, "EVENT=create");
5154                 kvm->userspace_pid = task_pid_nr(current);
5155         } else if (type == KVM_EVENT_DESTROY_VM) {
5156                 add_uevent_var(env, "EVENT=destroy");
5157         }
5158         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5159
5160         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
5161                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5162
5163                 if (p) {
5164                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5165                         if (!IS_ERR(tmp))
5166                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5167                         kfree(p);
5168                 }
5169         }
5170         /* no need for checks, since we are adding at most only 5 keys */
5171         env->envp[env->envp_idx++] = NULL;
5172         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5173         kfree(env);
5174 }
5175
5176 static void kvm_init_debug(void)
5177 {
5178         const struct file_operations *fops;
5179         const struct _kvm_stats_desc *pdesc;
5180         int i;
5181
5182         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5183
5184         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5185                 pdesc = &kvm_vm_stats_desc[i];
5186                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5187                         fops = &vm_stat_fops;
5188                 else
5189                         fops = &vm_stat_readonly_fops;
5190                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5191                                 kvm_debugfs_dir,
5192                                 (void *)(long)pdesc->desc.offset, fops);
5193         }
5194
5195         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5196                 pdesc = &kvm_vcpu_stats_desc[i];
5197                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5198                         fops = &vcpu_stat_fops;
5199                 else
5200                         fops = &vcpu_stat_readonly_fops;
5201                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5202                                 kvm_debugfs_dir,
5203                                 (void *)(long)pdesc->desc.offset, fops);
5204         }
5205 }
5206
5207 static int kvm_suspend(void)
5208 {
5209         if (kvm_usage_count)
5210                 hardware_disable_nolock(NULL);
5211         return 0;
5212 }
5213
5214 static void kvm_resume(void)
5215 {
5216         if (kvm_usage_count) {
5217 #ifdef CONFIG_LOCKDEP
5218                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5219 #endif
5220                 hardware_enable_nolock(NULL);
5221         }
5222 }
5223
5224 static struct syscore_ops kvm_syscore_ops = {
5225         .suspend = kvm_suspend,
5226         .resume = kvm_resume,
5227 };
5228
5229 static inline
5230 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5231 {
5232         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5233 }
5234
5235 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5236 {
5237         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5238
5239         WRITE_ONCE(vcpu->preempted, false);
5240         WRITE_ONCE(vcpu->ready, false);
5241
5242         __this_cpu_write(kvm_running_vcpu, vcpu);
5243         kvm_arch_sched_in(vcpu, cpu);
5244         kvm_arch_vcpu_load(vcpu, cpu);
5245 }
5246
5247 static void kvm_sched_out(struct preempt_notifier *pn,
5248                           struct task_struct *next)
5249 {
5250         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5251
5252         if (current->state == TASK_RUNNING) {
5253                 WRITE_ONCE(vcpu->preempted, true);
5254                 WRITE_ONCE(vcpu->ready, true);
5255         }
5256         kvm_arch_vcpu_put(vcpu);
5257         __this_cpu_write(kvm_running_vcpu, NULL);
5258 }
5259
5260 /**
5261  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5262  *
5263  * We can disable preemption locally around accessing the per-CPU variable,
5264  * and use the resolved vcpu pointer after enabling preemption again,
5265  * because even if the current thread is migrated to another CPU, reading
5266  * the per-CPU value later will give us the same value as we update the
5267  * per-CPU variable in the preempt notifier handlers.
5268  */
5269 struct kvm_vcpu *kvm_get_running_vcpu(void)
5270 {
5271         struct kvm_vcpu *vcpu;
5272
5273         preempt_disable();
5274         vcpu = __this_cpu_read(kvm_running_vcpu);
5275         preempt_enable();
5276
5277         return vcpu;
5278 }
5279 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5280
5281 /**
5282  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5283  */
5284 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5285 {
5286         return &kvm_running_vcpu;
5287 }
5288
5289 struct kvm_cpu_compat_check {
5290         void *opaque;
5291         int *ret;
5292 };
5293
5294 static void check_processor_compat(void *data)
5295 {
5296         struct kvm_cpu_compat_check *c = data;
5297
5298         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5299 }
5300
5301 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5302                   struct module *module)
5303 {
5304         struct kvm_cpu_compat_check c;
5305         int r;
5306         int cpu;
5307
5308         r = kvm_arch_init(opaque);
5309         if (r)
5310                 goto out_fail;
5311
5312         /*
5313          * kvm_arch_init makes sure there's at most one caller
5314          * for architectures that support multiple implementations,
5315          * like intel and amd on x86.
5316          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5317          * conflicts in case kvm is already setup for another implementation.
