Merge tag 'm68k-for-v4.9-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[platform/kernel/linux-exynos.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85  * Ordering of locks:
86  *
87  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110                            unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113                                   unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130         if (pfn_valid(pfn))
131                 return PageReserved(pfn_to_page(pfn));
132
133         return true;
134 }
135
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141         int cpu;
142
143         if (mutex_lock_killable(&vcpu->mutex))
144                 return -EINTR;
145         cpu = get_cpu();
146         preempt_notifier_register(&vcpu->preempt_notifier);
147         kvm_arch_vcpu_load(vcpu, cpu);
148         put_cpu();
149         return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155         preempt_disable();
156         kvm_arch_vcpu_put(vcpu);
157         preempt_notifier_unregister(&vcpu->preempt_notifier);
158         preempt_enable();
159         mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169         int i, cpu, me;
170         cpumask_var_t cpus;
171         bool called = true;
172         struct kvm_vcpu *vcpu;
173
174         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176         me = get_cpu();
177         kvm_for_each_vcpu(i, vcpu, kvm) {
178                 kvm_make_request(req, vcpu);
179                 cpu = vcpu->cpu;
180
181                 /* Set ->requests bit before we read ->mode. */
182                 smp_mb__after_atomic();
183
184                 if (cpus != NULL && cpu != -1 && cpu != me &&
185                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186                         cpumask_set_cpu(cpu, cpus);
187         }
188         if (unlikely(cpus == NULL))
189                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190         else if (!cpumask_empty(cpus))
191                 smp_call_function_many(cpus, ack_flush, NULL, 1);
192         else
193                 called = false;
194         put_cpu();
195         free_cpumask_var(cpus);
196         return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202         /*
203          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204          * kvm_make_all_cpus_request.
205          */
206         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208         /*
209          * We want to publish modifications to the page tables before reading
210          * mode. Pairs with a memory barrier in arch-specific code.
211          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212          * and smp_mb in walk_shadow_page_lockless_begin/end.
213          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214          *
215          * There is already an smp_mb__after_atomic() before
216          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217          * barrier here.
218          */
219         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220                 ++kvm->stat.remote_tlb_flush;
221         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233         struct page *page;
234         int r;
235
236         mutex_init(&vcpu->mutex);
237         vcpu->cpu = -1;
238         vcpu->kvm = kvm;
239         vcpu->vcpu_id = id;
240         vcpu->pid = NULL;
241         init_swait_queue_head(&vcpu->wq);
242         kvm_async_pf_vcpu_init(vcpu);
243
244         vcpu->pre_pcpu = -1;
245         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248         if (!page) {
249                 r = -ENOMEM;
250                 goto fail;
251         }
252         vcpu->run = page_address(page);
253
254         kvm_vcpu_set_in_spin_loop(vcpu, false);
255         kvm_vcpu_set_dy_eligible(vcpu, false);
256         vcpu->preempted = false;
257
258         r = kvm_arch_vcpu_init(vcpu);
259         if (r < 0)
260                 goto fail_free_run;
261         return 0;
262
263 fail_free_run:
264         free_page((unsigned long)vcpu->run);
265 fail:
266         return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272         put_pid(vcpu->pid);
273         kvm_arch_vcpu_uninit(vcpu);
274         free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281         return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285                                              struct mm_struct *mm,
286                                              unsigned long address)
287 {
288         struct kvm *kvm = mmu_notifier_to_kvm(mn);
289         int need_tlb_flush, idx;
290
291         /*
292          * When ->invalidate_page runs, the linux pte has been zapped
293          * already but the page is still allocated until
294          * ->invalidate_page returns. So if we increase the sequence
295          * here the kvm page fault will notice if the spte can't be
296          * established because the page is going to be freed. If
297          * instead the kvm page fault establishes the spte before
298          * ->invalidate_page runs, kvm_unmap_hva will release it
299          * before returning.
300          *
301          * The sequence increase only need to be seen at spin_unlock
302          * time, and not at spin_lock time.
303          *
304          * Increasing the sequence after the spin_unlock would be
305          * unsafe because the kvm page fault could then establish the
306          * pte after kvm_unmap_hva returned, without noticing the page
307          * is going to be freed.
308          */
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311
312         kvm->mmu_notifier_seq++;
313         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314         /* we've to flush the tlb before the pages can be freed */
315         if (need_tlb_flush)
316                 kvm_flush_remote_tlbs(kvm);
317
318         spin_unlock(&kvm->mmu_lock);
319
320         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322         srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326                                         struct mm_struct *mm,
327                                         unsigned long address,
328                                         pte_t pte)
329 {
330         struct kvm *kvm = mmu_notifier_to_kvm(mn);
331         int idx;
332
333         idx = srcu_read_lock(&kvm->srcu);
334         spin_lock(&kvm->mmu_lock);
335         kvm->mmu_notifier_seq++;
336         kvm_set_spte_hva(kvm, address, pte);
337         spin_unlock(&kvm->mmu_lock);
338         srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342                                                     struct mm_struct *mm,
343                                                     unsigned long start,
344                                                     unsigned long end)
345 {
346         struct kvm *kvm = mmu_notifier_to_kvm(mn);
347         int need_tlb_flush = 0, idx;
348
349         idx = srcu_read_lock(&kvm->srcu);
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * The count increase must become visible at unlock time as no
353          * spte can be established without taking the mmu_lock and
354          * count is also read inside the mmu_lock critical section.
355          */
356         kvm->mmu_notifier_count++;
357         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358         need_tlb_flush |= kvm->tlbs_dirty;
359         /* we've to flush the tlb before the pages can be freed */
360         if (need_tlb_flush)
361                 kvm_flush_remote_tlbs(kvm);
362
363         spin_unlock(&kvm->mmu_lock);
364         srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368                                                   struct mm_struct *mm,
369                                                   unsigned long start,
370                                                   unsigned long end)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374         spin_lock(&kvm->mmu_lock);
375         /*
376          * This sequence increase will notify the kvm page fault that
377          * the page that is going to be mapped in the spte could have
378          * been freed.
379          */
380         kvm->mmu_notifier_seq++;
381         smp_wmb();
382         /*
383          * The above sequence increase must be visible before the
384          * below count decrease, which is ensured by the smp_wmb above
385          * in conjunction with the smp_rmb in mmu_notifier_retry().
386          */
387         kvm->mmu_notifier_count--;
388         spin_unlock(&kvm->mmu_lock);
389
390         BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394                                               struct mm_struct *mm,
395                                               unsigned long start,
396                                               unsigned long end)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403
404         young = kvm_age_hva(kvm, start, end);
405         if (young)
406                 kvm_flush_remote_tlbs(kvm);
407
408         spin_unlock(&kvm->mmu_lock);
409         srcu_read_unlock(&kvm->srcu, idx);
410
411         return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415                                         struct mm_struct *mm,
416                                         unsigned long start,
417                                         unsigned long end)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int young, idx;
421
422         idx = srcu_read_lock(&kvm->srcu);
423         spin_lock(&kvm->mmu_lock);
424         /*
425          * Even though we do not flush TLB, this will still adversely
426          * affect performance on pre-Haswell Intel EPT, where there is
427          * no EPT Access Bit to clear so that we have to tear down EPT
428          * tables instead. If we find this unacceptable, we can always
429          * add a parameter to kvm_age_hva so that it effectively doesn't
430          * do anything on clear_young.
431          *
432          * Also note that currently we never issue secondary TLB flushes
433          * from clear_young, leaving this job up to the regular system
434          * cadence. If we find this inaccurate, we might come up with a
435          * more sophisticated heuristic later.
436          */
437         young = kvm_age_hva(kvm, start, end);
438         spin_unlock(&kvm->mmu_lock);
439         srcu_read_unlock(&kvm->srcu, idx);
440
441         return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445                                        struct mm_struct *mm,
446                                        unsigned long address)
447 {
448         struct kvm *kvm = mmu_notifier_to_kvm(mn);
449         int young, idx;
450
451         idx = srcu_read_lock(&kvm->srcu);
452         spin_lock(&kvm->mmu_lock);
453         young = kvm_test_age_hva(kvm, address);
454         spin_unlock(&kvm->mmu_lock);
455         srcu_read_unlock(&kvm->srcu, idx);
456
457         return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461                                      struct mm_struct *mm)
462 {
463         struct kvm *kvm = mmu_notifier_to_kvm(mn);
464         int idx;
465
466         idx = srcu_read_lock(&kvm->srcu);
467         kvm_arch_flush_shadow_all(kvm);
468         srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
473         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
475         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
476         .clear_young            = kvm_mmu_notifier_clear_young,
477         .test_young             = kvm_mmu_notifier_test_young,
478         .change_pte             = kvm_mmu_notifier_change_pte,
479         .release                = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492         return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499         int i;
500         struct kvm_memslots *slots;
501
502         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503         if (!slots)
504                 return NULL;
505
506         /*
507          * Init kvm generation close to the maximum to easily test the
508          * code of handling generation number wrap-around.
509          */
510         slots->generation = -150;
511         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512                 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514         return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519         if (!memslot->dirty_bitmap)
520                 return;
521
522         kvfree(memslot->dirty_bitmap);
523         memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530                               struct kvm_memory_slot *dont)
531 {
532         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533                 kvm_destroy_dirty_bitmap(free);
534
535         kvm_arch_free_memslot(kvm, free, dont);
536
537         free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542         struct kvm_memory_slot *memslot;
543
544         if (!slots)
545                 return;
546
547         kvm_for_each_memslot(memslot, slots)
548                 kvm_free_memslot(kvm, memslot, NULL);
549
550         kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555         int i;
556
557         if (!kvm->debugfs_dentry)
558                 return;
559
560         debugfs_remove_recursive(kvm->debugfs_dentry);
561
562         for (i = 0; i < kvm_debugfs_num_entries; i++)
563                 kfree(kvm->debugfs_stat_data[i]);
564         kfree(kvm->debugfs_stat_data);
565 }
566
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
568 {
569         char dir_name[ITOA_MAX_LEN * 2];
570         struct kvm_stat_data *stat_data;
571         struct kvm_stats_debugfs_item *p;
572
573         if (!debugfs_initialized())
574                 return 0;
575
576         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
578                                                  kvm_debugfs_dir);
579         if (!kvm->debugfs_dentry)
580                 return -ENOMEM;
581
582         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583                                          sizeof(*kvm->debugfs_stat_data),
584                                          GFP_KERNEL);
585         if (!kvm->debugfs_stat_data)
586                 return -ENOMEM;
587
588         for (p = debugfs_entries; p->name; p++) {
589                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
590                 if (!stat_data)
591                         return -ENOMEM;
592
593                 stat_data->kvm = kvm;
594                 stat_data->offset = p->offset;
595                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596                 if (!debugfs_create_file(p->name, 0444,
597                                          kvm->debugfs_dentry,
598                                          stat_data,
599                                          stat_fops_per_vm[p->kind]))
600                         return -ENOMEM;
601         }
602         return 0;
603 }
604
605 static struct kvm *kvm_create_vm(unsigned long type)
606 {
607         int r, i;
608         struct kvm *kvm = kvm_arch_alloc_vm();
609
610         if (!kvm)
611                 return ERR_PTR(-ENOMEM);
612
613         spin_lock_init(&kvm->mmu_lock);
614         atomic_inc(&current->mm->mm_count);
615         kvm->mm = current->mm;
616         kvm_eventfd_init(kvm);
617         mutex_init(&kvm->lock);
618         mutex_init(&kvm->irq_lock);
619         mutex_init(&kvm->slots_lock);
620         atomic_set(&kvm->users_count, 1);
621         INIT_LIST_HEAD(&kvm->devices);
622
623         r = kvm_arch_init_vm(kvm, type);
624         if (r)
625                 goto out_err_no_disable;
626
627         r = hardware_enable_all();
628         if (r)
629                 goto out_err_no_disable;
630
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
633 #endif
634
635         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
636
637         r = -ENOMEM;
638         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639                 kvm->memslots[i] = kvm_alloc_memslots();
640                 if (!kvm->memslots[i])
641                         goto out_err_no_srcu;
642         }
643
644         if (init_srcu_struct(&kvm->srcu))
645                 goto out_err_no_srcu;
646         if (init_srcu_struct(&kvm->irq_srcu))
647                 goto out_err_no_irq_srcu;
648         for (i = 0; i < KVM_NR_BUSES; i++) {
649                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
650                                         GFP_KERNEL);
651                 if (!kvm->buses[i])
652                         goto out_err;
653         }
654
655         r = kvm_init_mmu_notifier(kvm);
656         if (r)
657                 goto out_err;
658
659         spin_lock(&kvm_lock);
660         list_add(&kvm->vm_list, &vm_list);
661         spin_unlock(&kvm_lock);
662
663         preempt_notifier_inc();
664
665         return kvm;
666
667 out_err:
668         cleanup_srcu_struct(&kvm->irq_srcu);
669 out_err_no_irq_srcu:
670         cleanup_srcu_struct(&kvm->srcu);
671 out_err_no_srcu:
672         hardware_disable_all();
673 out_err_no_disable:
674         for (i = 0; i < KVM_NR_BUSES; i++)
675                 kfree(kvm->buses[i]);
676         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
677                 kvm_free_memslots(kvm, kvm->memslots[i]);
678         kvm_arch_free_vm(kvm);
679         mmdrop(current->mm);
680         return ERR_PTR(r);
681 }
682
683 /*
684  * Avoid using vmalloc for a small buffer.
