Merge tag 'xfs-4.21-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[platform/kernel/linux-rpi.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122                                 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144                 unsigned long start, unsigned long end, bool blockable)
145 {
146         return 0;
147 }
148
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151         if (pfn_valid(pfn))
152                 return PageReserved(pfn_to_page(pfn));
153
154         return true;
155 }
156
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162         int cpu = get_cpu();
163         preempt_notifier_register(&vcpu->preempt_notifier);
164         kvm_arch_vcpu_load(vcpu, cpu);
165         put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171         preempt_disable();
172         kvm_arch_vcpu_put(vcpu);
173         preempt_notifier_unregister(&vcpu->preempt_notifier);
174         preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183         /*
184          * We need to wait for the VCPU to reenable interrupts and get out of
185          * READING_SHADOW_PAGE_TABLES mode.
186          */
187         if (req & KVM_REQUEST_WAIT)
188                 return mode != OUTSIDE_GUEST_MODE;
189
190         /*
191          * Need to kick a running VCPU, but otherwise there is nothing to do.
192          */
193         return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202         if (unlikely(!cpus))
203                 cpus = cpu_online_mask;
204
205         if (cpumask_empty(cpus))
206                 return false;
207
208         smp_call_function_many(cpus, ack_flush, NULL, wait);
209         return true;
210 }
211
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215         int i, cpu, me;
216         struct kvm_vcpu *vcpu;
217         bool called;
218
219         me = get_cpu();
220
221         kvm_for_each_vcpu(i, vcpu, kvm) {
222                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223                         continue;
224
225                 kvm_make_request(req, vcpu);
226                 cpu = vcpu->cpu;
227
228                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229                         continue;
230
231                 if (tmp != NULL && cpu != -1 && cpu != me &&
232                     kvm_request_needs_ipi(vcpu, req))
233                         __cpumask_set_cpu(cpu, tmp);
234         }
235
236         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237         put_cpu();
238
239         return called;
240 }
241
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244         cpumask_var_t cpus;
245         bool called;
246
247         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248
249         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250
251         free_cpumask_var(cpus);
252         return called;
253 }
254
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258         /*
259          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260          * kvm_make_all_cpus_request.
261          */
262         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263
264         /*
265          * We want to publish modifications to the page tables before reading
266          * mode. Pairs with a memory barrier in arch-specific code.
267          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268          * and smp_mb in walk_shadow_page_lockless_begin/end.
269          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270          *
271          * There is already an smp_mb__after_atomic() before
272          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273          * barrier here.
274          */
275         if (!kvm_arch_flush_remote_tlb(kvm)
276             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277                 ++kvm->stat.remote_tlb_flush;
278         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290         struct page *page;
291         int r;
292
293         mutex_init(&vcpu->mutex);
294         vcpu->cpu = -1;
295         vcpu->kvm = kvm;
296         vcpu->vcpu_id = id;
297         vcpu->pid = NULL;
298         init_swait_queue_head(&vcpu->wq);
299         kvm_async_pf_vcpu_init(vcpu);
300
301         vcpu->pre_pcpu = -1;
302         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
304         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305         if (!page) {
306                 r = -ENOMEM;
307                 goto fail;
308         }
309         vcpu->run = page_address(page);
310
311         kvm_vcpu_set_in_spin_loop(vcpu, false);
312         kvm_vcpu_set_dy_eligible(vcpu, false);
313         vcpu->preempted = false;
314
315         r = kvm_arch_vcpu_init(vcpu);
316         if (r < 0)
317                 goto fail_free_run;
318         return 0;
319
320 fail_free_run:
321         free_page((unsigned long)vcpu->run);
322 fail:
323         return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329         /*
330          * no need for rcu_read_lock as VCPU_RUN is the only place that
331          * will change the vcpu->pid pointer and on uninit all file
332          * descriptors are already gone.
333          */
334         put_pid(rcu_dereference_protected(vcpu->pid, 1));
335         kvm_arch_vcpu_uninit(vcpu);
336         free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343         return container_of(mn, struct kvm, mmu_notifier);
344 }
345
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347                                         struct mm_struct *mm,
348                                         unsigned long address,
349                                         pte_t pte)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         kvm->mmu_notifier_seq++;
357
358         if (kvm_set_spte_hva(kvm, address, pte))
359                 kvm_flush_remote_tlbs(kvm);
360
361         spin_unlock(&kvm->mmu_lock);
362         srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366                                         const struct mmu_notifier_range *range)
367 {
368         struct kvm *kvm = mmu_notifier_to_kvm(mn);
369         int need_tlb_flush = 0, idx;
370         int ret;
371
372         idx = srcu_read_lock(&kvm->srcu);
373         spin_lock(&kvm->mmu_lock);
374         /*
375          * The count increase must become visible at unlock time as no
376          * spte can be established without taking the mmu_lock and
377          * count is also read inside the mmu_lock critical section.
378          */
379         kvm->mmu_notifier_count++;
380         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
381         need_tlb_flush |= kvm->tlbs_dirty;
382         /* we've to flush the tlb before the pages can be freed */
383         if (need_tlb_flush)
384                 kvm_flush_remote_tlbs(kvm);
385
386         spin_unlock(&kvm->mmu_lock);
387
388         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
389                                         range->end, range->blockable);
390
391         srcu_read_unlock(&kvm->srcu, idx);
392
393         return ret;
394 }
395
396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
397                                         const struct mmu_notifier_range *range)
398 {
399         struct kvm *kvm = mmu_notifier_to_kvm(mn);
400
401         spin_lock(&kvm->mmu_lock);
402         /*
403          * This sequence increase will notify the kvm page fault that
404          * the page that is going to be mapped in the spte could have
405          * been freed.
406          */
407         kvm->mmu_notifier_seq++;
408         smp_wmb();
409         /*
410          * The above sequence increase must be visible before the
411          * below count decrease, which is ensured by the smp_wmb above
412          * in conjunction with the smp_rmb in mmu_notifier_retry().
413          */
414         kvm->mmu_notifier_count--;
415         spin_unlock(&kvm->mmu_lock);
416
417         BUG_ON(kvm->mmu_notifier_count < 0);
418 }
419
420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
421                                               struct mm_struct *mm,
422                                               unsigned long start,
423                                               unsigned long end)
424 {
425         struct kvm *kvm = mmu_notifier_to_kvm(mn);
426         int young, idx;
427
428         idx = srcu_read_lock(&kvm->srcu);
429         spin_lock(&kvm->mmu_lock);
430
431         young = kvm_age_hva(kvm, start, end);
432         if (young)
433                 kvm_flush_remote_tlbs(kvm);
434
435         spin_unlock(&kvm->mmu_lock);
436         srcu_read_unlock(&kvm->srcu, idx);
437
438         return young;
439 }
440
441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
442                                         struct mm_struct *mm,
443                                         unsigned long start,
444                                         unsigned long end)
445 {
446         struct kvm *kvm = mmu_notifier_to_kvm(mn);
447         int young, idx;
448
449         idx = srcu_read_lock(&kvm->srcu);
450         spin_lock(&kvm->mmu_lock);
451         /*
452          * Even though we do not flush TLB, this will still adversely
453          * affect performance on pre-Haswell Intel EPT, where there is
454          * no EPT Access Bit to clear so that we have to tear down EPT
455          * tables instead. If we find this unacceptable, we can always
456          * add a parameter to kvm_age_hva so that it effectively doesn't
457          * do anything on clear_young.
458          *
459          * Also note that currently we never issue secondary TLB flushes
460          * from clear_young, leaving this job up to the regular system
461          * cadence. If we find this inaccurate, we might come up with a
462          * more sophisticated heuristic later.
463          */
464         young = kvm_age_hva(kvm, start, end);
465         spin_unlock(&kvm->mmu_lock);
466         srcu_read_unlock(&kvm->srcu, idx);
467
468         return young;
469 }
470
471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
472                                        struct mm_struct *mm,
473                                        unsigned long address)
474 {
475         struct kvm *kvm = mmu_notifier_to_kvm(mn);
476         int young, idx;
477
478         idx = srcu_read_lock(&kvm->srcu);
479         spin_lock(&kvm->mmu_lock);
480         young = kvm_test_age_hva(kvm, address);
481         spin_unlock(&kvm->mmu_lock);
482         srcu_read_unlock(&kvm->srcu, idx);
483
484         return young;
485 }
486
487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
488                                      struct mm_struct *mm)
489 {
490         struct kvm *kvm = mmu_notifier_to_kvm(mn);
491         int idx;
492
493         idx = srcu_read_lock(&kvm->srcu);
494         kvm_arch_flush_shadow_all(kvm);
495         srcu_read_unlock(&kvm->srcu, idx);
496 }
497
498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
499         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
500         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
501         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
502         .clear_young            = kvm_mmu_notifier_clear_young,
503         .test_young             = kvm_mmu_notifier_test_young,
504         .change_pte             = kvm_mmu_notifier_change_pte,
505         .release                = kvm_mmu_notifier_release,
506 };
507
508 static int kvm_init_mmu_notifier(struct kvm *kvm)
509 {
510         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
511         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 }
513
514 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
515
516 static int kvm_init_mmu_notifier(struct kvm *kvm)
517 {
518         return 0;
519 }
520
521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
522
523 static struct kvm_memslots *kvm_alloc_memslots(void)
524 {
525         int i;
526         struct kvm_memslots *slots;
527
528         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
529         if (!slots)
530                 return NULL;
531
532         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
533                 slots->id_to_index[i] = slots->memslots[i].id = i;
534
535         return slots;
536 }
537
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
539 {
540         if (!memslot->dirty_bitmap)
541                 return;
542
543         kvfree(memslot->dirty_bitmap);
544         memslot->dirty_bitmap = NULL;
545 }
546
547 /*
548  * Free any memory in @free but not in @dont.
549  */
550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
551                               struct kvm_memory_slot *dont)
552 {
553         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
554                 kvm_destroy_dirty_bitmap(free);
555
556         kvm_arch_free_memslot(kvm, free, dont);
557
558         free->npages = 0;
559 }
560
561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
562 {
563         struct kvm_memory_slot *memslot;
564
565         if (!slots)
566                 return;
567
568         kvm_for_each_memslot(memslot, slots)
569                 kvm_free_memslot(kvm, memslot, NULL);
570
571         kvfree(slots);
572 }
573
574 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
575 {
576         int i;
577
578         if (!kvm->debugfs_dentry)
579                 return;
580
581         debugfs_remove_recursive(kvm->debugfs_dentry);
582
583         if (kvm->debugfs_stat_data) {
584                 for (i = 0; i < kvm_debugfs_num_entries; i++)
585                         kfree(kvm->debugfs_stat_data[i]);
586                 kfree(kvm->debugfs_stat_data);
587         }
588 }
589
590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
591 {
592         char dir_name[ITOA_MAX_LEN * 2];
593         struct kvm_stat_data *stat_data;
594         struct kvm_stats_debugfs_item *p;
595
596         if (!debugfs_initialized())
597                 return 0;
598
599         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
600         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
601
602         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
603                                          sizeof(*kvm->debugfs_stat_data),
604                                          GFP_KERNEL);
605         if (!kvm->debugfs_stat_data)
606                 return -ENOMEM;
607
608         for (p = debugfs_entries; p->name; p++) {
609                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
610                 if (!stat_data)
611                         return -ENOMEM;
612
613                 stat_data->kvm = kvm;
614                 stat_data->offset = p->offset;
615                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
616                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
617                                     stat_data, stat_fops_per_vm[p->kind]);
618         }
619         return 0;
620 }
621
622 static struct kvm *kvm_create_vm(unsigned long type)
623 {
624         int r, i;
625         struct kvm *kvm = kvm_arch_alloc_vm();
626
627         if (!kvm)
628                 return ERR_PTR(-ENOMEM);
629
630         spin_lock_init(&kvm->mmu_lock);
631         mmgrab(current->mm);
632         kvm->mm = current->mm;
633         kvm_eventfd_init(kvm);
634         mutex_init(&kvm->lock);
635         mutex_init(&kvm->irq_lock);
636         mutex_init(&kvm->slots_lock);
637         refcount_set(&kvm->users_count, 1);
638         INIT_LIST_HEAD(&kvm->devices);
639
640         r = kvm_arch_init_vm(kvm, type);
641         if (r)
642                 goto out_err_no_disable;
643
644         r = hardware_enable_all();
645         if (r)
646                 goto out_err_no_disable;
647
648 #ifdef CONFIG_HAVE_KVM_IRQFD
649         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
650 #endif
651
652         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
653
654         r = -ENOMEM;
655         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
656                 struct kvm_memslots *slots = kvm_alloc_memslots();
657                 if (!slots)
658                         goto out_err_no_srcu;
659                 /*
660                  * Generations must be different for each address space.
661                  * Init kvm generation close to the maximum to easily test the
662                  * code of handling generation number wrap-around.
663                  */
664                 slots->generation = i * 2 - 150;
665                 rcu_assign_pointer(kvm->memslots[i], slots);
666         }
667
668         if (init_srcu_struct(&kvm->srcu))
669                 goto out_err_no_srcu;
670         if (init_srcu_struct(&kvm->irq_srcu))
671                 goto out_err_no_irq_srcu;
672         for (i = 0; i < KVM_NR_BUSES; i++) {
673                 rcu_assign_pointer(kvm->buses[i],
674                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
675                 if (!kvm->buses[i])
676                         goto out_err;
677         }
678
679         r = kvm_init_mmu_notifier(kvm);
680         if (r)
681                 goto out_err;
682
683         spin_lock(&kvm_lock);
684         list_add(&kvm->vm_list, &vm_list);
685         spin_unlock(&kvm_lock);
686
687         preempt_notifier_inc();
688
689         return kvm;
690
691 out_err:
692         cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694         cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696         hardware_disable_all();
697 out_err_no_disable:
698         refcount_set(&kvm->users_count, 0);
699         for (i = 0; i < KVM_NR_BUSES; i++)
700                 kfree(kvm_get_bus(kvm, i));
701         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703         kvm_arch_free_vm(kvm);
704         mmdrop(current->mm);
705         return ERR_PTR(r);
706 }
707
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710         struct kvm_device *dev, *tmp;
711
712         /*
713          * We do not need to take the kvm->lock here, because nobody else
714          * has a reference to the struct kvm at this point and therefore
715          * cannot access the devices list anyhow.
