KVM: Register /dev/kvm as the _very_ last thing during initialization
[platform/kernel/linux-starfive.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123                            unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126                                   unsigned long arg);
127 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137                                 unsigned long arg) { return -EINVAL; }
138
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141         return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
144                         .open           = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163                                                    unsigned long start, unsigned long end)
164 {
165 }
166
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
171 bool kvm_is_zone_device_page(struct page *page)
172 {
173         /*
174          * The metadata used by is_zone_device_page() to determine whether or
175          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176          * the device has been pinned, e.g. by get_user_pages().  WARN if the
177          * page_count() is zero to help detect bad usage of this helper.
178          */
179         if (WARN_ON_ONCE(!page_count(page)))
180                 return false;
181
182         return is_zone_device_page(page);
183 }
184
185 /*
186  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
188  * is likely incomplete, it has been compiled purely through people wanting to
189  * back guest with a certain type of memory and encountering issues.
190  */
191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
192 {
193         struct page *page;
194
195         if (!pfn_valid(pfn))
196                 return NULL;
197
198         page = pfn_to_page(pfn);
199         if (!PageReserved(page))
200                 return page;
201
202         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203         if (is_zero_pfn(pfn))
204                 return page;
205
206         /*
207          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208          * perspective they are "normal" pages, albeit with slightly different
209          * usage rules.
210          */
211         if (kvm_is_zone_device_page(page))
212                 return page;
213
214         return NULL;
215 }
216
217 /*
218  * Switches to specified vcpu, until a matching vcpu_put()
219  */
220 void vcpu_load(struct kvm_vcpu *vcpu)
221 {
222         int cpu = get_cpu();
223
224         __this_cpu_write(kvm_running_vcpu, vcpu);
225         preempt_notifier_register(&vcpu->preempt_notifier);
226         kvm_arch_vcpu_load(vcpu, cpu);
227         put_cpu();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_load);
230
231 void vcpu_put(struct kvm_vcpu *vcpu)
232 {
233         preempt_disable();
234         kvm_arch_vcpu_put(vcpu);
235         preempt_notifier_unregister(&vcpu->preempt_notifier);
236         __this_cpu_write(kvm_running_vcpu, NULL);
237         preempt_enable();
238 }
239 EXPORT_SYMBOL_GPL(vcpu_put);
240
241 /* TODO: merge with kvm_arch_vcpu_should_kick */
242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243 {
244         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245
246         /*
247          * We need to wait for the VCPU to reenable interrupts and get out of
248          * READING_SHADOW_PAGE_TABLES mode.
249          */
250         if (req & KVM_REQUEST_WAIT)
251                 return mode != OUTSIDE_GUEST_MODE;
252
253         /*
254          * Need to kick a running VCPU, but otherwise there is nothing to do.
255          */
256         return mode == IN_GUEST_MODE;
257 }
258
259 static void ack_kick(void *_completed)
260 {
261 }
262
263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
264 {
265         if (cpumask_empty(cpus))
266                 return false;
267
268         smp_call_function_many(cpus, ack_kick, NULL, wait);
269         return true;
270 }
271
272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273                                   struct cpumask *tmp, int current_cpu)
274 {
275         int cpu;
276
277         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278                 __kvm_make_request(req, vcpu);
279
280         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281                 return;
282
283         /*
284          * Note, the vCPU could get migrated to a different pCPU at any point
285          * after kvm_request_needs_ipi(), which could result in sending an IPI
286          * to the previous pCPU.  But, that's OK because the purpose of the IPI
287          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289          * after this point is also OK, as the requirement is only that KVM wait
290          * for vCPUs that were reading SPTEs _before_ any changes were
291          * finalized. See kvm_vcpu_kick() for more details on handling requests.
292          */
293         if (kvm_request_needs_ipi(vcpu, req)) {
294                 cpu = READ_ONCE(vcpu->cpu);
295                 if (cpu != -1 && cpu != current_cpu)
296                         __cpumask_set_cpu(cpu, tmp);
297         }
298 }
299
300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
301                                  unsigned long *vcpu_bitmap)
302 {
303         struct kvm_vcpu *vcpu;
304         struct cpumask *cpus;
305         int i, me;
306         bool called;
307
308         me = get_cpu();
309
310         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311         cpumask_clear(cpus);
312
313         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314                 vcpu = kvm_get_vcpu(kvm, i);
315                 if (!vcpu)
316                         continue;
317                 kvm_make_vcpu_request(vcpu, req, cpus, me);
318         }
319
320         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
321         put_cpu();
322
323         return called;
324 }
325
326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327                                       struct kvm_vcpu *except)
328 {
329         struct kvm_vcpu *vcpu;
330         struct cpumask *cpus;
331         unsigned long i;
332         bool called;
333         int me;
334
335         me = get_cpu();
336
337         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338         cpumask_clear(cpus);
339
340         kvm_for_each_vcpu(i, vcpu, kvm) {
341                 if (vcpu == except)
342                         continue;
343                 kvm_make_vcpu_request(vcpu, req, cpus, me);
344         }
345
346         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347         put_cpu();
348
349         return called;
350 }
351
352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353 {
354         return kvm_make_all_cpus_request_except(kvm, req, NULL);
355 }
356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
357
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361         ++kvm->stat.generic.remote_tlb_flush_requests;
362
363         /*
364          * We want to publish modifications to the page tables before reading
365          * mode. Pairs with a memory barrier in arch-specific code.
366          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367          * and smp_mb in walk_shadow_page_lockless_begin/end.
368          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369          *
370          * There is already an smp_mb__after_atomic() before
371          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372          * barrier here.
373          */
374         if (!kvm_arch_flush_remote_tlb(kvm)
375             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
376                 ++kvm->stat.generic.remote_tlb_flush;
377 }
378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
379 #endif
380
381 static void kvm_flush_shadow_all(struct kvm *kvm)
382 {
383         kvm_arch_flush_shadow_all(kvm);
384         kvm_arch_guest_memory_reclaimed(kvm);
385 }
386
387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389                                                gfp_t gfp_flags)
390 {
391         gfp_flags |= mc->gfp_zero;
392
393         if (mc->kmem_cache)
394                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395         else
396                 return (void *)__get_free_page(gfp_flags);
397 }
398
399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
400 {
401         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
402         void *obj;
403
404         if (mc->nobjs >= min)
405                 return 0;
406
407         if (unlikely(!mc->objects)) {
408                 if (WARN_ON_ONCE(!capacity))
409                         return -EIO;
410
411                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412                 if (!mc->objects)
413                         return -ENOMEM;
414
415                 mc->capacity = capacity;
416         }
417
418         /* It is illegal to request a different capacity across topups. */
419         if (WARN_ON_ONCE(mc->capacity != capacity))
420                 return -EIO;
421
422         while (mc->nobjs < mc->capacity) {
423                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
424                 if (!obj)
425                         return mc->nobjs >= min ? 0 : -ENOMEM;
426                 mc->objects[mc->nobjs++] = obj;
427         }
428         return 0;
429 }
430
431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432 {
433         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434 }
435
436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437 {
438         return mc->nobjs;
439 }
440
441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442 {
443         while (mc->nobjs) {
444                 if (mc->kmem_cache)
445                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446                 else
447                         free_page((unsigned long)mc->objects[--mc->nobjs]);
448         }
449
450         kvfree(mc->objects);
451
452         mc->objects = NULL;
453         mc->capacity = 0;
454 }
455
456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457 {
458         void *p;
459
460         if (WARN_ON(!mc->nobjs))
461                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462         else
463                 p = mc->objects[--mc->nobjs];
464         BUG_ON(!p);
465         return p;
466 }
467 #endif
468
469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
470 {
471         mutex_init(&vcpu->mutex);
472         vcpu->cpu = -1;
473         vcpu->kvm = kvm;
474         vcpu->vcpu_id = id;
475         vcpu->pid = NULL;
476 #ifndef __KVM_HAVE_ARCH_WQP
477         rcuwait_init(&vcpu->wait);
478 #endif
479         kvm_async_pf_vcpu_init(vcpu);
480
481         kvm_vcpu_set_in_spin_loop(vcpu, false);
482         kvm_vcpu_set_dy_eligible(vcpu, false);
483         vcpu->preempted = false;
484         vcpu->ready = false;
485         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
486         vcpu->last_used_slot = NULL;
487
488         /* Fill the stats id string for the vcpu */
489         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
490                  task_pid_nr(current), id);
491 }
492
493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
494 {
495         kvm_arch_vcpu_destroy(vcpu);
496         kvm_dirty_ring_free(&vcpu->dirty_ring);
497
498         /*
499          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
500          * the vcpu->pid pointer, and at destruction time all file descriptors
501          * are already gone.
502          */
503         put_pid(rcu_dereference_protected(vcpu->pid, 1));
504
505         free_page((unsigned long)vcpu->run);
506         kmem_cache_free(kvm_vcpu_cache, vcpu);
507 }
508
509 void kvm_destroy_vcpus(struct kvm *kvm)
510 {
511         unsigned long i;
512         struct kvm_vcpu *vcpu;
513
514         kvm_for_each_vcpu(i, vcpu, kvm) {
515                 kvm_vcpu_destroy(vcpu);
516                 xa_erase(&kvm->vcpu_array, i);
517         }
518
519         atomic_set(&kvm->online_vcpus, 0);
520 }
521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
522
523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
525 {
526         return container_of(mn, struct kvm, mmu_notifier);
527 }
528
529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
530                                               struct mm_struct *mm,
531                                               unsigned long start, unsigned long end)
532 {
533         struct kvm *kvm = mmu_notifier_to_kvm(mn);
534         int idx;
535
536         idx = srcu_read_lock(&kvm->srcu);
537         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
538         srcu_read_unlock(&kvm->srcu, idx);
539 }
540
541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
542
543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
544                              unsigned long end);
545
546 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
547
548 struct kvm_hva_range {
549         unsigned long start;
550         unsigned long end;
551         pte_t pte;
552         hva_handler_t handler;
553         on_lock_fn_t on_lock;
554         on_unlock_fn_t on_unlock;
555         bool flush_on_ret;
556         bool may_block;
557 };
558
559 /*
560  * Use a dedicated stub instead of NULL to indicate that there is no callback
561  * function/handler.  The compiler technically can't guarantee that a real
562  * function will have a non-zero address, and so it will generate code to
563  * check for !NULL, whereas comparing against a stub will be elided at compile
564  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
565  */
566 static void kvm_null_fn(void)
567 {
568
569 }
570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
571
572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
574         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
575              node;                                                           \
576              node = interval_tree_iter_next(node, start, last))      \
577
578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
579                                                   const struct kvm_hva_range *range)
580 {
581         bool ret = false, locked = false;
582         struct kvm_gfn_range gfn_range;
583         struct kvm_memory_slot *slot;
584         struct kvm_memslots *slots;
585         int i, idx;
586
587         if (WARN_ON_ONCE(range->end <= range->start))
588                 return 0;
589
590         /* A null handler is allowed if and only if on_lock() is provided. */
591         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
592                          IS_KVM_NULL_FN(range->handler)))
593                 return 0;
594
595         idx = srcu_read_lock(&kvm->srcu);
596
597         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
598                 struct interval_tree_node *node;
599
600                 slots = __kvm_memslots(kvm, i);
601                 kvm_for_each_memslot_in_hva_range(node, slots,
602                                                   range->start, range->end - 1) {
603                         unsigned long hva_start, hva_end;
604
605                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
606                         hva_start = max(range->start, slot->userspace_addr);
607                         hva_end = min(range->end, slot->userspace_addr +
608                                                   (slot->npages << PAGE_SHIFT));
609
610                         /*
611                          * To optimize for the likely case where the address
612                          * range is covered by zero or one memslots, don't
613                          * bother making these conditional (to avoid writes on
614                          * the second or later invocation of the handler).
615                          */
616                         gfn_range.pte = range->pte;
617                         gfn_range.may_block = range->may_block;
618
619                         /*
620                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
621                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
622                          */
623                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
624                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
625                         gfn_range.slot = slot;
626
627                         if (!locked) {
628                                 locked = true;
629                                 KVM_MMU_LOCK(kvm);
630                                 if (!IS_KVM_NULL_FN(range->on_lock))
631                                         range->on_lock(kvm, range->start, range->end);
632                                 if (IS_KVM_NULL_FN(range->handler))
633                                         break;
634                         }
635                         ret |= range->handler(kvm, &gfn_range);
636                 }
637         }
638
639         if (range->flush_on_ret && ret)
640                 kvm_flush_remote_tlbs(kvm);
641
642         if (locked) {
643                 KVM_MMU_UNLOCK(kvm);
644                 if (!IS_KVM_NULL_FN(range->on_unlock))
645                         range->on_unlock(kvm);
646         }
647
648         srcu_read_unlock(&kvm->srcu, idx);
649
650         /* The notifiers are averse to booleans. :-( */
651         return (int)ret;
652 }
653
654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
655                                                 unsigned long start,
656                                                 unsigned long end,
657                                                 pte_t pte,
658                                                 hva_handler_t handler)
659 {
660         struct kvm *kvm = mmu_notifier_to_kvm(mn);
661         const struct kvm_hva_range range = {
662                 .start          = start,
663                 .end            = end,
664                 .pte            = pte,
665                 .handler        = handler,
666                 .on_lock        = (void *)kvm_null_fn,
667                 .on_unlock      = (void *)kvm_null_fn,
668                 .flush_on_ret   = true,
669                 .may_block      = false,
670         };
671
672         return __kvm_handle_hva_range(kvm, &range);
673 }
674
675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
676                                                          unsigned long start,
677                                                          unsigned long end,
678                                                          hva_handler_t handler)
679 {
680         struct kvm *kvm = mmu_notifier_to_kvm(mn);
681         const struct kvm_hva_range range = {
682                 .start          = start,
683                 .end            = end,
684                 .pte            = __pte(0),
685                 .handler        = handler,
686                 .on_lock        = (void *)kvm_null_fn,
687                 .on_unlock      = (void *)kvm_null_fn,
688                 .flush_on_ret   = false,
689                 .may_block      = false,
690         };
691
692         return __kvm_handle_hva_range(kvm, &range);
693 }
694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
695                                         struct mm_struct *mm,
696                                         unsigned long address,
697                                         pte_t pte)
698 {
699         struct kvm *kvm = mmu_notifier_to_kvm(mn);
700
701         trace_kvm_set_spte_hva(address);
702
703         /*
704          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
705          * If mmu_invalidate_in_progress is zero, then no in-progress
706          * invalidations, including this one, found a relevant memslot at
707          * start(); rechecking memslots here is unnecessary.  Note, a false
708          * positive (count elevated by a different invalidation) is sub-optimal
709          * but functionally ok.
710          */
711         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
712         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
713                 return;
714
715         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
716 }
717
718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
719                               unsigned long end)
720 {
721         /*
722          * The count increase must become visible at unlock time as no
723          * spte can be established without taking the mmu_lock and
724          * count is also read inside the mmu_lock critical section.
725          */
726         kvm->mmu_invalidate_in_progress++;
727         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
728                 kvm->mmu_invalidate_range_start = start;
729                 kvm->mmu_invalidate_range_end = end;
730         } else {
731                 /*
732                  * Fully tracking multiple concurrent ranges has diminishing
733                  * returns. Keep things simple and just find the minimal range
734                  * which includes the current and new ranges. As there won't be
735                  * enough information to subtract a range after its invalidate
736                  * completes, any ranges invalidated concurrently will
737                  * accumulate and persist until all outstanding invalidates
738                  * complete.
739                  */
740                 kvm->mmu_invalidate_range_start =
741                         min(kvm->mmu_invalidate_range_start, start);
742                 kvm->mmu_invalidate_range_end =
743                         max(kvm->mmu_invalidate_range_end, end);
744         }
745 }
746
747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
748                                         const struct mmu_notifier_range *range)
749 {
750         struct kvm *kvm = mmu_notifier_to_kvm(mn);
751         const struct kvm_hva_range hva_range = {
752                 .start          = range->start,
753                 .end            = range->end,
754                 .pte            = __pte(0),
755                 .handler        = kvm_unmap_gfn_range,
756                 .on_lock        = kvm_mmu_invalidate_begin,
757                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
758                 .flush_on_ret   = true,
759                 .may_block      = mmu_notifier_range_blockable(range),
760         };
761
762         trace_kvm_unmap_hva_range(range->start, range->end);
763
764         /*
765          * Prevent memslot modification between range_start() and range_end()
766          * so that conditionally locking provides the same result in both
767          * functions.  Without that guarantee, the mmu_invalidate_in_progress
768          * adjustments will be imbalanced.
769          *
770          * Pairs with the decrement in range_end().
771          */
772         spin_lock(&kvm->mn_invalidate_lock);
773         kvm->mn_active_invalidate_count++;
774         spin_unlock(&kvm->mn_invalidate_lock);
775
776         /*
777          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
778          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
779          * each cache's lock.  There are relatively few caches in existence at
780          * any given time, and the caches themselves can check for hva overlap,
781          * i.e. don't need to rely on memslot overlap checks for performance.
782          * Because this runs without holding mmu_lock, the pfn caches must use
783          * mn_active_invalidate_count (see above) instead of
784          * mmu_invalidate_in_progress.
785          */
786         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
787                                           hva_range.may_block);
788
789         __kvm_handle_hva_range(kvm, &hva_range);
790
791         return 0;
792 }
793
794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
795                             unsigned long end)
796 {
797         /*
798          * This sequence increase will notify the kvm page fault that
799          * the page that is going to be mapped in the spte could have
800          * been freed.
801          */
802         kvm->mmu_invalidate_seq++;
803         smp_wmb();
804         /*
805          * The above sequence increase must be visible before the
806          * below count decrease, which is ensured by the smp_wmb above
807          * in conjunction with the smp_rmb in mmu_invalidate_retry().
808          */
809         kvm->mmu_invalidate_in_progress--;
810 }
811
812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
813                                         const struct mmu_notifier_range *range)
814 {
815         struct kvm *kvm = mmu_notifier_to_kvm(mn);
816         const struct kvm_hva_range hva_range = {
817                 .start          = range->start,
818                 .end            = range->end,
819                 .pte            = __pte(0),
820                 .handler        = (void *)kvm_null_fn,
821                 .on_lock        = kvm_mmu_invalidate_end,
822                 .on_unlock      = (void *)kvm_null_fn,
823                 .flush_on_ret   = false,
824                 .may_block      = mmu_notifier_range_blockable(range),
825         };
826         bool wake;
827
828         __kvm_handle_hva_range(kvm, &hva_range);
829
830         /* Pairs with the increment in range_start(). */
831         spin_lock(&kvm->mn_invalidate_lock);
832         wake = (--kvm->mn_active_invalidate_count == 0);
833         spin_unlock(&kvm->mn_invalidate_lock);
834
835         /*
836          * There can only be one waiter, since the wait happens under
837          * slots_lock.
838          */
839         if (wake)
840                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
841
842         BUG_ON(kvm->mmu_invalidate_in_progress < 0);
843 }
844
845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
846                                               struct mm_struct *mm,
847                                               unsigned long start,
848                                               unsigned long end)
849 {
850         trace_kvm_age_hva(start, end);
851
852         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
853 }
854
855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
856                                         struct mm_struct *mm,
857                                         unsigned long start,
858                                         unsigned long end)
859 {
860         trace_kvm_age_hva(start, end);
861
862         /*
863          * Even though we do not flush TLB, this will still adversely
864          * affect performance on pre-Haswell Intel EPT, where there is
865          * no EPT Access Bit to clear so that we have to tear down EPT
866          * tables instead. If we find this unacceptable, we can always
867          * add a parameter to kvm_age_hva so that it effectively doesn't
868          * do anything on clear_young.
869          *
870          * Also note that currently we never issue secondary TLB flushes
871          * from clear_young, leaving this job up to the regular system
872          * cadence. If we find this inaccurate, we might come up with a
873          * more sophisticated heuristic later.