685  * Should not be used when the size is statically known.
686  */
687 void *kvm_kvzalloc(unsigned long size)
688 {
689         if (size > PAGE_SIZE)
690                 return vzalloc(size);
691         else
692                 return kzalloc(size, GFP_KERNEL);
693 }
694
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697         struct kvm_device *dev, *tmp;
698
699         /*
700          * We do not need to take the kvm->lock here, because nobody else
701          * has a reference to the struct kvm at this point and therefore
702          * cannot access the devices list anyhow.
703          */
704         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
705                 list_del(&dev->vm_node);
706                 dev->ops->destroy(dev);
707         }
708 }
709
710 static void kvm_destroy_vm(struct kvm *kvm)
711 {
712         int i;
713         struct mm_struct *mm = kvm->mm;
714
715         kvm_destroy_vm_debugfs(kvm);
716         kvm_arch_sync_events(kvm);
717         spin_lock(&kvm_lock);
718         list_del(&kvm->vm_list);
719         spin_unlock(&kvm_lock);
720         kvm_free_irq_routing(kvm);
721         for (i = 0; i < KVM_NR_BUSES; i++)
722                 kvm_io_bus_destroy(kvm->buses[i]);
723         kvm_coalesced_mmio_free(kvm);
724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
725         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
726 #else
727         kvm_arch_flush_shadow_all(kvm);
728 #endif
729         kvm_arch_destroy_vm(kvm);
730         kvm_destroy_devices(kvm);
731         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
732                 kvm_free_memslots(kvm, kvm->memslots[i]);
733         cleanup_srcu_struct(&kvm->irq_srcu);
734         cleanup_srcu_struct(&kvm->srcu);
735         kvm_arch_free_vm(kvm);
736         preempt_notifier_dec();
737         hardware_disable_all();
738         mmdrop(mm);
739 }
740
741 void kvm_get_kvm(struct kvm *kvm)
742 {
743         atomic_inc(&kvm->users_count);
744 }
745 EXPORT_SYMBOL_GPL(kvm_get_kvm);
746
747 void kvm_put_kvm(struct kvm *kvm)
748 {
749         if (atomic_dec_and_test(&kvm->users_count))
750                 kvm_destroy_vm(kvm);
751 }
752 EXPORT_SYMBOL_GPL(kvm_put_kvm);
753
754
755 static int kvm_vm_release(struct inode *inode, struct file *filp)
756 {
757         struct kvm *kvm = filp->private_data;
758
759         kvm_irqfd_release(kvm);
760
761         kvm_put_kvm(kvm);
762         return 0;
763 }
764
765 /*
766  * Allocation size is twice as large as the actual dirty bitmap size.
767  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
768  */
769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
770 {
771         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
772
773         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
774         if (!memslot->dirty_bitmap)
775                 return -ENOMEM;
776
777         return 0;
778 }
779
780 /*
781  * Insert memslot and re-sort memslots based on their GFN,
782  * so binary search could be used to lookup GFN.
783  * Sorting algorithm takes advantage of having initially
784  * sorted array and known changed memslot position.
785  */
786 static void update_memslots(struct kvm_memslots *slots,
787                             struct kvm_memory_slot *new)
788 {
789         int id = new->id;
790         int i = slots->id_to_index[id];
791         struct kvm_memory_slot *mslots = slots->memslots;
792
793         WARN_ON(mslots[i].id != id);
794         if (!new->npages) {
795                 WARN_ON(!mslots[i].npages);
796                 if (mslots[i].npages)
797                         slots->used_slots--;
798         } else {
799                 if (!mslots[i].npages)
800                         slots->used_slots++;
801         }
802
803         while (i < KVM_MEM_SLOTS_NUM - 1 &&
804                new->base_gfn <= mslots[i + 1].base_gfn) {
805                 if (!mslots[i + 1].npages)
806                         break;
807                 mslots[i] = mslots[i + 1];
808                 slots->id_to_index[mslots[i].id] = i;
809                 i++;
810         }
811
812         /*
813          * The ">=" is needed when creating a slot with base_gfn == 0,
814          * so that it moves before all those with base_gfn == npages == 0.
815          *
816          * On the other hand, if new->npages is zero, the above loop has
817          * already left i pointing to the beginning of the empty part of
818          * mslots, and the ">=" would move the hole backwards in this
819          * case---which is wrong.  So skip the loop when deleting a slot.
820          */
821         if (new->npages) {
822                 while (i > 0 &&
823                        new->base_gfn >= mslots[i - 1].base_gfn) {
824                         mslots[i] = mslots[i - 1];
825                         slots->id_to_index[mslots[i].id] = i;
826                         i--;
827                 }
828         } else
829                 WARN_ON_ONCE(i != slots->used_slots);
830
831         mslots[i] = *new;
832         slots->id_to_index[mslots[i].id] = i;
833 }
834
835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
836 {
837         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
838
839 #ifdef __KVM_HAVE_READONLY_MEM
840         valid_flags |= KVM_MEM_READONLY;
841 #endif
842
843         if (mem->flags & ~valid_flags)
844                 return -EINVAL;
845
846         return 0;
847 }
848
849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
850                 int as_id, struct kvm_memslots *slots)
851 {
852         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
853
854         /*
855          * Set the low bit in the generation, which disables SPTE caching
856          * until the end of synchronize_srcu_expedited.
857          */
858         WARN_ON(old_memslots->generation & 1);
859         slots->generation = old_memslots->generation + 1;
860
861         rcu_assign_pointer(kvm->memslots[as_id], slots);
862         synchronize_srcu_expedited(&kvm->srcu);
863
864         /*
865          * Increment the new memslot generation a second time. This prevents
866          * vm exits that race with memslot updates from caching a memslot
867          * generation that will (potentially) be valid forever.
868          */
869         slots->generation++;
870
871         kvm_arch_memslots_updated(kvm, slots);
872
873         return old_memslots;
874 }
875
876 /*
877  * Allocate some memory and give it an address in the guest physical address
878  * space.
879  *
880  * Discontiguous memory is allowed, mostly for framebuffers.
881  *
882  * Must be called holding kvm->slots_lock for write.
883  */
884 int __kvm_set_memory_region(struct kvm *kvm,
885                             const struct kvm_userspace_memory_region *mem)
886 {
887         int r;
888         gfn_t base_gfn;
889         unsigned long npages;
890         struct kvm_memory_slot *slot;
891         struct kvm_memory_slot old, new;
892         struct kvm_memslots *slots = NULL, *old_memslots;
893         int as_id, id;
894         enum kvm_mr_change change;
895
896         r = check_memory_region_flags(mem);
897         if (r)
898                 goto out;
899
900         r = -EINVAL;
901         as_id = mem->slot >> 16;
902         id = (u16)mem->slot;
903
904         /* General sanity checks */
905         if (mem->memory_size & (PAGE_SIZE - 1))
906                 goto out;
907         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
908                 goto out;
909         /* We can read the guest memory with __xxx_user() later on. */
910         if ((id < KVM_USER_MEM_SLOTS) &&
911             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
912              !access_ok(VERIFY_WRITE,
913                         (void __user *)(unsigned long)mem->userspace_addr,
914                         mem->memory_size)))
915                 goto out;
916         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
917                 goto out;
918         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
919                 goto out;
920
921         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
922         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
923         npages = mem->memory_size >> PAGE_SHIFT;
924
925         if (npages > KVM_MEM_MAX_NR_PAGES)
926                 goto out;
927
928         new = old = *slot;
929
930         new.id = id;
931         new.base_gfn = base_gfn;
932         new.npages = npages;
933         new.flags = mem->flags;
934
935         if (npages) {
936                 if (!old.npages)
937                         change = KVM_MR_CREATE;
938                 else { /* Modify an existing slot. */
939                         if ((mem->userspace_addr != old.userspace_addr) ||
940                             (npages != old.npages) ||
941                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
942                                 goto out;
943
944                         if (base_gfn != old.base_gfn)
945                                 change = KVM_MR_MOVE;
946                         else if (new.flags != old.flags)
947                                 change = KVM_MR_FLAGS_ONLY;
948                         else { /* Nothing to change. */
949                                 r = 0;
950                                 goto out;
951                         }
952                 }
953         } else {
954                 if (!old.npages)
955                         goto out;
956
957                 change = KVM_MR_DELETE;
958                 new.base_gfn = 0;
959                 new.flags = 0;
960         }
961
962         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
963                 /* Check for overlaps */
964                 r = -EEXIST;
965                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
966                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
967                             (slot->id == id))
968                                 continue;
969                         if (!((base_gfn + npages <= slot->base_gfn) ||
970                               (base_gfn >= slot->base_gfn + slot->npages)))
971                                 goto out;
972                 }
973         }
974
975         /* Free page dirty bitmap if unneeded */
976         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
977                 new.dirty_bitmap = NULL;
978
979         r = -ENOMEM;
980         if (change == KVM_MR_CREATE) {
981                 new.userspace_addr = mem->userspace_addr;
982
983                 if (kvm_arch_create_memslot(kvm, &new, npages))
984                         goto out_free;
985         }
986
987         /* Allocate page dirty bitmap if needed */
988         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
989                 if (kvm_create_dirty_bitmap(&new) < 0)
990                         goto out_free;
991         }
992
993         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
994         if (!slots)
995                 goto out_free;
996         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
997
998         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
999                 slot = id_to_memslot(slots, id);
1000                 slot->flags |= KVM_MEMSLOT_INVALID;
1001
1002                 old_memslots = install_new_memslots(kvm, as_id, slots);
1003
1004                 /* slot was deleted or moved, clear iommu mapping */
1005                 kvm_iommu_unmap_pages(kvm, &old);
1006                 /* From this point no new shadow pages pointing to a deleted,
1007                  * or moved, memslot will be created.