716          */
717         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718                 list_del(&dev->vm_node);
719                 dev->ops->destroy(dev);
720         }
721 }
722
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725         int i;
726         struct mm_struct *mm = kvm->mm;
727
728         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729         kvm_destroy_vm_debugfs(kvm);
730         kvm_arch_sync_events(kvm);
731         spin_lock(&kvm_lock);
732         list_del(&kvm->vm_list);
733         spin_unlock(&kvm_lock);
734         kvm_free_irq_routing(kvm);
735         for (i = 0; i < KVM_NR_BUSES; i++) {
736                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737
738                 if (bus)
739                         kvm_io_bus_destroy(bus);
740                 kvm->buses[i] = NULL;
741         }
742         kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746         kvm_arch_flush_shadow_all(kvm);
747 #endif
748         kvm_arch_destroy_vm(kvm);
749         kvm_destroy_devices(kvm);
750         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752         cleanup_srcu_struct(&kvm->irq_srcu);
753         cleanup_srcu_struct(&kvm->srcu);
754         kvm_arch_free_vm(kvm);
755         preempt_notifier_dec();
756         hardware_disable_all();
757         mmdrop(mm);
758 }
759
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762         refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768         if (refcount_dec_and_test(&kvm->users_count))
769                 kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772
773
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776         struct kvm *kvm = filp->private_data;
777
778         kvm_irqfd_release(kvm);
779
780         kvm_put_kvm(kvm);
781         return 0;
782 }
783
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791
792         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793         if (!memslot->dirty_bitmap)
794                 return -ENOMEM;
795
796         return 0;
797 }
798
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806                             struct kvm_memory_slot *new,
807                             enum kvm_mr_change change)
808 {
809         int id = new->id;
810         int i = slots->id_to_index[id];
811         struct kvm_memory_slot *mslots = slots->memslots;
812
813         WARN_ON(mslots[i].id != id);
814         switch (change) {
815         case KVM_MR_CREATE:
816                 slots->used_slots++;
817                 WARN_ON(mslots[i].npages || !new->npages);
818                 break;
819         case KVM_MR_DELETE:
820                 slots->used_slots--;
821                 WARN_ON(new->npages || !mslots[i].npages);
822                 break;
823         default:
824                 break;
825         }
826
827         while (i < KVM_MEM_SLOTS_NUM - 1 &&
828                new->base_gfn <= mslots[i + 1].base_gfn) {
829                 if (!mslots[i + 1].npages)
830                         break;
831                 mslots[i] = mslots[i + 1];
832                 slots->id_to_index[mslots[i].id] = i;
833                 i++;
834         }
835
836         /*
837          * The ">=" is needed when creating a slot with base_gfn == 0,
838          * so that it moves before all those with base_gfn == npages == 0.
839          *
840          * On the other hand, if new->npages is zero, the above loop has
841          * already left i pointing to the beginning of the empty part of
842          * mslots, and the ">=" would move the hole backwards in this
843          * case---which is wrong.  So skip the loop when deleting a slot.
844          */
845         if (new->npages) {
846                 while (i > 0 &&
847                        new->base_gfn >= mslots[i - 1].base_gfn) {
848                         mslots[i] = mslots[i - 1];
849                         slots->id_to_index[mslots[i].id] = i;
850                         i--;
851                 }
852         } else
853                 WARN_ON_ONCE(i != slots->used_slots);
854
855         mslots[i] = *new;
856         slots->id_to_index[mslots[i].id] = i;
857 }
858
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862
863 #ifdef __KVM_HAVE_READONLY_MEM
864         valid_flags |= KVM_MEM_READONLY;
865 #endif
866
867         if (mem->flags & ~valid_flags)
868                 return -EINVAL;
869
870         return 0;
871 }
872
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874                 int as_id, struct kvm_memslots *slots)
875 {
876         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877
878         /*
879          * Set the low bit in the generation, which disables SPTE caching
880          * until the end of synchronize_srcu_expedited.
881          */
882         WARN_ON(old_memslots->generation & 1);
883         slots->generation = old_memslots->generation + 1;
884
885         rcu_assign_pointer(kvm->memslots[as_id], slots);
886         synchronize_srcu_expedited(&kvm->srcu);
887
888         /*
889          * Increment the new memslot generation a second time. This prevents
890          * vm exits that race with memslot updates from caching a memslot
891          * generation that will (potentially) be valid forever.
892          *
893          * Generations must be unique even across address spaces.  We do not need
894          * a global counter for that, instead the generation space is evenly split
895          * across address spaces.  For example, with two address spaces, address
896          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
897          * use generations 2, 6, 10, 14, ...
898          */
899         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
900
901         kvm_arch_memslots_updated(kvm, slots);
902
903         return old_memslots;
904 }
905
906 /*
907  * Allocate some memory and give it an address in the guest physical address
908  * space.
909  *
910  * Discontiguous memory is allowed, mostly for framebuffers.
911  *
912  * Must be called holding kvm->slots_lock for write.
913  */
914 int __kvm_set_memory_region(struct kvm *kvm,
915                             const struct kvm_userspace_memory_region *mem)
916 {
917         int r;
918         gfn_t base_gfn;
919         unsigned long npages;
920         struct kvm_memory_slot *slot;
921         struct kvm_memory_slot old, new;
922         struct kvm_memslots *slots = NULL, *old_memslots;
923         int as_id, id;
924         enum kvm_mr_change change;
925
926         r = check_memory_region_flags(mem);
927         if (r)
928                 goto out;
929
930         r = -EINVAL;
931         as_id = mem->slot >> 16;
932         id = (u16)mem->slot;
933
934         /* General sanity checks */
935         if (mem->memory_size & (PAGE_SIZE - 1))
936                 goto out;
937         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
938                 goto out;
939         /* We can read the guest memory with __xxx_user() later on. */
940         if ((id < KVM_USER_MEM_SLOTS) &&
941             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
942              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
943                         mem->memory_size)))
944                 goto out;
945         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
946                 goto out;
947         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
948                 goto out;
949
950         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
951         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
952         npages = mem->memory_size >> PAGE_SHIFT;
953
954         if (npages > KVM_MEM_MAX_NR_PAGES)
955                 goto out;
956
957         new = old = *slot;
958
959         new.id = id;
960         new.base_gfn = base_gfn;
961         new.npages = npages;
962         new.flags = mem->flags;
963
964         if (npages) {
965                 if (!old.npages)
966                         change = KVM_MR_CREATE;
967                 else { /* Modify an existing slot. */
968                         if ((mem->userspace_addr != old.userspace_addr) ||
969                             (npages != old.npages) ||
970                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
971                                 goto out;
972
973                         if (base_gfn != old.base_gfn)
974                                 change = KVM_MR_MOVE;
975                         else if (new.flags != old.flags)
976                                 change = KVM_MR_FLAGS_ONLY;
977                         else { /* Nothing to change. */
978                                 r = 0;
979                                 goto out;
980                         }
981                 }
982         } else {
983                 if (!old.npages)
984                         goto out;
985
986                 change = KVM_MR_DELETE;
987                 new.base_gfn = 0;
988                 new.flags = 0;
989         }
990
991         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
992                 /* Check for overlaps */
993                 r = -EEXIST;
994                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
995                         if (slot->id == id)
996                                 continue;
997                         if (!((base_gfn + npages <= slot->base_gfn) ||
998                               (base_gfn >= slot->base_gfn + slot->npages)))
999                                 goto out;
1000                 }
1001         }
1002
1003         /* Free page dirty bitmap if unneeded */
1004         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1005                 new.dirty_bitmap = NULL;
1006
1007         r = -ENOMEM;
1008         if (change == KVM_MR_CREATE) {
1009                 new.userspace_addr = mem->userspace_addr;
1010
1011                 if (kvm_arch_create_memslot(kvm, &new, npages))
1012                         goto out_free;
1013         }
1014
1015         /* Allocate page dirty bitmap if needed */
1016         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1017                 if (kvm_create_dirty_bitmap(&new) < 0)
1018                         goto out_free;
1019         }
1020
1021         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1022         if (!slots)
1023                 goto out_free;
1024         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1025
1026         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1027                 slot = id_to_memslot(slots, id);
1028                 slot->flags |= KVM_MEMSLOT_INVALID;
1029
1030                 old_memslots = install_new_memslots(kvm, as_id, slots);
1031
1032                 /* From this point no new shadow pages pointing to a deleted,
1033                  * or moved, memslot will be created.
1034                  *
1035                  * validation of sp->gfn happens in:
1036                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1037                  *      - kvm_is_visible_gfn (mmu_check_roots)
1038                  */
1039                 kvm_arch_flush_shadow_memslot(kvm, slot);
1040
1041                 /*
1042                  * We can re-use the old_memslots from above, the only difference
1043                  * from the currently installed memslots is the invalid flag.  This
1044                  * will get overwritten by update_memslots anyway.
1045                  */
1046                 slots = old_memslots;
1047         }
1048
1049         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1050         if (r)
1051                 goto out_slots;
1052
1053         /* actual memory is freed via old in kvm_free_memslot below */
1054         if (change == KVM_MR_DELETE) {
1055                 new.dirty_bitmap = NULL;
1056                 memset(&new.arch, 0, sizeof(new.arch));
1057         }
1058
1059         update_memslots(slots, &new, change);
1060         old_memslots = install_new_memslots(kvm, as_id, slots);
1061
1062         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1063
1064         kvm_free_memslot(kvm, &old, &new);
1065         kvfree(old_memslots);
1066         return 0;
1067
1068 out_slots:
1069         kvfree(slots);
1070 out_free:
1071         kvm_free_memslot(kvm, &new, &old);
1072 out:
1073         return r;
1074 }
1075 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1076
1077 int kvm_set_memory_region(struct kvm *kvm,
1078                           const struct kvm_userspace_memory_region *mem)
1079 {
1080         int r;
1081
1082         mutex_lock(&kvm->slots_lock);
1083         r = __kvm_set_memory_region(kvm, mem);
1084         mutex_unlock(&kvm->slots_lock);
1085         return r;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1088
1089 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1090                                           struct kvm_userspace_memory_region *mem)
1091 {
1092         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1093                 return -EINVAL;
1094
1095         return kvm_set_memory_region(kvm, mem);
1096 }
1097
1098 int kvm_get_dirty_log(struct kvm *kvm,
1099                         struct kvm_dirty_log *log, int *is_dirty)
1100 {
1101         struct kvm_memslots *slots;
1102         struct kvm_memory_slot *memslot;
1103         int i, as_id, id;
1104         unsigned long n;
1105         unsigned long any = 0;
1106
1107         as_id = log->slot >> 16;
1108         id = (u16)log->slot;
1109         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1110                 return -EINVAL;
1111
1112         slots = __kvm_memslots(kvm, as_id);
1113         memslot = id_to_memslot(slots, id);
1114         if (!memslot->dirty_bitmap)
1115                 return -ENOENT;
1116
1117         n = kvm_dirty_bitmap_bytes(memslot);
1118
1119         for (i = 0; !any && i < n/sizeof(long); ++i)
1120                 any = memslot->dirty_bitmap[i];
1121
1122         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1123                 return -EFAULT;
1124
1125         if (any)
1126                 *is_dirty = 1;
1127         return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134  *      and reenable dirty page tracking for the corresponding pages.
1135  * @kvm:        pointer to kvm instance
1136  * @log:        slot id and address to which we copy the log
1137  * @is_dirty:   flag set if any page is dirty
1138  *
1139  * We need to keep it in mind that VCPU threads can write to the bitmap
1140  * concurrently. So, to avoid losing track of dirty pages we keep the
1141  * following order:
1142  *
1143  *    1. Take a snapshot of the bit and clear it if needed.
1144  *    2. Write protect the corresponding page.
1145  *    3. Copy the snapshot to the userspace.
1146  *    4. Upon return caller flushes TLB's if needed.
1147  *
1148  * Between 2 and 4, the guest may write to the page using the remaining TLB
1149  * entry.  This is not a problem because the page is reported dirty using
1150  * the snapshot taken before and step 4 ensures that writes done after
1151  * exiting to userspace will be logged for the next call.
1152  *
1153  */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155                         struct kvm_dirty_log *log, bool *flush)
1156 {
1157         struct kvm_memslots *slots;
1158         struct kvm_memory_slot *memslot;
1159         int i, as_id, id;
1160         unsigned long n;
1161         unsigned long *dirty_bitmap;
1162         unsigned long *dirty_bitmap_buffer;
1163
1164         as_id = log->slot >> 16;
1165         id = (u16)log->slot;
1166         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1167                 return -EINVAL;
1168
1169         slots = __kvm_memslots(kvm, as_id);
1170         memslot = id_to_memslot(slots, id);
1171
1172         dirty_bitmap = memslot->dirty_bitmap;
1173         if (!dirty_bitmap)
1174                 return -ENOENT;
1175
1176         n = kvm_dirty_bitmap_bytes(memslot);
1177         *flush = false;
1178         if (kvm->manual_dirty_log_protect) {
1179                 /*
1180                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1181                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1182                  * is some code duplication between this function and
1183                  * kvm_get_dirty_log, but hopefully all architecture
1184                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1185                  * can be eliminated.