874          */
875         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
876 }
877
878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
879                                        struct mm_struct *mm,
880                                        unsigned long address)
881 {
882         trace_kvm_test_age_hva(address);
883
884         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
885                                              kvm_test_age_gfn);
886 }
887
888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
889                                      struct mm_struct *mm)
890 {
891         struct kvm *kvm = mmu_notifier_to_kvm(mn);
892         int idx;
893
894         idx = srcu_read_lock(&kvm->srcu);
895         kvm_flush_shadow_all(kvm);
896         srcu_read_unlock(&kvm->srcu, idx);
897 }
898
899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
900         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
901         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
902         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
903         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
904         .clear_young            = kvm_mmu_notifier_clear_young,
905         .test_young             = kvm_mmu_notifier_test_young,
906         .change_pte             = kvm_mmu_notifier_change_pte,
907         .release                = kvm_mmu_notifier_release,
908 };
909
910 static int kvm_init_mmu_notifier(struct kvm *kvm)
911 {
912         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
913         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
914 }
915
916 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
917
918 static int kvm_init_mmu_notifier(struct kvm *kvm)
919 {
920         return 0;
921 }
922
923 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
924
925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
926 static int kvm_pm_notifier_call(struct notifier_block *bl,
927                                 unsigned long state,
928                                 void *unused)
929 {
930         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
931
932         return kvm_arch_pm_notifier(kvm, state);
933 }
934
935 static void kvm_init_pm_notifier(struct kvm *kvm)
936 {
937         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
938         /* Suspend KVM before we suspend ftrace, RCU, etc. */
939         kvm->pm_notifier.priority = INT_MAX;
940         register_pm_notifier(&kvm->pm_notifier);
941 }
942
943 static void kvm_destroy_pm_notifier(struct kvm *kvm)
944 {
945         unregister_pm_notifier(&kvm->pm_notifier);
946 }
947 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950 }
951
952 static void kvm_destroy_pm_notifier(struct kvm *kvm)
953 {
954 }
955 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
956
957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
958 {
959         if (!memslot->dirty_bitmap)
960                 return;
961
962         kvfree(memslot->dirty_bitmap);
963         memslot->dirty_bitmap = NULL;
964 }
965
966 /* This does not remove the slot from struct kvm_memslots data structures */
967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
968 {
969         kvm_destroy_dirty_bitmap(slot);
970
971         kvm_arch_free_memslot(kvm, slot);
972
973         kfree(slot);
974 }
975
976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
977 {
978         struct hlist_node *idnode;
979         struct kvm_memory_slot *memslot;
980         int bkt;
981
982         /*
983          * The same memslot objects live in both active and inactive sets,
984          * arbitrarily free using index '1' so the second invocation of this
985          * function isn't operating over a structure with dangling pointers
986          * (even though this function isn't actually touching them).
987          */
988         if (!slots->node_idx)
989                 return;
990
991         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
992                 kvm_free_memslot(kvm, memslot);
993 }
994
995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
996 {
997         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
998         case KVM_STATS_TYPE_INSTANT:
999                 return 0444;
1000         case KVM_STATS_TYPE_CUMULATIVE:
1001         case KVM_STATS_TYPE_PEAK:
1002         default:
1003                 return 0644;
1004         }
1005 }
1006
1007
1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1009 {
1010         int i;
1011         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1012                                       kvm_vcpu_stats_header.num_desc;
1013
1014         if (IS_ERR(kvm->debugfs_dentry))
1015                 return;
1016
1017         debugfs_remove_recursive(kvm->debugfs_dentry);
1018
1019         if (kvm->debugfs_stat_data) {
1020                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1021                         kfree(kvm->debugfs_stat_data[i]);
1022                 kfree(kvm->debugfs_stat_data);
1023         }
1024 }
1025
1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1027 {
1028         static DEFINE_MUTEX(kvm_debugfs_lock);
1029         struct dentry *dent;
1030         char dir_name[ITOA_MAX_LEN * 2];
1031         struct kvm_stat_data *stat_data;
1032         const struct _kvm_stats_desc *pdesc;
1033         int i, ret = -ENOMEM;
1034         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1035                                       kvm_vcpu_stats_header.num_desc;
1036
1037         if (!debugfs_initialized())
1038                 return 0;
1039
1040         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1041         mutex_lock(&kvm_debugfs_lock);
1042         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1043         if (dent) {
1044                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1045                 dput(dent);
1046                 mutex_unlock(&kvm_debugfs_lock);
1047                 return 0;
1048         }
1049         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1050         mutex_unlock(&kvm_debugfs_lock);
1051         if (IS_ERR(dent))
1052                 return 0;
1053
1054         kvm->debugfs_dentry = dent;
1055         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1056                                          sizeof(*kvm->debugfs_stat_data),
1057                                          GFP_KERNEL_ACCOUNT);
1058         if (!kvm->debugfs_stat_data)
1059                 goto out_err;
1060
1061         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1062                 pdesc = &kvm_vm_stats_desc[i];
1063                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1064                 if (!stat_data)
1065                         goto out_err;
1066
1067                 stat_data->kvm = kvm;
1068                 stat_data->desc = pdesc;
1069                 stat_data->kind = KVM_STAT_VM;
1070                 kvm->debugfs_stat_data[i] = stat_data;
1071                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1072                                     kvm->debugfs_dentry, stat_data,
1073                                     &stat_fops_per_vm);
1074         }
1075
1076         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1077                 pdesc = &kvm_vcpu_stats_desc[i];
1078                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1079                 if (!stat_data)
1080                         goto out_err;
1081
1082                 stat_data->kvm = kvm;
1083                 stat_data->desc = pdesc;
1084                 stat_data->kind = KVM_STAT_VCPU;
1085                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1086                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1087                                     kvm->debugfs_dentry, stat_data,
1088                                     &stat_fops_per_vm);
1089         }
1090
1091         ret = kvm_arch_create_vm_debugfs(kvm);
1092         if (ret)
1093                 goto out_err;
1094
1095         return 0;
1096 out_err:
1097         kvm_destroy_vm_debugfs(kvm);
1098         return ret;
1099 }
1100
1101 /*
1102  * Called after the VM is otherwise initialized, but just before adding it to
1103  * the vm_list.
1104  */
1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106 {
1107         return 0;
1108 }
1109
1110 /*
1111  * Called just after removing the VM from the vm_list, but before doing any
1112  * other destruction.
1113  */
1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1115 {
1116 }
1117
1118 /*
1119  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1120  * be setup already, so we can create arch-specific debugfs entries under it.
1121  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1122  * a per-arch destroy interface is not needed.
1123  */
1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1125 {
1126         return 0;
1127 }
1128
1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1130 {
1131         struct kvm *kvm = kvm_arch_alloc_vm();
1132         struct kvm_memslots *slots;
1133         int r = -ENOMEM;
1134         int i, j;
1135
1136         if (!kvm)
1137                 return ERR_PTR(-ENOMEM);
1138
1139         /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1140         __module_get(kvm_chardev_ops.owner);
1141
1142         KVM_MMU_LOCK_INIT(kvm);
1143         mmgrab(current->mm);
1144         kvm->mm = current->mm;
1145         kvm_eventfd_init(kvm);
1146         mutex_init(&kvm->lock);
1147         mutex_init(&kvm->irq_lock);
1148         mutex_init(&kvm->slots_lock);
1149         mutex_init(&kvm->slots_arch_lock);
1150         spin_lock_init(&kvm->mn_invalidate_lock);
1151         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1152         xa_init(&kvm->vcpu_array);
1153
1154         INIT_LIST_HEAD(&kvm->gpc_list);
1155         spin_lock_init(&kvm->gpc_lock);
1156
1157         INIT_LIST_HEAD(&kvm->devices);
1158         kvm->max_vcpus = KVM_MAX_VCPUS;
1159
1160         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1161
1162         /*
1163          * Force subsequent debugfs file creations to fail if the VM directory
1164          * is not created (by kvm_create_vm_debugfs()).
1165          */
1166         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1167
1168         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1169                  task_pid_nr(current));
1170
1171         if (init_srcu_struct(&kvm->srcu))
1172                 goto out_err_no_srcu;
1173         if (init_srcu_struct(&kvm->irq_srcu))
1174                 goto out_err_no_irq_srcu;
1175
1176         refcount_set(&kvm->users_count, 1);
1177         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1178                 for (j = 0; j < 2; j++) {
1179                         slots = &kvm->__memslots[i][j];
1180
1181                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1182                         slots->hva_tree = RB_ROOT_CACHED;
1183                         slots->gfn_tree = RB_ROOT;
1184                         hash_init(slots->id_hash);
1185                         slots->node_idx = j;
1186
1187                         /* Generations must be different for each address space. */
1188                         slots->generation = i;
1189                 }
1190
1191                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1192         }
1193
1194         for (i = 0; i < KVM_NR_BUSES; i++) {
1195                 rcu_assign_pointer(kvm->buses[i],
1196                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1197                 if (!kvm->buses[i])
1198                         goto out_err_no_arch_destroy_vm;
1199         }
1200
1201         r = kvm_arch_init_vm(kvm, type);
1202         if (r)
1203                 goto out_err_no_arch_destroy_vm;
1204
1205         r = hardware_enable_all();
1206         if (r)
1207                 goto out_err_no_disable;
1208
1209 #ifdef CONFIG_HAVE_KVM_IRQFD
1210         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1211 #endif
1212
1213         r = kvm_init_mmu_notifier(kvm);
1214         if (r)
1215                 goto out_err_no_mmu_notifier;
1216
1217         r = kvm_coalesced_mmio_init(kvm);
1218         if (r < 0)
1219                 goto out_no_coalesced_mmio;
1220
1221         r = kvm_create_vm_debugfs(kvm, fdname);
1222         if (r)
1223                 goto out_err_no_debugfs;
1224
1225         r = kvm_arch_post_init_vm(kvm);
1226         if (r)
1227                 goto out_err;
1228
1229         mutex_lock(&kvm_lock);
1230         list_add(&kvm->vm_list, &vm_list);
1231         mutex_unlock(&kvm_lock);
1232
1233         preempt_notifier_inc();
1234         kvm_init_pm_notifier(kvm);
1235
1236         return kvm;
1237
1238 out_err:
1239         kvm_destroy_vm_debugfs(kvm);
1240 out_err_no_debugfs:
1241         kvm_coalesced_mmio_free(kvm);
1242 out_no_coalesced_mmio:
1243 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1244         if (kvm->mmu_notifier.ops)
1245                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1246 #endif
1247 out_err_no_mmu_notifier:
1248         hardware_disable_all();
1249 out_err_no_disable:
1250         kvm_arch_destroy_vm(kvm);
1251 out_err_no_arch_destroy_vm:
1252         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1253         for (i = 0; i < KVM_NR_BUSES; i++)
1254                 kfree(kvm_get_bus(kvm, i));
1255         cleanup_srcu_struct(&kvm->irq_srcu);
1256 out_err_no_irq_srcu:
1257         cleanup_srcu_struct(&kvm->srcu);
1258 out_err_no_srcu:
1259         kvm_arch_free_vm(kvm);
1260         mmdrop(current->mm);
1261         module_put(kvm_chardev_ops.owner);
1262         return ERR_PTR(r);
1263 }
1264
1265 static void kvm_destroy_devices(struct kvm *kvm)
1266 {
1267         struct kvm_device *dev, *tmp;
1268
1269         /*
1270          * We do not need to take the kvm->lock here, because nobody else
1271          * has a reference to the struct kvm at this point and therefore
1272          * cannot access the devices list anyhow.
1273          */
1274         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1275                 list_del(&dev->vm_node);
1276                 dev->ops->destroy(dev);
1277         }
1278 }
1279
1280 static void kvm_destroy_vm(struct kvm *kvm)
1281 {
1282         int i;
1283         struct mm_struct *mm = kvm->mm;
1284
1285         kvm_destroy_pm_notifier(kvm);
1286         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1287         kvm_destroy_vm_debugfs(kvm);
1288         kvm_arch_sync_events(kvm);
1289         mutex_lock(&kvm_lock);
1290         list_del(&kvm->vm_list);
1291         mutex_unlock(&kvm_lock);
1292         kvm_arch_pre_destroy_vm(kvm);
1293
1294         kvm_free_irq_routing(kvm);
1295         for (i = 0; i < KVM_NR_BUSES; i++) {
1296                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1297
1298                 if (bus)
1299                         kvm_io_bus_destroy(bus);
1300                 kvm->buses[i] = NULL;
1301         }
1302         kvm_coalesced_mmio_free(kvm);
1303 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1304         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1305         /*
1306          * At this point, pending calls to invalidate_range_start()
1307          * have completed but no more MMU notifiers will run, so
1308          * mn_active_invalidate_count may remain unbalanced.
1309          * No threads can be waiting in install_new_memslots as the
1310          * last reference on KVM has been dropped, but freeing
1311          * memslots would deadlock without this manual intervention.
1312          */
1313         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1314         kvm->mn_active_invalidate_count = 0;
1315 #else
1316         kvm_flush_shadow_all(kvm);
1317 #endif
1318         kvm_arch_destroy_vm(kvm);
1319         kvm_destroy_devices(kvm);
1320         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1321                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1322                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1323         }
1324         cleanup_srcu_struct(&kvm->irq_srcu);
1325         cleanup_srcu_struct(&kvm->srcu);
1326         kvm_arch_free_vm(kvm);
1327         preempt_notifier_dec();
1328         hardware_disable_all();
1329         mmdrop(mm);
1330         module_put(kvm_chardev_ops.owner);
1331 }
1332
1333 void kvm_get_kvm(struct kvm *kvm)
1334 {
1335         refcount_inc(&kvm->users_count);
1336 }
1337 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1338
1339 /*
1340  * Make sure the vm is not during destruction, which is a safe version of
1341  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1342  */
1343 bool kvm_get_kvm_safe(struct kvm *kvm)
1344 {
1345         return refcount_inc_not_zero(&kvm->users_count);
1346 }
1347 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1348
1349 void kvm_put_kvm(struct kvm *kvm)
1350 {
1351         if (refcount_dec_and_test(&kvm->users_count))
1352                 kvm_destroy_vm(kvm);
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1355
1356 /*
1357  * Used to put a reference that was taken on behalf of an object associated
1358  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1359  * of the new file descriptor fails and the reference cannot be transferred to
1360  * its final owner.  In such cases, the caller is still actively using @kvm and
1361  * will fail miserably if the refcount unexpectedly hits zero.
1362  */
1363 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1364 {
1365         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1368
1369 static int kvm_vm_release(struct inode *inode, struct file *filp)
1370 {
1371         struct kvm *kvm = filp->private_data;
1372
1373         kvm_irqfd_release(kvm);
1374
1375         kvm_put_kvm(kvm);
1376         return 0;
1377 }
1378
1379 /*
1380  * Allocation size is twice as large as the actual dirty bitmap size.
1381  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1382  */
1383 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1384 {
1385         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1386
1387         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1388         if (!memslot->dirty_bitmap)
1389                 return -ENOMEM;
1390
1391         return 0;
1392 }
1393
1394 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1395 {
1396         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1397         int node_idx_inactive = active->node_idx ^ 1;
1398
1399         return &kvm->__memslots[as_id][node_idx_inactive];
1400 }
1401
1402 /*
1403  * Helper to get the address space ID when one of memslot pointers may be NULL.
1404  * This also serves as a sanity that at least one of the pointers is non-NULL,
1405  * and that their address space IDs don't diverge.
1406  */
1407 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1408                                   struct kvm_memory_slot *b)
1409 {
1410         if (WARN_ON_ONCE(!a && !b))
1411                 return 0;
1412
1413         if (!a)
1414                 return b->as_id;
1415         if (!b)
1416                 return a->as_id;
1417
1418         WARN_ON_ONCE(a->as_id != b->as_id);
1419         return a->as_id;
1420 }
1421
1422 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1423                                 struct kvm_memory_slot *slot)
1424 {
1425         struct rb_root *gfn_tree = &slots->gfn_tree;
1426         struct rb_node **node, *parent;
1427         int idx = slots->node_idx;
1428
1429         parent = NULL;
1430         for (node = &gfn_tree->rb_node; *node; ) {
1431                 struct kvm_memory_slot *tmp;
1432
1433                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1434                 parent = *node;
1435                 if (slot->base_gfn < tmp->base_gfn)
1436                         node = &(*node)->rb_left;
1437                 else if (slot->base_gfn > tmp->base_gfn)
1438                         node = &(*node)->rb_right;
1439                 else
1440                         BUG();
1441         }
1442
1443         rb_link_node(&slot->gfn_node[idx], parent, node);
1444         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1445 }
1446
1447 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1448                                struct kvm_memory_slot *slot)
1449 {
1450         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1451 }
1452
1453 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1454                                  struct kvm_memory_slot *old,
1455                                  struct kvm_memory_slot *new)
1456 {
1457         int idx = slots->node_idx;
1458
1459         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1460
1461         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1462                         &slots->gfn_tree);
1463 }
1464
1465 /*
1466  * Replace @old with @new in the inactive memslots.
1467  *
1468  * With NULL @old this simply adds @new.
1469  * With NULL @new this simply removes @old.
1470  *
1471  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1472  * appropriately.
1473  */
1474 static void kvm_replace_memslot(struct kvm *kvm,
1475                                 struct kvm_memory_slot *old,
1476                                 struct kvm_memory_slot *new)
1477 {
1478         int as_id = kvm_memslots_get_as_id(old, new);
1479         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1480         int idx = slots->node_idx;
1481
1482         if (old) {
1483                 hash_del(&old->id_node[idx]);
1484                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1485
1486                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1487                         atomic_long_set(&slots->last_used_slot, (long)new);
1488
1489                 if (!new) {
1490                         kvm_erase_gfn_node(slots, old);
1491                         return;
1492                 }
1493         }
1494
1495         /*
1496          * Initialize @new's hva range.  Do this even when replacing an @old
1497          * slot, kvm_copy_memslot() deliberately does not touch node data.
1498          */
1499         new->hva_node[idx].start = new->userspace_addr;
1500         new->hva_node[idx].last = new->userspace_addr +
1501                                   (new->npages << PAGE_SHIFT) - 1;
1502
1503         /*
1504          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1505          * hva_node needs to be swapped with remove+insert even though hva can't
1506          * change when replacing an existing slot.
1507          */
1508         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1509         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1510
1511         /*
1512          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1513          * switch the node in the gfn tree instead of removing the old and
1514          * inserting the new as two separate operations. Replacement is a
1515          * single O(1) operation versus two O(log(n)) operations for
1516          * remove+insert.
1517          */
1518         if (old && old->base_gfn == new->base_gfn) {
1519                 kvm_replace_gfn_node(slots, old, new);
1520         } else {
1521                 if (old)
1522                         kvm_erase_gfn_node(slots, old);
1523                 kvm_insert_gfn_node(slots, new);
1524         }
1525 }
1526
1527 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1528 {
1529         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1530
1531 #ifdef __KVM_HAVE_READONLY_MEM
1532         valid_flags |= KVM_MEM_READONLY;
1533 #endif
1534
1535         if (mem->flags & ~valid_flags)
1536                 return -EINVAL;
1537
1538         return 0;
1539 }
1540
1541 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1542 {
1543         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1544
1545         /* Grab the generation from the activate memslots. */
1546         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1547
1548         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1549         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1550
1551         /*
1552          * Do not store the new memslots while there are invalidations in
1553          * progress, otherwise the locking in invalidate_range_start and
1554          * invalidate_range_end will be unbalanced.
1555          */
1556         spin_lock(&kvm->mn_invalidate_lock);
1557         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1558         while (kvm->mn_active_invalidate_count) {
1559                 set_current_state(TASK_UNINTERRUPTIBLE);
1560                 spin_unlock(&kvm->mn_invalidate_lock);
1561                 schedule();
1562                 spin_lock(&kvm->mn_invalidate_lock);
1563         }
1564         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1565         rcu_assign_pointer(kvm->memslots[as_id], slots);
1566         spin_unlock(&kvm->mn_invalidate_lock);
1567
1568         /*
1569          * Acquired in kvm_set_memslot. Must be released before synchronize
1570          * SRCU below in order to avoid deadlock with another thread
1571          * acquiring the slots_arch_lock in an srcu critical section.
1572          */
1573         mutex_unlock(&kvm->slots_arch_lock);
1574
1575         synchronize_srcu_expedited(&kvm->srcu);
1576
1577         /*
1578          * Increment the new memslot generation a second time, dropping the
1579          * update in-progress flag and incrementing the generation based on
1580          * the number of address spaces.  This provides a unique and easily
1581          * identifiable generation number while the memslots are in flux.
1582          */
1583         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1584
1585         /*
1586          * Generations must be unique even across address spaces.  We do not need
1587          * a global counter for that, instead the generation space is evenly split
1588          * across address spaces.  For example, with two address spaces, address
1589          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1590          * use generations 1, 3, 5, ...
1591          */
1592         gen += KVM_ADDRESS_SPACE_NUM;
1593
1594         kvm_arch_memslots_updated(kvm, gen);
1595
1596         slots->generation = gen;
1597 }
1598
1599 static int kvm_prepare_memory_region(struct kvm *kvm,
1600                                      const struct kvm_memory_slot *old,
1601                                      struct kvm_memory_slot *new,
1602                                      enum kvm_mr_change change)
1603 {
1604         int r;
1605
1606         /*
1607          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1608          * will be freed on "commit".  If logging is enabled in both old and
1609          * new, reuse the existing bitmap.  If logging is enabled only in the
1610          * new and KVM isn't using a ring buffer, allocate and initialize a
1611          * new bitmap.