1008                  *
1009                  * validation of sp->gfn happens in:
1010                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1011                  *      - kvm_is_visible_gfn (mmu_check_roots)
1012                  */
1013                 kvm_arch_flush_shadow_memslot(kvm, slot);
1014
1015                 /*
1016                  * We can re-use the old_memslots from above, the only difference
1017                  * from the currently installed memslots is the invalid flag.  This
1018                  * will get overwritten by update_memslots anyway.
1019                  */
1020                 slots = old_memslots;
1021         }
1022
1023         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1024         if (r)
1025                 goto out_slots;
1026
1027         /* actual memory is freed via old in kvm_free_memslot below */
1028         if (change == KVM_MR_DELETE) {
1029                 new.dirty_bitmap = NULL;
1030                 memset(&new.arch, 0, sizeof(new.arch));
1031         }
1032
1033         update_memslots(slots, &new);
1034         old_memslots = install_new_memslots(kvm, as_id, slots);
1035
1036         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1037
1038         kvm_free_memslot(kvm, &old, &new);
1039         kvfree(old_memslots);
1040
1041         /*
1042          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1043          * un-mapped and re-mapped if their base changes.  Since base change
1044          * unmapping is handled above with slot deletion, mapping alone is
1045          * needed here.  Anything else the iommu might care about for existing
1046          * slots (size changes, userspace addr changes and read-only flag
1047          * changes) is disallowed above, so any other attribute changes getting
1048          * here can be skipped.
1049          */
1050         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1051                 r = kvm_iommu_map_pages(kvm, &new);
1052                 return r;
1053         }
1054
1055         return 0;
1056
1057 out_slots:
1058         kvfree(slots);
1059 out_free:
1060         kvm_free_memslot(kvm, &new, &old);
1061 out:
1062         return r;
1063 }
1064 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1065
1066 int kvm_set_memory_region(struct kvm *kvm,
1067                           const struct kvm_userspace_memory_region *mem)
1068 {
1069         int r;
1070
1071         mutex_lock(&kvm->slots_lock);
1072         r = __kvm_set_memory_region(kvm, mem);
1073         mutex_unlock(&kvm->slots_lock);
1074         return r;
1075 }
1076 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1077
1078 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1079                                           struct kvm_userspace_memory_region *mem)
1080 {
1081         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1082                 return -EINVAL;
1083
1084         return kvm_set_memory_region(kvm, mem);
1085 }
1086
1087 int kvm_get_dirty_log(struct kvm *kvm,
1088                         struct kvm_dirty_log *log, int *is_dirty)
1089 {
1090         struct kvm_memslots *slots;
1091         struct kvm_memory_slot *memslot;
1092         int r, i, as_id, id;
1093         unsigned long n;
1094         unsigned long any = 0;
1095
1096         r = -EINVAL;
1097         as_id = log->slot >> 16;
1098         id = (u16)log->slot;
1099         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1100                 goto out;
1101
1102         slots = __kvm_memslots(kvm, as_id);
1103         memslot = id_to_memslot(slots, id);
1104         r = -ENOENT;
1105         if (!memslot->dirty_bitmap)
1106                 goto out;
1107
1108         n = kvm_dirty_bitmap_bytes(memslot);
1109
1110         for (i = 0; !any && i < n/sizeof(long); ++i)
1111                 any = memslot->dirty_bitmap[i];
1112
1113         r = -EFAULT;
1114         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1115                 goto out;
1116
1117         if (any)
1118                 *is_dirty = 1;
1119
1120         r = 0;
1121 out:
1122         return r;
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1125
1126 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1127 /**
1128  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1129  *      are dirty write protect them for next write.
1130  * @kvm:        pointer to kvm instance
1131  * @log:        slot id and address to which we copy the log
1132  * @is_dirty:   flag set if any page is dirty
1133  *
1134  * We need to keep it in mind that VCPU threads can write to the bitmap
1135  * concurrently. So, to avoid losing track of dirty pages we keep the
1136  * following order:
1137  *
1138  *    1. Take a snapshot of the bit and clear it if needed.
1139  *    2. Write protect the corresponding page.
1140  *    3. Copy the snapshot to the userspace.
1141  *    4. Upon return caller flushes TLB's if needed.
1142  *
1143  * Between 2 and 4, the guest may write to the page using the remaining TLB
1144  * entry.  This is not a problem because the page is reported dirty using
1145  * the snapshot taken before and step 4 ensures that writes done after
1146  * exiting to userspace will be logged for the next call.
1147  *
1148  */
1149 int kvm_get_dirty_log_protect(struct kvm *kvm,
1150                         struct kvm_dirty_log *log, bool *is_dirty)
1151 {
1152         struct kvm_memslots *slots;
1153         struct kvm_memory_slot *memslot;
1154         int r, i, as_id, id;
1155         unsigned long n;
1156         unsigned long *dirty_bitmap;
1157         unsigned long *dirty_bitmap_buffer;
1158
1159         r = -EINVAL;
1160         as_id = log->slot >> 16;
1161         id = (u16)log->slot;
1162         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1163                 goto out;
1164
1165         slots = __kvm_memslots(kvm, as_id);
1166         memslot = id_to_memslot(slots, id);
1167
1168         dirty_bitmap = memslot->dirty_bitmap;
1169         r = -ENOENT;
1170         if (!dirty_bitmap)
1171                 goto out;
1172
1173         n = kvm_dirty_bitmap_bytes(memslot);
1174
1175         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1176         memset(dirty_bitmap_buffer, 0, n);
1177
1178         spin_lock(&kvm->mmu_lock);
1179         *is_dirty = false;
1180         for (i = 0; i < n / sizeof(long); i++) {
1181                 unsigned long mask;
1182                 gfn_t offset;
1183
1184                 if (!dirty_bitmap[i])
1185                         continue;
1186
1187                 *is_dirty = true;
1188
1189                 mask = xchg(&dirty_bitmap[i], 0);
1190                 dirty_bitmap_buffer[i] = mask;
1191
1192                 if (mask) {
1193                         offset = i * BITS_PER_LONG;
1194                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1195                                                                 offset, mask);
1196                 }
1197         }
1198
1199         spin_unlock(&kvm->mmu_lock);
1200
1201         r = -EFAULT;
1202         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1203                 goto out;
1204
1205         r = 0;
1206 out:
1207         return r;
1208 }
1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1210 #endif
1211
1212 bool kvm_largepages_enabled(void)
1213 {
1214         return largepages_enabled;
1215 }
1216
1217 void kvm_disable_largepages(void)
1218 {
1219         largepages_enabled = false;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1222
1223 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1224 {
1225         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1228
1229 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1230 {
1231         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1232 }
1233
1234 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1235 {
1236         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1237
1238         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1239               memslot->flags & KVM_MEMSLOT_INVALID)
1240                 return false;
1241
1242         return true;
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1245
1246 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1247 {
1248         struct vm_area_struct *vma;
1249         unsigned long addr, size;
1250
1251         size = PAGE_SIZE;
1252
1253         addr = gfn_to_hva(kvm, gfn);
1254         if (kvm_is_error_hva(addr))
1255                 return PAGE_SIZE;
1256
1257         down_read(&current->mm->mmap_sem);
1258         vma = find_vma(current->mm, addr);
1259         if (!vma)
1260                 goto out;
1261
1262         size = vma_kernel_pagesize(vma);
1263
1264 out:
1265         up_read(&current->mm->mmap_sem);
1266
1267         return size;
1268 }
1269
1270 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1271 {
1272         return slot->flags & KVM_MEM_READONLY;
1273 }
1274
1275 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1276                                        gfn_t *nr_pages, bool write)
1277 {
1278         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279                 return KVM_HVA_ERR_BAD;
1280
1281         if (memslot_is_readonly(slot) && write)
1282                 return KVM_HVA_ERR_RO_BAD;
1283
1284         if (nr_pages)
1285                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1286
1287         return __gfn_to_hva_memslot(slot, gfn);
1288 }
1289
1290 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291                                      gfn_t *nr_pages)
1292 {
1293         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1294 }
1295
1296 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1297                                         gfn_t gfn)
1298 {
1299         return gfn_to_hva_many(slot, gfn, NULL);
1300 }
1301 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1302
1303 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1304 {
1305         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_hva);
1308
1309 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1314
1315 /*
1316  * If writable is set to false, the hva returned by this function is only
1317  * allowed to be read.
1318  */
1319 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1320                                       gfn_t gfn, bool *writable)
1321 {
1322         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1323
1324         if (!kvm_is_error_hva(hva) && writable)
1325                 *writable = !memslot_is_readonly(slot);
1326
1327         return hva;
1328 }
1329
1330 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1331 {
1332         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1333
1334         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1335 }
1336
1337 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1338 {
1339         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1340
1341         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1342 }
1343
1344 static int get_user_page_nowait(unsigned long start, int write,
1345                 struct page **page)
1346 {
1347         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1348
1349         if (write)
1350                 flags |= FOLL_WRITE;
1351
1352         return __get_user_pages(current, current->mm, start, 1, flags, page,
1353                         NULL, NULL);
1354 }
1355
1356 static inline int check_user_page_hwpoison(unsigned long addr)
1357 {
1358         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1359
1360         rc = __get_user_pages(current, current->mm, addr, 1,
1361                               flags, NULL, NULL, NULL);
1362         return rc == -EHWPOISON;
1363 }
1364
1365 /*
1366  * The atomic path to get the writable pfn which will be stored in @pfn,
1367  * true indicates success, otherwise false is returned.
1368  */
1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371 {
1372         struct page *page[1];
1373         int npages;
1374
1375         if (!(async || atomic))
1376                 return false;
1377
1378         /*
1379          * Fast pin a writable pfn only if it is a write fault request
1380          * or the caller allows to map a writable pfn for a read fault
1381          * request.
1382          */
1383         if (!(write_fault || writable))
1384                 return false;
1385
1386         npages = __get_user_pages_fast(addr, 1, 1, page);
1387         if (npages == 1) {
1388                 *pfn = page_to_pfn(page[0]);
1389
1390                 if (writable)
1391                         *writable = true;
1392                 return true;
1393         }
1394
1395         return false;
1396 }
1397
1398 /*
1399  * The slow path to get the pfn of the specified host virtual address,
1400  * 1 indicates success, -errno is returned if error is detected.
1401  */
1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403                            bool *writable, kvm_pfn_t *pfn)
1404 {
1405         struct page *page[1];
1406         int npages = 0;
1407
1408         might_sleep();
1409
1410         if (writable)
1411                 *writable = write_fault;
1412
1413         if (async) {
1414                 down_read(&current->mm->mmap_sem);
1415                 npages = get_user_page_nowait(addr, write_fault, page);
1416                 up_read(&current->mm->mmap_sem);
1417         } else
1418                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1419                                                    write_fault, 0, page,
1420                                                    FOLL_TOUCH|FOLL_HWPOISON);
1421         if (npages != 1)
1422                 return npages;
1423
1424         /* map read fault as writable if possible */
1425         if (unlikely(!write_fault) && writable) {
1426                 struct page *wpage[1];
1427
1428                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1429                 if (npages == 1) {
1430                         *writable = true;
1431                         put_page(page[0]);
1432                         page[0] = wpage[0];
1433                 }
1434
1435                 npages = 1;
1436         }
1437         *pfn = page_to_pfn(page[0]);
1438         return npages;
1439 }
1440
1441 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1442 {
1443         if (unlikely(!(vma->vm_flags & VM_READ)))
1444                 return false;
1445
1446         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1447                 return false;
1448
1449         return true;
1450 }
1451
1452 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1453                                unsigned long addr, bool *async,
1454                                bool write_fault, kvm_pfn_t *p_pfn)
1455 {
1456         unsigned long pfn;
1457         int r;
1458
1459         r = follow_pfn(vma, addr, &pfn);
1460         if (r) {
1461                 /*
1462                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1463                  * not call the fault handler, so do it here.