1186                  */
1187                 dirty_bitmap_buffer = dirty_bitmap;
1188         } else {
1189                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1190                 memset(dirty_bitmap_buffer, 0, n);
1191
1192                 spin_lock(&kvm->mmu_lock);
1193                 for (i = 0; i < n / sizeof(long); i++) {
1194                         unsigned long mask;
1195                         gfn_t offset;
1196
1197                         if (!dirty_bitmap[i])
1198                                 continue;
1199
1200                         *flush = true;
1201                         mask = xchg(&dirty_bitmap[i], 0);
1202                         dirty_bitmap_buffer[i] = mask;
1203
1204                         if (mask) {
1205                                 offset = i * BITS_PER_LONG;
1206                                 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1207                                                                         offset, mask);
1208                         }
1209                 }
1210                 spin_unlock(&kvm->mmu_lock);
1211         }
1212
1213         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1214                 return -EFAULT;
1215         return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1218
1219 /**
1220  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1221  *      and reenable dirty page tracking for the corresponding pages.
1222  * @kvm:        pointer to kvm instance
1223  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1224  */
1225 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1226                                 struct kvm_clear_dirty_log *log, bool *flush)
1227 {
1228         struct kvm_memslots *slots;
1229         struct kvm_memory_slot *memslot;
1230         int as_id, id, n;
1231         gfn_t offset;
1232         unsigned long i;
1233         unsigned long *dirty_bitmap;
1234         unsigned long *dirty_bitmap_buffer;
1235
1236         as_id = log->slot >> 16;
1237         id = (u16)log->slot;
1238         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1239                 return -EINVAL;
1240
1241         if ((log->first_page & 63) || (log->num_pages & 63))
1242                 return -EINVAL;
1243
1244         slots = __kvm_memslots(kvm, as_id);
1245         memslot = id_to_memslot(slots, id);
1246
1247         dirty_bitmap = memslot->dirty_bitmap;
1248         if (!dirty_bitmap)
1249                 return -ENOENT;
1250
1251         n = kvm_dirty_bitmap_bytes(memslot);
1252         *flush = false;
1253         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1254         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1255                 return -EFAULT;
1256
1257         spin_lock(&kvm->mmu_lock);
1258         for (offset = log->first_page,
1259              i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1260              i++, offset += BITS_PER_LONG) {
1261                 unsigned long mask = *dirty_bitmap_buffer++;
1262                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1263                 if (!mask)
1264                         continue;
1265
1266                 mask &= atomic_long_fetch_andnot(mask, p);
1267
1268                 /*
1269                  * mask contains the bits that really have been cleared.  This
1270                  * never includes any bits beyond the length of the memslot (if
1271                  * the length is not aligned to 64 pages), therefore it is not
1272                  * a problem if userspace sets them in log->dirty_bitmap.
1273                 */
1274                 if (mask) {
1275                         *flush = true;
1276                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1277                                                                 offset, mask);
1278                 }
1279         }
1280         spin_unlock(&kvm->mmu_lock);
1281
1282         return 0;
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1285 #endif
1286
1287 bool kvm_largepages_enabled(void)
1288 {
1289         return largepages_enabled;
1290 }
1291
1292 void kvm_disable_largepages(void)
1293 {
1294         largepages_enabled = false;
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1297
1298 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1299 {
1300         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1303
1304 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1307 }
1308
1309 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1310 {
1311         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1312
1313         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1314               memslot->flags & KVM_MEMSLOT_INVALID)
1315                 return false;
1316
1317         return true;
1318 }
1319 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1320
1321 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1322 {
1323         struct vm_area_struct *vma;
1324         unsigned long addr, size;
1325
1326         size = PAGE_SIZE;
1327
1328         addr = gfn_to_hva(kvm, gfn);
1329         if (kvm_is_error_hva(addr))
1330                 return PAGE_SIZE;
1331
1332         down_read(&current->mm->mmap_sem);
1333         vma = find_vma(current->mm, addr);
1334         if (!vma)
1335                 goto out;
1336
1337         size = vma_kernel_pagesize(vma);
1338
1339 out:
1340         up_read(&current->mm->mmap_sem);
1341
1342         return size;
1343 }
1344
1345 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1346 {
1347         return slot->flags & KVM_MEM_READONLY;
1348 }
1349
1350 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1351                                        gfn_t *nr_pages, bool write)
1352 {
1353         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1354                 return KVM_HVA_ERR_BAD;
1355
1356         if (memslot_is_readonly(slot) && write)
1357                 return KVM_HVA_ERR_RO_BAD;
1358
1359         if (nr_pages)
1360                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1361
1362         return __gfn_to_hva_memslot(slot, gfn);
1363 }
1364
1365 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1366                                      gfn_t *nr_pages)
1367 {
1368         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1369 }
1370
1371 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1372                                         gfn_t gfn)
1373 {
1374         return gfn_to_hva_many(slot, gfn, NULL);
1375 }
1376 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1377
1378 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1379 {
1380         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1381 }
1382 EXPORT_SYMBOL_GPL(gfn_to_hva);
1383
1384 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1385 {
1386         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1389
1390 /*
1391  * Return the hva of a @gfn and the R/W attribute if possible.
1392  *
1393  * @slot: the kvm_memory_slot which contains @gfn
1394  * @gfn: the gfn to be translated
1395  * @writable: used to return the read/write attribute of the @slot if the hva
1396  * is valid and @writable is not NULL
1397  */
1398 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1399                                       gfn_t gfn, bool *writable)
1400 {
1401         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1402
1403         if (!kvm_is_error_hva(hva) && writable)
1404                 *writable = !memslot_is_readonly(slot);
1405
1406         return hva;
1407 }
1408
1409 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1410 {
1411         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1412
1413         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1414 }
1415
1416 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1417 {
1418         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1419
1420         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1421 }
1422
1423 static inline int check_user_page_hwpoison(unsigned long addr)
1424 {
1425         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1426
1427         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1428         return rc == -EHWPOISON;
1429 }
1430
1431 /*
1432  * The fast path to get the writable pfn which will be stored in @pfn,
1433  * true indicates success, otherwise false is returned.  It's also the
1434  * only part that runs if we can are in atomic context.
1435  */
1436 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1437                             bool *writable, kvm_pfn_t *pfn)
1438 {
1439         struct page *page[1];
1440         int npages;
1441
1442         /*
1443          * Fast pin a writable pfn only if it is a write fault request
1444          * or the caller allows to map a writable pfn for a read fault
1445          * request.
1446          */
1447         if (!(write_fault || writable))
1448                 return false;
1449
1450         npages = __get_user_pages_fast(addr, 1, 1, page);
1451         if (npages == 1) {
1452                 *pfn = page_to_pfn(page[0]);
1453
1454                 if (writable)
1455                         *writable = true;
1456                 return true;
1457         }
1458
1459         return false;
1460 }
1461
1462 /*
1463  * The slow path to get the pfn of the specified host virtual address,
1464  * 1 indicates success, -errno is returned if error is detected.
1465  */
1466 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1467                            bool *writable, kvm_pfn_t *pfn)
1468 {
1469         unsigned int flags = FOLL_HWPOISON;
1470         struct page *page;
1471         int npages = 0;
1472
1473         might_sleep();
1474
1475         if (writable)
1476                 *writable = write_fault;
1477
1478         if (write_fault)
1479                 flags |= FOLL_WRITE;
1480         if (async)
1481                 flags |= FOLL_NOWAIT;
1482
1483         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1484         if (npages != 1)
1485                 return npages;
1486
1487         /* map read fault as writable if possible */
1488         if (unlikely(!write_fault) && writable) {
1489                 struct page *wpage;
1490
1491                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1492                         *writable = true;
1493                         put_page(page);
1494                         page = wpage;
1495                 }
1496         }
1497         *pfn = page_to_pfn(page);
1498         return npages;
1499 }
1500
1501 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1502 {
1503         if (unlikely(!(vma->vm_flags & VM_READ)))
1504                 return false;
1505
1506         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1507                 return false;
1508
1509         return true;
1510 }
1511
1512 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1513                                unsigned long addr, bool *async,
1514                                bool write_fault, bool *writable,
1515                                kvm_pfn_t *p_pfn)
1516 {
1517         unsigned long pfn;
1518         int r;
1519
1520         r = follow_pfn(vma, addr, &pfn);
1521         if (r) {
1522                 /*
1523                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1524                  * not call the fault handler, so do it here.
1525                  */
1526                 bool unlocked = false;
1527                 r = fixup_user_fault(current, current->mm, addr,
1528                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1529                                      &unlocked);
1530                 if (unlocked)
1531                         return -EAGAIN;
1532                 if (r)
1533                         return r;
1534
1535                 r = follow_pfn(vma, addr, &pfn);
1536                 if (r)
1537                         return r;
1538
1539         }
1540
1541         if (writable)
1542                 *writable = true;
1543
1544         /*
1545          * Get a reference here because callers of *hva_to_pfn* and
1546          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1547          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1548          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1549          * simply do nothing for reserved pfns.
1550          *
1551          * Whoever called remap_pfn_range is also going to call e.g.
1552          * unmap_mapping_range before the underlying pages are freed,
1553          * causing a call to our MMU notifier.
1554          */ 
1555         kvm_get_pfn(pfn);
1556
1557         *p_pfn = pfn;
1558         return 0;
1559 }
1560
1561 /*
1562  * Pin guest page in memory and return its pfn.
1563  * @addr: host virtual address which maps memory to the guest
1564  * @atomic: whether this function can sleep
1565  * @async: whether this function need to wait IO complete if the
1566  *         host page is not in the memory
1567  * @write_fault: whether we should get a writable host page
1568  * @writable: whether it allows to map a writable host page for !@write_fault
1569  *
1570  * The function will map a writable host page for these two cases:
1571  * 1): @write_fault = true
1572  * 2): @write_fault = false && @writable, @writable will tell the caller
1573  *     whether the mapping is writable.