1612          */
1613         if (change != KVM_MR_DELETE) {
1614                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1615                         new->dirty_bitmap = NULL;
1616                 else if (old && old->dirty_bitmap)
1617                         new->dirty_bitmap = old->dirty_bitmap;
1618                 else if (!kvm->dirty_ring_size) {
1619                         r = kvm_alloc_dirty_bitmap(new);
1620                         if (r)
1621                                 return r;
1622
1623                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1624                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1625                 }
1626         }
1627
1628         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1629
1630         /* Free the bitmap on failure if it was allocated above. */
1631         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1632                 kvm_destroy_dirty_bitmap(new);
1633
1634         return r;
1635 }
1636
1637 static void kvm_commit_memory_region(struct kvm *kvm,
1638                                      struct kvm_memory_slot *old,
1639                                      const struct kvm_memory_slot *new,
1640                                      enum kvm_mr_change change)
1641 {
1642         /*
1643          * Update the total number of memslot pages before calling the arch
1644          * hook so that architectures can consume the result directly.
1645          */
1646         if (change == KVM_MR_DELETE)
1647                 kvm->nr_memslot_pages -= old->npages;
1648         else if (change == KVM_MR_CREATE)
1649                 kvm->nr_memslot_pages += new->npages;
1650
1651         kvm_arch_commit_memory_region(kvm, old, new, change);
1652
1653         switch (change) {
1654         case KVM_MR_CREATE:
1655                 /* Nothing more to do. */
1656                 break;
1657         case KVM_MR_DELETE:
1658                 /* Free the old memslot and all its metadata. */
1659                 kvm_free_memslot(kvm, old);
1660                 break;
1661         case KVM_MR_MOVE:
1662         case KVM_MR_FLAGS_ONLY:
1663                 /*
1664                  * Free the dirty bitmap as needed; the below check encompasses
1665                  * both the flags and whether a ring buffer is being used)
1666                  */
1667                 if (old->dirty_bitmap && !new->dirty_bitmap)
1668                         kvm_destroy_dirty_bitmap(old);
1669
1670                 /*
1671                  * The final quirk.  Free the detached, old slot, but only its
1672                  * memory, not any metadata.  Metadata, including arch specific
1673                  * data, may be reused by @new.
1674                  */
1675                 kfree(old);
1676                 break;
1677         default:
1678                 BUG();
1679         }
1680 }
1681
1682 /*
1683  * Activate @new, which must be installed in the inactive slots by the caller,
1684  * by swapping the active slots and then propagating @new to @old once @old is
1685  * unreachable and can be safely modified.
1686  *
1687  * With NULL @old this simply adds @new to @active (while swapping the sets).
1688  * With NULL @new this simply removes @old from @active and frees it
1689  * (while also swapping the sets).
1690  */
1691 static void kvm_activate_memslot(struct kvm *kvm,
1692                                  struct kvm_memory_slot *old,
1693                                  struct kvm_memory_slot *new)
1694 {
1695         int as_id = kvm_memslots_get_as_id(old, new);
1696
1697         kvm_swap_active_memslots(kvm, as_id);
1698
1699         /* Propagate the new memslot to the now inactive memslots. */
1700         kvm_replace_memslot(kvm, old, new);
1701 }
1702
1703 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1704                              const struct kvm_memory_slot *src)
1705 {
1706         dest->base_gfn = src->base_gfn;
1707         dest->npages = src->npages;
1708         dest->dirty_bitmap = src->dirty_bitmap;
1709         dest->arch = src->arch;
1710         dest->userspace_addr = src->userspace_addr;
1711         dest->flags = src->flags;
1712         dest->id = src->id;
1713         dest->as_id = src->as_id;
1714 }
1715
1716 static void kvm_invalidate_memslot(struct kvm *kvm,
1717                                    struct kvm_memory_slot *old,
1718                                    struct kvm_memory_slot *invalid_slot)
1719 {
1720         /*
1721          * Mark the current slot INVALID.  As with all memslot modifications,
1722          * this must be done on an unreachable slot to avoid modifying the
1723          * current slot in the active tree.
1724          */
1725         kvm_copy_memslot(invalid_slot, old);
1726         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1727         kvm_replace_memslot(kvm, old, invalid_slot);
1728
1729         /*
1730          * Activate the slot that is now marked INVALID, but don't propagate
1731          * the slot to the now inactive slots. The slot is either going to be
1732          * deleted or recreated as a new slot.
1733          */
1734         kvm_swap_active_memslots(kvm, old->as_id);
1735
1736         /*
1737          * From this point no new shadow pages pointing to a deleted, or moved,
1738          * memslot will be created.  Validation of sp->gfn happens in:
1739          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1740          *      - kvm_is_visible_gfn (mmu_check_root)
1741          */
1742         kvm_arch_flush_shadow_memslot(kvm, old);
1743         kvm_arch_guest_memory_reclaimed(kvm);
1744
1745         /* Was released by kvm_swap_active_memslots, reacquire. */
1746         mutex_lock(&kvm->slots_arch_lock);
1747
1748         /*
1749          * Copy the arch-specific field of the newly-installed slot back to the
1750          * old slot as the arch data could have changed between releasing
1751          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1752          * above.  Writers are required to retrieve memslots *after* acquiring
1753          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1754          */
1755         old->arch = invalid_slot->arch;
1756 }
1757
1758 static void kvm_create_memslot(struct kvm *kvm,
1759                                struct kvm_memory_slot *new)
1760 {
1761         /* Add the new memslot to the inactive set and activate. */
1762         kvm_replace_memslot(kvm, NULL, new);
1763         kvm_activate_memslot(kvm, NULL, new);
1764 }
1765
1766 static void kvm_delete_memslot(struct kvm *kvm,
1767                                struct kvm_memory_slot *old,
1768                                struct kvm_memory_slot *invalid_slot)
1769 {
1770         /*
1771          * Remove the old memslot (in the inactive memslots) by passing NULL as
1772          * the "new" slot, and for the invalid version in the active slots.
1773          */
1774         kvm_replace_memslot(kvm, old, NULL);
1775         kvm_activate_memslot(kvm, invalid_slot, NULL);
1776 }
1777
1778 static void kvm_move_memslot(struct kvm *kvm,
1779                              struct kvm_memory_slot *old,
1780                              struct kvm_memory_slot *new,
1781                              struct kvm_memory_slot *invalid_slot)
1782 {
1783         /*
1784          * Replace the old memslot in the inactive slots, and then swap slots
1785          * and replace the current INVALID with the new as well.
1786          */
1787         kvm_replace_memslot(kvm, old, new);
1788         kvm_activate_memslot(kvm, invalid_slot, new);
1789 }
1790
1791 static void kvm_update_flags_memslot(struct kvm *kvm,
1792                                      struct kvm_memory_slot *old,
1793                                      struct kvm_memory_slot *new)
1794 {
1795         /*
1796          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1797          * an intermediate step. Instead, the old memslot is simply replaced
1798          * with a new, updated copy in both memslot sets.
1799          */
1800         kvm_replace_memslot(kvm, old, new);
1801         kvm_activate_memslot(kvm, old, new);
1802 }
1803
1804 static int kvm_set_memslot(struct kvm *kvm,
1805                            struct kvm_memory_slot *old,
1806                            struct kvm_memory_slot *new,
1807                            enum kvm_mr_change change)
1808 {
1809         struct kvm_memory_slot *invalid_slot;
1810         int r;
1811
1812         /*
1813          * Released in kvm_swap_active_memslots.
1814          *
1815          * Must be held from before the current memslots are copied until
1816          * after the new memslots are installed with rcu_assign_pointer,
1817          * then released before the synchronize srcu in kvm_swap_active_memslots.
1818          *
1819          * When modifying memslots outside of the slots_lock, must be held
1820          * before reading the pointer to the current memslots until after all
1821          * changes to those memslots are complete.
1822          *
1823          * These rules ensure that installing new memslots does not lose
1824          * changes made to the previous memslots.
1825          */
1826         mutex_lock(&kvm->slots_arch_lock);
1827
1828         /*
1829          * Invalidate the old slot if it's being deleted or moved.  This is
1830          * done prior to actually deleting/moving the memslot to allow vCPUs to
1831          * continue running by ensuring there are no mappings or shadow pages
1832          * for the memslot when it is deleted/moved.  Without pre-invalidation
1833          * (and without a lock), a window would exist between effecting the
1834          * delete/move and committing the changes in arch code where KVM or a
1835          * guest could access a non-existent memslot.
1836          *
1837          * Modifications are done on a temporary, unreachable slot.  The old
1838          * slot needs to be preserved in case a later step fails and the
1839          * invalidation needs to be reverted.
1840          */
1841         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1842                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1843                 if (!invalid_slot) {
1844                         mutex_unlock(&kvm->slots_arch_lock);
1845                         return -ENOMEM;
1846                 }
1847                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1848         }
1849
1850         r = kvm_prepare_memory_region(kvm, old, new, change);
1851         if (r) {
1852                 /*
1853                  * For DELETE/MOVE, revert the above INVALID change.  No
1854                  * modifications required since the original slot was preserved
1855                  * in the inactive slots.  Changing the active memslots also
1856                  * release slots_arch_lock.
1857                  */
1858                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859                         kvm_activate_memslot(kvm, invalid_slot, old);
1860                         kfree(invalid_slot);
1861                 } else {
1862                         mutex_unlock(&kvm->slots_arch_lock);
1863                 }
1864                 return r;
1865         }
1866
1867         /*
1868          * For DELETE and MOVE, the working slot is now active as the INVALID
1869          * version of the old slot.  MOVE is particularly special as it reuses
1870          * the old slot and returns a copy of the old slot (in working_slot).
1871          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1872          * old slot is detached but otherwise preserved.
1873          */
1874         if (change == KVM_MR_CREATE)
1875                 kvm_create_memslot(kvm, new);
1876         else if (change == KVM_MR_DELETE)
1877                 kvm_delete_memslot(kvm, old, invalid_slot);
1878         else if (change == KVM_MR_MOVE)
1879                 kvm_move_memslot(kvm, old, new, invalid_slot);
1880         else if (change == KVM_MR_FLAGS_ONLY)
1881                 kvm_update_flags_memslot(kvm, old, new);
1882         else
1883                 BUG();
1884
1885         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1886         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1887                 kfree(invalid_slot);
1888
1889         /*
1890          * No need to refresh new->arch, changes after dropping slots_arch_lock
1891          * will directly hit the final, active memslot.  Architectures are
1892          * responsible for knowing that new->arch may be stale.
1893          */
1894         kvm_commit_memory_region(kvm, old, new, change);
1895
1896         return 0;
1897 }
1898
1899 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1900                                       gfn_t start, gfn_t end)
1901 {
1902         struct kvm_memslot_iter iter;
1903
1904         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1905                 if (iter.slot->id != id)
1906                         return true;
1907         }
1908
1909         return false;
1910 }
1911
1912 /*
1913  * Allocate some memory and give it an address in the guest physical address
1914  * space.
1915  *
1916  * Discontiguous memory is allowed, mostly for framebuffers.
1917  *
1918  * Must be called holding kvm->slots_lock for write.
1919  */
1920 int __kvm_set_memory_region(struct kvm *kvm,
1921                             const struct kvm_userspace_memory_region *mem)
1922 {
1923         struct kvm_memory_slot *old, *new;
1924         struct kvm_memslots *slots;
1925         enum kvm_mr_change change;
1926         unsigned long npages;
1927         gfn_t base_gfn;
1928         int as_id, id;
1929         int r;
1930
1931         r = check_memory_region_flags(mem);
1932         if (r)
1933                 return r;
1934
1935         as_id = mem->slot >> 16;
1936         id = (u16)mem->slot;
1937
1938         /* General sanity checks */
1939         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1940             (mem->memory_size != (unsigned long)mem->memory_size))
1941                 return -EINVAL;
1942         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1943                 return -EINVAL;
1944         /* We can read the guest memory with __xxx_user() later on. */
1945         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1946             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1947              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1948                         mem->memory_size))
1949                 return -EINVAL;
1950         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1951                 return -EINVAL;
1952         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1953                 return -EINVAL;
1954         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1955                 return -EINVAL;
1956
1957         slots = __kvm_memslots(kvm, as_id);
1958
1959         /*
1960          * Note, the old memslot (and the pointer itself!) may be invalidated
1961          * and/or destroyed by kvm_set_memslot().
1962          */
1963         old = id_to_memslot(slots, id);
1964
1965         if (!mem->memory_size) {
1966                 if (!old || !old->npages)
1967                         return -EINVAL;
1968
1969                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1970                         return -EIO;
1971
1972                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1973         }
1974
1975         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1976         npages = (mem->memory_size >> PAGE_SHIFT);
1977
1978         if (!old || !old->npages) {
1979                 change = KVM_MR_CREATE;
1980
1981                 /*
1982                  * To simplify KVM internals, the total number of pages across
1983                  * all memslots must fit in an unsigned long.
1984                  */
1985                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1986                         return -EINVAL;
1987         } else { /* Modify an existing slot. */
1988                 if ((mem->userspace_addr != old->userspace_addr) ||
1989                     (npages != old->npages) ||
1990                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1991                         return -EINVAL;
1992
1993                 if (base_gfn != old->base_gfn)
1994                         change = KVM_MR_MOVE;
1995                 else if (mem->flags != old->flags)
1996                         change = KVM_MR_FLAGS_ONLY;
1997                 else /* Nothing to change. */
1998                         return 0;
1999         }
2000
2001         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2002             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2003                 return -EEXIST;
2004
2005         /* Allocate a slot that will persist in the memslot. */
2006         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2007         if (!new)
2008                 return -ENOMEM;
2009
2010         new->as_id = as_id;
2011         new->id = id;
2012         new->base_gfn = base_gfn;
2013         new->npages = npages;
2014         new->flags = mem->flags;
2015         new->userspace_addr = mem->userspace_addr;
2016
2017         r = kvm_set_memslot(kvm, old, new, change);
2018         if (r)
2019                 kfree(new);
2020         return r;
2021 }
2022 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2023
2024 int kvm_set_memory_region(struct kvm *kvm,
2025                           const struct kvm_userspace_memory_region *mem)
2026 {
2027         int r;
2028
2029         mutex_lock(&kvm->slots_lock);
2030         r = __kvm_set_memory_region(kvm, mem);
2031         mutex_unlock(&kvm->slots_lock);
2032         return r;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2035
2036 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2037                                           struct kvm_userspace_memory_region *mem)
2038 {
2039         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2040                 return -EINVAL;
2041
2042         return kvm_set_memory_region(kvm, mem);
2043 }
2044
2045 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2046 /**
2047  * kvm_get_dirty_log - get a snapshot of dirty pages
2048  * @kvm:        pointer to kvm instance
2049  * @log:        slot id and address to which we copy the log
2050  * @is_dirty:   set to '1' if any dirty pages were found
2051  * @memslot:    set to the associated memslot, always valid on success
2052  */
2053 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2054                       int *is_dirty, struct kvm_memory_slot **memslot)
2055 {
2056         struct kvm_memslots *slots;
2057         int i, as_id, id;
2058         unsigned long n;
2059         unsigned long any = 0;
2060
2061         /* Dirty ring tracking is exclusive to dirty log tracking */
2062         if (kvm->dirty_ring_size)
2063                 return -ENXIO;
2064
2065         *memslot = NULL;
2066         *is_dirty = 0;
2067
2068         as_id = log->slot >> 16;
2069         id = (u16)log->slot;
2070         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2071                 return -EINVAL;
2072
2073         slots = __kvm_memslots(kvm, as_id);
2074         *memslot = id_to_memslot(slots, id);
2075         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2076                 return -ENOENT;
2077
2078         kvm_arch_sync_dirty_log(kvm, *memslot);
2079
2080         n = kvm_dirty_bitmap_bytes(*memslot);
2081
2082         for (i = 0; !any && i < n/sizeof(long); ++i)
2083                 any = (*memslot)->dirty_bitmap[i];
2084
2085         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2086                 return -EFAULT;
2087
2088         if (any)
2089                 *is_dirty = 1;
2090         return 0;
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2093
2094 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2095 /**
2096  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2097  *      and reenable dirty page tracking for the corresponding pages.
2098  * @kvm:        pointer to kvm instance
2099  * @log:        slot id and address to which we copy the log
2100  *
2101  * We need to keep it in mind that VCPU threads can write to the bitmap
2102  * concurrently. So, to avoid losing track of dirty pages we keep the
2103  * following order:
2104  *
2105  *    1. Take a snapshot of the bit and clear it if needed.
2106  *    2. Write protect the corresponding page.
2107  *    3. Copy the snapshot to the userspace.
2108  *    4. Upon return caller flushes TLB's if needed.
2109  *
2110  * Between 2 and 4, the guest may write to the page using the remaining TLB
2111  * entry.  This is not a problem because the page is reported dirty using
2112  * the snapshot taken before and step 4 ensures that writes done after
2113  * exiting to userspace will be logged for the next call.
2114  *
2115  */
2116 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2117 {
2118         struct kvm_memslots *slots;
2119         struct kvm_memory_slot *memslot;
2120         int i, as_id, id;
2121         unsigned long n;
2122         unsigned long *dirty_bitmap;
2123         unsigned long *dirty_bitmap_buffer;
2124         bool flush;
2125
2126         /* Dirty ring tracking is exclusive to dirty log tracking */
2127         if (kvm->dirty_ring_size)
2128                 return -ENXIO;
2129
2130         as_id = log->slot >> 16;
2131         id = (u16)log->slot;
2132         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2133                 return -EINVAL;
2134
2135         slots = __kvm_memslots(kvm, as_id);
2136         memslot = id_to_memslot(slots, id);
2137         if (!memslot || !memslot->dirty_bitmap)
2138                 return -ENOENT;
2139
2140         dirty_bitmap = memslot->dirty_bitmap;
2141
2142         kvm_arch_sync_dirty_log(kvm, memslot);
2143
2144         n = kvm_dirty_bitmap_bytes(memslot);
2145         flush = false;
2146         if (kvm->manual_dirty_log_protect) {
2147                 /*
2148                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2149                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2150                  * is some code duplication between this function and
2151                  * kvm_get_dirty_log, but hopefully all architecture
2152                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2153                  * can be eliminated.
2154                  */
2155                 dirty_bitmap_buffer = dirty_bitmap;
2156         } else {
2157                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2158                 memset(dirty_bitmap_buffer, 0, n);
2159
2160                 KVM_MMU_LOCK(kvm);
2161                 for (i = 0; i < n / sizeof(long); i++) {
2162                         unsigned long mask;
2163                         gfn_t offset;
2164
2165                         if (!dirty_bitmap[i])
2166                                 continue;
2167
2168                         flush = true;
2169                         mask = xchg(&dirty_bitmap[i], 0);
2170                         dirty_bitmap_buffer[i] = mask;
2171
2172                         offset = i * BITS_PER_LONG;
2173                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2174                                                                 offset, mask);
2175                 }
2176                 KVM_MMU_UNLOCK(kvm);
2177         }
2178
2179         if (flush)
2180                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2181
2182         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2183                 return -EFAULT;
2184         return 0;
2185 }
2186
2187
2188 /**
2189  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2190  * @kvm: kvm instance
2191  * @log: slot id and address to which we copy the log
2192  *
2193  * Steps 1-4 below provide general overview of dirty page logging. See
2194  * kvm_get_dirty_log_protect() function description for additional details.
2195  *
2196  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2197  * always flush the TLB (step 4) even if previous step failed  and the dirty
2198  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2199  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2200  * writes will be marked dirty for next log read.
2201  *
2202  *   1. Take a snapshot of the bit and clear it if needed.
2203  *   2. Write protect the corresponding page.
2204  *   3. Copy the snapshot to the userspace.
2205  *   4. Flush TLB's if needed.
2206  */
2207 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2208                                       struct kvm_dirty_log *log)
2209 {
2210         int r;
2211
2212         mutex_lock(&kvm->slots_lock);
2213
2214         r = kvm_get_dirty_log_protect(kvm, log);
2215
2216         mutex_unlock(&kvm->slots_lock);
2217         return r;
2218 }
2219
2220 /**
2221  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2222  *      and reenable dirty page tracking for the corresponding pages.