1464                  */
1465                 bool unlocked = false;
1466                 r = fixup_user_fault(current, current->mm, addr,
1467                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1468                                      &unlocked);
1469                 if (unlocked)
1470                         return -EAGAIN;
1471                 if (r)
1472                         return r;
1473
1474                 r = follow_pfn(vma, addr, &pfn);
1475                 if (r)
1476                         return r;
1477
1478         }
1479
1480
1481         /*
1482          * Get a reference here because callers of *hva_to_pfn* and
1483          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1484          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1485          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1486          * simply do nothing for reserved pfns.
1487          *
1488          * Whoever called remap_pfn_range is also going to call e.g.
1489          * unmap_mapping_range before the underlying pages are freed,
1490          * causing a call to our MMU notifier.
1491          */ 
1492         kvm_get_pfn(pfn);
1493
1494         *p_pfn = pfn;
1495         return 0;
1496 }
1497
1498 /*
1499  * Pin guest page in memory and return its pfn.
1500  * @addr: host virtual address which maps memory to the guest
1501  * @atomic: whether this function can sleep
1502  * @async: whether this function need to wait IO complete if the
1503  *         host page is not in the memory
1504  * @write_fault: whether we should get a writable host page
1505  * @writable: whether it allows to map a writable host page for !@write_fault
1506  *
1507  * The function will map a writable host page for these two cases:
1508  * 1): @write_fault = true
1509  * 2): @write_fault = false && @writable, @writable will tell the caller
1510  *     whether the mapping is writable.
1511  */
1512 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1513                         bool write_fault, bool *writable)
1514 {
1515         struct vm_area_struct *vma;
1516         kvm_pfn_t pfn = 0;
1517         int npages, r;
1518
1519         /* we can do it either atomically or asynchronously, not both */
1520         BUG_ON(atomic && async);
1521
1522         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1523                 return pfn;
1524
1525         if (atomic)
1526                 return KVM_PFN_ERR_FAULT;
1527
1528         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1529         if (npages == 1)
1530                 return pfn;
1531
1532         down_read(&current->mm->mmap_sem);
1533         if (npages == -EHWPOISON ||
1534               (!async && check_user_page_hwpoison(addr))) {
1535                 pfn = KVM_PFN_ERR_HWPOISON;
1536                 goto exit;
1537         }
1538
1539 retry:
1540         vma = find_vma_intersection(current->mm, addr, addr + 1);
1541
1542         if (vma == NULL)
1543                 pfn = KVM_PFN_ERR_FAULT;
1544         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1545                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1546                 if (r == -EAGAIN)
1547                         goto retry;
1548                 if (r < 0)
1549                         pfn = KVM_PFN_ERR_FAULT;
1550         } else {
1551                 if (async && vma_is_valid(vma, write_fault))
1552                         *async = true;
1553                 pfn = KVM_PFN_ERR_FAULT;
1554         }
1555 exit:
1556         up_read(&current->mm->mmap_sem);
1557         return pfn;
1558 }
1559
1560 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1561                                bool atomic, bool *async, bool write_fault,
1562                                bool *writable)
1563 {
1564         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1565
1566         if (addr == KVM_HVA_ERR_RO_BAD) {
1567                 if (writable)
1568                         *writable = false;
1569                 return KVM_PFN_ERR_RO_FAULT;
1570         }
1571
1572         if (kvm_is_error_hva(addr)) {
1573                 if (writable)
1574                         *writable = false;
1575                 return KVM_PFN_NOSLOT;
1576         }
1577
1578         /* Do not map writable pfn in the readonly memslot. */
1579         if (writable && memslot_is_readonly(slot)) {
1580                 *writable = false;
1581                 writable = NULL;
1582         }
1583
1584         return hva_to_pfn(addr, atomic, async, write_fault,
1585                           writable);
1586 }
1587 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1588
1589 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1590                       bool *writable)
1591 {
1592         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1593                                     write_fault, writable);
1594 }
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1596
1597 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1598 {
1599         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1600 }
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1602
1603 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1604 {
1605         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1606 }
1607 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1608
1609 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1610 {
1611         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1614
1615 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1616 {
1617         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1620
1621 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1622 {
1623         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1624 }
1625 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1626
1627 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1628 {
1629         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1630 }
1631 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1632
1633 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1634                             struct page **pages, int nr_pages)
1635 {
1636         unsigned long addr;
1637         gfn_t entry;
1638
1639         addr = gfn_to_hva_many(slot, gfn, &entry);
1640         if (kvm_is_error_hva(addr))
1641                 return -1;
1642
1643         if (entry < nr_pages)
1644                 return 0;
1645
1646         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1647 }
1648 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1649
1650 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1651 {
1652         if (is_error_noslot_pfn(pfn))
1653                 return KVM_ERR_PTR_BAD_PAGE;
1654
1655         if (kvm_is_reserved_pfn(pfn)) {
1656                 WARN_ON(1);
1657                 return KVM_ERR_PTR_BAD_PAGE;
1658         }
1659
1660         return pfn_to_page(pfn);
1661 }
1662
1663 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1664 {
1665         kvm_pfn_t pfn;
1666
1667         pfn = gfn_to_pfn(kvm, gfn);
1668
1669         return kvm_pfn_to_page(pfn);
1670 }
1671 EXPORT_SYMBOL_GPL(gfn_to_page);
1672
1673 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1674 {
1675         kvm_pfn_t pfn;
1676
1677         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1678
1679         return kvm_pfn_to_page(pfn);
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1682
1683 void kvm_release_page_clean(struct page *page)
1684 {
1685         WARN_ON(is_error_page(page));
1686
1687         kvm_release_pfn_clean(page_to_pfn(page));
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1690
1691 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1692 {
1693         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1694                 put_page(pfn_to_page(pfn));
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1697
1698 void kvm_release_page_dirty(struct page *page)
1699 {
1700         WARN_ON(is_error_page(page));
1701
1702         kvm_release_pfn_dirty(page_to_pfn(page));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1705
1706 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1707 {
1708         kvm_set_pfn_dirty(pfn);
1709         kvm_release_pfn_clean(pfn);
1710 }
1711
1712 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1713 {
1714         if (!kvm_is_reserved_pfn(pfn)) {
1715                 struct page *page = pfn_to_page(pfn);
1716
1717                 if (!PageReserved(page))
1718                         SetPageDirty(page);
1719         }
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1722
1723 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1724 {
1725         if (!kvm_is_reserved_pfn(pfn))
1726                 mark_page_accessed(pfn_to_page(pfn));
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1729
1730 void kvm_get_pfn(kvm_pfn_t pfn)
1731 {
1732         if (!kvm_is_reserved_pfn(pfn))
1733                 get_page(pfn_to_page(pfn));
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1736
1737 static int next_segment(unsigned long len, int offset)
1738 {
1739         if (len > PAGE_SIZE - offset)
1740                 return PAGE_SIZE - offset;
1741         else
1742                 return len;
1743 }
1744
1745 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1746                                  void *data, int offset, int len)
1747 {
1748         int r;
1749         unsigned long addr;
1750
1751         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1752         if (kvm_is_error_hva(addr))
1753                 return -EFAULT;
1754         r = __copy_from_user(data, (void __user *)addr + offset, len);
1755         if (r)
1756                 return -EFAULT;
1757         return 0;
1758 }
1759
1760 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1761                         int len)
1762 {
1763         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1764
1765         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1768
1769 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1770                              int offset, int len)
1771 {
1772         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1773
1774         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1777
1778 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1779 {
1780         gfn_t gfn = gpa >> PAGE_SHIFT;
1781         int seg;
1782         int offset = offset_in_page(gpa);
1783         int ret;
1784
1785         while ((seg = next_segment(len, offset)) != 0) {
1786                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1787                 if (ret < 0)
1788                         return ret;
1789                 offset = 0;
1790                 len -= seg;
1791                 data += seg;
1792                 ++gfn;
1793         }
1794         return 0;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_read_guest);
1797
1798 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1799 {
1800         gfn_t gfn = gpa >> PAGE_SHIFT;
1801         int seg;
1802         int offset = offset_in_page(gpa);
1803         int ret;
1804
1805         while ((seg = next_segment(len, offset)) != 0) {
1806                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1807                 if (ret < 0)
1808                         return ret;
1809                 offset = 0;
1810                 len -= seg;
1811                 data += seg;
1812                 ++gfn;
1813         }
1814         return 0;
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1817
1818 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1819                                    void *data, int offset, unsigned long len)
1820 {
1821         int r;
1822         unsigned long addr;
1823
1824         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1825         if (kvm_is_error_hva(addr))
1826                 return -EFAULT;
1827         pagefault_disable();
1828         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1829         pagefault_enable();
1830         if (r)
1831                 return -EFAULT;
1832         return 0;
1833 }
1834
1835 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1836                           unsigned long len)
1837 {
1838         gfn_t gfn = gpa >> PAGE_SHIFT;
1839         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1840         int offset = offset_in_page(gpa);
1841
1842         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1845
1846 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1847                                void *data, unsigned long len)
1848 {
1849         gfn_t gfn = gpa >> PAGE_SHIFT;
1850         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1851         int offset = offset_in_page(gpa);
1852
1853         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1856
1857 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1858                                   const void *data, int offset, int len)
1859 {
1860         int r;
1861         unsigned long addr;
1862
1863         addr = gfn_to_hva_memslot(memslot, gfn);
1864         if (kvm_is_error_hva(addr))
1865                 return -EFAULT;
1866         r = __copy_to_user((void __user *)addr + offset, data, len);
1867         if (r)
1868                 return -EFAULT;
1869         mark_page_dirty_in_slot(memslot, gfn);
1870         return 0;
1871 }
1872
1873 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1874                          const void *data, int offset, int len)
1875 {
1876         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1877
1878         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1881
1882 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1883                               const void *data, int offset, int len)
1884 {
1885         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1886
1887         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1890
1891 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1892                     unsigned long len)
1893 {
1894         gfn_t gfn = gpa >> PAGE_SHIFT;
1895         int seg;
1896         int offset = offset_in_page(gpa);
1897         int ret;
1898
1899         while ((seg = next_segment(len, offset)) != 0) {
1900                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1901                 if (ret < 0)
1902                         return ret;
1903                 offset = 0;
1904                 len -= seg;
1905                 data += seg;
1906                 ++gfn;
1907         }
1908         return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_write_guest);
1911
1912 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1913                          unsigned long len)
1914 {
1915         gfn_t gfn = gpa >> PAGE_SHIFT;
1916         int seg;
1917         int offset = offset_in_page(gpa);
1918         int ret;
1919
1920         while ((seg = next_segment(len, offset)) != 0) {
1921                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1922                 if (ret < 0)
1923                         return ret;
1924                 offset = 0;
1925                 len -= seg;
1926                 data += seg;
1927                 ++gfn;
1928         }
1929         return 0;
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1932
1933 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1934                               gpa_t gpa, unsigned long len)
1935 {
1936         struct kvm_memslots *slots = kvm_memslots(kvm);
1937         int offset = offset_in_page(gpa);
1938         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1939         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1940         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1941         gfn_t nr_pages_avail;
1942
1943         ghc->gpa = gpa;
1944         ghc->generation = slots->generation;
1945         ghc->len = len;
1946         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1947         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1948         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1949                 ghc->hva += offset;
1950         } else {
1951                 /*
1952                  * If the requested region crosses two memslots, we still
1953                  * verify that the entire region is valid here.