1574  */
1575 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1576                         bool write_fault, bool *writable)
1577 {
1578         struct vm_area_struct *vma;
1579         kvm_pfn_t pfn = 0;
1580         int npages, r;
1581
1582         /* we can do it either atomically or asynchronously, not both */
1583         BUG_ON(atomic && async);
1584
1585         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1586                 return pfn;
1587
1588         if (atomic)
1589                 return KVM_PFN_ERR_FAULT;
1590
1591         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1592         if (npages == 1)
1593                 return pfn;
1594
1595         down_read(&current->mm->mmap_sem);
1596         if (npages == -EHWPOISON ||
1597               (!async && check_user_page_hwpoison(addr))) {
1598                 pfn = KVM_PFN_ERR_HWPOISON;
1599                 goto exit;
1600         }
1601
1602 retry:
1603         vma = find_vma_intersection(current->mm, addr, addr + 1);
1604
1605         if (vma == NULL)
1606                 pfn = KVM_PFN_ERR_FAULT;
1607         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1608                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1609                 if (r == -EAGAIN)
1610                         goto retry;
1611                 if (r < 0)
1612                         pfn = KVM_PFN_ERR_FAULT;
1613         } else {
1614                 if (async && vma_is_valid(vma, write_fault))
1615                         *async = true;
1616                 pfn = KVM_PFN_ERR_FAULT;
1617         }
1618 exit:
1619         up_read(&current->mm->mmap_sem);
1620         return pfn;
1621 }
1622
1623 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1624                                bool atomic, bool *async, bool write_fault,
1625                                bool *writable)
1626 {
1627         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1628
1629         if (addr == KVM_HVA_ERR_RO_BAD) {
1630                 if (writable)
1631                         *writable = false;
1632                 return KVM_PFN_ERR_RO_FAULT;
1633         }
1634
1635         if (kvm_is_error_hva(addr)) {
1636                 if (writable)
1637                         *writable = false;
1638                 return KVM_PFN_NOSLOT;
1639         }
1640
1641         /* Do not map writable pfn in the readonly memslot. */
1642         if (writable && memslot_is_readonly(slot)) {
1643                 *writable = false;
1644                 writable = NULL;
1645         }
1646
1647         return hva_to_pfn(addr, atomic, async, write_fault,
1648                           writable);
1649 }
1650 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1651
1652 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1653                       bool *writable)
1654 {
1655         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1656                                     write_fault, writable);
1657 }
1658 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1659
1660 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1661 {
1662         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1663 }
1664 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1665
1666 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1667 {
1668         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1669 }
1670 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1671
1672 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1673 {
1674         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1675 }
1676 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1677
1678 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1679 {
1680         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1683
1684 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1685 {
1686         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1687 }
1688 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1689
1690 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1691 {
1692         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1695
1696 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1697                             struct page **pages, int nr_pages)
1698 {
1699         unsigned long addr;
1700         gfn_t entry = 0;
1701
1702         addr = gfn_to_hva_many(slot, gfn, &entry);
1703         if (kvm_is_error_hva(addr))
1704                 return -1;
1705
1706         if (entry < nr_pages)
1707                 return 0;
1708
1709         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1710 }
1711 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1712
1713 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1714 {
1715         if (is_error_noslot_pfn(pfn))
1716                 return KVM_ERR_PTR_BAD_PAGE;
1717
1718         if (kvm_is_reserved_pfn(pfn)) {
1719                 WARN_ON(1);
1720                 return KVM_ERR_PTR_BAD_PAGE;
1721         }
1722
1723         return pfn_to_page(pfn);
1724 }
1725
1726 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1727 {
1728         kvm_pfn_t pfn;
1729
1730         pfn = gfn_to_pfn(kvm, gfn);
1731
1732         return kvm_pfn_to_page(pfn);
1733 }
1734 EXPORT_SYMBOL_GPL(gfn_to_page);
1735
1736 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1737 {
1738         kvm_pfn_t pfn;
1739
1740         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1741
1742         return kvm_pfn_to_page(pfn);
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1745
1746 void kvm_release_page_clean(struct page *page)
1747 {
1748         WARN_ON(is_error_page(page));
1749
1750         kvm_release_pfn_clean(page_to_pfn(page));
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1753
1754 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1755 {
1756         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1757                 put_page(pfn_to_page(pfn));
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1760
1761 void kvm_release_page_dirty(struct page *page)
1762 {
1763         WARN_ON(is_error_page(page));
1764
1765         kvm_release_pfn_dirty(page_to_pfn(page));
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1768
1769 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1770 {
1771         kvm_set_pfn_dirty(pfn);
1772         kvm_release_pfn_clean(pfn);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1775
1776 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1777 {
1778         if (!kvm_is_reserved_pfn(pfn)) {
1779                 struct page *page = pfn_to_page(pfn);
1780
1781                 if (!PageReserved(page))
1782                         SetPageDirty(page);
1783         }
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1786
1787 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1788 {
1789         if (!kvm_is_reserved_pfn(pfn))
1790                 mark_page_accessed(pfn_to_page(pfn));
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1793
1794 void kvm_get_pfn(kvm_pfn_t pfn)
1795 {
1796         if (!kvm_is_reserved_pfn(pfn))
1797                 get_page(pfn_to_page(pfn));
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1800
1801 static int next_segment(unsigned long len, int offset)
1802 {
1803         if (len > PAGE_SIZE - offset)
1804                 return PAGE_SIZE - offset;
1805         else
1806                 return len;
1807 }
1808
1809 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1810                                  void *data, int offset, int len)
1811 {
1812         int r;
1813         unsigned long addr;
1814
1815         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1816         if (kvm_is_error_hva(addr))
1817                 return -EFAULT;
1818         r = __copy_from_user(data, (void __user *)addr + offset, len);
1819         if (r)
1820                 return -EFAULT;
1821         return 0;
1822 }
1823
1824 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1825                         int len)
1826 {
1827         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1828
1829         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1832
1833 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1834                              int offset, int len)
1835 {
1836         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1837
1838         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1839 }
1840 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1841
1842 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1843 {
1844         gfn_t gfn = gpa >> PAGE_SHIFT;
1845         int seg;
1846         int offset = offset_in_page(gpa);
1847         int ret;
1848
1849         while ((seg = next_segment(len, offset)) != 0) {
1850                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1851                 if (ret < 0)
1852                         return ret;
1853                 offset = 0;
1854                 len -= seg;
1855                 data += seg;
1856                 ++gfn;
1857         }
1858         return 0;
1859 }
1860 EXPORT_SYMBOL_GPL(kvm_read_guest);
1861
1862 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1863 {
1864         gfn_t gfn = gpa >> PAGE_SHIFT;
1865         int seg;
1866         int offset = offset_in_page(gpa);
1867         int ret;
1868
1869         while ((seg = next_segment(len, offset)) != 0) {
1870                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1871                 if (ret < 0)
1872                         return ret;
1873                 offset = 0;
1874                 len -= seg;
1875                 data += seg;
1876                 ++gfn;
1877         }
1878         return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1881
1882 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1883                                    void *data, int offset, unsigned long len)
1884 {
1885         int r;
1886         unsigned long addr;
1887
1888         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1889         if (kvm_is_error_hva(addr))
1890                 return -EFAULT;
1891         pagefault_disable();
1892         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1893         pagefault_enable();
1894         if (r)
1895                 return -EFAULT;
1896         return 0;
1897 }
1898
1899 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1900                           unsigned long len)
1901 {
1902         gfn_t gfn = gpa >> PAGE_SHIFT;
1903         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1904         int offset = offset_in_page(gpa);
1905
1906         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1909
1910 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1911                                void *data, unsigned long len)
1912 {
1913         gfn_t gfn = gpa >> PAGE_SHIFT;
1914         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1915         int offset = offset_in_page(gpa);
1916
1917         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1920
1921 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1922                                   const void *data, int offset, int len)
1923 {
1924         int r;
1925         unsigned long addr;
1926
1927         addr = gfn_to_hva_memslot(memslot, gfn);
1928         if (kvm_is_error_hva(addr))
1929                 return -EFAULT;
1930         r = __copy_to_user((void __user *)addr + offset, data, len);
1931         if (r)
1932                 return -EFAULT;
1933         mark_page_dirty_in_slot(memslot, gfn);
1934         return 0;
1935 }
1936
1937 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1938                          const void *data, int offset, int len)
1939 {
1940         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1941
1942         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1945
1946 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1947                               const void *data, int offset, int len)
1948 {
1949         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1950
1951         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1954
1955 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1956                     unsigned long len)
1957 {
1958         gfn_t gfn = gpa >> PAGE_SHIFT;
1959         int seg;
1960         int offset = offset_in_page(gpa);
1961         int ret;
1962
1963         while ((seg = next_segment(len, offset)) != 0) {
1964                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1965                 if (ret < 0)
1966                         return ret;
1967                 offset = 0;
1968                 len -= seg;
1969                 data += seg;
1970                 ++gfn;
1971         }
1972         return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(kvm_write_guest);
1975
1976 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1977                          unsigned long len)
1978 {
1979         gfn_t gfn = gpa >> PAGE_SHIFT;
1980         int seg;
1981         int offset = offset_in_page(gpa);
1982         int ret;
1983
1984         while ((seg = next_segment(len, offset)) != 0) {
1985                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1986                 if (ret < 0)
1987                         return ret;
1988                 offset = 0;
1989                 len -= seg;
1990                 data += seg;
1991                 ++gfn;
1992         }
1993         return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1996
1997 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1998                                        struct gfn_to_hva_cache *ghc,
1999                                        gpa_t gpa, unsigned long len)
2000 {
2001         int offset = offset_in_page(gpa);
2002         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2003         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2004         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2005         gfn_t nr_pages_avail;
2006         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2007
2008         ghc->gpa = gpa;
2009         ghc->generation = slots->generation;
2010         ghc->len = len;
2011         ghc->hva = KVM_HVA_ERR_BAD;
2012
2013         /*
2014          * If the requested region crosses two memslots, we still
2015          * verify that the entire region is valid here.
2016          */
2017         while (!r && start_gfn <= end_gfn) {
2018                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2019                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2020                                            &nr_pages_avail);
2021                 if (kvm_is_error_hva(ghc->hva))
2022                         r = -EFAULT;
2023                 start_gfn += nr_pages_avail;
2024         }
2025
2026         /* Use the slow path for cross page reads and writes. */
2027         if (!r && nr_pages_needed == 1)
2028                 ghc->hva += offset;
2029         else
2030                 ghc->memslot = NULL;
2031
2032         return r;
2033 }
2034
2035 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2036                               gpa_t gpa, unsigned long len)
2037 {
2038         struct kvm_memslots *slots = kvm_memslots(kvm);
2039         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2042
2043 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2044                                   void *data, unsigned int offset,
2045                                   unsigned long len)
2046 {
2047         struct kvm_memslots *slots = kvm_memslots(kvm);
2048         int r;
2049         gpa_t gpa = ghc->gpa + offset;
2050
2051         BUG_ON(len + offset > ghc->len);
2052
2053         if (slots->generation != ghc->generation)
2054                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2055
2056         if (unlikely(!ghc->memslot))
2057                 return kvm_write_guest(kvm, gpa, data, len);
2058
2059         if (kvm_is_error_hva(ghc->hva))
2060                 return -EFAULT;
2061
2062         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2063         if (r)
2064                 return -EFAULT;
2065         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2066
2067         return 0;
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2070
2071 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2072                            void *data, unsigned long len)
2073 {
2074         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2077
2078 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2079                            void *data, unsigned long len)
2080 {
2081         struct kvm_memslots *slots = kvm_memslots(kvm);
2082         int r;
2083
2084         BUG_ON(len > ghc->len);
2085
2086         if (slots->generation != ghc->generation)
2087                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2088
2089         if (unlikely(!ghc->memslot))
2090                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2091
2092         if (kvm_is_error_hva(ghc->hva))
2093                 return -EFAULT;
2094
2095         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2096         if (r)
2097                 return -EFAULT;
2098
2099         return 0;
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2102
2103 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2104 {
2105         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2106
2107         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2110
2111 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2112 {
2113         gfn_t gfn = gpa >> PAGE_SHIFT;
2114         int seg;
2115         int offset = offset_in_page(gpa);
2116         int ret;
2117
2118         while ((seg = next_segment(len, offset)) != 0) {
2119                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2120                 if (ret < 0)
2121                         return ret;
2122                 offset = 0;
2123                 len -= seg;
2124                 ++gfn;
2125         }
2126         return 0;
2127 }
2128 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2129
2130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2131                                     gfn_t gfn)
2132 {
2133         if (memslot && memslot->dirty_bitmap) {
2134                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2135
2136                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2137         }
2138 }
2139
2140 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2141 {
2142         struct kvm_memory_slot *memslot;
2143
2144         memslot = gfn_to_memslot(kvm, gfn);
2145         mark_page_dirty_in_slot(memslot, gfn);
2146 }
2147 EXPORT_SYMBOL_GPL(mark_page_dirty);
2148
2149 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2150 {
2151         struct kvm_memory_slot *memslot;
2152
2153         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2154         mark_page_dirty_in_slot(memslot, gfn);
2155 }
2156 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2157
2158 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2159 {
2160         if (!vcpu->sigset_active)
2161                 return;
2162
2163         /*
2164          * This does a lockless modification of ->real_blocked, which is fine
2165          * because, only current can change ->real_blocked and all readers of
2166          * ->real_blocked don't care as long ->real_blocked is always a subset
2167          * of ->blocked.
2168          */
2169         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2170 }
2171
2172 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2173 {
2174         if (!vcpu->sigset_active)
2175                 return;
2176
2177         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2178         sigemptyset(&current->real_blocked);
2179 }
2180
2181 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2182 {
2183         unsigned int old, val, grow;
2184
2185         old = val = vcpu->halt_poll_ns;
2186         grow = READ_ONCE(halt_poll_ns_grow);
2187         /* 10us base */
2188         if (val == 0 && grow)
2189                 val = 10000;
2190         else
2191                 val *= grow;
2192
2193         if (val > halt_poll_ns)
2194                 val = halt_poll_ns;
2195
2196         vcpu->halt_poll_ns = val;
2197         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2198 }
2199
2200 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2201 {
2202         unsigned int old, val, shrink;
2203
2204         old = val = vcpu->halt_poll_ns;
2205         shrink = READ_ONCE(halt_poll_ns_shrink);
2206         if (shrink == 0)
2207                 val = 0;
2208         else
2209                 val /= shrink;
2210
2211         vcpu->halt_poll_ns = val;
2212         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2213 }
2214
2215 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2216 {
2217         int ret = -EINTR;
2218         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2219
2220         if (kvm_arch_vcpu_runnable(vcpu)) {
2221                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2222                 goto out;
2223         }
2224         if (kvm_cpu_has_pending_timer(vcpu))
2225                 goto out;
2226         if (signal_pending(current))
2227                 goto out;
2228
2229         ret = 0;
2230 out:
2231         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2232         return ret;
2233 }
2234
2235 /*
2236  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2237  */
2238 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2239 {
2240         ktime_t start, cur;
2241         DECLARE_SWAITQUEUE(wait);
2242         bool waited = false;
2243         u64 block_ns;
2244
2245         start = cur = ktime_get();
2246         if (vcpu->halt_poll_ns) {
2247                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2248
2249                 ++vcpu->stat.halt_attempted_poll;
2250                 do {
2251                         /*
2252                          * This sets KVM_REQ_UNHALT if an interrupt
2253                          * arrives.
2254                          */
2255                         if (kvm_vcpu_check_block(vcpu) < 0) {
2256                                 ++vcpu->stat.halt_successful_poll;
2257                                 if (!vcpu_valid_wakeup(vcpu))
2258                                         ++vcpu->stat.halt_poll_invalid;
2259                                 goto out;
2260                         }
2261                         cur = ktime_get();
2262                 } while (single_task_running() && ktime_before(cur, stop));
2263         }
2264
2265         kvm_arch_vcpu_blocking(vcpu);
2266
2267         for (;;) {
2268                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2269
2270                 if (kvm_vcpu_check_block(vcpu) < 0)
2271                         break;
2272
2273                 waited = true;
2274                 schedule();
2275         }
2276
2277         finish_swait(&vcpu->wq, &wait);
2278         cur = ktime_get();
2279
2280         kvm_arch_vcpu_unblocking(vcpu);
2281 out:
2282         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2283
2284         if (!vcpu_valid_wakeup(vcpu))
2285                 shrink_halt_poll_ns(vcpu);
2286         else if (halt_poll_ns) {
2287                 if (block_ns <= vcpu->halt_poll_ns)
2288                         ;
2289                 /* we had a long block, shrink polling */
2290                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2291                         shrink_halt_poll_ns(vcpu);
2292                 /* we had a short halt and our poll time is too small */
2293                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2294                         block_ns < halt_poll_ns)
2295                         grow_halt_poll_ns(vcpu);
2296         } else
2297                 vcpu->halt_poll_ns = 0;
2298
2299         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2300         kvm_arch_vcpu_block_finish(vcpu);
2301 }
2302 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2303
2304 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2305 {
2306         struct swait_queue_head *wqp;
2307
2308         wqp = kvm_arch_vcpu_wq(vcpu);
2309         if (swq_has_sleeper(wqp)) {
2310                 swake_up_one(wqp);
2311                 ++vcpu->stat.halt_wakeup;
2312                 return true;
2313         }
2314
2315         return false;
2316 }
2317 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2318
2319 #ifndef CONFIG_S390
2320 /*
2321  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2322  */
2323 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2324 {
2325         int me;
2326         int cpu = vcpu->cpu;
2327
2328         if (kvm_vcpu_wake_up(vcpu))
2329                 return;
2330
2331         me = get_cpu();
2332         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2333                 if (kvm_arch_vcpu_should_kick(vcpu))
2334                         smp_send_reschedule(cpu);
2335         put_cpu();
2336 }
2337 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2338 #endif /* !CONFIG_S390 */
2339
2340 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2341 {
2342         struct pid *pid;
2343         struct task_struct *task = NULL;
2344         int ret = 0;
2345
2346         rcu_read_lock();
2347         pid = rcu_dereference(target->pid);
2348         if (pid)
2349                 task = get_pid_task(pid, PIDTYPE_PID);
2350         rcu_read_unlock();
2351         if (!task)
2352                 return ret;
2353         ret = yield_to(task, 1);
2354         put_task_struct(task);
2355
2356         return ret;
2357 }
2358 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2359
2360 /*
2361  * Helper that checks whether a VCPU is eligible for directed yield.