2223  * @kvm:        pointer to kvm instance
2224  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2225  */
2226 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2227                                        struct kvm_clear_dirty_log *log)
2228 {
2229         struct kvm_memslots *slots;
2230         struct kvm_memory_slot *memslot;
2231         int as_id, id;
2232         gfn_t offset;
2233         unsigned long i, n;
2234         unsigned long *dirty_bitmap;
2235         unsigned long *dirty_bitmap_buffer;
2236         bool flush;
2237
2238         /* Dirty ring tracking is exclusive to dirty log tracking */
2239         if (kvm->dirty_ring_size)
2240                 return -ENXIO;
2241
2242         as_id = log->slot >> 16;
2243         id = (u16)log->slot;
2244         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2245                 return -EINVAL;
2246
2247         if (log->first_page & 63)
2248                 return -EINVAL;
2249
2250         slots = __kvm_memslots(kvm, as_id);
2251         memslot = id_to_memslot(slots, id);
2252         if (!memslot || !memslot->dirty_bitmap)
2253                 return -ENOENT;
2254
2255         dirty_bitmap = memslot->dirty_bitmap;
2256
2257         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2258
2259         if (log->first_page > memslot->npages ||
2260             log->num_pages > memslot->npages - log->first_page ||
2261             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2262             return -EINVAL;
2263
2264         kvm_arch_sync_dirty_log(kvm, memslot);
2265
2266         flush = false;
2267         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2268         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2269                 return -EFAULT;
2270
2271         KVM_MMU_LOCK(kvm);
2272         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2273                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2274              i++, offset += BITS_PER_LONG) {
2275                 unsigned long mask = *dirty_bitmap_buffer++;
2276                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2277                 if (!mask)
2278                         continue;
2279
2280                 mask &= atomic_long_fetch_andnot(mask, p);
2281
2282                 /*
2283                  * mask contains the bits that really have been cleared.  This
2284                  * never includes any bits beyond the length of the memslot (if
2285                  * the length is not aligned to 64 pages), therefore it is not
2286                  * a problem if userspace sets them in log->dirty_bitmap.
2287                 */
2288                 if (mask) {
2289                         flush = true;
2290                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2291                                                                 offset, mask);
2292                 }
2293         }
2294         KVM_MMU_UNLOCK(kvm);
2295
2296         if (flush)
2297                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2298
2299         return 0;
2300 }
2301
2302 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2303                                         struct kvm_clear_dirty_log *log)
2304 {
2305         int r;
2306
2307         mutex_lock(&kvm->slots_lock);
2308
2309         r = kvm_clear_dirty_log_protect(kvm, log);
2310
2311         mutex_unlock(&kvm->slots_lock);
2312         return r;
2313 }
2314 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2315
2316 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2317 {
2318         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2319 }
2320 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2321
2322 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2323 {
2324         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2325         u64 gen = slots->generation;
2326         struct kvm_memory_slot *slot;
2327
2328         /*
2329          * This also protects against using a memslot from a different address space,
2330          * since different address spaces have different generation numbers.
2331          */
2332         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2333                 vcpu->last_used_slot = NULL;
2334                 vcpu->last_used_slot_gen = gen;
2335         }
2336
2337         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2338         if (slot)
2339                 return slot;
2340
2341         /*
2342          * Fall back to searching all memslots. We purposely use
2343          * search_memslots() instead of __gfn_to_memslot() to avoid
2344          * thrashing the VM-wide last_used_slot in kvm_memslots.
2345          */
2346         slot = search_memslots(slots, gfn, false);
2347         if (slot) {
2348                 vcpu->last_used_slot = slot;
2349                 return slot;
2350         }
2351
2352         return NULL;
2353 }
2354
2355 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2356 {
2357         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2358
2359         return kvm_is_visible_memslot(memslot);
2360 }
2361 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2362
2363 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2364 {
2365         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2366
2367         return kvm_is_visible_memslot(memslot);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2370
2371 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2372 {
2373         struct vm_area_struct *vma;
2374         unsigned long addr, size;
2375
2376         size = PAGE_SIZE;
2377
2378         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2379         if (kvm_is_error_hva(addr))
2380                 return PAGE_SIZE;
2381
2382         mmap_read_lock(current->mm);
2383         vma = find_vma(current->mm, addr);
2384         if (!vma)
2385                 goto out;
2386
2387         size = vma_kernel_pagesize(vma);
2388
2389 out:
2390         mmap_read_unlock(current->mm);
2391
2392         return size;
2393 }
2394
2395 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2396 {
2397         return slot->flags & KVM_MEM_READONLY;
2398 }
2399
2400 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2401                                        gfn_t *nr_pages, bool write)
2402 {
2403         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2404                 return KVM_HVA_ERR_BAD;
2405
2406         if (memslot_is_readonly(slot) && write)
2407                 return KVM_HVA_ERR_RO_BAD;
2408
2409         if (nr_pages)
2410                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2411
2412         return __gfn_to_hva_memslot(slot, gfn);
2413 }
2414
2415 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2416                                      gfn_t *nr_pages)
2417 {
2418         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2419 }
2420
2421 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2422                                         gfn_t gfn)
2423 {
2424         return gfn_to_hva_many(slot, gfn, NULL);
2425 }
2426 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2427
2428 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2429 {
2430         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2431 }
2432 EXPORT_SYMBOL_GPL(gfn_to_hva);
2433
2434 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2435 {
2436         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2439
2440 /*
2441  * Return the hva of a @gfn and the R/W attribute if possible.
2442  *
2443  * @slot: the kvm_memory_slot which contains @gfn
2444  * @gfn: the gfn to be translated
2445  * @writable: used to return the read/write attribute of the @slot if the hva
2446  * is valid and @writable is not NULL
2447  */
2448 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2449                                       gfn_t gfn, bool *writable)
2450 {
2451         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2452
2453         if (!kvm_is_error_hva(hva) && writable)
2454                 *writable = !memslot_is_readonly(slot);
2455
2456         return hva;
2457 }
2458
2459 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2460 {
2461         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2462
2463         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2464 }
2465
2466 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2467 {
2468         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2469
2470         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2471 }
2472
2473 static inline int check_user_page_hwpoison(unsigned long addr)
2474 {
2475         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2476
2477         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2478         return rc == -EHWPOISON;
2479 }
2480
2481 /*
2482  * The fast path to get the writable pfn which will be stored in @pfn,
2483  * true indicates success, otherwise false is returned.  It's also the
2484  * only part that runs if we can in atomic context.
2485  */
2486 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2487                             bool *writable, kvm_pfn_t *pfn)
2488 {
2489         struct page *page[1];
2490
2491         /*
2492          * Fast pin a writable pfn only if it is a write fault request
2493          * or the caller allows to map a writable pfn for a read fault
2494          * request.
2495          */
2496         if (!(write_fault || writable))
2497                 return false;
2498
2499         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2500                 *pfn = page_to_pfn(page[0]);
2501
2502                 if (writable)
2503                         *writable = true;
2504                 return true;
2505         }
2506
2507         return false;
2508 }
2509
2510 /*
2511  * The slow path to get the pfn of the specified host virtual address,
2512  * 1 indicates success, -errno is returned if error is detected.
2513  */
2514 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2515                            bool *writable, kvm_pfn_t *pfn)
2516 {
2517         unsigned int flags = FOLL_HWPOISON;
2518         struct page *page;
2519         int npages;
2520
2521         might_sleep();
2522
2523         if (writable)
2524                 *writable = write_fault;
2525
2526         if (write_fault)
2527                 flags |= FOLL_WRITE;
2528         if (async)
2529                 flags |= FOLL_NOWAIT;
2530
2531         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2532         if (npages != 1)
2533                 return npages;
2534
2535         /* map read fault as writable if possible */
2536         if (unlikely(!write_fault) && writable) {
2537                 struct page *wpage;
2538
2539                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2540                         *writable = true;
2541                         put_page(page);
2542                         page = wpage;
2543                 }
2544         }
2545         *pfn = page_to_pfn(page);
2546         return npages;
2547 }
2548
2549 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2550 {
2551         if (unlikely(!(vma->vm_flags & VM_READ)))
2552                 return false;
2553
2554         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2555                 return false;
2556
2557         return true;
2558 }
2559
2560 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2561 {
2562         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2563
2564         if (!page)
2565                 return 1;
2566
2567         return get_page_unless_zero(page);
2568 }
2569
2570 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2571                                unsigned long addr, bool write_fault,
2572                                bool *writable, kvm_pfn_t *p_pfn)
2573 {
2574         kvm_pfn_t pfn;
2575         pte_t *ptep;
2576         spinlock_t *ptl;
2577         int r;
2578
2579         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2580         if (r) {
2581                 /*
2582                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2583                  * not call the fault handler, so do it here.
2584                  */
2585                 bool unlocked = false;
2586                 r = fixup_user_fault(current->mm, addr,
2587                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2588                                      &unlocked);
2589                 if (unlocked)
2590                         return -EAGAIN;
2591                 if (r)
2592                         return r;
2593
2594                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2595                 if (r)
2596                         return r;
2597         }
2598
2599         if (write_fault && !pte_write(*ptep)) {
2600                 pfn = KVM_PFN_ERR_RO_FAULT;
2601                 goto out;
2602         }
2603
2604         if (writable)
2605                 *writable = pte_write(*ptep);
2606         pfn = pte_pfn(*ptep);
2607
2608         /*
2609          * Get a reference here because callers of *hva_to_pfn* and
2610          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2611          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2612          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2613          * simply do nothing for reserved pfns.
2614          *
2615          * Whoever called remap_pfn_range is also going to call e.g.
2616          * unmap_mapping_range before the underlying pages are freed,
2617          * causing a call to our MMU notifier.
2618          *
2619          * Certain IO or PFNMAP mappings can be backed with valid
2620          * struct pages, but be allocated without refcounting e.g.,
2621          * tail pages of non-compound higher order allocations, which
2622          * would then underflow the refcount when the caller does the
2623          * required put_page. Don't allow those pages here.
2624          */ 
2625         if (!kvm_try_get_pfn(pfn))
2626                 r = -EFAULT;
2627
2628 out:
2629         pte_unmap_unlock(ptep, ptl);
2630         *p_pfn = pfn;
2631
2632         return r;
2633 }
2634
2635 /*
2636  * Pin guest page in memory and return its pfn.
2637  * @addr: host virtual address which maps memory to the guest
2638  * @atomic: whether this function can sleep
2639  * @async: whether this function need to wait IO complete if the
2640  *         host page is not in the memory
2641  * @write_fault: whether we should get a writable host page
2642  * @writable: whether it allows to map a writable host page for !@write_fault
2643  *
2644  * The function will map a writable host page for these two cases:
2645  * 1): @write_fault = true
2646  * 2): @write_fault = false && @writable, @writable will tell the caller
2647  *     whether the mapping is writable.
2648  */
2649 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2650                      bool write_fault, bool *writable)
2651 {
2652         struct vm_area_struct *vma;
2653         kvm_pfn_t pfn;
2654         int npages, r;
2655
2656         /* we can do it either atomically or asynchronously, not both */
2657         BUG_ON(atomic && async);
2658
2659         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2660                 return pfn;
2661
2662         if (atomic)
2663                 return KVM_PFN_ERR_FAULT;
2664
2665         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2666         if (npages == 1)
2667                 return pfn;
2668
2669         mmap_read_lock(current->mm);
2670         if (npages == -EHWPOISON ||
2671               (!async && check_user_page_hwpoison(addr))) {
2672                 pfn = KVM_PFN_ERR_HWPOISON;
2673                 goto exit;
2674         }
2675
2676 retry:
2677         vma = vma_lookup(current->mm, addr);
2678
2679         if (vma == NULL)
2680                 pfn = KVM_PFN_ERR_FAULT;
2681         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2682                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2683                 if (r == -EAGAIN)
2684                         goto retry;
2685                 if (r < 0)
2686                         pfn = KVM_PFN_ERR_FAULT;
2687         } else {
2688                 if (async && vma_is_valid(vma, write_fault))
2689                         *async = true;
2690                 pfn = KVM_PFN_ERR_FAULT;
2691         }
2692 exit:
2693         mmap_read_unlock(current->mm);
2694         return pfn;
2695 }
2696
2697 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2698                                bool atomic, bool *async, bool write_fault,
2699                                bool *writable, hva_t *hva)
2700 {
2701         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2702
2703         if (hva)
2704                 *hva = addr;
2705
2706         if (addr == KVM_HVA_ERR_RO_BAD) {
2707                 if (writable)
2708                         *writable = false;
2709                 return KVM_PFN_ERR_RO_FAULT;
2710         }
2711
2712         if (kvm_is_error_hva(addr)) {
2713                 if (writable)
2714                         *writable = false;
2715                 return KVM_PFN_NOSLOT;
2716         }
2717
2718         /* Do not map writable pfn in the readonly memslot. */
2719         if (writable && memslot_is_readonly(slot)) {
2720                 *writable = false;
2721                 writable = NULL;
2722         }
2723
2724         return hva_to_pfn(addr, atomic, async, write_fault,
2725                           writable);
2726 }
2727 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2728
2729 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2730                       bool *writable)
2731 {
2732         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2733                                     write_fault, writable, NULL);
2734 }
2735 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2736
2737 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2738 {
2739         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2740 }
2741 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2742
2743 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2744 {
2745         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2746 }
2747 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2748
2749 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2750 {
2751         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2754
2755 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2756 {
2757         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2758 }
2759 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2760
2761 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2762 {
2763         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2764 }
2765 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2766
2767 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2768                             struct page **pages, int nr_pages)
2769 {
2770         unsigned long addr;
2771         gfn_t entry = 0;
2772
2773         addr = gfn_to_hva_many(slot, gfn, &entry);
2774         if (kvm_is_error_hva(addr))
2775                 return -1;
2776
2777         if (entry < nr_pages)
2778                 return 0;
2779
2780         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2781 }
2782 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2783
2784 /*
2785  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2786  * backed by 'struct page'.  A valid example is if the backing memslot is
2787  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2788  * been elevated by gfn_to_pfn().
2789  */
2790 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2791 {
2792         struct page *page;
2793         kvm_pfn_t pfn;
2794
2795         pfn = gfn_to_pfn(kvm, gfn);
2796
2797         if (is_error_noslot_pfn(pfn))
2798                 return KVM_ERR_PTR_BAD_PAGE;
2799
2800         page = kvm_pfn_to_refcounted_page(pfn);
2801         if (!page)
2802                 return KVM_ERR_PTR_BAD_PAGE;
2803
2804         return page;
2805 }
2806 EXPORT_SYMBOL_GPL(gfn_to_page);
2807
2808 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2809 {
2810         if (dirty)
2811                 kvm_release_pfn_dirty(pfn);
2812         else
2813                 kvm_release_pfn_clean(pfn);
2814 }
2815
2816 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2817 {
2818         kvm_pfn_t pfn;
2819         void *hva = NULL;
2820         struct page *page = KVM_UNMAPPED_PAGE;
2821
2822         if (!map)
2823                 return -EINVAL;
2824
2825         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2826         if (is_error_noslot_pfn(pfn))
2827                 return -EINVAL;
2828
2829         if (pfn_valid(pfn)) {
2830                 page = pfn_to_page(pfn);
2831                 hva = kmap(page);
2832 #ifdef CONFIG_HAS_IOMEM
2833         } else {
2834                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2835 #endif
2836         }
2837
2838         if (!hva)
2839                 return -EFAULT;
2840
2841         map->page = page;
2842         map->hva = hva;
2843         map->pfn = pfn;
2844         map->gfn = gfn;
2845
2846         return 0;
2847 }
2848 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2849
2850 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2851 {
2852         if (!map)
2853                 return;
2854
2855         if (!map->hva)
2856                 return;
2857
2858         if (map->page != KVM_UNMAPPED_PAGE)
2859                 kunmap(map->page);
2860 #ifdef CONFIG_HAS_IOMEM
2861         else
2862                 memunmap(map->hva);
2863 #endif
2864
2865         if (dirty)
2866                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2867
2868         kvm_release_pfn(map->pfn, dirty);
2869
2870         map->hva = NULL;
2871         map->page = NULL;
2872 }
2873 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2874
2875 static bool kvm_is_ad_tracked_page(struct page *page)
2876 {
2877         /*
2878          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2879          * touched (e.g. set dirty) except by its owner".
2880          */
2881         return !PageReserved(page);
2882 }
2883
2884 static void kvm_set_page_dirty(struct page *page)
2885 {
2886         if (kvm_is_ad_tracked_page(page))
2887                 SetPageDirty(page);
2888 }
2889
2890 static void kvm_set_page_accessed(struct page *page)
2891 {
2892         if (kvm_is_ad_tracked_page(page))
2893                 mark_page_accessed(page);
2894 }
2895
2896 void kvm_release_page_clean(struct page *page)
2897 {
2898         WARN_ON(is_error_page(page));
2899
2900         kvm_set_page_accessed(page);
2901         put_page(page);
2902 }
2903 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2904
2905 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2906 {
2907         struct page *page;
2908
2909         if (is_error_noslot_pfn(pfn))
2910                 return;
2911
2912         page = kvm_pfn_to_refcounted_page(pfn);
2913         if (!page)
2914                 return;
2915
2916         kvm_release_page_clean(page);
2917 }
2918 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2919
2920 void kvm_release_page_dirty(struct page *page)
2921 {
2922         WARN_ON(is_error_page(page));
2923
2924         kvm_set_page_dirty(page);
2925         kvm_release_page_clean(page);
2926 }
2927 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2928
2929 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2930 {
2931         struct page *page;
2932
2933         if (is_error_noslot_pfn(pfn))
2934                 return;
2935
2936         page = kvm_pfn_to_refcounted_page(pfn);
2937         if (!page)
2938                 return;
2939
2940         kvm_release_page_dirty(page);
2941 }
2942 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2943
2944 /*
2945  * Note, checking for an error/noslot pfn is the caller's responsibility when
2946  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2947  * "set" helpers are not to be used when the pfn might point at garbage.
2948  */
2949 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2950 {
2951         if (WARN_ON(is_error_noslot_pfn(pfn)))
2952                 return;
2953
2954         if (pfn_valid(pfn))
2955                 kvm_set_page_dirty(pfn_to_page(pfn));
2956 }
2957 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2958
2959 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2960 {
2961         if (WARN_ON(is_error_noslot_pfn(pfn)))
2962                 return;
2963
2964         if (pfn_valid(pfn))
2965                 kvm_set_page_accessed(pfn_to_page(pfn));
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2968
2969 static int next_segment(unsigned long len, int offset)
2970 {
2971         if (len > PAGE_SIZE - offset)
2972                 return PAGE_SIZE - offset;
2973         else
2974                 return len;
2975 }
2976
2977 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2978                                  void *data, int offset, int len)
2979 {
2980         int r;
2981         unsigned long addr;
2982
2983         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2984         if (kvm_is_error_hva(addr))
2985                 return -EFAULT;
2986         r = __copy_from_user(data, (void __user *)addr + offset, len);
2987         if (r)
2988                 return -EFAULT;
2989         return 0;
2990 }
2991
2992 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2993                         int len)
2994 {
2995         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2996
2997         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2998 }
2999 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3000
3001 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3002                              int offset, int len)
3003 {
3004         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3005
3006         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3007 }
3008 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3009
3010 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3011 {
3012         gfn_t gfn = gpa >> PAGE_SHIFT;
3013         int seg;
3014         int offset = offset_in_page(gpa);
3015         int ret;
3016
3017         while ((seg = next_segment(len, offset)) != 0) {
3018                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3019                 if (ret < 0)
3020                         return ret;
3021                 offset = 0;
3022                 len -= seg;
3023                 data += seg;
3024                 ++gfn;
3025         }
3026         return 0;
3027 }
3028 EXPORT_SYMBOL_GPL(kvm_read_guest);
3029
3030 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3031 {
3032         gfn_t gfn = gpa >> PAGE_SHIFT;
3033         int seg;
3034         int offset = offset_in_page(gpa);
3035         int ret;
3036
3037         while ((seg = next_segment(len, offset)) != 0) {
3038                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3039                 if (ret < 0)
3040                         return ret;
3041                 offset = 0;
3042                 len -= seg;
3043                 data += seg;
3044                 ++gfn;
3045         }
3046         return 0;
3047 }
3048 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3049
3050 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3051                                    void *data, int offset, unsigned long len)
3052 {
3053         int r;
3054         unsigned long addr;
3055
3056         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3057         if (kvm_is_error_hva(addr))
3058                 return -EFAULT;
3059         pagefault_disable();
3060         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3061         pagefault_enable();
3062         if (r)
3063                 return -EFAULT;
3064         return 0;
3065 }
3066
3067 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3068                                void *data, unsigned long len)
3069 {
3070         gfn_t gfn = gpa >> PAGE_SHIFT;
3071         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3072         int offset = offset_in_page(gpa);
3073
3074         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3075 }
3076 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3077
3078 static int __kvm_write_guest_page(struct kvm *kvm,
3079                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3080                                   const void *data, int offset, int len)
3081 {
3082         int r;
3083         unsigned long addr;
3084
3085         addr = gfn_to_hva_memslot(memslot, gfn);
3086         if (kvm_is_error_hva(addr))
3087                 return -EFAULT;
3088         r = __copy_to_user((void __user *)addr + offset, data, len);
3089         if (r)
3090                 return -EFAULT;
3091         mark_page_dirty_in_slot(kvm, memslot, gfn);
3092         return 0;
3093 }
3094
3095 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3096                          const void *data, int offset, int len)
3097 {
3098         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3099
3100         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3101 }
3102 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3103
3104 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3105                               const void *data, int offset, int len)
3106 {
3107         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3108
3109         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3110 }
3111 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3112
3113 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3114                     unsigned long len)
3115 {
3116         gfn_t gfn = gpa >> PAGE_SHIFT;
3117         int seg;
3118         int offset = offset_in_page(gpa);
3119         int ret;
3120
3121         while ((seg = next_segment(len, offset)) != 0) {
3122                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3123                 if (ret < 0)
3124                         return ret;
3125                 offset = 0;
3126                 len -= seg;
3127                 data += seg;
3128                 ++gfn;
3129         }
3130         return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(kvm_write_guest);
3133
3134 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3135                          unsigned long len)
3136 {
3137         gfn_t gfn = gpa >> PAGE_SHIFT;
3138         int seg;
3139         int offset = offset_in_page(gpa);
3140         int ret;
3141
3142         while ((seg = next_segment(len, offset)) != 0) {
3143                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3144                 if (ret < 0)
3145                         return ret;
3146                 offset = 0;
3147                 len -= seg;
3148                 data += seg;
3149                 ++gfn;
3150         }
3151         return 0;
3152 }
3153 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3154
3155 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3156                                        struct gfn_to_hva_cache *ghc,
3157                                        gpa_t gpa, unsigned long len)
3158 {
3159         int offset = offset_in_page(gpa);
3160         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3161         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3162         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3163         gfn_t nr_pages_avail;
3164
3165         /* Update ghc->generation before performing any error checks. */
3166         ghc->generation = slots->generation;
3167
3168         if (start_gfn > end_gfn) {
3169                 ghc->hva = KVM_HVA_ERR_BAD;
3170                 return -EINVAL;
3171         }
3172
3173         /*
3174          * If the requested region crosses two memslots, we still
3175          * verify that the entire region is valid here.