1954                  */
1955                 while (start_gfn <= end_gfn) {
1956                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1957                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1958                                                    &nr_pages_avail);
1959                         if (kvm_is_error_hva(ghc->hva))
1960                                 return -EFAULT;
1961                         start_gfn += nr_pages_avail;
1962                 }
1963                 /* Use the slow path for cross page reads and writes. */
1964                 ghc->memslot = NULL;
1965         }
1966         return 0;
1967 }
1968 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1969
1970 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1971                            void *data, unsigned long len)
1972 {
1973         struct kvm_memslots *slots = kvm_memslots(kvm);
1974         int r;
1975
1976         BUG_ON(len > ghc->len);
1977
1978         if (slots->generation != ghc->generation)
1979                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1980
1981         if (unlikely(!ghc->memslot))
1982                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1983
1984         if (kvm_is_error_hva(ghc->hva))
1985                 return -EFAULT;
1986
1987         r = __copy_to_user((void __user *)ghc->hva, data, len);
1988         if (r)
1989                 return -EFAULT;
1990         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1991
1992         return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1995
1996 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1997                            void *data, unsigned long len)
1998 {
1999         struct kvm_memslots *slots = kvm_memslots(kvm);
2000         int r;
2001
2002         BUG_ON(len > ghc->len);
2003
2004         if (slots->generation != ghc->generation)
2005                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2006
2007         if (unlikely(!ghc->memslot))
2008                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2009
2010         if (kvm_is_error_hva(ghc->hva))
2011                 return -EFAULT;
2012
2013         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2014         if (r)
2015                 return -EFAULT;
2016
2017         return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2020
2021 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2022 {
2023         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2024
2025         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2028
2029 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2030 {
2031         gfn_t gfn = gpa >> PAGE_SHIFT;
2032         int seg;
2033         int offset = offset_in_page(gpa);
2034         int ret;
2035
2036         while ((seg = next_segment(len, offset)) != 0) {
2037                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2038                 if (ret < 0)
2039                         return ret;
2040                 offset = 0;
2041                 len -= seg;
2042                 ++gfn;
2043         }
2044         return 0;
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2047
2048 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2049                                     gfn_t gfn)
2050 {
2051         if (memslot && memslot->dirty_bitmap) {
2052                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2053
2054                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2055         }
2056 }
2057
2058 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2059 {
2060         struct kvm_memory_slot *memslot;
2061
2062         memslot = gfn_to_memslot(kvm, gfn);
2063         mark_page_dirty_in_slot(memslot, gfn);
2064 }
2065 EXPORT_SYMBOL_GPL(mark_page_dirty);
2066
2067 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2068 {
2069         struct kvm_memory_slot *memslot;
2070
2071         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2072         mark_page_dirty_in_slot(memslot, gfn);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2075
2076 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2077 {
2078         unsigned int old, val, grow;
2079
2080         old = val = vcpu->halt_poll_ns;
2081         grow = READ_ONCE(halt_poll_ns_grow);
2082         /* 10us base */
2083         if (val == 0 && grow)
2084                 val = 10000;
2085         else
2086                 val *= grow;
2087
2088         if (val > halt_poll_ns)
2089                 val = halt_poll_ns;
2090
2091         vcpu->halt_poll_ns = val;
2092         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2093 }
2094
2095 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2096 {
2097         unsigned int old, val, shrink;
2098
2099         old = val = vcpu->halt_poll_ns;
2100         shrink = READ_ONCE(halt_poll_ns_shrink);
2101         if (shrink == 0)
2102                 val = 0;
2103         else
2104                 val /= shrink;
2105
2106         vcpu->halt_poll_ns = val;
2107         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2108 }
2109
2110 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2111 {
2112         if (kvm_arch_vcpu_runnable(vcpu)) {
2113                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2114                 return -EINTR;
2115         }
2116         if (kvm_cpu_has_pending_timer(vcpu))
2117                 return -EINTR;
2118         if (signal_pending(current))
2119                 return -EINTR;
2120
2121         return 0;
2122 }
2123
2124 /*
2125  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2126  */
2127 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2128 {
2129         ktime_t start, cur;
2130         DECLARE_SWAITQUEUE(wait);
2131         bool waited = false;
2132         u64 block_ns;
2133
2134         start = cur = ktime_get();
2135         if (vcpu->halt_poll_ns) {
2136                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2137
2138                 ++vcpu->stat.halt_attempted_poll;
2139                 do {
2140                         /*
2141                          * This sets KVM_REQ_UNHALT if an interrupt
2142                          * arrives.
2143                          */
2144                         if (kvm_vcpu_check_block(vcpu) < 0) {
2145                                 ++vcpu->stat.halt_successful_poll;
2146                                 if (!vcpu_valid_wakeup(vcpu))
2147                                         ++vcpu->stat.halt_poll_invalid;
2148                                 goto out;
2149                         }
2150                         cur = ktime_get();
2151                 } while (single_task_running() && ktime_before(cur, stop));
2152         }
2153
2154         kvm_arch_vcpu_blocking(vcpu);
2155
2156         for (;;) {
2157                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2158
2159                 if (kvm_vcpu_check_block(vcpu) < 0)
2160                         break;
2161
2162                 waited = true;
2163                 schedule();
2164         }
2165
2166         finish_swait(&vcpu->wq, &wait);
2167         cur = ktime_get();
2168
2169         kvm_arch_vcpu_unblocking(vcpu);
2170 out:
2171         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2172
2173         if (!vcpu_valid_wakeup(vcpu))
2174                 shrink_halt_poll_ns(vcpu);
2175         else if (halt_poll_ns) {
2176                 if (block_ns <= vcpu->halt_poll_ns)
2177                         ;
2178                 /* we had a long block, shrink polling */
2179                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2180                         shrink_halt_poll_ns(vcpu);
2181                 /* we had a short halt and our poll time is too small */
2182                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2183                         block_ns < halt_poll_ns)
2184                         grow_halt_poll_ns(vcpu);
2185         } else
2186                 vcpu->halt_poll_ns = 0;
2187
2188         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2189         kvm_arch_vcpu_block_finish(vcpu);
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2192
2193 #ifndef CONFIG_S390
2194 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2195 {
2196         struct swait_queue_head *wqp;
2197
2198         wqp = kvm_arch_vcpu_wq(vcpu);
2199         if (swait_active(wqp)) {
2200                 swake_up(wqp);
2201                 ++vcpu->stat.halt_wakeup;
2202         }
2203
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2206
2207 /*
2208  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2209  */
2210 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2211 {
2212         int me;
2213         int cpu = vcpu->cpu;
2214
2215         kvm_vcpu_wake_up(vcpu);
2216         me = get_cpu();
2217         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2218                 if (kvm_arch_vcpu_should_kick(vcpu))
2219                         smp_send_reschedule(cpu);
2220         put_cpu();
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2223 #endif /* !CONFIG_S390 */
2224
2225 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2226 {
2227         struct pid *pid;
2228         struct task_struct *task = NULL;
2229         int ret = 0;
2230
2231         rcu_read_lock();
2232         pid = rcu_dereference(target->pid);
2233         if (pid)
2234                 task = get_pid_task(pid, PIDTYPE_PID);
2235         rcu_read_unlock();
2236         if (!task)
2237                 return ret;
2238         ret = yield_to(task, 1);
2239         put_task_struct(task);
2240
2241         return ret;
2242 }
2243 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2244
2245 /*
2246  * Helper that checks whether a VCPU is eligible for directed yield.
2247  * Most eligible candidate to yield is decided by following heuristics:
2248  *
2249  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2250  *  (preempted lock holder), indicated by @in_spin_loop.
2251  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2252  *
2253  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2254  *  chance last time (mostly it has become eligible now since we have probably
2255  *  yielded to lockholder in last iteration. This is done by toggling
2256  *  @dy_eligible each time a VCPU checked for eligibility.)
2257  *
2258  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2259  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2260  *  burning. Giving priority for a potential lock-holder increases lock
2261  *  progress.
2262  *
2263  *  Since algorithm is based on heuristics, accessing another VCPU data without
2264  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2265  *  and continue with next VCPU and so on.
2266  */
2267 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2268 {
2269 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2270         bool eligible;
2271
2272         eligible = !vcpu->spin_loop.in_spin_loop ||
2273                     vcpu->spin_loop.dy_eligible;
2274
2275         if (vcpu->spin_loop.in_spin_loop)
2276                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2277
2278         return eligible;
2279 #else
2280         return true;
2281 #endif
2282 }
2283
2284 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2285 {
2286         struct kvm *kvm = me->kvm;
2287         struct kvm_vcpu *vcpu;
2288         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2289         int yielded = 0;
2290         int try = 3;
2291         int pass;
2292         int i;
2293
2294         kvm_vcpu_set_in_spin_loop(me, true);
2295         /*
2296          * We boost the priority of a VCPU that is runnable but not
2297          * currently running, because it got preempted by something
2298          * else and called schedule in __vcpu_run.  Hopefully that
2299          * VCPU is holding the lock that we need and will release it.
2300          * We approximate round-robin by starting at the last boosted VCPU.
2301          */
2302         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2303                 kvm_for_each_vcpu(i, vcpu, kvm) {
2304                         if (!pass && i <= last_boosted_vcpu) {
2305                                 i = last_boosted_vcpu;
2306                                 continue;
2307                         } else if (pass && i > last_boosted_vcpu)
2308                                 break;
2309                         if (!ACCESS_ONCE(vcpu->preempted))
2310                                 continue;
2311                         if (vcpu == me)
2312                                 continue;
2313                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2314                                 continue;
2315                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2316                                 continue;
2317
2318                         yielded = kvm_vcpu_yield_to(vcpu);
2319                         if (yielded > 0) {
2320                                 kvm->last_boosted_vcpu = i;
2321                                 break;
2322                         } else if (yielded < 0) {
2323                                 try--;
2324                                 if (!try)
2325                                         break;
2326                         }
2327                 }
2328         }
2329         kvm_vcpu_set_in_spin_loop(me, false);
2330
2331         /* Ensure vcpu is not eligible during next spinloop */
2332         kvm_vcpu_set_dy_eligible(me, false);
2333 }
2334 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2335
2336 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2337 {
2338         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2339         struct page *page;
2340
2341         if (vmf->pgoff == 0)
2342                 page = virt_to_page(vcpu->run);
2343 #ifdef CONFIG_X86
2344         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2345                 page = virt_to_page(vcpu->arch.pio_data);
2346 #endif
2347 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2348         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2349                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2350 #endif
2351         else
2352                 return kvm_arch_vcpu_fault(vcpu, vmf);
2353         get_page(page);
2354         vmf->page = page;
2355         return 0;
2356 }
2357
2358 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2359         .fault = kvm_vcpu_fault,
2360 };
2361
2362 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2363 {
2364         vma->vm_ops = &kvm_vcpu_vm_ops;
2365         return 0;
2366 }
2367
2368 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2369 {
2370         struct kvm_vcpu *vcpu = filp->private_data;
2371
2372         kvm_put_kvm(vcpu->kvm);
2373         return 0;
2374 }
2375
2376 static struct file_operations kvm_vcpu_fops = {
2377         .release        = kvm_vcpu_release,
2378         .unlocked_ioctl = kvm_vcpu_ioctl,
2379 #ifdef CONFIG_KVM_COMPAT
2380         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2381 #endif
2382         .mmap           = kvm_vcpu_mmap,
2383         .llseek         = noop_llseek,
2384 };
2385
2386 /*
2387  * Allocates an inode for the vcpu.