5318          */
5319         r = kvm_irqfd_init();
5320         if (r)
5321                 goto out_irqfd;
5322
5323         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5324                 r = -ENOMEM;
5325                 goto out_free_0;
5326         }
5327
5328         r = kvm_arch_hardware_setup(opaque);
5329         if (r < 0)
5330                 goto out_free_1;
5331
5332         c.ret = &r;
5333         c.opaque = opaque;
5334         for_each_online_cpu(cpu) {
5335                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5336                 if (r < 0)
5337                         goto out_free_2;
5338         }
5339
5340         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5341                                       kvm_starting_cpu, kvm_dying_cpu);
5342         if (r)
5343                 goto out_free_2;
5344         register_reboot_notifier(&kvm_reboot_notifier);
5345
5346         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5347         if (!vcpu_align)
5348                 vcpu_align = __alignof__(struct kvm_vcpu);
5349         kvm_vcpu_cache =
5350                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5351                                            SLAB_ACCOUNT,
5352                                            offsetof(struct kvm_vcpu, arch),
5353                                            offsetofend(struct kvm_vcpu, stats_id)
5354                                            - offsetof(struct kvm_vcpu, arch),
5355                                            NULL);
5356         if (!kvm_vcpu_cache) {
5357                 r = -ENOMEM;
5358                 goto out_free_3;
5359         }
5360
5361         r = kvm_async_pf_init();
5362         if (r)
5363                 goto out_free;
5364
5365         kvm_chardev_ops.owner = module;
5366         kvm_vm_fops.owner = module;
5367         kvm_vcpu_fops.owner = module;
5368
5369         r = misc_register(&kvm_dev);
5370         if (r) {
5371                 pr_err("kvm: misc device register failed\n");
5372                 goto out_unreg;
5373         }
5374
5375         register_syscore_ops(&kvm_syscore_ops);
5376
5377         kvm_preempt_ops.sched_in = kvm_sched_in;
5378         kvm_preempt_ops.sched_out = kvm_sched_out;
5379
5380         kvm_init_debug();
5381
5382         r = kvm_vfio_ops_init();
5383         WARN_ON(r);
5384
5385         return 0;
5386
5387 out_unreg:
5388         kvm_async_pf_deinit();
5389 out_free:
5390         kmem_cache_destroy(kvm_vcpu_cache);
5391 out_free_3:
5392         unregister_reboot_notifier(&kvm_reboot_notifier);
5393         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5394 out_free_2:
5395         kvm_arch_hardware_unsetup();
5396 out_free_1:
5397         free_cpumask_var(cpus_hardware_enabled);
5398 out_free_0:
5399         kvm_irqfd_exit();
5400 out_irqfd:
5401         kvm_arch_exit();
5402 out_fail:
5403         return r;
5404 }
5405 EXPORT_SYMBOL_GPL(kvm_init);
5406
5407 void kvm_exit(void)
5408 {
5409         debugfs_remove_recursive(kvm_debugfs_dir);
5410         misc_deregister(&kvm_dev);
5411         kmem_cache_destroy(kvm_vcpu_cache);
5412         kvm_async_pf_deinit();
5413         unregister_syscore_ops(&kvm_syscore_ops);
5414         unregister_reboot_notifier(&kvm_reboot_notifier);
5415         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5416         on_each_cpu(hardware_disable_nolock, NULL, 1);
5417         kvm_arch_hardware_unsetup();
5418         kvm_arch_exit();
5419         kvm_irqfd_exit();
5420         free_cpumask_var(cpus_hardware_enabled);
5421         kvm_vfio_ops_exit();
5422 }
5423 EXPORT_SYMBOL_GPL(kvm_exit);
5424
5425 struct kvm_vm_worker_thread_context {
5426         struct kvm *kvm;
5427         struct task_struct *parent;
5428         struct completion init_done;
5429         kvm_vm_thread_fn_t thread_fn;
5430         uintptr_t data;
5431         int err;
5432 };
5433
5434 static int kvm_vm_worker_thread(void *context)
5435 {
5436         /*
5437          * The init_context is allocated on the stack of the parent thread, so
5438          * we have to locally copy anything that is needed beyond initialization
5439          */
5440         struct kvm_vm_worker_thread_context *init_context = context;
5441         struct kvm *kvm = init_context->kvm;
5442         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5443         uintptr_t data = init_context->data;
5444         int err;
5445
5446         err = kthread_park(current);
5447         /* kthread_park(current) is never supposed to return an error */
5448         WARN_ON(err != 0);
5449         if (err)
5450                 goto init_complete;
5451
5452         err = cgroup_attach_task_all(init_context->parent, current);
5453         if (err) {
5454                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5455                         __func__, err);
5456                 goto init_complete;
5457         }
5458
5459         set_user_nice(current, task_nice(init_context->parent));
5460
5461 init_complete:
5462         init_context->err = err;
5463         complete(&init_context->init_done);
5464         init_context = NULL;
5465
5466         if (err)
5467                 return err;
5468
5469         /* Wait to be woken up by the spawner before proceeding. */
5470         kthread_parkme();
5471
5472         if (!kthread_should_stop())
5473                 err = thread_fn(kvm, data);
5474
5475         return err;
5476 }
5477
5478 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5479                                 uintptr_t data, const char *name,
5480                                 struct task_struct **thread_ptr)
5481 {
5482         struct kvm_vm_worker_thread_context init_context = {};
5483         struct task_struct *thread;
5484
5485         *thread_ptr = NULL;
5486         init_context.kvm = kvm;
5487         init_context.parent = current;
5488         init_context.thread_fn = thread_fn;
5489         init_context.data = data;
5490         init_completion(&init_context.init_done);
5491
5492         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5493                              "%s-%d", name, task_pid_nr(current));
5494         if (IS_ERR(thread))
5495                 return PTR_ERR(thread);
5496
5497         /* kthread_run is never supposed to return NULL */
5498         WARN_ON(thread == NULL);
5499
5500         wait_for_completion(&init_context.init_done);
5501
5502         if (!init_context.err)
5503                 *thread_ptr = thread;
5504
5505         return init_context.err;
5506 }