3176          */
3177         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3178                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3179                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3180                                            &nr_pages_avail);
3181                 if (kvm_is_error_hva(ghc->hva))
3182                         return -EFAULT;
3183         }
3184
3185         /* Use the slow path for cross page reads and writes. */
3186         if (nr_pages_needed == 1)
3187                 ghc->hva += offset;
3188         else
3189                 ghc->memslot = NULL;
3190
3191         ghc->gpa = gpa;
3192         ghc->len = len;
3193         return 0;
3194 }
3195
3196 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3197                               gpa_t gpa, unsigned long len)
3198 {
3199         struct kvm_memslots *slots = kvm_memslots(kvm);
3200         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3201 }
3202 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3203
3204 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3205                                   void *data, unsigned int offset,
3206                                   unsigned long len)
3207 {
3208         struct kvm_memslots *slots = kvm_memslots(kvm);
3209         int r;
3210         gpa_t gpa = ghc->gpa + offset;
3211
3212         if (WARN_ON_ONCE(len + offset > ghc->len))
3213                 return -EINVAL;
3214
3215         if (slots->generation != ghc->generation) {
3216                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3217                         return -EFAULT;
3218         }
3219
3220         if (kvm_is_error_hva(ghc->hva))
3221                 return -EFAULT;
3222
3223         if (unlikely(!ghc->memslot))
3224                 return kvm_write_guest(kvm, gpa, data, len);
3225
3226         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3227         if (r)
3228                 return -EFAULT;
3229         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3230
3231         return 0;
3232 }
3233 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3234
3235 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3236                            void *data, unsigned long len)
3237 {
3238         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3239 }
3240 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3241
3242 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3243                                  void *data, unsigned int offset,
3244                                  unsigned long len)
3245 {
3246         struct kvm_memslots *slots = kvm_memslots(kvm);
3247         int r;
3248         gpa_t gpa = ghc->gpa + offset;
3249
3250         if (WARN_ON_ONCE(len + offset > ghc->len))
3251                 return -EINVAL;
3252
3253         if (slots->generation != ghc->generation) {
3254                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3255                         return -EFAULT;
3256         }
3257
3258         if (kvm_is_error_hva(ghc->hva))
3259                 return -EFAULT;
3260
3261         if (unlikely(!ghc->memslot))
3262                 return kvm_read_guest(kvm, gpa, data, len);
3263
3264         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3265         if (r)
3266                 return -EFAULT;
3267
3268         return 0;
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3271
3272 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3273                           void *data, unsigned long len)
3274 {
3275         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3276 }
3277 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3278
3279 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3280 {
3281         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3282         gfn_t gfn = gpa >> PAGE_SHIFT;
3283         int seg;
3284         int offset = offset_in_page(gpa);
3285         int ret;
3286
3287         while ((seg = next_segment(len, offset)) != 0) {
3288                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3289                 if (ret < 0)
3290                         return ret;
3291                 offset = 0;
3292                 len -= seg;
3293                 ++gfn;
3294         }
3295         return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3298
3299 void mark_page_dirty_in_slot(struct kvm *kvm,
3300                              const struct kvm_memory_slot *memslot,
3301                              gfn_t gfn)
3302 {
3303         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3304
3305 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3306         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3307                 return;
3308 #endif
3309
3310         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3311                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3312                 u32 slot = (memslot->as_id << 16) | memslot->id;
3313
3314                 if (kvm->dirty_ring_size)
3315                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3316                                             slot, rel_gfn);
3317                 else
3318                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3319         }
3320 }
3321 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3322
3323 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3324 {
3325         struct kvm_memory_slot *memslot;
3326
3327         memslot = gfn_to_memslot(kvm, gfn);
3328         mark_page_dirty_in_slot(kvm, memslot, gfn);
3329 }
3330 EXPORT_SYMBOL_GPL(mark_page_dirty);
3331
3332 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3333 {
3334         struct kvm_memory_slot *memslot;
3335
3336         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3337         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3340
3341 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3342 {
3343         if (!vcpu->sigset_active)
3344                 return;
3345
3346         /*
3347          * This does a lockless modification of ->real_blocked, which is fine
3348          * because, only current can change ->real_blocked and all readers of
3349          * ->real_blocked don't care as long ->real_blocked is always a subset
3350          * of ->blocked.
3351          */
3352         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3353 }
3354
3355 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3356 {
3357         if (!vcpu->sigset_active)
3358                 return;
3359
3360         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3361         sigemptyset(&current->real_blocked);
3362 }
3363
3364 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3365 {
3366         unsigned int old, val, grow, grow_start;
3367
3368         old = val = vcpu->halt_poll_ns;
3369         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3370         grow = READ_ONCE(halt_poll_ns_grow);
3371         if (!grow)
3372                 goto out;
3373
3374         val *= grow;
3375         if (val < grow_start)
3376                 val = grow_start;
3377
3378         vcpu->halt_poll_ns = val;
3379 out:
3380         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3381 }
3382
3383 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3384 {
3385         unsigned int old, val, shrink, grow_start;
3386
3387         old = val = vcpu->halt_poll_ns;
3388         shrink = READ_ONCE(halt_poll_ns_shrink);
3389         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3390         if (shrink == 0)
3391                 val = 0;
3392         else
3393                 val /= shrink;
3394
3395         if (val < grow_start)
3396                 val = 0;
3397
3398         vcpu->halt_poll_ns = val;
3399         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3400 }
3401
3402 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3403 {
3404         int ret = -EINTR;
3405         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3406
3407         if (kvm_arch_vcpu_runnable(vcpu))
3408                 goto out;
3409         if (kvm_cpu_has_pending_timer(vcpu))
3410                 goto out;
3411         if (signal_pending(current))
3412                 goto out;
3413         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3414                 goto out;
3415
3416         ret = 0;
3417 out:
3418         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3419         return ret;
3420 }
3421
3422 /*
3423  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3424  * pending.  This is mostly used when halting a vCPU, but may also be used
3425  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3426  */
3427 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3428 {
3429         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3430         bool waited = false;
3431
3432         vcpu->stat.generic.blocking = 1;
3433
3434         preempt_disable();
3435         kvm_arch_vcpu_blocking(vcpu);
3436         prepare_to_rcuwait(wait);
3437         preempt_enable();
3438
3439         for (;;) {
3440                 set_current_state(TASK_INTERRUPTIBLE);
3441
3442                 if (kvm_vcpu_check_block(vcpu) < 0)
3443                         break;
3444
3445                 waited = true;
3446                 schedule();
3447         }
3448
3449         preempt_disable();
3450         finish_rcuwait(wait);
3451         kvm_arch_vcpu_unblocking(vcpu);
3452         preempt_enable();
3453
3454         vcpu->stat.generic.blocking = 0;
3455
3456         return waited;
3457 }
3458
3459 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3460                                           ktime_t end, bool success)
3461 {
3462         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3463         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3464
3465         ++vcpu->stat.generic.halt_attempted_poll;
3466
3467         if (success) {
3468                 ++vcpu->stat.generic.halt_successful_poll;
3469
3470                 if (!vcpu_valid_wakeup(vcpu))
3471                         ++vcpu->stat.generic.halt_poll_invalid;
3472
3473                 stats->halt_poll_success_ns += poll_ns;
3474                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3475         } else {
3476                 stats->halt_poll_fail_ns += poll_ns;
3477                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3478         }
3479 }
3480
3481 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3482 {
3483         struct kvm *kvm = vcpu->kvm;
3484
3485         if (kvm->override_halt_poll_ns) {
3486                 /*
3487                  * Ensure kvm->max_halt_poll_ns is not read before
3488                  * kvm->override_halt_poll_ns.
3489                  *
3490                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3491                  */
3492                 smp_rmb();
3493                 return READ_ONCE(kvm->max_halt_poll_ns);
3494         }
3495
3496         return READ_ONCE(halt_poll_ns);
3497 }
3498
3499 /*
3500  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3501  * polling is enabled, busy wait for a short time before blocking to avoid the
3502  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3503  * is halted.
3504  */
3505 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3506 {
3507         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3508         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3509         ktime_t start, cur, poll_end;
3510         bool waited = false;
3511         bool do_halt_poll;
3512         u64 halt_ns;
3513
3514         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3515                 vcpu->halt_poll_ns = max_halt_poll_ns;
3516
3517         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3518
3519         start = cur = poll_end = ktime_get();
3520         if (do_halt_poll) {
3521                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3522
3523                 do {
3524                         /*
3525                          * This sets KVM_REQ_UNHALT if an interrupt
3526                          * arrives.
3527                          */
3528                         if (kvm_vcpu_check_block(vcpu) < 0)
3529                                 goto out;
3530                         cpu_relax();
3531                         poll_end = cur = ktime_get();
3532                 } while (kvm_vcpu_can_poll(cur, stop));
3533         }
3534
3535         waited = kvm_vcpu_block(vcpu);
3536
3537         cur = ktime_get();
3538         if (waited) {
3539                 vcpu->stat.generic.halt_wait_ns +=
3540                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3541                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3542                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3543         }
3544 out:
3545         /* The total time the vCPU was "halted", including polling time. */
3546         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3547
3548         /*
3549          * Note, halt-polling is considered successful so long as the vCPU was
3550          * never actually scheduled out, i.e. even if the wake event arrived
3551          * after of the halt-polling loop itself, but before the full wait.
3552          */
3553         if (do_halt_poll)
3554                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3555
3556         if (halt_poll_allowed) {
3557                 /* Recompute the max halt poll time in case it changed. */
3558                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3559
3560                 if (!vcpu_valid_wakeup(vcpu)) {
3561                         shrink_halt_poll_ns(vcpu);
3562                 } else if (max_halt_poll_ns) {
3563                         if (halt_ns <= vcpu->halt_poll_ns)
3564                                 ;
3565                         /* we had a long block, shrink polling */
3566                         else if (vcpu->halt_poll_ns &&
3567                                  halt_ns > max_halt_poll_ns)
3568                                 shrink_halt_poll_ns(vcpu);
3569                         /* we had a short halt and our poll time is too small */
3570                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3571                                  halt_ns < max_halt_poll_ns)
3572                                 grow_halt_poll_ns(vcpu);
3573                 } else {
3574                         vcpu->halt_poll_ns = 0;
3575                 }
3576         }
3577
3578         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3579 }
3580 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3581
3582 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3583 {
3584         if (__kvm_vcpu_wake_up(vcpu)) {
3585                 WRITE_ONCE(vcpu->ready, true);
3586                 ++vcpu->stat.generic.halt_wakeup;
3587                 return true;
3588         }
3589
3590         return false;
3591 }
3592 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3593
3594 #ifndef CONFIG_S390
3595 /*
3596  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3597  */
3598 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3599 {
3600         int me, cpu;
3601
3602         if (kvm_vcpu_wake_up(vcpu))
3603                 return;
3604
3605         me = get_cpu();
3606         /*
3607          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3608          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3609          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3610          * within the vCPU thread itself.
3611          */
3612         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3613                 if (vcpu->mode == IN_GUEST_MODE)
3614                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3615                 goto out;
3616         }
3617
3618         /*
3619          * Note, the vCPU could get migrated to a different pCPU at any point
3620          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3621          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3622          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3623          * vCPU also requires it to leave IN_GUEST_MODE.
3624          */
3625         if (kvm_arch_vcpu_should_kick(vcpu)) {
3626                 cpu = READ_ONCE(vcpu->cpu);
3627                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3628                         smp_send_reschedule(cpu);
3629         }
3630 out:
3631         put_cpu();
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3634 #endif /* !CONFIG_S390 */
3635
3636 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3637 {
3638         struct pid *pid;
3639         struct task_struct *task = NULL;
3640         int ret = 0;
3641
3642         rcu_read_lock();
3643         pid = rcu_dereference(target->pid);
3644         if (pid)
3645                 task = get_pid_task(pid, PIDTYPE_PID);
3646         rcu_read_unlock();
3647         if (!task)
3648                 return ret;
3649         ret = yield_to(task, 1);
3650         put_task_struct(task);
3651
3652         return ret;
3653 }
3654 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3655
3656 /*
3657  * Helper that checks whether a VCPU is eligible for directed yield.
3658  * Most eligible candidate to yield is decided by following heuristics:
3659  *
3660  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3661  *  (preempted lock holder), indicated by @in_spin_loop.
3662  *  Set at the beginning and cleared at the end of interception/PLE handler.
3663  *
3664  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3665  *  chance last time (mostly it has become eligible now since we have probably
3666  *  yielded to lockholder in last iteration. This is done by toggling
3667  *  @dy_eligible each time a VCPU checked for eligibility.)
3668  *
3669  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3670  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3671  *  burning. Giving priority for a potential lock-holder increases lock
3672  *  progress.
3673  *
3674  *  Since algorithm is based on heuristics, accessing another VCPU data without
3675  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3676  *  and continue with next VCPU and so on.
3677  */
3678 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3679 {
3680 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3681         bool eligible;
3682
3683         eligible = !vcpu->spin_loop.in_spin_loop ||
3684                     vcpu->spin_loop.dy_eligible;
3685
3686         if (vcpu->spin_loop.in_spin_loop)
3687                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3688
3689         return eligible;
3690 #else
3691         return true;
3692 #endif
3693 }
3694
3695 /*
3696  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3697  * a vcpu_load/vcpu_put pair.  However, for most architectures
3698  * kvm_arch_vcpu_runnable does not require vcpu_load.
3699  */
3700 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3701 {
3702         return kvm_arch_vcpu_runnable(vcpu);
3703 }
3704
3705 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3706 {
3707         if (kvm_arch_dy_runnable(vcpu))
3708                 return true;
3709
3710 #ifdef CONFIG_KVM_ASYNC_PF
3711         if (!list_empty_careful(&vcpu->async_pf.done))
3712                 return true;
3713 #endif
3714
3715         return false;
3716 }
3717
3718 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3719 {
3720         return false;
3721 }
3722
3723 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3724 {
3725         struct kvm *kvm = me->kvm;
3726         struct kvm_vcpu *vcpu;
3727         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3728         unsigned long i;
3729         int yielded = 0;
3730         int try = 3;
3731         int pass;
3732
3733         kvm_vcpu_set_in_spin_loop(me, true);
3734         /*
3735          * We boost the priority of a VCPU that is runnable but not
3736          * currently running, because it got preempted by something
3737          * else and called schedule in __vcpu_run.  Hopefully that
3738          * VCPU is holding the lock that we need and will release it.
3739          * We approximate round-robin by starting at the last boosted VCPU.
3740          */
3741         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3742                 kvm_for_each_vcpu(i, vcpu, kvm) {
3743                         if (!pass && i <= last_boosted_vcpu) {
3744                                 i = last_boosted_vcpu;
3745                                 continue;
3746                         } else if (pass && i > last_boosted_vcpu)
3747                                 break;
3748                         if (!READ_ONCE(vcpu->ready))
3749                                 continue;
3750                         if (vcpu == me)
3751                                 continue;
3752                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3753                                 continue;
3754                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3755                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3756                             !kvm_arch_vcpu_in_kernel(vcpu))
3757                                 continue;
3758                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3759                                 continue;
3760
3761                         yielded = kvm_vcpu_yield_to(vcpu);
3762                         if (yielded > 0) {
3763                                 kvm->last_boosted_vcpu = i;
3764                                 break;
3765                         } else if (yielded < 0) {
3766                                 try--;
3767                                 if (!try)
3768                                         break;
3769                         }
3770                 }
3771         }
3772         kvm_vcpu_set_in_spin_loop(me, false);
3773
3774         /* Ensure vcpu is not eligible during next spinloop */
3775         kvm_vcpu_set_dy_eligible(me, false);
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3778
3779 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3780 {
3781 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3782         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3783             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3784              kvm->dirty_ring_size / PAGE_SIZE);
3785 #else
3786         return false;
3787 #endif
3788 }
3789
3790 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3791 {
3792         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3793         struct page *page;
3794
3795         if (vmf->pgoff == 0)
3796                 page = virt_to_page(vcpu->run);
3797 #ifdef CONFIG_X86
3798         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3799                 page = virt_to_page(vcpu->arch.pio_data);
3800 #endif
3801 #ifdef CONFIG_KVM_MMIO
3802         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3803                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3804 #endif
3805         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3806                 page = kvm_dirty_ring_get_page(
3807                     &vcpu->dirty_ring,
3808                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3809         else
3810                 return kvm_arch_vcpu_fault(vcpu, vmf);
3811         get_page(page);
3812         vmf->page = page;
3813         return 0;
3814 }
3815
3816 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3817         .fault = kvm_vcpu_fault,
3818 };
3819
3820 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3821 {
3822         struct kvm_vcpu *vcpu = file->private_data;
3823         unsigned long pages = vma_pages(vma);
3824
3825         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3826              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3827             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3828                 return -EINVAL;
3829
3830         vma->vm_ops = &kvm_vcpu_vm_ops;
3831         return 0;
3832 }
3833
3834 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3835 {
3836         struct kvm_vcpu *vcpu = filp->private_data;
3837
3838         kvm_put_kvm(vcpu->kvm);
3839         return 0;
3840 }
3841
3842 static const struct file_operations kvm_vcpu_fops = {
3843         .release        = kvm_vcpu_release,
3844         .unlocked_ioctl = kvm_vcpu_ioctl,
3845         .mmap           = kvm_vcpu_mmap,
3846         .llseek         = noop_llseek,
3847         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3848 };
3849
3850 /*
3851  * Allocates an inode for the vcpu.
3852  */
3853 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3854 {
3855         char name[8 + 1 + ITOA_MAX_LEN + 1];
3856
3857         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3858         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3859 }
3860
3861 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3862 static int vcpu_get_pid(void *data, u64 *val)
3863 {
3864         struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3865         *val = pid_nr(rcu_access_pointer(vcpu->pid));
3866         return 0;
3867 }
3868
3869 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3870
3871 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3872 {
3873         struct dentry *debugfs_dentry;
3874         char dir_name[ITOA_MAX_LEN * 2];
3875
3876         if (!debugfs_initialized())
3877                 return;
3878
3879         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3880         debugfs_dentry = debugfs_create_dir(dir_name,
3881                                             vcpu->kvm->debugfs_dentry);
3882         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3883                             &vcpu_get_pid_fops);
3884
3885         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3886 }
3887 #endif
3888
3889 /*
3890  * Creates some virtual cpus.  Good luck creating more than one.