2388  */
2389 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2390 {
2391         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2392 }
2393
2394 /*
2395  * Creates some virtual cpus.  Good luck creating more than one.
2396  */
2397 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2398 {
2399         int r;
2400         struct kvm_vcpu *vcpu;
2401
2402         if (id >= KVM_MAX_VCPU_ID)
2403                 return -EINVAL;
2404
2405         mutex_lock(&kvm->lock);
2406         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2407                 mutex_unlock(&kvm->lock);
2408                 return -EINVAL;
2409         }
2410
2411         kvm->created_vcpus++;
2412         mutex_unlock(&kvm->lock);
2413
2414         vcpu = kvm_arch_vcpu_create(kvm, id);
2415         if (IS_ERR(vcpu)) {
2416                 r = PTR_ERR(vcpu);
2417                 goto vcpu_decrement;
2418         }
2419
2420         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2421
2422         r = kvm_arch_vcpu_setup(vcpu);
2423         if (r)
2424                 goto vcpu_destroy;
2425
2426         mutex_lock(&kvm->lock);
2427         if (kvm_get_vcpu_by_id(kvm, id)) {
2428                 r = -EEXIST;
2429                 goto unlock_vcpu_destroy;
2430         }
2431
2432         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2433
2434         /* Now it's all set up, let userspace reach it */
2435         kvm_get_kvm(kvm);
2436         r = create_vcpu_fd(vcpu);
2437         if (r < 0) {
2438                 kvm_put_kvm(kvm);
2439                 goto unlock_vcpu_destroy;
2440         }
2441
2442         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2443
2444         /*
2445          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2446          * before kvm->online_vcpu's incremented value.
2447          */
2448         smp_wmb();
2449         atomic_inc(&kvm->online_vcpus);
2450
2451         mutex_unlock(&kvm->lock);
2452         kvm_arch_vcpu_postcreate(vcpu);
2453         return r;
2454
2455 unlock_vcpu_destroy:
2456         mutex_unlock(&kvm->lock);
2457 vcpu_destroy:
2458         kvm_arch_vcpu_destroy(vcpu);
2459 vcpu_decrement:
2460         mutex_lock(&kvm->lock);
2461         kvm->created_vcpus--;
2462         mutex_unlock(&kvm->lock);
2463         return r;
2464 }
2465
2466 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2467 {
2468         if (sigset) {
2469                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2470                 vcpu->sigset_active = 1;
2471                 vcpu->sigset = *sigset;
2472         } else
2473                 vcpu->sigset_active = 0;
2474         return 0;
2475 }
2476
2477 static long kvm_vcpu_ioctl(struct file *filp,
2478                            unsigned int ioctl, unsigned long arg)
2479 {
2480         struct kvm_vcpu *vcpu = filp->private_data;
2481         void __user *argp = (void __user *)arg;
2482         int r;
2483         struct kvm_fpu *fpu = NULL;
2484         struct kvm_sregs *kvm_sregs = NULL;
2485
2486         if (vcpu->kvm->mm != current->mm)
2487                 return -EIO;
2488
2489         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2490                 return -EINVAL;
2491
2492 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2493         /*
2494          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2495          * so vcpu_load() would break it.
2496          */
2497         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2498                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2499 #endif
2500
2501
2502         r = vcpu_load(vcpu);
2503         if (r)
2504                 return r;
2505         switch (ioctl) {
2506         case KVM_RUN:
2507                 r = -EINVAL;
2508                 if (arg)
2509                         goto out;
2510                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2511                         /* The thread running this VCPU changed. */
2512                         struct pid *oldpid = vcpu->pid;
2513                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2514
2515                         rcu_assign_pointer(vcpu->pid, newpid);
2516                         if (oldpid)
2517                                 synchronize_rcu();
2518                         put_pid(oldpid);
2519                 }
2520                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2521                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2522                 break;
2523         case KVM_GET_REGS: {
2524                 struct kvm_regs *kvm_regs;
2525
2526                 r = -ENOMEM;
2527                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2528                 if (!kvm_regs)
2529                         goto out;
2530                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2531                 if (r)
2532                         goto out_free1;
2533                 r = -EFAULT;
2534                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2535                         goto out_free1;
2536                 r = 0;
2537 out_free1:
2538                 kfree(kvm_regs);
2539                 break;
2540         }
2541         case KVM_SET_REGS: {
2542                 struct kvm_regs *kvm_regs;
2543
2544                 r = -ENOMEM;
2545                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2546                 if (IS_ERR(kvm_regs)) {
2547                         r = PTR_ERR(kvm_regs);
2548                         goto out;
2549                 }
2550                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2551                 kfree(kvm_regs);
2552                 break;
2553         }
2554         case KVM_GET_SREGS: {
2555                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2556                 r = -ENOMEM;
2557                 if (!kvm_sregs)
2558                         goto out;
2559                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2560                 if (r)
2561                         goto out;
2562                 r = -EFAULT;
2563                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2564                         goto out;
2565                 r = 0;
2566                 break;
2567         }
2568         case KVM_SET_SREGS: {
2569                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2570                 if (IS_ERR(kvm_sregs)) {
2571                         r = PTR_ERR(kvm_sregs);
2572                         kvm_sregs = NULL;
2573                         goto out;
2574                 }
2575                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2576                 break;
2577         }
2578         case KVM_GET_MP_STATE: {
2579                 struct kvm_mp_state mp_state;
2580
2581                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2582                 if (r)
2583                         goto out;
2584                 r = -EFAULT;
2585                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2586                         goto out;
2587                 r = 0;
2588                 break;
2589         }
2590         case KVM_SET_MP_STATE: {
2591                 struct kvm_mp_state mp_state;
2592
2593                 r = -EFAULT;
2594                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2595                         goto out;
2596                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2597                 break;
2598         }
2599         case KVM_TRANSLATE: {
2600                 struct kvm_translation tr;
2601
2602                 r = -EFAULT;
2603                 if (copy_from_user(&tr, argp, sizeof(tr)))
2604                         goto out;
2605                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2606                 if (r)
2607                         goto out;
2608                 r = -EFAULT;
2609                 if (copy_to_user(argp, &tr, sizeof(tr)))
2610                         goto out;
2611                 r = 0;
2612                 break;
2613         }
2614         case KVM_SET_GUEST_DEBUG: {
2615                 struct kvm_guest_debug dbg;
2616
2617                 r = -EFAULT;
2618                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2619                         goto out;
2620                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2621                 break;
2622         }
2623         case KVM_SET_SIGNAL_MASK: {
2624                 struct kvm_signal_mask __user *sigmask_arg = argp;
2625                 struct kvm_signal_mask kvm_sigmask;
2626                 sigset_t sigset, *p;
2627
2628                 p = NULL;
2629                 if (argp) {
2630                         r = -EFAULT;
2631                         if (copy_from_user(&kvm_sigmask, argp,
2632                                            sizeof(kvm_sigmask)))
2633                                 goto out;
2634                         r = -EINVAL;
2635                         if (kvm_sigmask.len != sizeof(sigset))
2636                                 goto out;
2637                         r = -EFAULT;
2638                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2639                                            sizeof(sigset)))
2640                                 goto out;
2641                         p = &sigset;
2642                 }
2643                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2644                 break;
2645         }
2646         case KVM_GET_FPU: {
2647                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2648                 r = -ENOMEM;
2649                 if (!fpu)
2650                         goto out;
2651                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2652                 if (r)
2653                         goto out;
2654                 r = -EFAULT;
2655                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2656                         goto out;
2657                 r = 0;
2658                 break;
2659         }
2660         case KVM_SET_FPU: {
2661                 fpu = memdup_user(argp, sizeof(*fpu));
2662                 if (IS_ERR(fpu)) {
2663                         r = PTR_ERR(fpu);
2664                         fpu = NULL;
2665                         goto out;
2666                 }
2667                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2668                 break;
2669         }
2670         default:
2671                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2672         }
2673 out:
2674         vcpu_put(vcpu);
2675         kfree(fpu);
2676         kfree(kvm_sregs);
2677         return r;
2678 }
2679
2680 #ifdef CONFIG_KVM_COMPAT
2681 static long kvm_vcpu_compat_ioctl(struct file *filp,
2682                                   unsigned int ioctl, unsigned long arg)
2683 {
2684         struct kvm_vcpu *vcpu = filp->private_data;
2685         void __user *argp = compat_ptr(arg);
2686         int r;
2687
2688         if (vcpu->kvm->mm != current->mm)
2689                 return -EIO;
2690
2691         switch (ioctl) {
2692         case KVM_SET_SIGNAL_MASK: {
2693                 struct kvm_signal_mask __user *sigmask_arg = argp;
2694                 struct kvm_signal_mask kvm_sigmask;
2695                 compat_sigset_t csigset;
2696                 sigset_t sigset;
2697
2698                 if (argp) {
2699                         r = -EFAULT;
2700                         if (copy_from_user(&kvm_sigmask, argp,
2701                                            sizeof(kvm_sigmask)))
2702                                 goto out;
2703                         r = -EINVAL;
2704                         if (kvm_sigmask.len != sizeof(csigset))
2705                                 goto out;
2706                         r = -EFAULT;
2707                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2708                                            sizeof(csigset)))
2709                                 goto out;
2710                         sigset_from_compat(&sigset, &csigset);
2711                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2712                 } else
2713                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2714                 break;
2715         }
2716         default:
2717                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2718         }
2719
2720 out:
2721         return r;
2722 }
2723 #endif
2724
2725 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2726                                  int (*accessor)(struct kvm_device *dev,
2727                                                  struct kvm_device_attr *attr),
2728                                  unsigned long arg)
2729 {
2730         struct kvm_device_attr attr;
2731
2732         if (!accessor)
2733                 return -EPERM;
2734
2735         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2736                 return -EFAULT;
2737
2738         return accessor(dev, &attr);
2739 }
2740
2741 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2742                              unsigned long arg)
2743 {
2744         struct kvm_device *dev = filp->private_data;
2745
2746         switch (ioctl) {
2747         case KVM_SET_DEVICE_ATTR:
2748                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2749         case KVM_GET_DEVICE_ATTR:
2750                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2751         case KVM_HAS_DEVICE_ATTR:
2752                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2753         default:
2754                 if (dev->ops->ioctl)
2755                         return dev->ops->ioctl(dev, ioctl, arg);
2756
2757                 return -ENOTTY;
2758         }
2759 }
2760
2761 static int kvm_device_release(struct inode *inode, struct file *filp)
2762 {
2763         struct kvm_device *dev = filp->private_data;
2764         struct kvm *kvm = dev->kvm;
2765
2766         kvm_put_kvm(kvm);
2767         return 0;
2768 }
2769
2770 static const struct file_operations kvm_device_fops = {
2771         .unlocked_ioctl = kvm_device_ioctl,
2772 #ifdef CONFIG_KVM_COMPAT
2773         .compat_ioctl = kvm_device_ioctl,
2774 #endif
2775         .release = kvm_device_release,
2776 };
2777
2778 struct kvm_device *kvm_device_from_filp(struct file *filp)
2779 {
2780         if (filp->f_op != &kvm_device_fops)
2781                 return NULL;
2782
2783         return filp->private_data;
2784 }
2785
2786 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2787 #ifdef CONFIG_KVM_MPIC
2788         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2789         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2790 #endif
2791
2792 #ifdef CONFIG_KVM_XICS
2793         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2794 #endif
2795 };
2796
2797 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2798 {
2799         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2800                 return -ENOSPC;
2801
2802         if (kvm_device_ops_table[type] != NULL)
2803                 return -EEXIST;
2804
2805         kvm_device_ops_table[type] = ops;
2806         return 0;
2807 }
2808
2809 void kvm_unregister_device_ops(u32 type)
2810 {
2811         if (kvm_device_ops_table[type] != NULL)
2812                 kvm_device_ops_table[type] = NULL;
2813 }
2814
2815 static int kvm_ioctl_create_device(struct kvm *kvm,
2816                                    struct kvm_create_device *cd)
2817 {
2818         struct kvm_device_ops *ops = NULL;
2819         struct kvm_device *dev;
2820         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2821         int ret;
2822
2823         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2824                 return -ENODEV;
2825
2826         ops = kvm_device_ops_table[cd->type];
2827         if (ops == NULL)
2828                 return -ENODEV;
2829
2830         if (test)
2831                 return 0;