2362  * Most eligible candidate to yield is decided by following heuristics:
2363  *
2364  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2365  *  (preempted lock holder), indicated by @in_spin_loop.
2366  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2367  *
2368  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2369  *  chance last time (mostly it has become eligible now since we have probably
2370  *  yielded to lockholder in last iteration. This is done by toggling
2371  *  @dy_eligible each time a VCPU checked for eligibility.)
2372  *
2373  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2374  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2375  *  burning. Giving priority for a potential lock-holder increases lock
2376  *  progress.
2377  *
2378  *  Since algorithm is based on heuristics, accessing another VCPU data without
2379  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2380  *  and continue with next VCPU and so on.
2381  */
2382 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2383 {
2384 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2385         bool eligible;
2386
2387         eligible = !vcpu->spin_loop.in_spin_loop ||
2388                     vcpu->spin_loop.dy_eligible;
2389
2390         if (vcpu->spin_loop.in_spin_loop)
2391                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2392
2393         return eligible;
2394 #else
2395         return true;
2396 #endif
2397 }
2398
2399 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2400 {
2401         struct kvm *kvm = me->kvm;
2402         struct kvm_vcpu *vcpu;
2403         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2404         int yielded = 0;
2405         int try = 3;
2406         int pass;
2407         int i;
2408
2409         kvm_vcpu_set_in_spin_loop(me, true);
2410         /*
2411          * We boost the priority of a VCPU that is runnable but not
2412          * currently running, because it got preempted by something
2413          * else and called schedule in __vcpu_run.  Hopefully that
2414          * VCPU is holding the lock that we need and will release it.
2415          * We approximate round-robin by starting at the last boosted VCPU.
2416          */
2417         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2418                 kvm_for_each_vcpu(i, vcpu, kvm) {
2419                         if (!pass && i <= last_boosted_vcpu) {
2420                                 i = last_boosted_vcpu;
2421                                 continue;
2422                         } else if (pass && i > last_boosted_vcpu)
2423                                 break;
2424                         if (!READ_ONCE(vcpu->preempted))
2425                                 continue;
2426                         if (vcpu == me)
2427                                 continue;
2428                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2429                                 continue;
2430                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2431                                 continue;
2432                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2433                                 continue;
2434
2435                         yielded = kvm_vcpu_yield_to(vcpu);
2436                         if (yielded > 0) {
2437                                 kvm->last_boosted_vcpu = i;
2438                                 break;
2439                         } else if (yielded < 0) {
2440                                 try--;
2441                                 if (!try)
2442                                         break;
2443                         }
2444                 }
2445         }
2446         kvm_vcpu_set_in_spin_loop(me, false);
2447
2448         /* Ensure vcpu is not eligible during next spinloop */
2449         kvm_vcpu_set_dy_eligible(me, false);
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2452
2453 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2454 {
2455         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2456         struct page *page;
2457
2458         if (vmf->pgoff == 0)
2459                 page = virt_to_page(vcpu->run);
2460 #ifdef CONFIG_X86
2461         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2462                 page = virt_to_page(vcpu->arch.pio_data);
2463 #endif
2464 #ifdef CONFIG_KVM_MMIO
2465         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2466                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2467 #endif
2468         else
2469                 return kvm_arch_vcpu_fault(vcpu, vmf);
2470         get_page(page);
2471         vmf->page = page;
2472         return 0;
2473 }
2474
2475 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2476         .fault = kvm_vcpu_fault,
2477 };
2478
2479 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2480 {
2481         vma->vm_ops = &kvm_vcpu_vm_ops;
2482         return 0;
2483 }
2484
2485 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2486 {
2487         struct kvm_vcpu *vcpu = filp->private_data;
2488
2489         debugfs_remove_recursive(vcpu->debugfs_dentry);
2490         kvm_put_kvm(vcpu->kvm);
2491         return 0;
2492 }
2493
2494 static struct file_operations kvm_vcpu_fops = {
2495         .release        = kvm_vcpu_release,
2496         .unlocked_ioctl = kvm_vcpu_ioctl,
2497         .mmap           = kvm_vcpu_mmap,
2498         .llseek         = noop_llseek,
2499         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2500 };
2501
2502 /*
2503  * Allocates an inode for the vcpu.
2504  */
2505 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2506 {
2507         char name[8 + 1 + ITOA_MAX_LEN + 1];
2508
2509         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2510         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2511 }
2512
2513 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2514 {
2515         char dir_name[ITOA_MAX_LEN * 2];
2516         int ret;
2517
2518         if (!kvm_arch_has_vcpu_debugfs())
2519                 return 0;
2520
2521         if (!debugfs_initialized())
2522                 return 0;
2523
2524         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2525         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2526                                                                 vcpu->kvm->debugfs_dentry);
2527         if (!vcpu->debugfs_dentry)
2528                 return -ENOMEM;
2529
2530         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2531         if (ret < 0) {
2532                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2533                 return ret;
2534         }
2535
2536         return 0;
2537 }
2538
2539 /*
2540  * Creates some virtual cpus.  Good luck creating more than one.
2541  */
2542 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2543 {
2544         int r;
2545         struct kvm_vcpu *vcpu;
2546
2547         if (id >= KVM_MAX_VCPU_ID)
2548                 return -EINVAL;
2549
2550         mutex_lock(&kvm->lock);
2551         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2552                 mutex_unlock(&kvm->lock);
2553                 return -EINVAL;
2554         }
2555
2556         kvm->created_vcpus++;
2557         mutex_unlock(&kvm->lock);
2558
2559         vcpu = kvm_arch_vcpu_create(kvm, id);
2560         if (IS_ERR(vcpu)) {
2561                 r = PTR_ERR(vcpu);
2562                 goto vcpu_decrement;
2563         }
2564
2565         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2566
2567         r = kvm_arch_vcpu_setup(vcpu);
2568         if (r)
2569                 goto vcpu_destroy;
2570
2571         r = kvm_create_vcpu_debugfs(vcpu);
2572         if (r)
2573                 goto vcpu_destroy;
2574
2575         mutex_lock(&kvm->lock);
2576         if (kvm_get_vcpu_by_id(kvm, id)) {
2577                 r = -EEXIST;
2578                 goto unlock_vcpu_destroy;
2579         }
2580
2581         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2582
2583         /* Now it's all set up, let userspace reach it */
2584         kvm_get_kvm(kvm);
2585         r = create_vcpu_fd(vcpu);
2586         if (r < 0) {
2587                 kvm_put_kvm(kvm);
2588                 goto unlock_vcpu_destroy;
2589         }
2590
2591         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2592
2593         /*
2594          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2595          * before kvm->online_vcpu's incremented value.
2596          */
2597         smp_wmb();
2598         atomic_inc(&kvm->online_vcpus);
2599
2600         mutex_unlock(&kvm->lock);
2601         kvm_arch_vcpu_postcreate(vcpu);
2602         return r;
2603
2604 unlock_vcpu_destroy:
2605         mutex_unlock(&kvm->lock);
2606         debugfs_remove_recursive(vcpu->debugfs_dentry);
2607 vcpu_destroy:
2608         kvm_arch_vcpu_destroy(vcpu);
2609 vcpu_decrement:
2610         mutex_lock(&kvm->lock);
2611         kvm->created_vcpus--;
2612         mutex_unlock(&kvm->lock);
2613         return r;
2614 }
2615
2616 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2617 {
2618         if (sigset) {
2619                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2620                 vcpu->sigset_active = 1;
2621                 vcpu->sigset = *sigset;
2622         } else
2623                 vcpu->sigset_active = 0;
2624         return 0;
2625 }
2626
2627 static long kvm_vcpu_ioctl(struct file *filp,
2628                            unsigned int ioctl, unsigned long arg)
2629 {
2630         struct kvm_vcpu *vcpu = filp->private_data;
2631         void __user *argp = (void __user *)arg;
2632         int r;
2633         struct kvm_fpu *fpu = NULL;
2634         struct kvm_sregs *kvm_sregs = NULL;
2635
2636         if (vcpu->kvm->mm != current->mm)
2637                 return -EIO;
2638
2639         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2640                 return -EINVAL;
2641
2642         /*
2643          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2644          * execution; mutex_lock() would break them.