3891  */
3892 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3893 {
3894         int r;
3895         struct kvm_vcpu *vcpu;
3896         struct page *page;
3897
3898         if (id >= KVM_MAX_VCPU_IDS)
3899                 return -EINVAL;
3900
3901         mutex_lock(&kvm->lock);
3902         if (kvm->created_vcpus >= kvm->max_vcpus) {
3903                 mutex_unlock(&kvm->lock);
3904                 return -EINVAL;
3905         }
3906
3907         r = kvm_arch_vcpu_precreate(kvm, id);
3908         if (r) {
3909                 mutex_unlock(&kvm->lock);
3910                 return r;
3911         }
3912
3913         kvm->created_vcpus++;
3914         mutex_unlock(&kvm->lock);
3915
3916         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3917         if (!vcpu) {
3918                 r = -ENOMEM;
3919                 goto vcpu_decrement;
3920         }
3921
3922         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3923         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3924         if (!page) {
3925                 r = -ENOMEM;
3926                 goto vcpu_free;
3927         }
3928         vcpu->run = page_address(page);
3929
3930         kvm_vcpu_init(vcpu, kvm, id);
3931
3932         r = kvm_arch_vcpu_create(vcpu);
3933         if (r)
3934                 goto vcpu_free_run_page;
3935
3936         if (kvm->dirty_ring_size) {
3937                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3938                                          id, kvm->dirty_ring_size);
3939                 if (r)
3940                         goto arch_vcpu_destroy;
3941         }
3942
3943         mutex_lock(&kvm->lock);
3944         if (kvm_get_vcpu_by_id(kvm, id)) {
3945                 r = -EEXIST;
3946                 goto unlock_vcpu_destroy;
3947         }
3948
3949         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3950         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3951         BUG_ON(r == -EBUSY);
3952         if (r)
3953                 goto unlock_vcpu_destroy;
3954
3955         /* Now it's all set up, let userspace reach it */
3956         kvm_get_kvm(kvm);
3957         r = create_vcpu_fd(vcpu);
3958         if (r < 0) {
3959                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3960                 kvm_put_kvm_no_destroy(kvm);
3961                 goto unlock_vcpu_destroy;
3962         }
3963
3964         /*
3965          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3966          * pointer before kvm->online_vcpu's incremented value.
3967          */
3968         smp_wmb();
3969         atomic_inc(&kvm->online_vcpus);
3970
3971         mutex_unlock(&kvm->lock);
3972         kvm_arch_vcpu_postcreate(vcpu);
3973         kvm_create_vcpu_debugfs(vcpu);
3974         return r;
3975
3976 unlock_vcpu_destroy:
3977         mutex_unlock(&kvm->lock);
3978         kvm_dirty_ring_free(&vcpu->dirty_ring);
3979 arch_vcpu_destroy:
3980         kvm_arch_vcpu_destroy(vcpu);
3981 vcpu_free_run_page:
3982         free_page((unsigned long)vcpu->run);
3983 vcpu_free:
3984         kmem_cache_free(kvm_vcpu_cache, vcpu);
3985 vcpu_decrement:
3986         mutex_lock(&kvm->lock);
3987         kvm->created_vcpus--;
3988         mutex_unlock(&kvm->lock);
3989         return r;
3990 }
3991
3992 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3993 {
3994         if (sigset) {
3995                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3996                 vcpu->sigset_active = 1;
3997                 vcpu->sigset = *sigset;
3998         } else
3999                 vcpu->sigset_active = 0;
4000         return 0;
4001 }
4002
4003 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4004                               size_t size, loff_t *offset)
4005 {
4006         struct kvm_vcpu *vcpu = file->private_data;
4007
4008         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4009                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4010                         sizeof(vcpu->stat), user_buffer, size, offset);
4011 }
4012
4013 static const struct file_operations kvm_vcpu_stats_fops = {
4014         .read = kvm_vcpu_stats_read,
4015         .llseek = noop_llseek,
4016 };
4017
4018 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4019 {
4020         int fd;
4021         struct file *file;
4022         char name[15 + ITOA_MAX_LEN + 1];
4023
4024         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4025
4026         fd = get_unused_fd_flags(O_CLOEXEC);
4027         if (fd < 0)
4028                 return fd;
4029
4030         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4031         if (IS_ERR(file)) {
4032                 put_unused_fd(fd);
4033                 return PTR_ERR(file);
4034         }
4035         file->f_mode |= FMODE_PREAD;
4036         fd_install(fd, file);
4037
4038         return fd;
4039 }
4040
4041 static long kvm_vcpu_ioctl(struct file *filp,
4042                            unsigned int ioctl, unsigned long arg)
4043 {
4044         struct kvm_vcpu *vcpu = filp->private_data;
4045         void __user *argp = (void __user *)arg;
4046         int r;
4047         struct kvm_fpu *fpu = NULL;
4048         struct kvm_sregs *kvm_sregs = NULL;
4049
4050         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4051                 return -EIO;
4052
4053         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4054                 return -EINVAL;
4055
4056         /*
4057          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4058          * execution; mutex_lock() would break them.
4059          */
4060         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4061         if (r != -ENOIOCTLCMD)
4062                 return r;
4063
4064         if (mutex_lock_killable(&vcpu->mutex))
4065                 return -EINTR;
4066         switch (ioctl) {
4067         case KVM_RUN: {
4068                 struct pid *oldpid;
4069                 r = -EINVAL;
4070                 if (arg)
4071                         goto out;
4072                 oldpid = rcu_access_pointer(vcpu->pid);
4073                 if (unlikely(oldpid != task_pid(current))) {
4074                         /* The thread running this VCPU changed. */
4075                         struct pid *newpid;
4076
4077                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4078                         if (r)
4079                                 break;
4080
4081                         newpid = get_task_pid(current, PIDTYPE_PID);
4082                         rcu_assign_pointer(vcpu->pid, newpid);
4083                         if (oldpid)
4084                                 synchronize_rcu();
4085                         put_pid(oldpid);
4086                 }
4087                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4088                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4089                 break;
4090         }
4091         case KVM_GET_REGS: {
4092                 struct kvm_regs *kvm_regs;
4093
4094                 r = -ENOMEM;
4095                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4096                 if (!kvm_regs)
4097                         goto out;
4098                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4099                 if (r)
4100                         goto out_free1;
4101                 r = -EFAULT;
4102                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4103                         goto out_free1;
4104                 r = 0;
4105 out_free1:
4106                 kfree(kvm_regs);
4107                 break;
4108         }
4109         case KVM_SET_REGS: {
4110                 struct kvm_regs *kvm_regs;
4111
4112                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4113                 if (IS_ERR(kvm_regs)) {
4114                         r = PTR_ERR(kvm_regs);
4115                         goto out;
4116                 }
4117                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4118                 kfree(kvm_regs);
4119                 break;
4120         }
4121         case KVM_GET_SREGS: {
4122                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4123                                     GFP_KERNEL_ACCOUNT);
4124                 r = -ENOMEM;
4125                 if (!kvm_sregs)
4126                         goto out;
4127                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4128                 if (r)
4129                         goto out;
4130                 r = -EFAULT;
4131                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4132                         goto out;
4133                 r = 0;
4134                 break;
4135         }
4136         case KVM_SET_SREGS: {
4137                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4138                 if (IS_ERR(kvm_sregs)) {
4139                         r = PTR_ERR(kvm_sregs);
4140                         kvm_sregs = NULL;
4141                         goto out;
4142                 }
4143                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4144                 break;
4145         }
4146         case KVM_GET_MP_STATE: {
4147                 struct kvm_mp_state mp_state;
4148
4149                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4150                 if (r)
4151                         goto out;
4152                 r = -EFAULT;
4153                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4154                         goto out;
4155                 r = 0;
4156                 break;
4157         }
4158         case KVM_SET_MP_STATE: {
4159                 struct kvm_mp_state mp_state;
4160
4161                 r = -EFAULT;
4162                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4163                         goto out;
4164                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4165                 break;
4166         }
4167         case KVM_TRANSLATE: {
4168                 struct kvm_translation tr;
4169
4170                 r = -EFAULT;
4171                 if (copy_from_user(&tr, argp, sizeof(tr)))
4172                         goto out;
4173                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4174                 if (r)
4175                         goto out;
4176                 r = -EFAULT;
4177                 if (copy_to_user(argp, &tr, sizeof(tr)))
4178                         goto out;
4179                 r = 0;
4180                 break;
4181         }
4182         case KVM_SET_GUEST_DEBUG: {
4183                 struct kvm_guest_debug dbg;
4184
4185                 r = -EFAULT;
4186                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4187                         goto out;
4188                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4189                 break;
4190         }
4191         case KVM_SET_SIGNAL_MASK: {
4192                 struct kvm_signal_mask __user *sigmask_arg = argp;
4193                 struct kvm_signal_mask kvm_sigmask;
4194                 sigset_t sigset, *p;
4195
4196                 p = NULL;
4197                 if (argp) {
4198                         r = -EFAULT;
4199                         if (copy_from_user(&kvm_sigmask, argp,
4200                                            sizeof(kvm_sigmask)))
4201                                 goto out;
4202                         r = -EINVAL;
4203                         if (kvm_sigmask.len != sizeof(sigset))
4204                                 goto out;
4205                         r = -EFAULT;
4206                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4207                                            sizeof(sigset)))
4208                                 goto out;
4209                         p = &sigset;
4210                 }
4211                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4212                 break;
4213         }
4214         case KVM_GET_FPU: {
4215                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4216                 r = -ENOMEM;
4217                 if (!fpu)
4218                         goto out;
4219                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4220                 if (r)
4221                         goto out;
4222                 r = -EFAULT;
4223                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4224                         goto out;
4225                 r = 0;
4226                 break;
4227         }
4228         case KVM_SET_FPU: {
4229                 fpu = memdup_user(argp, sizeof(*fpu));
4230                 if (IS_ERR(fpu)) {
4231                         r = PTR_ERR(fpu);
4232                         fpu = NULL;
4233                         goto out;
4234                 }
4235                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4236                 break;
4237         }
4238         case KVM_GET_STATS_FD: {
4239                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4240                 break;
4241         }
4242         default:
4243                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4244         }
4245 out:
4246         mutex_unlock(&vcpu->mutex);
4247         kfree(fpu);
4248         kfree(kvm_sregs);
4249         return r;
4250 }
4251
4252 #ifdef CONFIG_KVM_COMPAT
4253 static long kvm_vcpu_compat_ioctl(struct file *filp,
4254                                   unsigned int ioctl, unsigned long arg)
4255 {
4256         struct kvm_vcpu *vcpu = filp->private_data;
4257         void __user *argp = compat_ptr(arg);
4258         int r;
4259
4260         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4261                 return -EIO;
4262
4263         switch (ioctl) {
4264         case KVM_SET_SIGNAL_MASK: {
4265                 struct kvm_signal_mask __user *sigmask_arg = argp;
4266                 struct kvm_signal_mask kvm_sigmask;
4267                 sigset_t sigset;
4268
4269                 if (argp) {
4270                         r = -EFAULT;
4271                         if (copy_from_user(&kvm_sigmask, argp,
4272                                            sizeof(kvm_sigmask)))
4273                                 goto out;
4274                         r = -EINVAL;
4275                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4276                                 goto out;
4277                         r = -EFAULT;
4278                         if (get_compat_sigset(&sigset,
4279                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4280                                 goto out;
4281                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4282                 } else
4283                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4284                 break;
4285         }
4286         default:
4287                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4288         }
4289
4290 out:
4291         return r;
4292 }
4293 #endif
4294
4295 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4296 {
4297         struct kvm_device *dev = filp->private_data;
4298
4299         if (dev->ops->mmap)
4300                 return dev->ops->mmap(dev, vma);
4301
4302         return -ENODEV;
4303 }
4304
4305 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4306                                  int (*accessor)(struct kvm_device *dev,
4307                                                  struct kvm_device_attr *attr),
4308                                  unsigned long arg)
4309 {
4310         struct kvm_device_attr attr;
4311
4312         if (!accessor)
4313                 return -EPERM;
4314
4315         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4316                 return -EFAULT;
4317
4318         return accessor(dev, &attr);
4319 }
4320
4321 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4322                              unsigned long arg)
4323 {
4324         struct kvm_device *dev = filp->private_data;
4325
4326         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4327                 return -EIO;
4328
4329         switch (ioctl) {
4330         case KVM_SET_DEVICE_ATTR:
4331                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4332         case KVM_GET_DEVICE_ATTR:
4333                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4334         case KVM_HAS_DEVICE_ATTR:
4335                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4336         default:
4337                 if (dev->ops->ioctl)
4338                         return dev->ops->ioctl(dev, ioctl, arg);
4339
4340                 return -ENOTTY;
4341         }
4342 }
4343
4344 static int kvm_device_release(struct inode *inode, struct file *filp)
4345 {
4346         struct kvm_device *dev = filp->private_data;
4347         struct kvm *kvm = dev->kvm;
4348
4349         if (dev->ops->release) {
4350                 mutex_lock(&kvm->lock);
4351                 list_del(&dev->vm_node);
4352                 dev->ops->release(dev);
4353                 mutex_unlock(&kvm->lock);
4354         }
4355
4356         kvm_put_kvm(kvm);
4357         return 0;
4358 }
4359
4360 static const struct file_operations kvm_device_fops = {
4361         .unlocked_ioctl = kvm_device_ioctl,
4362         .release = kvm_device_release,
4363         KVM_COMPAT(kvm_device_ioctl),
4364         .mmap = kvm_device_mmap,
4365 };
4366
4367 struct kvm_device *kvm_device_from_filp(struct file *filp)
4368 {
4369         if (filp->f_op != &kvm_device_fops)
4370                 return NULL;
4371
4372         return filp->private_data;
4373 }
4374
4375 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4376 #ifdef CONFIG_KVM_MPIC
4377         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4378         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4379 #endif
4380 };
4381
4382 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4383 {
4384         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4385                 return -ENOSPC;
4386
4387         if (kvm_device_ops_table[type] != NULL)
4388                 return -EEXIST;
4389
4390         kvm_device_ops_table[type] = ops;
4391         return 0;
4392 }
4393
4394 void kvm_unregister_device_ops(u32 type)
4395 {
4396         if (kvm_device_ops_table[type] != NULL)
4397                 kvm_device_ops_table[type] = NULL;
4398 }
4399
4400 static int kvm_ioctl_create_device(struct kvm *kvm,
4401                                    struct kvm_create_device *cd)
4402 {
4403         const struct kvm_device_ops *ops;
4404         struct kvm_device *dev;
4405         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4406         int type;
4407         int ret;
4408
4409         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4410                 return -ENODEV;
4411
4412         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4413         ops = kvm_device_ops_table[type];
4414         if (ops == NULL)
4415                 return -ENODEV;
4416
4417         if (test)
4418                 return 0;
4419
4420         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4421         if (!dev)
4422                 return -ENOMEM;
4423
4424         dev->ops = ops;
4425         dev->kvm = kvm;
4426
4427         mutex_lock(&kvm->lock);
4428         ret = ops->create(dev, type);
4429         if (ret < 0) {
4430                 mutex_unlock(&kvm->lock);
4431                 kfree(dev);
4432                 return ret;
4433         }
4434         list_add(&dev->vm_node, &kvm->devices);
4435         mutex_unlock(&kvm->lock);
4436
4437         if (ops->init)
4438                 ops->init(dev);
4439
4440         kvm_get_kvm(kvm);
4441         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4442         if (ret < 0) {
4443                 kvm_put_kvm_no_destroy(kvm);
4444                 mutex_lock(&kvm->lock);
4445                 list_del(&dev->vm_node);
4446                 if (ops->release)
4447                         ops->release(dev);
4448                 mutex_unlock(&kvm->lock);
4449                 if (ops->destroy)
4450                         ops->destroy(dev);
4451                 return ret;
4452         }
4453
4454         cd->fd = ret;
4455         return 0;
4456 }
4457
4458 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4459 {
4460         switch (arg) {
4461         case KVM_CAP_USER_MEMORY:
4462         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4463         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4464         case KVM_CAP_INTERNAL_ERROR_DATA:
4465 #ifdef CONFIG_HAVE_KVM_MSI
4466         case KVM_CAP_SIGNAL_MSI:
4467 #endif
4468 #ifdef CONFIG_HAVE_KVM_IRQFD
4469         case KVM_CAP_IRQFD:
4470         case KVM_CAP_IRQFD_RESAMPLE:
4471 #endif
4472         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4473         case KVM_CAP_CHECK_EXTENSION_VM:
4474         case KVM_CAP_ENABLE_CAP_VM:
4475         case KVM_CAP_HALT_POLL:
4476                 return 1;
4477 #ifdef CONFIG_KVM_MMIO
4478         case KVM_CAP_COALESCED_MMIO:
4479                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4480         case KVM_CAP_COALESCED_PIO:
4481                 return 1;
4482 #endif
4483 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4484         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4485                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4486 #endif
4487 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4488         case KVM_CAP_IRQ_ROUTING:
4489                 return KVM_MAX_IRQ_ROUTES;
4490 #endif
4491 #if KVM_ADDRESS_SPACE_NUM > 1
4492         case KVM_CAP_MULTI_ADDRESS_SPACE:
4493                 return KVM_ADDRESS_SPACE_NUM;
4494 #endif
4495         case KVM_CAP_NR_MEMSLOTS:
4496                 return KVM_USER_MEM_SLOTS;
4497         case KVM_CAP_DIRTY_LOG_RING:
4498 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4499                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4500 #else
4501                 return 0;
4502 #endif
4503         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4504 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4505                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4506 #else
4507                 return 0;
4508 #endif
4509         case KVM_CAP_BINARY_STATS_FD:
4510         case KVM_CAP_SYSTEM_EVENT_DATA:
4511                 return 1;
4512         default:
4513                 break;
4514         }
4515         return kvm_vm_ioctl_check_extension(kvm, arg);
4516 }
4517
4518 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4519 {
4520         int r;
4521
4522         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4523                 return -EINVAL;
4524
4525         /* the size should be power of 2 */
4526         if (!size || (size & (size - 1)))
4527                 return -EINVAL;
4528
4529         /* Should be bigger to keep the reserved entries, or a page */
4530         if (size < kvm_dirty_ring_get_rsvd_entries() *
4531             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4532                 return -EINVAL;
4533
4534         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4535             sizeof(struct kvm_dirty_gfn))
4536                 return -E2BIG;
4537
4538         /* We only allow it to set once */
4539         if (kvm->dirty_ring_size)
4540                 return -EINVAL;
4541
4542         mutex_lock(&kvm->lock);
4543
4544         if (kvm->created_vcpus) {
4545                 /* We don't allow to change this value after vcpu created */
4546                 r = -EINVAL;
4547         } else {
4548                 kvm->dirty_ring_size = size;
4549                 r = 0;
4550         }
4551
4552         mutex_unlock(&kvm->lock);
4553         return r;
4554 }
4555
4556 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4557 {
4558         unsigned long i;
4559         struct kvm_vcpu *vcpu;
4560         int cleared = 0;
4561
4562         if (!kvm->dirty_ring_size)
4563                 return -EINVAL;
4564
4565         mutex_lock(&kvm->slots_lock);
4566
4567         kvm_for_each_vcpu(i, vcpu, kvm)
4568                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4569
4570         mutex_unlock(&kvm->slots_lock);
4571
4572         if (cleared)
4573                 kvm_flush_remote_tlbs(kvm);
4574
4575         return cleared;
4576 }
4577
4578 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4579                                                   struct kvm_enable_cap *cap)
4580 {
4581         return -EINVAL;
4582 }
4583
4584 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4585                                            struct kvm_enable_cap *cap)
4586 {
4587         switch (cap->cap) {
4588 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4589         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4590                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4591
4592                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4593                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4594
4595                 if (cap->flags || (cap->args[0] & ~allowed_options))
4596                         return -EINVAL;
4597                 kvm->manual_dirty_log_protect = cap->args[0];
4598                 return 0;
4599         }
4600 #endif
4601         case KVM_CAP_HALT_POLL: {
4602                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4603                         return -EINVAL;
4604
4605                 kvm->max_halt_poll_ns = cap->args[0];
4606
4607                 /*
4608                  * Ensure kvm->override_halt_poll_ns does not become visible
4609                  * before kvm->max_halt_poll_ns.