2832
2833         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2834         if (!dev)
2835                 return -ENOMEM;
2836
2837         dev->ops = ops;
2838         dev->kvm = kvm;
2839
2840         mutex_lock(&kvm->lock);
2841         ret = ops->create(dev, cd->type);
2842         if (ret < 0) {
2843                 mutex_unlock(&kvm->lock);
2844                 kfree(dev);
2845                 return ret;
2846         }
2847         list_add(&dev->vm_node, &kvm->devices);
2848         mutex_unlock(&kvm->lock);
2849
2850         if (ops->init)
2851                 ops->init(dev);
2852
2853         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2854         if (ret < 0) {
2855                 ops->destroy(dev);
2856                 mutex_lock(&kvm->lock);
2857                 list_del(&dev->vm_node);
2858                 mutex_unlock(&kvm->lock);
2859                 return ret;
2860         }
2861
2862         kvm_get_kvm(kvm);
2863         cd->fd = ret;
2864         return 0;
2865 }
2866
2867 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2868 {
2869         switch (arg) {
2870         case KVM_CAP_USER_MEMORY:
2871         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2872         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2873         case KVM_CAP_INTERNAL_ERROR_DATA:
2874 #ifdef CONFIG_HAVE_KVM_MSI
2875         case KVM_CAP_SIGNAL_MSI:
2876 #endif
2877 #ifdef CONFIG_HAVE_KVM_IRQFD
2878         case KVM_CAP_IRQFD:
2879         case KVM_CAP_IRQFD_RESAMPLE:
2880 #endif
2881         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2882         case KVM_CAP_CHECK_EXTENSION_VM:
2883                 return 1;
2884 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2885         case KVM_CAP_IRQ_ROUTING:
2886                 return KVM_MAX_IRQ_ROUTES;
2887 #endif
2888 #if KVM_ADDRESS_SPACE_NUM > 1
2889         case KVM_CAP_MULTI_ADDRESS_SPACE:
2890                 return KVM_ADDRESS_SPACE_NUM;
2891 #endif
2892         case KVM_CAP_MAX_VCPU_ID:
2893                 return KVM_MAX_VCPU_ID;
2894         default:
2895                 break;
2896         }
2897         return kvm_vm_ioctl_check_extension(kvm, arg);
2898 }
2899
2900 static long kvm_vm_ioctl(struct file *filp,
2901                            unsigned int ioctl, unsigned long arg)
2902 {
2903         struct kvm *kvm = filp->private_data;
2904         void __user *argp = (void __user *)arg;
2905         int r;
2906
2907         if (kvm->mm != current->mm)
2908                 return -EIO;
2909         switch (ioctl) {
2910         case KVM_CREATE_VCPU:
2911                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2912                 break;
2913         case KVM_SET_USER_MEMORY_REGION: {
2914                 struct kvm_userspace_memory_region kvm_userspace_mem;
2915
2916                 r = -EFAULT;
2917                 if (copy_from_user(&kvm_userspace_mem, argp,
2918                                                 sizeof(kvm_userspace_mem)))
2919                         goto out;
2920
2921                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2922                 break;
2923         }
2924         case KVM_GET_DIRTY_LOG: {
2925                 struct kvm_dirty_log log;
2926
2927                 r = -EFAULT;
2928                 if (copy_from_user(&log, argp, sizeof(log)))
2929                         goto out;
2930                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2931                 break;
2932         }
2933 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2934         case KVM_REGISTER_COALESCED_MMIO: {
2935                 struct kvm_coalesced_mmio_zone zone;
2936
2937                 r = -EFAULT;
2938                 if (copy_from_user(&zone, argp, sizeof(zone)))
2939                         goto out;
2940                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2941                 break;
2942         }
2943         case KVM_UNREGISTER_COALESCED_MMIO: {
2944                 struct kvm_coalesced_mmio_zone zone;
2945
2946                 r = -EFAULT;
2947                 if (copy_from_user(&zone, argp, sizeof(zone)))
2948                         goto out;
2949                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2950                 break;
2951         }
2952 #endif
2953         case KVM_IRQFD: {
2954                 struct kvm_irqfd data;
2955
2956                 r = -EFAULT;
2957                 if (copy_from_user(&data, argp, sizeof(data)))
2958                         goto out;
2959                 r = kvm_irqfd(kvm, &data);
2960                 break;
2961         }
2962         case KVM_IOEVENTFD: {
2963                 struct kvm_ioeventfd data;
2964
2965                 r = -EFAULT;
2966                 if (copy_from_user(&data, argp, sizeof(data)))
2967                         goto out;
2968                 r = kvm_ioeventfd(kvm, &data);
2969                 break;
2970         }
2971 #ifdef CONFIG_HAVE_KVM_MSI
2972         case KVM_SIGNAL_MSI: {
2973                 struct kvm_msi msi;
2974
2975                 r = -EFAULT;
2976                 if (copy_from_user(&msi, argp, sizeof(msi)))
2977                         goto out;
2978                 r = kvm_send_userspace_msi(kvm, &msi);
2979                 break;
2980         }
2981 #endif
2982 #ifdef __KVM_HAVE_IRQ_LINE
2983         case KVM_IRQ_LINE_STATUS:
2984         case KVM_IRQ_LINE: {
2985                 struct kvm_irq_level irq_event;
2986
2987                 r = -EFAULT;
2988                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2989                         goto out;
2990
2991                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2992                                         ioctl == KVM_IRQ_LINE_STATUS);
2993                 if (r)
2994                         goto out;
2995
2996                 r = -EFAULT;
2997                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2998                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2999                                 goto out;
3000                 }
3001
3002                 r = 0;
3003                 break;
3004         }
3005 #endif
3006 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3007         case KVM_SET_GSI_ROUTING: {
3008                 struct kvm_irq_routing routing;
3009                 struct kvm_irq_routing __user *urouting;
3010                 struct kvm_irq_routing_entry *entries = NULL;
3011
3012                 r = -EFAULT;
3013                 if (copy_from_user(&routing, argp, sizeof(routing)))
3014                         goto out;
3015                 r = -EINVAL;
3016                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3017                         goto out;
3018                 if (routing.flags)
3019                         goto out;
3020                 if (routing.nr) {
3021                         r = -ENOMEM;
3022                         entries = vmalloc(routing.nr * sizeof(*entries));
3023                         if (!entries)
3024                                 goto out;
3025                         r = -EFAULT;
3026                         urouting = argp;
3027                         if (copy_from_user(entries, urouting->entries,
3028                                            routing.nr * sizeof(*entries)))
3029                                 goto out_free_irq_routing;
3030                 }
3031                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3032                                         routing.flags);
3033 out_free_irq_routing:
3034                 vfree(entries);
3035                 break;
3036         }
3037 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3038         case KVM_CREATE_DEVICE: {
3039                 struct kvm_create_device cd;
3040
3041                 r = -EFAULT;
3042                 if (copy_from_user(&cd, argp, sizeof(cd)))
3043                         goto out;
3044
3045                 r = kvm_ioctl_create_device(kvm, &cd);
3046                 if (r)
3047                         goto out;
3048
3049                 r = -EFAULT;
3050                 if (copy_to_user(argp, &cd, sizeof(cd)))
3051                         goto out;
3052
3053                 r = 0;
3054                 break;
3055         }
3056         case KVM_CHECK_EXTENSION:
3057                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3058                 break;
3059         default:
3060                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3061         }
3062 out:
3063         return r;
3064 }
3065
3066 #ifdef CONFIG_KVM_COMPAT
3067 struct compat_kvm_dirty_log {
3068         __u32 slot;
3069         __u32 padding1;
3070         union {
3071                 compat_uptr_t dirty_bitmap; /* one bit per page */
3072                 __u64 padding2;
3073         };
3074 };
3075
3076 static long kvm_vm_compat_ioctl(struct file *filp,
3077                            unsigned int ioctl, unsigned long arg)
3078 {
3079         struct kvm *kvm = filp->private_data;
3080         int r;
3081
3082         if (kvm->mm != current->mm)
3083                 return -EIO;
3084         switch (ioctl) {
3085         case KVM_GET_DIRTY_LOG: {
3086                 struct compat_kvm_dirty_log compat_log;
3087                 struct kvm_dirty_log log;
3088
3089                 r = -EFAULT;
3090                 if (copy_from_user(&compat_log, (void __user *)arg,
3091                                    sizeof(compat_log)))
3092                         goto out;
3093                 log.slot         = compat_log.slot;
3094                 log.padding1     = compat_log.padding1;
3095                 log.padding2     = compat_log.padding2;
3096                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3097
3098                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3099                 break;
3100         }
3101         default:
3102                 r = kvm_vm_ioctl(filp, ioctl, arg);
3103         }
3104
3105 out:
3106         return r;
3107 }
3108 #endif
3109
3110 static struct file_operations kvm_vm_fops = {
3111         .release        = kvm_vm_release,
3112         .unlocked_ioctl = kvm_vm_ioctl,
3113 #ifdef CONFIG_KVM_COMPAT
3114         .compat_ioctl   = kvm_vm_compat_ioctl,
3115 #endif
3116         .llseek         = noop_llseek,
3117 };
3118
3119 static int kvm_dev_ioctl_create_vm(unsigned long type)
3120 {
3121         int r;
3122         struct kvm *kvm;
3123         struct file *file;
3124
3125         kvm = kvm_create_vm(type);
3126         if (IS_ERR(kvm))
3127                 return PTR_ERR(kvm);
3128 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3129         r = kvm_coalesced_mmio_init(kvm);
3130         if (r < 0) {
3131                 kvm_put_kvm(kvm);
3132                 return r;
3133         }
3134 #endif
3135         r = get_unused_fd_flags(O_CLOEXEC);
3136         if (r < 0) {
3137                 kvm_put_kvm(kvm);
3138                 return r;
3139         }
3140         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3141         if (IS_ERR(file)) {
3142                 put_unused_fd(r);
3143                 kvm_put_kvm(kvm);
3144                 return PTR_ERR(file);
3145         }
3146
3147         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3148                 put_unused_fd(r);
3149                 fput(file);
3150                 return -ENOMEM;
3151         }
3152
3153         fd_install(r, file);
3154         return r;
3155 }
3156
3157 static long kvm_dev_ioctl(struct file *filp,
3158                           unsigned int ioctl, unsigned long arg)
3159 {
3160         long r = -EINVAL;
3161
3162         switch (ioctl) {
3163         case KVM_GET_API_VERSION:
3164                 if (arg)
3165                         goto out;
3166                 r = KVM_API_VERSION;
3167                 break;
3168         case KVM_CREATE_VM:
3169                 r = kvm_dev_ioctl_create_vm(arg);
3170                 break;
3171         case KVM_CHECK_EXTENSION:
3172                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3173                 break;
3174         case KVM_GET_VCPU_MMAP_SIZE:
3175                 if (arg)
3176                         goto out;
3177                 r = PAGE_SIZE;     /* struct kvm_run */
3178 #ifdef CONFIG_X86
3179                 r += PAGE_SIZE;    /* pio data page */
3180 #endif
3181 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3182                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3183 #endif
3184                 break;
3185         case KVM_TRACE_ENABLE:
3186         case KVM_TRACE_PAUSE:
3187         case KVM_TRACE_DISABLE:
3188                 r = -EOPNOTSUPP;
3189                 break;
3190         default:
3191                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3192         }
3193 out:
3194         return r;
3195 }
3196
3197 static struct file_operations kvm_chardev_ops = {
3198         .unlocked_ioctl = kvm_dev_ioctl,
3199         .compat_ioctl   = kvm_dev_ioctl,
3200         .llseek         = noop_llseek,
3201 };
3202
3203 static struct miscdevice kvm_dev = {
3204         KVM_MINOR,
3205         "kvm",
3206         &kvm_chardev_ops,
3207 };
3208
3209 static void hardware_enable_nolock(void *junk)
3210 {
3211         int cpu = raw_smp_processor_id();
3212         int r;
3213
3214         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3215                 return;
3216
3217         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3218
3219         r = kvm_arch_hardware_enable();
3220
3221         if (r) {
3222                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3223                 atomic_inc(&hardware_enable_failed);
3224                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3225         }
3226 }
3227
3228 static int kvm_starting_cpu(unsigned int cpu)
3229 {
3230         raw_spin_lock(&kvm_count_lock);
3231         if (kvm_usage_count)
3232                 hardware_enable_nolock(NULL);
3233         raw_spin_unlock(&kvm_count_lock);
3234         return 0;
3235 }
3236
3237 static void hardware_disable_nolock(void *junk)
3238 {
3239         int cpu = raw_smp_processor_id();
3240
3241         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3242                 return;
3243         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3244         kvm_arch_hardware_disable();
3245 }
3246
3247 static int kvm_dying_cpu(unsigned int cpu)
3248 {
3249         raw_spin_lock(&kvm_count_lock);
3250         if (kvm_usage_count)
3251                 hardware_disable_nolock(NULL);
3252         raw_spin_unlock(&kvm_count_lock);
3253         return 0;
3254 }
3255
3256 static void hardware_disable_all_nolock(void)
3257 {
3258         BUG_ON(!kvm_usage_count);
3259
3260         kvm_usage_count--;
3261         if (!kvm_usage_count)
3262                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3263 }
3264
3265 static void hardware_disable_all(void)
3266 {
3267         raw_spin_lock(&kvm_count_lock);
3268         hardware_disable_all_nolock();
3269         raw_spin_unlock(&kvm_count_lock);
3270 }
3271
3272 static int hardware_enable_all(void)
3273 {
3274         int r = 0;
3275
3276         raw_spin_lock(&kvm_count_lock);
3277
3278         kvm_usage_count++;
3279         if (kvm_usage_count == 1) {
3280                 atomic_set(&hardware_enable_failed, 0);
3281                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3282
3283                 if (atomic_read(&hardware_enable_failed)) {
3284                         hardware_disable_all_nolock();
3285                         r = -EBUSY;
3286                 }
3287         }
3288
3289         raw_spin_unlock(&kvm_count_lock);
3290
3291         return r;
3292 }
3293
3294 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3295                       void *v)
3296 {
3297         /*
3298          * Some (well, at least mine) BIOSes hang on reboot if
3299          * in vmx root mode.