2645          */
2646         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2647         if (r != -ENOIOCTLCMD)
2648                 return r;
2649
2650         if (mutex_lock_killable(&vcpu->mutex))
2651                 return -EINTR;
2652         switch (ioctl) {
2653         case KVM_RUN: {
2654                 struct pid *oldpid;
2655                 r = -EINVAL;
2656                 if (arg)
2657                         goto out;
2658                 oldpid = rcu_access_pointer(vcpu->pid);
2659                 if (unlikely(oldpid != task_pid(current))) {
2660                         /* The thread running this VCPU changed. */
2661                         struct pid *newpid;
2662
2663                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2664                         if (r)
2665                                 break;
2666
2667                         newpid = get_task_pid(current, PIDTYPE_PID);
2668                         rcu_assign_pointer(vcpu->pid, newpid);
2669                         if (oldpid)
2670                                 synchronize_rcu();
2671                         put_pid(oldpid);
2672                 }
2673                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2674                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2675                 break;
2676         }
2677         case KVM_GET_REGS: {
2678                 struct kvm_regs *kvm_regs;
2679
2680                 r = -ENOMEM;
2681                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2682                 if (!kvm_regs)
2683                         goto out;
2684                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2685                 if (r)
2686                         goto out_free1;
2687                 r = -EFAULT;
2688                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2689                         goto out_free1;
2690                 r = 0;
2691 out_free1:
2692                 kfree(kvm_regs);
2693                 break;
2694         }
2695         case KVM_SET_REGS: {
2696                 struct kvm_regs *kvm_regs;
2697
2698                 r = -ENOMEM;
2699                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2700                 if (IS_ERR(kvm_regs)) {
2701                         r = PTR_ERR(kvm_regs);
2702                         goto out;
2703                 }
2704                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2705                 kfree(kvm_regs);
2706                 break;
2707         }
2708         case KVM_GET_SREGS: {
2709                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2710                 r = -ENOMEM;
2711                 if (!kvm_sregs)
2712                         goto out;
2713                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2714                 if (r)
2715                         goto out;
2716                 r = -EFAULT;
2717                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2718                         goto out;
2719                 r = 0;
2720                 break;
2721         }
2722         case KVM_SET_SREGS: {
2723                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2724                 if (IS_ERR(kvm_sregs)) {
2725                         r = PTR_ERR(kvm_sregs);
2726                         kvm_sregs = NULL;
2727                         goto out;
2728                 }
2729                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2730                 break;
2731         }
2732         case KVM_GET_MP_STATE: {
2733                 struct kvm_mp_state mp_state;
2734
2735                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2736                 if (r)
2737                         goto out;
2738                 r = -EFAULT;
2739                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2740                         goto out;
2741                 r = 0;
2742                 break;
2743         }
2744         case KVM_SET_MP_STATE: {
2745                 struct kvm_mp_state mp_state;
2746
2747                 r = -EFAULT;
2748                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2749                         goto out;
2750                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2751                 break;
2752         }
2753         case KVM_TRANSLATE: {
2754                 struct kvm_translation tr;
2755
2756                 r = -EFAULT;
2757                 if (copy_from_user(&tr, argp, sizeof(tr)))
2758                         goto out;
2759                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2760                 if (r)
2761                         goto out;
2762                 r = -EFAULT;
2763                 if (copy_to_user(argp, &tr, sizeof(tr)))
2764                         goto out;
2765                 r = 0;
2766                 break;
2767         }
2768         case KVM_SET_GUEST_DEBUG: {
2769                 struct kvm_guest_debug dbg;
2770
2771                 r = -EFAULT;
2772                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2773                         goto out;
2774                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2775                 break;
2776         }
2777         case KVM_SET_SIGNAL_MASK: {
2778                 struct kvm_signal_mask __user *sigmask_arg = argp;
2779                 struct kvm_signal_mask kvm_sigmask;
2780                 sigset_t sigset, *p;
2781
2782                 p = NULL;
2783                 if (argp) {
2784                         r = -EFAULT;
2785                         if (copy_from_user(&kvm_sigmask, argp,
2786                                            sizeof(kvm_sigmask)))
2787                                 goto out;
2788                         r = -EINVAL;
2789                         if (kvm_sigmask.len != sizeof(sigset))
2790                                 goto out;
2791                         r = -EFAULT;
2792                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2793                                            sizeof(sigset)))
2794                                 goto out;
2795                         p = &sigset;
2796                 }
2797                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2798                 break;
2799         }
2800         case KVM_GET_FPU: {
2801                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2802                 r = -ENOMEM;
2803                 if (!fpu)
2804                         goto out;
2805                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2806                 if (r)
2807                         goto out;
2808                 r = -EFAULT;
2809                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2810                         goto out;
2811                 r = 0;
2812                 break;
2813         }
2814         case KVM_SET_FPU: {
2815                 fpu = memdup_user(argp, sizeof(*fpu));
2816                 if (IS_ERR(fpu)) {
2817                         r = PTR_ERR(fpu);
2818                         fpu = NULL;
2819                         goto out;
2820                 }
2821                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2822                 break;
2823         }
2824         default:
2825                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2826         }
2827 out:
2828         mutex_unlock(&vcpu->mutex);
2829         kfree(fpu);
2830         kfree(kvm_sregs);
2831         return r;
2832 }
2833
2834 #ifdef CONFIG_KVM_COMPAT
2835 static long kvm_vcpu_compat_ioctl(struct file *filp,
2836                                   unsigned int ioctl, unsigned long arg)
2837 {
2838         struct kvm_vcpu *vcpu = filp->private_data;
2839         void __user *argp = compat_ptr(arg);
2840         int r;
2841
2842         if (vcpu->kvm->mm != current->mm)
2843                 return -EIO;
2844
2845         switch (ioctl) {
2846         case KVM_SET_SIGNAL_MASK: {
2847                 struct kvm_signal_mask __user *sigmask_arg = argp;
2848                 struct kvm_signal_mask kvm_sigmask;
2849                 sigset_t sigset;
2850
2851                 if (argp) {
2852                         r = -EFAULT;
2853                         if (copy_from_user(&kvm_sigmask, argp,
2854                                            sizeof(kvm_sigmask)))
2855                                 goto out;
2856                         r = -EINVAL;
2857                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2858                                 goto out;
2859                         r = -EFAULT;
2860                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2861                                 goto out;
2862                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2863                 } else
2864                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2865                 break;
2866         }
2867         default:
2868                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2869         }
2870
2871 out:
2872         return r;
2873 }
2874 #endif
2875
2876 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2877                                  int (*accessor)(struct kvm_device *dev,
2878                                                  struct kvm_device_attr *attr),
2879                                  unsigned long arg)
2880 {
2881         struct kvm_device_attr attr;
2882
2883         if (!accessor)
2884                 return -EPERM;
2885
2886         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2887                 return -EFAULT;
2888
2889         return accessor(dev, &attr);
2890 }
2891
2892 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2893                              unsigned long arg)
2894 {
2895         struct kvm_device *dev = filp->private_data;
2896
2897         switch (ioctl) {
2898         case KVM_SET_DEVICE_ATTR:
2899                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2900         case KVM_GET_DEVICE_ATTR:
2901                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2902         case KVM_HAS_DEVICE_ATTR:
2903                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2904         default:
2905                 if (dev->ops->ioctl)
2906                         return dev->ops->ioctl(dev, ioctl, arg);
2907
2908                 return -ENOTTY;
2909         }
2910 }
2911
2912 static int kvm_device_release(struct inode *inode, struct file *filp)
2913 {
2914         struct kvm_device *dev = filp->private_data;
2915         struct kvm *kvm = dev->kvm;
2916
2917         kvm_put_kvm(kvm);
2918         return 0;
2919 }
2920
2921 static const struct file_operations kvm_device_fops = {
2922         .unlocked_ioctl = kvm_device_ioctl,
2923         .release = kvm_device_release,
2924         KVM_COMPAT(kvm_device_ioctl),
2925 };
2926
2927 struct kvm_device *kvm_device_from_filp(struct file *filp)
2928 {
2929         if (filp->f_op != &kvm_device_fops)
2930                 return NULL;
2931
2932         return filp->private_data;
2933 }
2934
2935 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2936 #ifdef CONFIG_KVM_MPIC
2937         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2938         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2939 #endif
2940 };
2941
2942 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2943 {
2944         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2945                 return -ENOSPC;
2946
2947         if (kvm_device_ops_table[type] != NULL)
2948                 return -EEXIST;
2949
2950         kvm_device_ops_table[type] = ops;
2951         return 0;
2952 }
2953
2954 void kvm_unregister_device_ops(u32 type)
2955 {
2956         if (kvm_device_ops_table[type] != NULL)
2957                 kvm_device_ops_table[type] = NULL;
2958 }
2959
2960 static int kvm_ioctl_create_device(struct kvm *kvm,
2961                                    struct kvm_create_device *cd)
2962 {
2963         struct kvm_device_ops *ops = NULL;
2964         struct kvm_device *dev;
2965         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2966         int ret;
2967
2968         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2969                 return -ENODEV;
2970
2971         ops = kvm_device_ops_table[cd->type];
2972         if (ops == NULL)
2973                 return -ENODEV;
2974
2975         if (test)
2976                 return 0;
2977
2978         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2979         if (!dev)
2980                 return -ENOMEM;
2981
2982         dev->ops = ops;
2983         dev->kvm = kvm;
2984
2985         mutex_lock(&kvm->lock);
2986         ret = ops->create(dev, cd->type);
2987         if (ret < 0) {
2988                 mutex_unlock(&kvm->lock);
2989                 kfree(dev);
2990                 return ret;
2991         }
2992         list_add(&dev->vm_node, &kvm->devices);
2993         mutex_unlock(&kvm->lock);
2994
2995         if (ops->init)
2996                 ops->init(dev);
2997
2998         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2999         if (ret < 0) {
3000                 mutex_lock(&kvm->lock);
3001                 list_del(&dev->vm_node);
3002                 mutex_unlock(&kvm->lock);
3003                 ops->destroy(dev);
3004                 return ret;
3005         }
3006
3007         kvm_get_kvm(kvm);
3008         cd->fd = ret;
3009         return 0;
3010 }
3011
3012 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3013 {
3014         switch (arg) {
3015         case KVM_CAP_USER_MEMORY:
3016         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3017         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3018         case KVM_CAP_INTERNAL_ERROR_DATA:
3019 #ifdef CONFIG_HAVE_KVM_MSI
3020         case KVM_CAP_SIGNAL_MSI:
3021 #endif
3022 #ifdef CONFIG_HAVE_KVM_IRQFD
3023         case KVM_CAP_IRQFD:
3024         case KVM_CAP_IRQFD_RESAMPLE:
3025 #endif
3026         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3027         case KVM_CAP_CHECK_EXTENSION_VM:
3028         case KVM_CAP_ENABLE_CAP_VM:
3029 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3030         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3031 #endif
3032                 return 1;
3033 #ifdef CONFIG_KVM_MMIO
3034         case KVM_CAP_COALESCED_MMIO:
3035                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3036         case KVM_CAP_COALESCED_PIO:
3037                 return 1;
3038 #endif
3039 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3040         case KVM_CAP_IRQ_ROUTING:
3041                 return KVM_MAX_IRQ_ROUTES;
3042 #endif
3043 #if KVM_ADDRESS_SPACE_NUM > 1
3044         case KVM_CAP_MULTI_ADDRESS_SPACE:
3045                 return KVM_ADDRESS_SPACE_NUM;
3046 #endif
3047         case KVM_CAP_MAX_VCPU_ID:
3048                 return KVM_MAX_VCPU_ID;
3049         default:
3050                 break;
3051         }
3052         return kvm_vm_ioctl_check_extension(kvm, arg);
3053 }
3054
3055 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3056                                                   struct kvm_enable_cap *cap)
3057 {
3058         return -EINVAL;
3059 }
3060
3061 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3062                                            struct kvm_enable_cap *cap)
3063 {
3064         switch (cap->cap) {
3065 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3066         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3067                 if (cap->flags || (cap->args[0] & ~1))
3068                         return -EINVAL;
3069                 kvm->manual_dirty_log_protect = cap->args[0];
3070                 return 0;
3071 #endif
3072         default:
3073                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3074         }
3075 }
3076
3077 static long kvm_vm_ioctl(struct file *filp,
3078                            unsigned int ioctl, unsigned long arg)
3079 {
3080         struct kvm *kvm = filp->private_data;
3081         void __user *argp = (void __user *)arg;
3082         int r;
3083
3084         if (kvm->mm != current->mm)
3085                 return -EIO;
3086         switch (ioctl) {
3087         case KVM_CREATE_VCPU:
3088                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3089                 break;
3090         case KVM_ENABLE_CAP: {
3091                 struct kvm_enable_cap cap;
3092
3093                 r = -EFAULT;
3094                 if (copy_from_user(&cap, argp, sizeof(cap)))
3095                         goto out;
3096                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3097                 break;
3098         }
3099         case KVM_SET_USER_MEMORY_REGION: {
3100                 struct kvm_userspace_memory_region kvm_userspace_mem;
3101
3102                 r = -EFAULT;
3103                 if (copy_from_user(&kvm_userspace_mem, argp,
3104                                                 sizeof(kvm_userspace_mem)))
3105                         goto out;
3106
3107                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3108                 break;
3109         }
3110         case KVM_GET_DIRTY_LOG: {
3111                 struct kvm_dirty_log log;
3112
3113                 r = -EFAULT;
3114                 if (copy_from_user(&log, argp, sizeof(log)))
3115                         goto out;
3116                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3117                 break;
3118         }
3119 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3120         case KVM_CLEAR_DIRTY_LOG: {
3121                 struct kvm_clear_dirty_log log;
3122
3123                 r = -EFAULT;
3124                 if (copy_from_user(&log, argp, sizeof(log)))
3125                         goto out;
3126                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3127                 break;
3128         }
3129 #endif
3130 #ifdef CONFIG_KVM_MMIO
3131         case KVM_REGISTER_COALESCED_MMIO: {
3132                 struct kvm_coalesced_mmio_zone zone;
3133
3134                 r = -EFAULT;
3135                 if (copy_from_user(&zone, argp, sizeof(zone)))
3136                         goto out;
3137                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3138                 break;
3139         }
3140         case KVM_UNREGISTER_COALESCED_MMIO: {
3141                 struct kvm_coalesced_mmio_zone zone;
3142
3143                 r = -EFAULT;
3144                 if (copy_from_user(&zone, argp, sizeof(zone)))
3145                         goto out;
3146                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3147                 break;
3148         }
3149 #endif
3150         case KVM_IRQFD: {
3151                 struct kvm_irqfd data;
3152
3153                 r = -EFAULT;
3154                 if (copy_from_user(&data, argp, sizeof(data)))
3155                         goto out;
3156                 r = kvm_irqfd(kvm, &data);
3157                 break;
3158         }
3159         case KVM_IOEVENTFD: {
3160                 struct kvm_ioeventfd data;
3161
3162                 r = -EFAULT;
3163                 if (copy_from_user(&data, argp, sizeof(data)))
3164                         goto out;
3165                 r = kvm_ioeventfd(kvm, &data);
3166                 break;
3167         }
3168 #ifdef CONFIG_HAVE_KVM_MSI
3169         case KVM_SIGNAL_MSI: {
3170                 struct kvm_msi msi;
3171
3172                 r = -EFAULT;
3173                 if (copy_from_user(&msi, argp, sizeof(msi)))
3174                         goto out;
3175                 r = kvm_send_userspace_msi(kvm, &msi);
3176                 break;
3177         }
3178 #endif
3179 #ifdef __KVM_HAVE_IRQ_LINE
3180         case KVM_IRQ_LINE_STATUS:
3181         case KVM_IRQ_LINE: {
3182                 struct kvm_irq_level irq_event;
3183
3184                 r = -EFAULT;
3185                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3186                         goto out;
3187
3188                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3189                                         ioctl == KVM_IRQ_LINE_STATUS);
3190                 if (r)
3191                         goto out;
3192
3193                 r = -EFAULT;
3194                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3195                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3196                                 goto out;
3197                 }
3198
3199                 r = 0;
3200                 break;
3201         }
3202 #endif
3203 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3204         case KVM_SET_GSI_ROUTING: {
3205                 struct kvm_irq_routing routing;
3206                 struct kvm_irq_routing __user *urouting;
3207                 struct kvm_irq_routing_entry *entries = NULL;
3208
3209                 r = -EFAULT;
3210                 if (copy_from_user(&routing, argp, sizeof(routing)))
3211                         goto out;
3212                 r = -EINVAL;
3213                 if (!kvm_arch_can_set_irq_routing(kvm))
3214                         goto out;
3215                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3216                         goto out;
3217                 if (routing.flags)
3218                         goto out;
3219                 if (routing.nr) {
3220                         r = -ENOMEM;
3221                         entries = vmalloc(array_size(sizeof(*entries),
3222                                                      routing.nr));
3223                         if (!entries)
3224                                 goto out;
3225                         r = -EFAULT;
3226                         urouting = argp;
3227                         if (copy_from_user(entries, urouting->entries,
3228                                            routing.nr * sizeof(*entries)))
3229                                 goto out_free_irq_routing;
3230                 }
3231                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3232                                         routing.flags);
3233 out_free_irq_routing:
3234                 vfree(entries);
3235                 break;
3236         }
3237 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3238         case KVM_CREATE_DEVICE: {
3239                 struct kvm_create_device cd;
3240
3241                 r = -EFAULT;
3242                 if (copy_from_user(&cd, argp, sizeof(cd)))
3243                         goto out;
3244
3245                 r = kvm_ioctl_create_device(kvm, &cd);
3246                 if (r)
3247                         goto out;
3248
3249                 r = -EFAULT;
3250                 if (copy_to_user(argp, &cd, sizeof(cd)))
3251                         goto out;
3252
3253                 r = 0;
3254                 break;
3255         }
3256         case KVM_CHECK_EXTENSION:
3257                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3258                 break;
3259         default:
3260                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3261         }
3262 out:
3263         return r;
3264 }
3265
3266 #ifdef CONFIG_KVM_COMPAT
3267 struct compat_kvm_dirty_log {
3268         __u32 slot;
3269         __u32 padding1;
3270         union {
3271                 compat_uptr_t dirty_bitmap; /* one bit per page */
3272                 __u64 padding2;
3273         };
3274 };
3275
3276 static long kvm_vm_compat_ioctl(struct file *filp,
3277                            unsigned int ioctl, unsigned long arg)
3278 {
3279         struct kvm *kvm = filp->private_data;
3280         int r;
3281
3282         if (kvm->mm != current->mm)
3283                 return -EIO;
3284         switch (ioctl) {
3285         case KVM_GET_DIRTY_LOG: {
3286                 struct compat_kvm_dirty_log compat_log;
3287                 struct kvm_dirty_log log;
3288
3289                 if (copy_from_user(&compat_log, (void __user *)arg,
3290                                    sizeof(compat_log)))
3291                         return -EFAULT;
3292                 log.slot         = compat_log.slot;
3293                 log.padding1     = compat_log.padding1;
3294                 log.padding2     = compat_log.padding2;
3295                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3296
3297                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3298                 break;
3299         }
3300         default:
3301                 r = kvm_vm_ioctl(filp, ioctl, arg);
3302         }
3303         return r;
3304 }
3305 #endif
3306
3307 static struct file_operations kvm_vm_fops = {
3308         .release        = kvm_vm_release,
3309         .unlocked_ioctl = kvm_vm_ioctl,
3310         .llseek         = noop_llseek,
3311         KVM_COMPAT(kvm_vm_compat_ioctl),
3312 };
3313
3314 static int kvm_dev_ioctl_create_vm(unsigned long type)
3315 {
3316         int r;
3317         struct kvm *kvm;
3318         struct file *file;
3319
3320         kvm = kvm_create_vm(type);
3321         if (IS_ERR(kvm))
3322                 return PTR_ERR(kvm);
3323 #ifdef CONFIG_KVM_MMIO
3324         r = kvm_coalesced_mmio_init(kvm);
3325         if (r < 0)
3326                 goto put_kvm;
3327 #endif
3328         r = get_unused_fd_flags(O_CLOEXEC);
3329         if (r < 0)
3330                 goto put_kvm;
3331
3332         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3333         if (IS_ERR(file)) {
3334                 put_unused_fd(r);
3335                 r = PTR_ERR(file);
3336                 goto put_kvm;
3337         }
3338
3339         /*
3340          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3341          * already set, with ->release() being kvm_vm_release().  In error
3342          * cases it will be called by the final fput(file) and will take
3343          * care of doing kvm_put_kvm(kvm).