4610                  *
4611                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4612                  */
4613                 smp_wmb();
4614                 kvm->override_halt_poll_ns = true;
4615
4616                 return 0;
4617         }
4618         case KVM_CAP_DIRTY_LOG_RING:
4619         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4620                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4621                         return -EINVAL;
4622
4623                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4624         default:
4625                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4626         }
4627 }
4628
4629 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4630                               size_t size, loff_t *offset)
4631 {
4632         struct kvm *kvm = file->private_data;
4633
4634         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4635                                 &kvm_vm_stats_desc[0], &kvm->stat,
4636                                 sizeof(kvm->stat), user_buffer, size, offset);
4637 }
4638
4639 static const struct file_operations kvm_vm_stats_fops = {
4640         .read = kvm_vm_stats_read,
4641         .llseek = noop_llseek,
4642 };
4643
4644 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4645 {
4646         int fd;
4647         struct file *file;
4648
4649         fd = get_unused_fd_flags(O_CLOEXEC);
4650         if (fd < 0)
4651                 return fd;
4652
4653         file = anon_inode_getfile("kvm-vm-stats",
4654                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4655         if (IS_ERR(file)) {
4656                 put_unused_fd(fd);
4657                 return PTR_ERR(file);
4658         }
4659         file->f_mode |= FMODE_PREAD;
4660         fd_install(fd, file);
4661
4662         return fd;
4663 }
4664
4665 static long kvm_vm_ioctl(struct file *filp,
4666                            unsigned int ioctl, unsigned long arg)
4667 {
4668         struct kvm *kvm = filp->private_data;
4669         void __user *argp = (void __user *)arg;
4670         int r;
4671
4672         if (kvm->mm != current->mm || kvm->vm_dead)
4673                 return -EIO;
4674         switch (ioctl) {
4675         case KVM_CREATE_VCPU:
4676                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4677                 break;
4678         case KVM_ENABLE_CAP: {
4679                 struct kvm_enable_cap cap;
4680
4681                 r = -EFAULT;
4682                 if (copy_from_user(&cap, argp, sizeof(cap)))
4683                         goto out;
4684                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4685                 break;
4686         }
4687         case KVM_SET_USER_MEMORY_REGION: {
4688                 struct kvm_userspace_memory_region kvm_userspace_mem;
4689
4690                 r = -EFAULT;
4691                 if (copy_from_user(&kvm_userspace_mem, argp,
4692                                                 sizeof(kvm_userspace_mem)))
4693                         goto out;
4694
4695                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4696                 break;
4697         }
4698         case KVM_GET_DIRTY_LOG: {
4699                 struct kvm_dirty_log log;
4700
4701                 r = -EFAULT;
4702                 if (copy_from_user(&log, argp, sizeof(log)))
4703                         goto out;
4704                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4705                 break;
4706         }
4707 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4708         case KVM_CLEAR_DIRTY_LOG: {
4709                 struct kvm_clear_dirty_log log;
4710
4711                 r = -EFAULT;
4712                 if (copy_from_user(&log, argp, sizeof(log)))
4713                         goto out;
4714                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4715                 break;
4716         }
4717 #endif
4718 #ifdef CONFIG_KVM_MMIO
4719         case KVM_REGISTER_COALESCED_MMIO: {
4720                 struct kvm_coalesced_mmio_zone zone;
4721
4722                 r = -EFAULT;
4723                 if (copy_from_user(&zone, argp, sizeof(zone)))
4724                         goto out;
4725                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4726                 break;
4727         }
4728         case KVM_UNREGISTER_COALESCED_MMIO: {
4729                 struct kvm_coalesced_mmio_zone zone;
4730
4731                 r = -EFAULT;
4732                 if (copy_from_user(&zone, argp, sizeof(zone)))
4733                         goto out;
4734                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4735                 break;
4736         }
4737 #endif
4738         case KVM_IRQFD: {
4739                 struct kvm_irqfd data;
4740
4741                 r = -EFAULT;
4742                 if (copy_from_user(&data, argp, sizeof(data)))
4743                         goto out;
4744                 r = kvm_irqfd(kvm, &data);
4745                 break;
4746         }
4747         case KVM_IOEVENTFD: {
4748                 struct kvm_ioeventfd data;
4749
4750                 r = -EFAULT;
4751                 if (copy_from_user(&data, argp, sizeof(data)))
4752                         goto out;
4753                 r = kvm_ioeventfd(kvm, &data);
4754                 break;
4755         }
4756 #ifdef CONFIG_HAVE_KVM_MSI
4757         case KVM_SIGNAL_MSI: {
4758                 struct kvm_msi msi;
4759
4760                 r = -EFAULT;
4761                 if (copy_from_user(&msi, argp, sizeof(msi)))
4762                         goto out;
4763                 r = kvm_send_userspace_msi(kvm, &msi);
4764                 break;
4765         }
4766 #endif
4767 #ifdef __KVM_HAVE_IRQ_LINE
4768         case KVM_IRQ_LINE_STATUS:
4769         case KVM_IRQ_LINE: {
4770                 struct kvm_irq_level irq_event;
4771
4772                 r = -EFAULT;
4773                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4774                         goto out;
4775
4776                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4777                                         ioctl == KVM_IRQ_LINE_STATUS);
4778                 if (r)
4779                         goto out;
4780
4781                 r = -EFAULT;
4782                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4783                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4784                                 goto out;
4785                 }
4786
4787                 r = 0;
4788                 break;
4789         }
4790 #endif
4791 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4792         case KVM_SET_GSI_ROUTING: {
4793                 struct kvm_irq_routing routing;
4794                 struct kvm_irq_routing __user *urouting;
4795                 struct kvm_irq_routing_entry *entries = NULL;
4796
4797                 r = -EFAULT;
4798                 if (copy_from_user(&routing, argp, sizeof(routing)))
4799                         goto out;
4800                 r = -EINVAL;
4801                 if (!kvm_arch_can_set_irq_routing(kvm))
4802                         goto out;
4803                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4804                         goto out;
4805                 if (routing.flags)
4806                         goto out;
4807                 if (routing.nr) {
4808                         urouting = argp;
4809                         entries = vmemdup_user(urouting->entries,
4810                                                array_size(sizeof(*entries),
4811                                                           routing.nr));
4812                         if (IS_ERR(entries)) {
4813                                 r = PTR_ERR(entries);
4814                                 goto out;
4815                         }
4816                 }
4817                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4818                                         routing.flags);
4819                 kvfree(entries);
4820                 break;
4821         }
4822 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4823         case KVM_CREATE_DEVICE: {
4824                 struct kvm_create_device cd;
4825
4826                 r = -EFAULT;
4827                 if (copy_from_user(&cd, argp, sizeof(cd)))
4828                         goto out;
4829
4830                 r = kvm_ioctl_create_device(kvm, &cd);
4831                 if (r)
4832                         goto out;
4833
4834                 r = -EFAULT;
4835                 if (copy_to_user(argp, &cd, sizeof(cd)))
4836                         goto out;
4837
4838                 r = 0;
4839                 break;
4840         }
4841         case KVM_CHECK_EXTENSION:
4842                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4843                 break;
4844         case KVM_RESET_DIRTY_RINGS:
4845                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4846                 break;
4847         case KVM_GET_STATS_FD:
4848                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4849                 break;
4850         default:
4851                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4852         }
4853 out:
4854         return r;
4855 }
4856
4857 #ifdef CONFIG_KVM_COMPAT
4858 struct compat_kvm_dirty_log {
4859         __u32 slot;
4860         __u32 padding1;
4861         union {
4862                 compat_uptr_t dirty_bitmap; /* one bit per page */
4863                 __u64 padding2;
4864         };
4865 };
4866
4867 struct compat_kvm_clear_dirty_log {
4868         __u32 slot;
4869         __u32 num_pages;
4870         __u64 first_page;
4871         union {
4872                 compat_uptr_t dirty_bitmap; /* one bit per page */
4873                 __u64 padding2;
4874         };
4875 };
4876
4877 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4878                                      unsigned long arg)
4879 {
4880         return -ENOTTY;
4881 }
4882
4883 static long kvm_vm_compat_ioctl(struct file *filp,
4884                            unsigned int ioctl, unsigned long arg)
4885 {
4886         struct kvm *kvm = filp->private_data;
4887         int r;
4888
4889         if (kvm->mm != current->mm || kvm->vm_dead)
4890                 return -EIO;
4891
4892         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4893         if (r != -ENOTTY)
4894                 return r;
4895
4896         switch (ioctl) {
4897 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4898         case KVM_CLEAR_DIRTY_LOG: {
4899                 struct compat_kvm_clear_dirty_log compat_log;
4900                 struct kvm_clear_dirty_log log;
4901
4902                 if (copy_from_user(&compat_log, (void __user *)arg,
4903                                    sizeof(compat_log)))
4904                         return -EFAULT;
4905                 log.slot         = compat_log.slot;
4906                 log.num_pages    = compat_log.num_pages;
4907                 log.first_page   = compat_log.first_page;
4908                 log.padding2     = compat_log.padding2;
4909                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4910
4911                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4912                 break;
4913         }
4914 #endif
4915         case KVM_GET_DIRTY_LOG: {
4916                 struct compat_kvm_dirty_log compat_log;
4917                 struct kvm_dirty_log log;
4918
4919                 if (copy_from_user(&compat_log, (void __user *)arg,
4920                                    sizeof(compat_log)))
4921                         return -EFAULT;
4922                 log.slot         = compat_log.slot;
4923                 log.padding1     = compat_log.padding1;
4924                 log.padding2     = compat_log.padding2;
4925                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4926
4927                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4928                 break;
4929         }
4930         default:
4931                 r = kvm_vm_ioctl(filp, ioctl, arg);
4932         }
4933         return r;
4934 }
4935 #endif
4936
4937 static const struct file_operations kvm_vm_fops = {
4938         .release        = kvm_vm_release,
4939         .unlocked_ioctl = kvm_vm_ioctl,
4940         .llseek         = noop_llseek,
4941         KVM_COMPAT(kvm_vm_compat_ioctl),
4942 };
4943
4944 bool file_is_kvm(struct file *file)
4945 {
4946         return file && file->f_op == &kvm_vm_fops;
4947 }
4948 EXPORT_SYMBOL_GPL(file_is_kvm);
4949
4950 static int kvm_dev_ioctl_create_vm(unsigned long type)
4951 {
4952         char fdname[ITOA_MAX_LEN + 1];
4953         int r, fd;
4954         struct kvm *kvm;
4955         struct file *file;
4956
4957         fd = get_unused_fd_flags(O_CLOEXEC);
4958         if (fd < 0)
4959                 return fd;
4960
4961         snprintf(fdname, sizeof(fdname), "%d", fd);
4962
4963         kvm = kvm_create_vm(type, fdname);
4964         if (IS_ERR(kvm)) {
4965                 r = PTR_ERR(kvm);
4966                 goto put_fd;
4967         }
4968
4969         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4970         if (IS_ERR(file)) {
4971                 r = PTR_ERR(file);
4972                 goto put_kvm;
4973         }
4974
4975         /*
4976          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4977          * already set, with ->release() being kvm_vm_release().  In error
4978          * cases it will be called by the final fput(file) and will take
4979          * care of doing kvm_put_kvm(kvm).
4980          */
4981         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4982
4983         fd_install(fd, file);
4984         return fd;
4985
4986 put_kvm:
4987         kvm_put_kvm(kvm);
4988 put_fd:
4989         put_unused_fd(fd);
4990         return r;
4991 }
4992
4993 static long kvm_dev_ioctl(struct file *filp,
4994                           unsigned int ioctl, unsigned long arg)
4995 {
4996         long r = -EINVAL;
4997
4998         switch (ioctl) {
4999         case KVM_GET_API_VERSION:
5000                 if (arg)
5001                         goto out;
5002                 r = KVM_API_VERSION;
5003                 break;
5004         case KVM_CREATE_VM:
5005                 r = kvm_dev_ioctl_create_vm(arg);
5006                 break;
5007         case KVM_CHECK_EXTENSION:
5008                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5009                 break;
5010         case KVM_GET_VCPU_MMAP_SIZE:
5011                 if (arg)
5012                         goto out;
5013                 r = PAGE_SIZE;     /* struct kvm_run */
5014 #ifdef CONFIG_X86
5015                 r += PAGE_SIZE;    /* pio data page */
5016 #endif
5017 #ifdef CONFIG_KVM_MMIO
5018                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5019 #endif
5020                 break;
5021         case KVM_TRACE_ENABLE:
5022         case KVM_TRACE_PAUSE:
5023         case KVM_TRACE_DISABLE:
5024                 r = -EOPNOTSUPP;
5025                 break;
5026         default:
5027                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5028         }
5029 out:
5030         return r;
5031 }
5032
5033 static struct file_operations kvm_chardev_ops = {
5034         .unlocked_ioctl = kvm_dev_ioctl,
5035         .llseek         = noop_llseek,
5036         KVM_COMPAT(kvm_dev_ioctl),
5037 };
5038
5039 static struct miscdevice kvm_dev = {
5040         KVM_MINOR,
5041         "kvm",
5042         &kvm_chardev_ops,
5043 };
5044
5045 static void hardware_enable_nolock(void *junk)
5046 {
5047         int cpu = raw_smp_processor_id();
5048         int r;
5049
5050         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5051                 return;
5052
5053         cpumask_set_cpu(cpu, cpus_hardware_enabled);
5054
5055         r = kvm_arch_hardware_enable();
5056
5057         if (r) {
5058                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5059                 atomic_inc(&hardware_enable_failed);
5060                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5061         }
5062 }
5063
5064 static int kvm_starting_cpu(unsigned int cpu)
5065 {
5066         raw_spin_lock(&kvm_count_lock);
5067         if (kvm_usage_count)
5068                 hardware_enable_nolock(NULL);
5069         raw_spin_unlock(&kvm_count_lock);
5070         return 0;
5071 }
5072
5073 static void hardware_disable_nolock(void *junk)
5074 {
5075         int cpu = raw_smp_processor_id();
5076
5077         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5078                 return;
5079         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5080         kvm_arch_hardware_disable();
5081 }
5082
5083 static int kvm_dying_cpu(unsigned int cpu)
5084 {
5085         raw_spin_lock(&kvm_count_lock);
5086         if (kvm_usage_count)
5087                 hardware_disable_nolock(NULL);
5088         raw_spin_unlock(&kvm_count_lock);
5089         return 0;
5090 }
5091
5092 static void hardware_disable_all_nolock(void)
5093 {
5094         BUG_ON(!kvm_usage_count);
5095
5096         kvm_usage_count--;
5097         if (!kvm_usage_count)
5098                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5099 }
5100
5101 static void hardware_disable_all(void)
5102 {
5103         raw_spin_lock(&kvm_count_lock);
5104         hardware_disable_all_nolock();
5105         raw_spin_unlock(&kvm_count_lock);
5106 }
5107
5108 static int hardware_enable_all(void)
5109 {
5110         int r = 0;
5111
5112         raw_spin_lock(&kvm_count_lock);
5113
5114         kvm_usage_count++;
5115         if (kvm_usage_count == 1) {
5116                 atomic_set(&hardware_enable_failed, 0);
5117                 on_each_cpu(hardware_enable_nolock, NULL, 1);
5118
5119                 if (atomic_read(&hardware_enable_failed)) {
5120                         hardware_disable_all_nolock();
5121                         r = -EBUSY;
5122                 }
5123         }
5124
5125         raw_spin_unlock(&kvm_count_lock);
5126
5127         return r;
5128 }
5129
5130 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5131                       void *v)
5132 {
5133         /*
5134          * Some (well, at least mine) BIOSes hang on reboot if
5135          * in vmx root mode.
5136          *
5137          * And Intel TXT required VMX off for all cpu when system shutdown.
5138          */
5139         pr_info("kvm: exiting hardware virtualization\n");
5140         kvm_rebooting = true;
5141         on_each_cpu(hardware_disable_nolock, NULL, 1);
5142         return NOTIFY_OK;
5143 }
5144
5145 static struct notifier_block kvm_reboot_notifier = {
5146         .notifier_call = kvm_reboot,
5147         .priority = 0,
5148 };
5149
5150 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5151 {
5152         int i;
5153
5154         for (i = 0; i < bus->dev_count; i++) {
5155                 struct kvm_io_device *pos = bus->range[i].dev;
5156
5157                 kvm_iodevice_destructor(pos);
5158         }
5159         kfree(bus);
5160 }
5161
5162 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5163                                  const struct kvm_io_range *r2)
5164 {
5165         gpa_t addr1 = r1->addr;
5166         gpa_t addr2 = r2->addr;
5167
5168         if (addr1 < addr2)
5169                 return -1;
5170
5171         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5172          * accept any overlapping write.  Any order is acceptable for
5173          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5174          * we process all of them.
5175          */
5176         if (r2->len) {
5177                 addr1 += r1->len;
5178                 addr2 += r2->len;
5179         }
5180
5181         if (addr1 > addr2)
5182                 return 1;
5183
5184         return 0;
5185 }
5186
5187 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5188 {
5189         return kvm_io_bus_cmp(p1, p2);
5190 }
5191
5192 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5193                              gpa_t addr, int len)
5194 {
5195         struct kvm_io_range *range, key;
5196         int off;
5197
5198         key = (struct kvm_io_range) {
5199                 .addr = addr,
5200                 .len = len,
5201         };
5202
5203         range = bsearch(&key, bus->range, bus->dev_count,
5204                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5205         if (range == NULL)
5206                 return -ENOENT;
5207
5208         off = range - bus->range;
5209
5210         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5211                 off--;
5212
5213         return off;
5214 }
5215
5216 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5217                               struct kvm_io_range *range, const void *val)
5218 {
5219         int idx;
5220
5221         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5222         if (idx < 0)
5223                 return -EOPNOTSUPP;
5224
5225         while (idx < bus->dev_count &&
5226                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5227                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5228                                         range->len, val))
5229                         return idx;
5230                 idx++;
5231         }
5232
5233         return -EOPNOTSUPP;
5234 }
5235
5236 /* kvm_io_bus_write - called under kvm->slots_lock */
5237 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5238                      int len, const void *val)
5239 {
5240         struct kvm_io_bus *bus;
5241         struct kvm_io_range range;
5242         int r;
5243
5244         range = (struct kvm_io_range) {
5245                 .addr = addr,
5246                 .len = len,
5247         };
5248
5249         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5250         if (!bus)
5251                 return -ENOMEM;
5252         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5253         return r < 0 ? r : 0;
5254 }
5255 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5256
5257 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5258 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5259                             gpa_t addr, int len, const void *val, long cookie)
5260 {
5261         struct kvm_io_bus *bus;
5262         struct kvm_io_range range;
5263
5264         range = (struct kvm_io_range) {
5265                 .addr = addr,
5266                 .len = len,
5267         };
5268
5269         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5270         if (!bus)
5271                 return -ENOMEM;
5272
5273         /* First try the device referenced by cookie. */
5274         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5275             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5276                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5277                                         val))
5278                         return cookie;
5279
5280         /*
5281          * cookie contained garbage; fall back to search and return the
5282          * correct cookie value.
5283          */
5284         return __kvm_io_bus_write(vcpu, bus, &range, val);
5285 }
5286
5287 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5288                              struct kvm_io_range *range, void *val)
5289 {
5290         int idx;
5291
5292         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5293         if (idx < 0)
5294                 return -EOPNOTSUPP;
5295
5296         while (idx < bus->dev_count &&
5297                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5298                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5299                                        range->len, val))
5300                         return idx;
5301                 idx++;
5302         }
5303
5304         return -EOPNOTSUPP;
5305 }
5306
5307 /* kvm_io_bus_read - called under kvm->slots_lock */
5308 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5309                     int len, void *val)
5310 {
5311         struct kvm_io_bus *bus;
5312         struct kvm_io_range range;
5313         int r;
5314
5315         range = (struct kvm_io_range) {
5316                 .addr = addr,
5317                 .len = len,
5318         };
5319
5320         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5321         if (!bus)
5322                 return -ENOMEM;
5323         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5324         return r < 0 ? r : 0;
5325 }
5326
5327 /* Caller must hold slots_lock. */
5328 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5329                             int len, struct kvm_io_device *dev)
5330 {
5331         int i;
5332         struct kvm_io_bus *new_bus, *bus;
5333         struct kvm_io_range range;
5334
5335         bus = kvm_get_bus(kvm, bus_idx);
5336         if (!bus)
5337                 return -ENOMEM;
5338
5339         /* exclude ioeventfd which is limited by maximum fd */
5340         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5341                 return -ENOSPC;
5342
5343         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5344                           GFP_KERNEL_ACCOUNT);
5345         if (!new_bus)
5346                 return -ENOMEM;
5347
5348         range = (struct kvm_io_range) {
5349                 .addr = addr,
5350                 .len = len,
5351                 .dev = dev,
5352         };
5353
5354         for (i = 0; i < bus->dev_count; i++)
5355                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5356                         break;
5357
5358         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5359         new_bus->dev_count++;
5360         new_bus->range[i] = range;
5361         memcpy(new_bus->range + i + 1, bus->range + i,
5362                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5363         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5364         synchronize_srcu_expedited(&kvm->srcu);
5365         kfree(bus);
5366
5367         return 0;
5368 }
5369
5370 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5371                               struct kvm_io_device *dev)
5372 {
5373         int i, j;
5374         struct kvm_io_bus *new_bus, *bus;
5375
5376         lockdep_assert_held(&kvm->slots_lock);
5377
5378         bus = kvm_get_bus(kvm, bus_idx);
5379         if (!bus)
5380                 return 0;
5381
5382         for (i = 0; i < bus->dev_count; i++) {
5383                 if (bus->range[i].dev == dev) {
5384                         break;
5385                 }
5386         }
5387
5388         if (i == bus->dev_count)
5389                 return 0;
5390
5391         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5392                           GFP_KERNEL_ACCOUNT);
5393         if (new_bus) {
5394                 memcpy(new_bus, bus, struct_size(bus, range, i));
5395                 new_bus->dev_count--;
5396                 memcpy(new_bus->range + i, bus->range + i + 1,
5397                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5398         }
5399
5400         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5401         synchronize_srcu_expedited(&kvm->srcu);
5402
5403         /* Destroy the old bus _after_ installing the (null) bus. */
5404         if (!new_bus) {
5405                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5406                 for (j = 0; j < bus->dev_count; j++) {
5407                         if (j == i)
5408                                 continue;
5409                         kvm_iodevice_destructor(bus->range[j].dev);
5410                 }
5411         }
5412
5413         kfree(bus);
5414         return new_bus ? 0 : -ENOMEM;
5415 }
5416
5417 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5418                                          gpa_t addr)
5419 {
5420         struct kvm_io_bus *bus;
5421         int dev_idx, srcu_idx;
5422         struct kvm_io_device *iodev = NULL;
5423
5424         srcu_idx = srcu_read_lock(&kvm->srcu);
5425
5426         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5427         if (!bus)
5428                 goto out_unlock;
5429
5430         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5431         if (dev_idx < 0)
5432                 goto out_unlock;
5433
5434         iodev = bus->range[dev_idx].dev;
5435
5436 out_unlock:
5437         srcu_read_unlock(&kvm->srcu, srcu_idx);
5438
5439         return iodev;
5440 }
5441 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5442
5443 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5444                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5445                            const char *fmt)
5446 {
5447         int ret;
5448         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5449                                           inode->i_private;
5450
5451         /*
5452          * The debugfs files are a reference to the kvm struct which
5453         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5454         * avoids the race between open and the removal of the debugfs directory.