3344          */
3345         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3346                 put_unused_fd(r);
3347                 fput(file);
3348                 return -ENOMEM;
3349         }
3350         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3351
3352         fd_install(r, file);
3353         return r;
3354
3355 put_kvm:
3356         kvm_put_kvm(kvm);
3357         return r;
3358 }
3359
3360 static long kvm_dev_ioctl(struct file *filp,
3361                           unsigned int ioctl, unsigned long arg)
3362 {
3363         long r = -EINVAL;
3364
3365         switch (ioctl) {
3366         case KVM_GET_API_VERSION:
3367                 if (arg)
3368                         goto out;
3369                 r = KVM_API_VERSION;
3370                 break;
3371         case KVM_CREATE_VM:
3372                 r = kvm_dev_ioctl_create_vm(arg);
3373                 break;
3374         case KVM_CHECK_EXTENSION:
3375                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3376                 break;
3377         case KVM_GET_VCPU_MMAP_SIZE:
3378                 if (arg)
3379                         goto out;
3380                 r = PAGE_SIZE;     /* struct kvm_run */
3381 #ifdef CONFIG_X86
3382                 r += PAGE_SIZE;    /* pio data page */
3383 #endif
3384 #ifdef CONFIG_KVM_MMIO
3385                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3386 #endif
3387                 break;
3388         case KVM_TRACE_ENABLE:
3389         case KVM_TRACE_PAUSE:
3390         case KVM_TRACE_DISABLE:
3391                 r = -EOPNOTSUPP;
3392                 break;
3393         default:
3394                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3395         }
3396 out:
3397         return r;
3398 }
3399
3400 static struct file_operations kvm_chardev_ops = {
3401         .unlocked_ioctl = kvm_dev_ioctl,
3402         .llseek         = noop_llseek,
3403         KVM_COMPAT(kvm_dev_ioctl),
3404 };
3405
3406 static struct miscdevice kvm_dev = {
3407         KVM_MINOR,
3408         "kvm",
3409         &kvm_chardev_ops,
3410 };
3411
3412 static void hardware_enable_nolock(void *junk)
3413 {
3414         int cpu = raw_smp_processor_id();
3415         int r;
3416
3417         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3418                 return;
3419
3420         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3421
3422         r = kvm_arch_hardware_enable();
3423
3424         if (r) {
3425                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3426                 atomic_inc(&hardware_enable_failed);
3427                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3428         }
3429 }
3430
3431 static int kvm_starting_cpu(unsigned int cpu)
3432 {
3433         raw_spin_lock(&kvm_count_lock);
3434         if (kvm_usage_count)
3435                 hardware_enable_nolock(NULL);
3436         raw_spin_unlock(&kvm_count_lock);
3437         return 0;
3438 }
3439
3440 static void hardware_disable_nolock(void *junk)
3441 {
3442         int cpu = raw_smp_processor_id();
3443
3444         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3445                 return;
3446         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3447         kvm_arch_hardware_disable();
3448 }
3449
3450 static int kvm_dying_cpu(unsigned int cpu)
3451 {
3452         raw_spin_lock(&kvm_count_lock);
3453         if (kvm_usage_count)
3454                 hardware_disable_nolock(NULL);
3455         raw_spin_unlock(&kvm_count_lock);
3456         return 0;
3457 }
3458
3459 static void hardware_disable_all_nolock(void)
3460 {
3461         BUG_ON(!kvm_usage_count);
3462
3463         kvm_usage_count--;
3464         if (!kvm_usage_count)
3465                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3466 }
3467
3468 static void hardware_disable_all(void)
3469 {
3470         raw_spin_lock(&kvm_count_lock);
3471         hardware_disable_all_nolock();
3472         raw_spin_unlock(&kvm_count_lock);
3473 }
3474
3475 static int hardware_enable_all(void)
3476 {
3477         int r = 0;
3478
3479         raw_spin_lock(&kvm_count_lock);
3480
3481         kvm_usage_count++;
3482         if (kvm_usage_count == 1) {
3483                 atomic_set(&hardware_enable_failed, 0);
3484                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3485
3486                 if (atomic_read(&hardware_enable_failed)) {
3487                         hardware_disable_all_nolock();
3488                         r = -EBUSY;
3489                 }
3490         }
3491
3492         raw_spin_unlock(&kvm_count_lock);
3493
3494         return r;
3495 }
3496
3497 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3498                       void *v)
3499 {
3500         /*
3501          * Some (well, at least mine) BIOSes hang on reboot if
3502          * in vmx root mode.
3503          *
3504          * And Intel TXT required VMX off for all cpu when system shutdown.
3505          */
3506         pr_info("kvm: exiting hardware virtualization\n");
3507         kvm_rebooting = true;
3508         on_each_cpu(hardware_disable_nolock, NULL, 1);
3509         return NOTIFY_OK;
3510 }
3511
3512 static struct notifier_block kvm_reboot_notifier = {
3513         .notifier_call = kvm_reboot,
3514         .priority = 0,
3515 };
3516
3517 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3518 {
3519         int i;
3520
3521         for (i = 0; i < bus->dev_count; i++) {
3522                 struct kvm_io_device *pos = bus->range[i].dev;
3523
3524                 kvm_iodevice_destructor(pos);
3525         }
3526         kfree(bus);
3527 }
3528
3529 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3530                                  const struct kvm_io_range *r2)
3531 {
3532         gpa_t addr1 = r1->addr;
3533         gpa_t addr2 = r2->addr;
3534
3535         if (addr1 < addr2)
3536                 return -1;
3537
3538         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3539          * accept any overlapping write.  Any order is acceptable for
3540          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3541          * we process all of them.
3542          */
3543         if (r2->len) {
3544                 addr1 += r1->len;
3545                 addr2 += r2->len;
3546         }
3547
3548         if (addr1 > addr2)
3549                 return 1;
3550
3551         return 0;
3552 }
3553
3554 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3555 {
3556         return kvm_io_bus_cmp(p1, p2);
3557 }
3558
3559 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3560                              gpa_t addr, int len)
3561 {
3562         struct kvm_io_range *range, key;
3563         int off;
3564
3565         key = (struct kvm_io_range) {
3566                 .addr = addr,
3567                 .len = len,
3568         };
3569
3570         range = bsearch(&key, bus->range, bus->dev_count,
3571                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3572         if (range == NULL)
3573                 return -ENOENT;
3574
3575         off = range - bus->range;
3576
3577         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3578                 off--;
3579
3580         return off;
3581 }
3582
3583 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3584                               struct kvm_io_range *range, const void *val)
3585 {
3586         int idx;
3587
3588         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3589         if (idx < 0)
3590                 return -EOPNOTSUPP;
3591
3592         while (idx < bus->dev_count &&
3593                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3594                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3595                                         range->len, val))
3596                         return idx;
3597                 idx++;
3598         }
3599
3600         return -EOPNOTSUPP;
3601 }
3602
3603 /* kvm_io_bus_write - called under kvm->slots_lock */
3604 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3605                      int len, const void *val)
3606 {
3607         struct kvm_io_bus *bus;
3608         struct kvm_io_range range;
3609         int r;
3610
3611         range = (struct kvm_io_range) {
3612                 .addr = addr,
3613                 .len = len,
3614         };
3615
3616         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3617         if (!bus)
3618                 return -ENOMEM;
3619         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3620         return r < 0 ? r : 0;
3621 }
3622
3623 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3624 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3625                             gpa_t addr, int len, const void *val, long cookie)
3626 {
3627         struct kvm_io_bus *bus;
3628         struct kvm_io_range range;
3629
3630         range = (struct kvm_io_range) {
3631                 .addr = addr,
3632                 .len = len,
3633         };
3634
3635         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3636         if (!bus)
3637                 return -ENOMEM;
3638
3639         /* First try the device referenced by cookie. */
3640         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3641             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3642                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3643                                         val))
3644                         return cookie;
3645
3646         /*
3647          * cookie contained garbage; fall back to search and return the
3648          * correct cookie value.
3649          */
3650         return __kvm_io_bus_write(vcpu, bus, &range, val);
3651 }
3652
3653 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3654                              struct kvm_io_range *range, void *val)
3655 {
3656         int idx;
3657
3658         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3659         if (idx < 0)
3660                 return -EOPNOTSUPP;
3661
3662         while (idx < bus->dev_count &&
3663                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3664                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3665                                        range->len, val))
3666                         return idx;
3667                 idx++;
3668         }
3669
3670         return -EOPNOTSUPP;
3671 }
3672 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3673
3674 /* kvm_io_bus_read - called under kvm->slots_lock */
3675 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3676                     int len, void *val)
3677 {
3678         struct kvm_io_bus *bus;
3679         struct kvm_io_range range;
3680         int r;
3681
3682         range = (struct kvm_io_range) {
3683                 .addr = addr,
3684                 .len = len,
3685         };
3686
3687         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3688         if (!bus)
3689                 return -ENOMEM;
3690         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3691         return r < 0 ? r : 0;
3692 }
3693
3694
3695 /* Caller must hold slots_lock. */
3696 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3697                             int len, struct kvm_io_device *dev)
3698 {
3699         int i;
3700         struct kvm_io_bus *new_bus, *bus;
3701         struct kvm_io_range range;
3702
3703         bus = kvm_get_bus(kvm, bus_idx);
3704         if (!bus)
3705                 return -ENOMEM;
3706
3707         /* exclude ioeventfd which is limited by maximum fd */
3708         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3709                 return -ENOSPC;
3710
3711         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3712                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3713         if (!new_bus)
3714                 return -ENOMEM;
3715
3716         range = (struct kvm_io_range) {
3717                 .addr = addr,
3718                 .len = len,
3719                 .dev = dev,
3720         };
3721
3722         for (i = 0; i < bus->dev_count; i++)
3723                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3724                         break;
3725
3726         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3727         new_bus->dev_count++;
3728         new_bus->range[i] = range;
3729         memcpy(new_bus->range + i + 1, bus->range + i,
3730                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3731         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3732         synchronize_srcu_expedited(&kvm->srcu);
3733         kfree(bus);
3734
3735         return 0;
3736 }
3737
3738 /* Caller must hold slots_lock. */
3739 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3740                                struct kvm_io_device *dev)
3741 {
3742         int i;
3743         struct kvm_io_bus *new_bus, *bus;
3744
3745         bus = kvm_get_bus(kvm, bus_idx);
3746         if (!bus)
3747                 return;
3748
3749         for (i = 0; i < bus->dev_count; i++)
3750                 if (bus->range[i].dev == dev) {
3751                         break;
3752                 }
3753
3754         if (i == bus->dev_count)
3755                 return;
3756
3757         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3758                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3759         if (!new_bus)  {
3760                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3761                 goto broken;
3762         }
3763
3764         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3765         new_bus->dev_count--;
3766         memcpy(new_bus->range + i, bus->range + i + 1,
3767                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3768
3769 broken:
3770         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3771         synchronize_srcu_expedited(&kvm->srcu);
3772         kfree(bus);
3773         return;
3774 }
3775
3776 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3777                                          gpa_t addr)
3778 {
3779         struct kvm_io_bus *bus;
3780         int dev_idx, srcu_idx;
3781         struct kvm_io_device *iodev = NULL;
3782
3783         srcu_idx = srcu_read_lock(&kvm->srcu);
3784
3785         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3786         if (!bus)
3787                 goto out_unlock;
3788
3789         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3790         if (dev_idx < 0)
3791                 goto out_unlock;
3792
3793         iodev = bus->range[dev_idx].dev;
3794
3795 out_unlock:
3796         srcu_read_unlock(&kvm->srcu, srcu_idx);
3797
3798         return iodev;
3799 }
3800 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3801
3802 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3803                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3804                            const char *fmt)
3805 {
3806         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3807                                           inode->i_private;
3808
3809         /* The debugfs files are a reference to the kvm struct which
3810          * is still valid when kvm_destroy_vm is called.