5455          */
5456         if (!kvm_get_kvm_safe(stat_data->kvm))
5457                 return -ENOENT;
5458
5459         ret = simple_attr_open(inode, file, get,
5460                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
5461                                ? set : NULL, fmt);
5462         if (ret)
5463                 kvm_put_kvm(stat_data->kvm);
5464
5465         return ret;
5466 }
5467
5468 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5469 {
5470         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5471                                           inode->i_private;
5472
5473         simple_attr_release(inode, file);
5474         kvm_put_kvm(stat_data->kvm);
5475
5476         return 0;
5477 }
5478
5479 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5480 {
5481         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5482
5483         return 0;
5484 }
5485
5486 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5487 {
5488         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5489
5490         return 0;
5491 }
5492
5493 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5494 {
5495         unsigned long i;
5496         struct kvm_vcpu *vcpu;
5497
5498         *val = 0;
5499
5500         kvm_for_each_vcpu(i, vcpu, kvm)
5501                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5502
5503         return 0;
5504 }
5505
5506 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5507 {
5508         unsigned long i;
5509         struct kvm_vcpu *vcpu;
5510
5511         kvm_for_each_vcpu(i, vcpu, kvm)
5512                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5513
5514         return 0;
5515 }
5516
5517 static int kvm_stat_data_get(void *data, u64 *val)
5518 {
5519         int r = -EFAULT;
5520         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5521
5522         switch (stat_data->kind) {
5523         case KVM_STAT_VM:
5524                 r = kvm_get_stat_per_vm(stat_data->kvm,
5525                                         stat_data->desc->desc.offset, val);
5526                 break;
5527         case KVM_STAT_VCPU:
5528                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5529                                           stat_data->desc->desc.offset, val);
5530                 break;
5531         }
5532
5533         return r;
5534 }
5535
5536 static int kvm_stat_data_clear(void *data, u64 val)
5537 {
5538         int r = -EFAULT;
5539         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5540
5541         if (val)
5542                 return -EINVAL;
5543
5544         switch (stat_data->kind) {
5545         case KVM_STAT_VM:
5546                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5547                                           stat_data->desc->desc.offset);
5548                 break;
5549         case KVM_STAT_VCPU:
5550                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5551                                             stat_data->desc->desc.offset);
5552                 break;
5553         }
5554
5555         return r;
5556 }
5557
5558 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5559 {
5560         __simple_attr_check_format("%llu\n", 0ull);
5561         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5562                                 kvm_stat_data_clear, "%llu\n");
5563 }
5564
5565 static const struct file_operations stat_fops_per_vm = {
5566         .owner = THIS_MODULE,
5567         .open = kvm_stat_data_open,
5568         .release = kvm_debugfs_release,
5569         .read = simple_attr_read,
5570         .write = simple_attr_write,
5571         .llseek = no_llseek,
5572 };
5573
5574 static int vm_stat_get(void *_offset, u64 *val)
5575 {
5576         unsigned offset = (long)_offset;
5577         struct kvm *kvm;
5578         u64 tmp_val;
5579
5580         *val = 0;
5581         mutex_lock(&kvm_lock);
5582         list_for_each_entry(kvm, &vm_list, vm_list) {
5583                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5584                 *val += tmp_val;
5585         }
5586         mutex_unlock(&kvm_lock);
5587         return 0;
5588 }
5589
5590 static int vm_stat_clear(void *_offset, u64 val)
5591 {
5592         unsigned offset = (long)_offset;
5593         struct kvm *kvm;
5594
5595         if (val)
5596                 return -EINVAL;
5597
5598         mutex_lock(&kvm_lock);
5599         list_for_each_entry(kvm, &vm_list, vm_list) {
5600                 kvm_clear_stat_per_vm(kvm, offset);
5601         }
5602         mutex_unlock(&kvm_lock);
5603
5604         return 0;
5605 }
5606
5607 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5609
5610 static int vcpu_stat_get(void *_offset, u64 *val)
5611 {
5612         unsigned offset = (long)_offset;
5613         struct kvm *kvm;
5614         u64 tmp_val;
5615
5616         *val = 0;
5617         mutex_lock(&kvm_lock);
5618         list_for_each_entry(kvm, &vm_list, vm_list) {
5619                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5620                 *val += tmp_val;
5621         }
5622         mutex_unlock(&kvm_lock);
5623         return 0;
5624 }
5625
5626 static int vcpu_stat_clear(void *_offset, u64 val)
5627 {
5628         unsigned offset = (long)_offset;
5629         struct kvm *kvm;
5630
5631         if (val)
5632                 return -EINVAL;
5633
5634         mutex_lock(&kvm_lock);
5635         list_for_each_entry(kvm, &vm_list, vm_list) {
5636                 kvm_clear_stat_per_vcpu(kvm, offset);
5637         }
5638         mutex_unlock(&kvm_lock);
5639
5640         return 0;
5641 }
5642
5643 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5644                         "%llu\n");
5645 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5646
5647 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5648 {
5649         struct kobj_uevent_env *env;
5650         unsigned long long created, active;
5651
5652         if (!kvm_dev.this_device || !kvm)
5653                 return;
5654
5655         mutex_lock(&kvm_lock);
5656         if (type == KVM_EVENT_CREATE_VM) {
5657                 kvm_createvm_count++;
5658                 kvm_active_vms++;
5659         } else if (type == KVM_EVENT_DESTROY_VM) {
5660                 kvm_active_vms--;
5661         }
5662         created = kvm_createvm_count;
5663         active = kvm_active_vms;
5664         mutex_unlock(&kvm_lock);
5665
5666         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5667         if (!env)
5668                 return;
5669
5670         add_uevent_var(env, "CREATED=%llu", created);
5671         add_uevent_var(env, "COUNT=%llu", active);
5672
5673         if (type == KVM_EVENT_CREATE_VM) {
5674                 add_uevent_var(env, "EVENT=create");
5675                 kvm->userspace_pid = task_pid_nr(current);
5676         } else if (type == KVM_EVENT_DESTROY_VM) {
5677                 add_uevent_var(env, "EVENT=destroy");
5678         }
5679         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5680
5681         if (!IS_ERR(kvm->debugfs_dentry)) {
5682                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5683
5684                 if (p) {
5685                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5686                         if (!IS_ERR(tmp))
5687                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5688                         kfree(p);
5689                 }
5690         }
5691         /* no need for checks, since we are adding at most only 5 keys */
5692         env->envp[env->envp_idx++] = NULL;
5693         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5694         kfree(env);
5695 }
5696
5697 static void kvm_init_debug(void)
5698 {
5699         const struct file_operations *fops;
5700         const struct _kvm_stats_desc *pdesc;
5701         int i;
5702
5703         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5704
5705         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5706                 pdesc = &kvm_vm_stats_desc[i];
5707                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5708                         fops = &vm_stat_fops;
5709                 else
5710                         fops = &vm_stat_readonly_fops;
5711                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5712                                 kvm_debugfs_dir,
5713                                 (void *)(long)pdesc->desc.offset, fops);
5714         }
5715
5716         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5717                 pdesc = &kvm_vcpu_stats_desc[i];
5718                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5719                         fops = &vcpu_stat_fops;
5720                 else
5721                         fops = &vcpu_stat_readonly_fops;
5722                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5723                                 kvm_debugfs_dir,
5724                                 (void *)(long)pdesc->desc.offset, fops);
5725         }
5726 }
5727
5728 static int kvm_suspend(void)
5729 {
5730         if (kvm_usage_count)
5731                 hardware_disable_nolock(NULL);
5732         return 0;
5733 }
5734
5735 static void kvm_resume(void)
5736 {
5737         if (kvm_usage_count) {
5738                 lockdep_assert_not_held(&kvm_count_lock);
5739                 hardware_enable_nolock(NULL);
5740         }
5741 }
5742
5743 static struct syscore_ops kvm_syscore_ops = {
5744         .suspend = kvm_suspend,
5745         .resume = kvm_resume,
5746 };
5747
5748 static inline
5749 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5750 {
5751         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5752 }
5753
5754 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5755 {
5756         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5757
5758         WRITE_ONCE(vcpu->preempted, false);
5759         WRITE_ONCE(vcpu->ready, false);
5760
5761         __this_cpu_write(kvm_running_vcpu, vcpu);
5762         kvm_arch_sched_in(vcpu, cpu);
5763         kvm_arch_vcpu_load(vcpu, cpu);
5764 }
5765
5766 static void kvm_sched_out(struct preempt_notifier *pn,
5767                           struct task_struct *next)
5768 {
5769         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5770
5771         if (current->on_rq) {
5772                 WRITE_ONCE(vcpu->preempted, true);
5773                 WRITE_ONCE(vcpu->ready, true);
5774         }
5775         kvm_arch_vcpu_put(vcpu);
5776         __this_cpu_write(kvm_running_vcpu, NULL);
5777 }
5778
5779 /**
5780  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5781  *
5782  * We can disable preemption locally around accessing the per-CPU variable,
5783  * and use the resolved vcpu pointer after enabling preemption again,
5784  * because even if the current thread is migrated to another CPU, reading
5785  * the per-CPU value later will give us the same value as we update the
5786  * per-CPU variable in the preempt notifier handlers.
5787  */
5788 struct kvm_vcpu *kvm_get_running_vcpu(void)
5789 {
5790         struct kvm_vcpu *vcpu;
5791
5792         preempt_disable();
5793         vcpu = __this_cpu_read(kvm_running_vcpu);
5794         preempt_enable();
5795
5796         return vcpu;
5797 }
5798 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5799
5800 /**
5801  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5802  */
5803 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5804 {
5805         return &kvm_running_vcpu;
5806 }
5807
5808 #ifdef CONFIG_GUEST_PERF_EVENTS
5809 static unsigned int kvm_guest_state(void)
5810 {
5811         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5812         unsigned int state;
5813
5814         if (!kvm_arch_pmi_in_guest(vcpu))
5815                 return 0;
5816
5817         state = PERF_GUEST_ACTIVE;
5818         if (!kvm_arch_vcpu_in_kernel(vcpu))
5819                 state |= PERF_GUEST_USER;
5820
5821         return state;
5822 }
5823
5824 static unsigned long kvm_guest_get_ip(void)
5825 {
5826         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5827
5828         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5829         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5830                 return 0;
5831
5832         return kvm_arch_vcpu_get_ip(vcpu);
5833 }
5834
5835 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5836         .state                  = kvm_guest_state,
5837         .get_ip                 = kvm_guest_get_ip,
5838         .handle_intel_pt_intr   = NULL,
5839 };
5840
5841 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5842 {
5843         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5844         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5845 }
5846 void kvm_unregister_perf_callbacks(void)
5847 {
5848         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5849 }
5850 #endif
5851
5852 struct kvm_cpu_compat_check {
5853         void *opaque;
5854         int *ret;
5855 };
5856
5857 static void check_processor_compat(void *data)
5858 {
5859         struct kvm_cpu_compat_check *c = data;
5860
5861         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5862 }
5863
5864 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5865                   struct module *module)
5866 {
5867         struct kvm_cpu_compat_check c;
5868         int r;
5869         int cpu;
5870
5871         r = kvm_arch_init(opaque);
5872         if (r)
5873                 goto out_fail;
5874
5875         /*
5876          * kvm_arch_init makes sure there's at most one caller
5877          * for architectures that support multiple implementations,
5878          * like intel and amd on x86.
5879          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5880          * conflicts in case kvm is already setup for another implementation.
5881          */
5882         r = kvm_irqfd_init();
5883         if (r)
5884                 goto out_irqfd;
5885
5886         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5887                 r = -ENOMEM;
5888                 goto out_free_0;
5889         }
5890
5891         r = kvm_arch_hardware_setup(opaque);
5892         if (r < 0)
5893                 goto out_free_1;
5894
5895         c.ret = &r;
5896         c.opaque = opaque;
5897         for_each_online_cpu(cpu) {
5898                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5899                 if (r < 0)
5900                         goto out_free_2;
5901         }
5902
5903         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5904                                       kvm_starting_cpu, kvm_dying_cpu);
5905         if (r)
5906                 goto out_free_2;
5907         register_reboot_notifier(&kvm_reboot_notifier);
5908
5909         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5910         if (!vcpu_align)
5911                 vcpu_align = __alignof__(struct kvm_vcpu);
5912         kvm_vcpu_cache =
5913                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5914                                            SLAB_ACCOUNT,
5915                                            offsetof(struct kvm_vcpu, arch),
5916                                            offsetofend(struct kvm_vcpu, stats_id)
5917                                            - offsetof(struct kvm_vcpu, arch),
5918                                            NULL);
5919         if (!kvm_vcpu_cache) {
5920                 r = -ENOMEM;
5921                 goto out_free_3;
5922         }
5923
5924         for_each_possible_cpu(cpu) {
5925                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5926                                             GFP_KERNEL, cpu_to_node(cpu))) {
5927                         r = -ENOMEM;
5928                         goto out_free_4;
5929                 }
5930         }
5931
5932         r = kvm_async_pf_init();
5933         if (r)
5934                 goto out_free_4;
5935
5936         kvm_chardev_ops.owner = module;
5937
5938         register_syscore_ops(&kvm_syscore_ops);
5939
5940         kvm_preempt_ops.sched_in = kvm_sched_in;
5941         kvm_preempt_ops.sched_out = kvm_sched_out;
5942
5943         kvm_init_debug();
5944
5945         r = kvm_vfio_ops_init();
5946         if (WARN_ON_ONCE(r))
5947                 goto err_vfio;
5948
5949         /*
5950          * Registration _must_ be the very last thing done, as this exposes
5951          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
5952          */
5953         r = misc_register(&kvm_dev);
5954         if (r) {
5955                 pr_err("kvm: misc device register failed\n");
5956                 goto err_register;
5957         }
5958
5959         return 0;
5960
5961 err_register:
5962         kvm_vfio_ops_exit();
5963 err_vfio:
5964         kvm_async_pf_deinit();
5965 out_free_4:
5966         for_each_possible_cpu(cpu)
5967                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5968         kmem_cache_destroy(kvm_vcpu_cache);
5969 out_free_3:
5970         unregister_reboot_notifier(&kvm_reboot_notifier);
5971         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5972 out_free_2:
5973         kvm_arch_hardware_unsetup();
5974 out_free_1:
5975         free_cpumask_var(cpus_hardware_enabled);
5976 out_free_0:
5977         kvm_irqfd_exit();
5978 out_irqfd:
5979         kvm_arch_exit();
5980 out_fail:
5981         return r;
5982 }
5983 EXPORT_SYMBOL_GPL(kvm_init);
5984
5985 void kvm_exit(void)
5986 {
5987         int cpu;
5988
5989         /*
5990          * Note, unregistering /dev/kvm doesn't strictly need to come first,
5991          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
5992          * to KVM while the module is being stopped.
5993          */
5994         misc_deregister(&kvm_dev);
5995
5996         debugfs_remove_recursive(kvm_debugfs_dir);
5997         for_each_possible_cpu(cpu)
5998                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5999         kmem_cache_destroy(kvm_vcpu_cache);
6000         kvm_async_pf_deinit();
6001         unregister_syscore_ops(&kvm_syscore_ops);
6002         unregister_reboot_notifier(&kvm_reboot_notifier);
6003         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
6004         on_each_cpu(hardware_disable_nolock, NULL, 1);
6005         kvm_arch_hardware_unsetup();
6006         kvm_arch_exit();
6007         kvm_irqfd_exit();
6008         free_cpumask_var(cpus_hardware_enabled);
6009         kvm_vfio_ops_exit();
6010 }
6011 EXPORT_SYMBOL_GPL(kvm_exit);
6012
6013 struct kvm_vm_worker_thread_context {
6014         struct kvm *kvm;
6015         struct task_struct *parent;
6016         struct completion init_done;
6017         kvm_vm_thread_fn_t thread_fn;
6018         uintptr_t data;
6019         int err;
6020 };
6021
6022 static int kvm_vm_worker_thread(void *context)
6023 {
6024         /*
6025          * The init_context is allocated on the stack of the parent thread, so
6026          * we have to locally copy anything that is needed beyond initialization
6027          */
6028         struct kvm_vm_worker_thread_context *init_context = context;
6029         struct task_struct *parent;
6030         struct kvm *kvm = init_context->kvm;
6031         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6032         uintptr_t data = init_context->data;
6033         int err;
6034
6035         err = kthread_park(current);
6036         /* kthread_park(current) is never supposed to return an error */
6037         WARN_ON(err != 0);
6038         if (err)
6039                 goto init_complete;
6040
6041         err = cgroup_attach_task_all(init_context->parent, current);
6042         if (err) {
6043                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6044                         __func__, err);
6045                 goto init_complete;
6046         }
6047
6048         set_user_nice(current, task_nice(init_context->parent));
6049
6050 init_complete:
6051         init_context->err = err;
6052         complete(&init_context->init_done);
6053         init_context = NULL;
6054
6055         if (err)
6056                 goto out;
6057
6058         /* Wait to be woken up by the spawner before proceeding. */
6059         kthread_parkme();
6060
6061         if (!kthread_should_stop())
6062                 err = thread_fn(kvm, data);
6063
6064 out:
6065         /*
6066          * Move kthread back to its original cgroup to prevent it lingering in
6067          * the cgroup of the VM process, after the latter finishes its
6068          * execution.
6069          *
6070          * kthread_stop() waits on the 'exited' completion condition which is
6071          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6072          * kthread is removed from the cgroup in the cgroup_exit() which is
6073          * called after the exit_mm(). This causes the kthread_stop() to return
6074          * before the kthread actually quits the cgroup.
6075          */
6076         rcu_read_lock();
6077         parent = rcu_dereference(current->real_parent);
6078         get_task_struct(parent);
6079         rcu_read_unlock();
6080         cgroup_attach_task_all(parent, current);
6081         put_task_struct(parent);
6082
6083         return err;
6084 }
6085
6086 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6087                                 uintptr_t data, const char *name,
6088                                 struct task_struct **thread_ptr)
6089 {
6090         struct kvm_vm_worker_thread_context init_context = {};
6091         struct task_struct *thread;
6092
6093         *thread_ptr = NULL;
6094         init_context.kvm = kvm;
6095         init_context.parent = current;
6096         init_context.thread_fn = thread_fn;
6097         init_context.data = data;
6098         init_completion(&init_context.init_done);
6099
6100         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6101                              "%s-%d", name, task_pid_nr(current));
6102         if (IS_ERR(thread))
6103                 return PTR_ERR(thread);
6104
6105         /* kthread_run is never supposed to return NULL */
6106         WARN_ON(thread == NULL);
6107
6108         wait_for_completion(&init_context.init_done);
6109
6110         if (!init_context.err)
6111                 *thread_ptr = thread;
6112
6113         return init_context.err;
6114 }