3811          * To avoid the race between open and the removal of the debugfs
3812          * directory we test against the users count.
3813          */
3814         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3815                 return -ENOENT;
3816
3817         if (simple_attr_open(inode, file, get, set, fmt)) {
3818                 kvm_put_kvm(stat_data->kvm);
3819                 return -ENOMEM;
3820         }
3821
3822         return 0;
3823 }
3824
3825 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3826 {
3827         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3828                                           inode->i_private;
3829
3830         simple_attr_release(inode, file);
3831         kvm_put_kvm(stat_data->kvm);
3832
3833         return 0;
3834 }
3835
3836 static int vm_stat_get_per_vm(void *data, u64 *val)
3837 {
3838         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3839
3840         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3841
3842         return 0;
3843 }
3844
3845 static int vm_stat_clear_per_vm(void *data, u64 val)
3846 {
3847         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3848
3849         if (val)
3850                 return -EINVAL;
3851
3852         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3853
3854         return 0;
3855 }
3856
3857 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3858 {
3859         __simple_attr_check_format("%llu\n", 0ull);
3860         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3861                                 vm_stat_clear_per_vm, "%llu\n");
3862 }
3863
3864 static const struct file_operations vm_stat_get_per_vm_fops = {
3865         .owner   = THIS_MODULE,
3866         .open    = vm_stat_get_per_vm_open,
3867         .release = kvm_debugfs_release,
3868         .read    = simple_attr_read,
3869         .write   = simple_attr_write,
3870         .llseek  = no_llseek,
3871 };
3872
3873 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3874 {
3875         int i;
3876         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3877         struct kvm_vcpu *vcpu;
3878
3879         *val = 0;
3880
3881         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3882                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3883
3884         return 0;
3885 }
3886
3887 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3888 {
3889         int i;
3890         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3891         struct kvm_vcpu *vcpu;
3892
3893         if (val)
3894                 return -EINVAL;
3895
3896         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3897                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3898
3899         return 0;
3900 }
3901
3902 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3903 {
3904         __simple_attr_check_format("%llu\n", 0ull);
3905         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3906                                  vcpu_stat_clear_per_vm, "%llu\n");
3907 }
3908
3909 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3910         .owner   = THIS_MODULE,
3911         .open    = vcpu_stat_get_per_vm_open,
3912         .release = kvm_debugfs_release,
3913         .read    = simple_attr_read,
3914         .write   = simple_attr_write,
3915         .llseek  = no_llseek,
3916 };
3917
3918 static const struct file_operations *stat_fops_per_vm[] = {
3919         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3920         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3921 };
3922
3923 static int vm_stat_get(void *_offset, u64 *val)
3924 {
3925         unsigned offset = (long)_offset;
3926         struct kvm *kvm;
3927         struct kvm_stat_data stat_tmp = {.offset = offset};
3928         u64 tmp_val;
3929
3930         *val = 0;
3931         spin_lock(&kvm_lock);
3932         list_for_each_entry(kvm, &vm_list, vm_list) {
3933                 stat_tmp.kvm = kvm;
3934                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3935                 *val += tmp_val;
3936         }
3937         spin_unlock(&kvm_lock);
3938         return 0;
3939 }
3940
3941 static int vm_stat_clear(void *_offset, u64 val)
3942 {
3943         unsigned offset = (long)_offset;
3944         struct kvm *kvm;
3945         struct kvm_stat_data stat_tmp = {.offset = offset};
3946
3947         if (val)
3948                 return -EINVAL;
3949
3950         spin_lock(&kvm_lock);
3951         list_for_each_entry(kvm, &vm_list, vm_list) {
3952                 stat_tmp.kvm = kvm;
3953                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3954         }
3955         spin_unlock(&kvm_lock);
3956
3957         return 0;
3958 }
3959
3960 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3961
3962 static int vcpu_stat_get(void *_offset, u64 *val)
3963 {
3964         unsigned offset = (long)_offset;
3965         struct kvm *kvm;
3966         struct kvm_stat_data stat_tmp = {.offset = offset};
3967         u64 tmp_val;
3968
3969         *val = 0;
3970         spin_lock(&kvm_lock);
3971         list_for_each_entry(kvm, &vm_list, vm_list) {
3972                 stat_tmp.kvm = kvm;
3973                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3974                 *val += tmp_val;
3975         }
3976         spin_unlock(&kvm_lock);
3977         return 0;
3978 }
3979
3980 static int vcpu_stat_clear(void *_offset, u64 val)
3981 {
3982         unsigned offset = (long)_offset;
3983         struct kvm *kvm;
3984         struct kvm_stat_data stat_tmp = {.offset = offset};
3985
3986         if (val)
3987                 return -EINVAL;
3988
3989         spin_lock(&kvm_lock);
3990         list_for_each_entry(kvm, &vm_list, vm_list) {
3991                 stat_tmp.kvm = kvm;
3992                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3993         }
3994         spin_unlock(&kvm_lock);
3995
3996         return 0;
3997 }
3998
3999 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4000                         "%llu\n");
4001
4002 static const struct file_operations *stat_fops[] = {
4003         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4004         [KVM_STAT_VM]   = &vm_stat_fops,
4005 };
4006
4007 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4008 {
4009         struct kobj_uevent_env *env;
4010         unsigned long long created, active;
4011
4012         if (!kvm_dev.this_device || !kvm)
4013                 return;
4014
4015         spin_lock(&kvm_lock);
4016         if (type == KVM_EVENT_CREATE_VM) {
4017                 kvm_createvm_count++;
4018                 kvm_active_vms++;
4019         } else if (type == KVM_EVENT_DESTROY_VM) {
4020                 kvm_active_vms--;
4021         }
4022         created = kvm_createvm_count;
4023         active = kvm_active_vms;
4024         spin_unlock(&kvm_lock);
4025
4026         env = kzalloc(sizeof(*env), GFP_KERNEL);
4027         if (!env)
4028                 return;
4029
4030         add_uevent_var(env, "CREATED=%llu", created);
4031         add_uevent_var(env, "COUNT=%llu", active);
4032
4033         if (type == KVM_EVENT_CREATE_VM) {
4034                 add_uevent_var(env, "EVENT=create");
4035                 kvm->userspace_pid = task_pid_nr(current);
4036         } else if (type == KVM_EVENT_DESTROY_VM) {
4037                 add_uevent_var(env, "EVENT=destroy");
4038         }
4039         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4040
4041         if (kvm->debugfs_dentry) {
4042                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4043
4044                 if (p) {
4045                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4046                         if (!IS_ERR(tmp))
4047                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4048                         kfree(p);
4049                 }
4050         }
4051         /* no need for checks, since we are adding at most only 5 keys */
4052         env->envp[env->envp_idx++] = NULL;
4053         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4054         kfree(env);
4055 }
4056
4057 static void kvm_init_debug(void)
4058 {
4059         struct kvm_stats_debugfs_item *p;
4060
4061         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4062
4063         kvm_debugfs_num_entries = 0;
4064         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4065                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4066                                     (void *)(long)p->offset,
4067                                     stat_fops[p->kind]);
4068         }
4069 }
4070
4071 static int kvm_suspend(void)
4072 {
4073         if (kvm_usage_count)
4074                 hardware_disable_nolock(NULL);
4075         return 0;
4076 }
4077
4078 static void kvm_resume(void)
4079 {
4080         if (kvm_usage_count) {
4081                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4082                 hardware_enable_nolock(NULL);
4083         }
4084 }
4085
4086 static struct syscore_ops kvm_syscore_ops = {
4087         .suspend = kvm_suspend,
4088         .resume = kvm_resume,
4089 };
4090
4091 static inline
4092 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4093 {
4094         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4095 }
4096
4097 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4098 {
4099         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4100
4101         if (vcpu->preempted)
4102                 vcpu->preempted = false;
4103
4104         kvm_arch_sched_in(vcpu, cpu);
4105
4106         kvm_arch_vcpu_load(vcpu, cpu);
4107 }
4108
4109 static void kvm_sched_out(struct preempt_notifier *pn,
4110                           struct task_struct *next)
4111 {
4112         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4113
4114         if (current->state == TASK_RUNNING)
4115                 vcpu->preempted = true;
4116         kvm_arch_vcpu_put(vcpu);
4117 }
4118
4119 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4120                   struct module *module)
4121 {
4122         int r;
4123         int cpu;
4124
4125         r = kvm_arch_init(opaque);
4126         if (r)
4127                 goto out_fail;
4128
4129         /*
4130          * kvm_arch_init makes sure there's at most one caller
4131          * for architectures that support multiple implementations,
4132          * like intel and amd on x86.
4133          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4134          * conflicts in case kvm is already setup for another implementation.
4135          */
4136         r = kvm_irqfd_init();
4137         if (r)
4138                 goto out_irqfd;
4139
4140         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4141                 r = -ENOMEM;
4142                 goto out_free_0;
4143         }
4144
4145         r = kvm_arch_hardware_setup();
4146         if (r < 0)
4147                 goto out_free_0a;
4148
4149         for_each_online_cpu(cpu) {
4150                 smp_call_function_single(cpu,
4151                                 kvm_arch_check_processor_compat,
4152                                 &r, 1);
4153                 if (r < 0)
4154                         goto out_free_1;
4155         }
4156
4157         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4158                                       kvm_starting_cpu, kvm_dying_cpu);
4159         if (r)
4160                 goto out_free_2;
4161         register_reboot_notifier(&kvm_reboot_notifier);
4162
4163         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4164         if (!vcpu_align)
4165                 vcpu_align = __alignof__(struct kvm_vcpu);
4166         kvm_vcpu_cache =
4167                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4168                                            SLAB_ACCOUNT,
4169                                            offsetof(struct kvm_vcpu, arch),
4170                                            sizeof_field(struct kvm_vcpu, arch),
4171                                            NULL);
4172         if (!kvm_vcpu_cache) {
4173                 r = -ENOMEM;
4174                 goto out_free_3;
4175         }
4176
4177         r = kvm_async_pf_init();
4178         if (r)
4179                 goto out_free;
4180
4181         kvm_chardev_ops.owner = module;
4182         kvm_vm_fops.owner = module;
4183         kvm_vcpu_fops.owner = module;
4184
4185         r = misc_register(&kvm_dev);
4186         if (r) {
4187                 pr_err("kvm: misc device register failed\n");
4188                 goto out_unreg;
4189         }
4190
4191         register_syscore_ops(&kvm_syscore_ops);
4192
4193         kvm_preempt_ops.sched_in = kvm_sched_in;
4194         kvm_preempt_ops.sched_out = kvm_sched_out;
4195
4196         kvm_init_debug();
4197
4198         r = kvm_vfio_ops_init();
4199         WARN_ON(r);
4200
4201         return 0;
4202
4203 out_unreg:
4204         kvm_async_pf_deinit();
4205 out_free:
4206         kmem_cache_destroy(kvm_vcpu_cache);
4207 out_free_3:
4208         unregister_reboot_notifier(&kvm_reboot_notifier);
4209         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4210 out_free_2:
4211 out_free_1:
4212         kvm_arch_hardware_unsetup();
4213 out_free_0a:
4214         free_cpumask_var(cpus_hardware_enabled);
4215 out_free_0:
4216         kvm_irqfd_exit();
4217 out_irqfd:
4218         kvm_arch_exit();
4219 out_fail:
4220         return r;
4221 }
4222 EXPORT_SYMBOL_GPL(kvm_init);
4223
4224 void kvm_exit(void)
4225 {
4226         debugfs_remove_recursive(kvm_debugfs_dir);
4227         misc_deregister(&kvm_dev);
4228         kmem_cache_destroy(kvm_vcpu_cache);
4229         kvm_async_pf_deinit();
4230         unregister_syscore_ops(&kvm_syscore_ops);
4231         unregister_reboot_notifier(&kvm_reboot_notifier);
4232         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4233         on_each_cpu(hardware_disable_nolock, NULL, 1);
4234         kvm_arch_hardware_unsetup();
4235         kvm_arch_exit();
4236         kvm_irqfd_exit();
4237         free_cpumask_var(cpus_hardware_enabled);
4238         kvm_vfio_ops_exit();
4239 }
4240 EXPORT_SYMBOL_GPL(kvm_exit);