3300          *
3301          * And Intel TXT required VMX off for all cpu when system shutdown.
3302          */
3303         pr_info("kvm: exiting hardware virtualization\n");
3304         kvm_rebooting = true;
3305         on_each_cpu(hardware_disable_nolock, NULL, 1);
3306         return NOTIFY_OK;
3307 }
3308
3309 static struct notifier_block kvm_reboot_notifier = {
3310         .notifier_call = kvm_reboot,
3311         .priority = 0,
3312 };
3313
3314 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3315 {
3316         int i;
3317
3318         for (i = 0; i < bus->dev_count; i++) {
3319                 struct kvm_io_device *pos = bus->range[i].dev;
3320
3321                 kvm_iodevice_destructor(pos);
3322         }
3323         kfree(bus);
3324 }
3325
3326 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3327                                  const struct kvm_io_range *r2)
3328 {
3329         gpa_t addr1 = r1->addr;
3330         gpa_t addr2 = r2->addr;
3331
3332         if (addr1 < addr2)
3333                 return -1;
3334
3335         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3336          * accept any overlapping write.  Any order is acceptable for
3337          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3338          * we process all of them.
3339          */
3340         if (r2->len) {
3341                 addr1 += r1->len;
3342                 addr2 += r2->len;
3343         }
3344
3345         if (addr1 > addr2)
3346                 return 1;
3347
3348         return 0;
3349 }
3350
3351 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3352 {
3353         return kvm_io_bus_cmp(p1, p2);
3354 }
3355
3356 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3357                           gpa_t addr, int len)
3358 {
3359         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3360                 .addr = addr,
3361                 .len = len,
3362                 .dev = dev,
3363         };
3364
3365         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3366                 kvm_io_bus_sort_cmp, NULL);
3367
3368         return 0;
3369 }
3370
3371 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3372                              gpa_t addr, int len)
3373 {
3374         struct kvm_io_range *range, key;
3375         int off;
3376
3377         key = (struct kvm_io_range) {
3378                 .addr = addr,
3379                 .len = len,
3380         };
3381
3382         range = bsearch(&key, bus->range, bus->dev_count,
3383                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3384         if (range == NULL)
3385                 return -ENOENT;
3386
3387         off = range - bus->range;
3388
3389         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3390                 off--;
3391
3392         return off;
3393 }
3394
3395 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3396                               struct kvm_io_range *range, const void *val)
3397 {
3398         int idx;
3399
3400         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3401         if (idx < 0)
3402                 return -EOPNOTSUPP;
3403
3404         while (idx < bus->dev_count &&
3405                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3406                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3407                                         range->len, val))
3408                         return idx;
3409                 idx++;
3410         }
3411
3412         return -EOPNOTSUPP;
3413 }
3414
3415 /* kvm_io_bus_write - called under kvm->slots_lock */
3416 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3417                      int len, const void *val)
3418 {
3419         struct kvm_io_bus *bus;
3420         struct kvm_io_range range;
3421         int r;
3422
3423         range = (struct kvm_io_range) {
3424                 .addr = addr,
3425                 .len = len,
3426         };
3427
3428         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3429         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3430         return r < 0 ? r : 0;
3431 }
3432
3433 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3434 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3435                             gpa_t addr, int len, const void *val, long cookie)
3436 {
3437         struct kvm_io_bus *bus;
3438         struct kvm_io_range range;
3439
3440         range = (struct kvm_io_range) {
3441                 .addr = addr,
3442                 .len = len,
3443         };
3444
3445         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3446
3447         /* First try the device referenced by cookie. */
3448         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3449             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3450                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3451                                         val))
3452                         return cookie;
3453
3454         /*
3455          * cookie contained garbage; fall back to search and return the
3456          * correct cookie value.
3457          */
3458         return __kvm_io_bus_write(vcpu, bus, &range, val);
3459 }
3460
3461 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3462                              struct kvm_io_range *range, void *val)
3463 {
3464         int idx;
3465
3466         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3467         if (idx < 0)
3468                 return -EOPNOTSUPP;
3469
3470         while (idx < bus->dev_count &&
3471                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3472                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3473                                        range->len, val))
3474                         return idx;
3475                 idx++;
3476         }
3477
3478         return -EOPNOTSUPP;
3479 }
3480 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3481
3482 /* kvm_io_bus_read - called under kvm->slots_lock */
3483 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3484                     int len, void *val)
3485 {
3486         struct kvm_io_bus *bus;
3487         struct kvm_io_range range;
3488         int r;
3489
3490         range = (struct kvm_io_range) {
3491                 .addr = addr,
3492                 .len = len,
3493         };
3494
3495         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3496         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3497         return r < 0 ? r : 0;
3498 }
3499
3500
3501 /* Caller must hold slots_lock. */
3502 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3503                             int len, struct kvm_io_device *dev)
3504 {
3505         struct kvm_io_bus *new_bus, *bus;
3506
3507         bus = kvm->buses[bus_idx];
3508         /* exclude ioeventfd which is limited by maximum fd */
3509         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3510                 return -ENOSPC;
3511
3512         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3513                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3514         if (!new_bus)
3515                 return -ENOMEM;
3516         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3517                sizeof(struct kvm_io_range)));
3518         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3519         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3520         synchronize_srcu_expedited(&kvm->srcu);
3521         kfree(bus);
3522
3523         return 0;
3524 }
3525
3526 /* Caller must hold slots_lock. */
3527 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3528                               struct kvm_io_device *dev)
3529 {
3530         int i, r;
3531         struct kvm_io_bus *new_bus, *bus;
3532
3533         bus = kvm->buses[bus_idx];
3534         r = -ENOENT;
3535         for (i = 0; i < bus->dev_count; i++)
3536                 if (bus->range[i].dev == dev) {
3537                         r = 0;
3538                         break;
3539                 }
3540
3541         if (r)
3542                 return r;
3543
3544         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3545                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3546         if (!new_bus)
3547                 return -ENOMEM;
3548
3549         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3550         new_bus->dev_count--;
3551         memcpy(new_bus->range + i, bus->range + i + 1,
3552                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3553
3554         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3555         synchronize_srcu_expedited(&kvm->srcu);
3556         kfree(bus);
3557         return r;
3558 }
3559
3560 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3561                                          gpa_t addr)
3562 {
3563         struct kvm_io_bus *bus;
3564         int dev_idx, srcu_idx;
3565         struct kvm_io_device *iodev = NULL;
3566
3567         srcu_idx = srcu_read_lock(&kvm->srcu);
3568
3569         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3570
3571         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3572         if (dev_idx < 0)
3573                 goto out_unlock;
3574
3575         iodev = bus->range[dev_idx].dev;
3576
3577 out_unlock:
3578         srcu_read_unlock(&kvm->srcu, srcu_idx);
3579
3580         return iodev;
3581 }
3582 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3583
3584 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3585                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3586                            const char *fmt)
3587 {
3588         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3589                                           inode->i_private;
3590
3591         /* The debugfs files are a reference to the kvm struct which
3592          * is still valid when kvm_destroy_vm is called.
3593          * To avoid the race between open and the removal of the debugfs
3594          * directory we test against the users count.
3595          */
3596         if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3597                 return -ENOENT;
3598
3599         if (simple_attr_open(inode, file, get, set, fmt)) {
3600                 kvm_put_kvm(stat_data->kvm);
3601                 return -ENOMEM;
3602         }
3603
3604         return 0;
3605 }
3606
3607 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3608 {
3609         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3610                                           inode->i_private;
3611
3612         simple_attr_release(inode, file);
3613         kvm_put_kvm(stat_data->kvm);
3614
3615         return 0;
3616 }
3617
3618 static int vm_stat_get_per_vm(void *data, u64 *val)
3619 {
3620         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3621
3622         *val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3623
3624         return 0;
3625 }
3626
3627 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3628 {
3629         __simple_attr_check_format("%llu\n", 0ull);
3630         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3631                                 NULL, "%llu\n");
3632 }
3633
3634 static const struct file_operations vm_stat_get_per_vm_fops = {
3635         .owner   = THIS_MODULE,
3636         .open    = vm_stat_get_per_vm_open,
3637         .release = kvm_debugfs_release,
3638         .read    = simple_attr_read,
3639         .write   = simple_attr_write,
3640         .llseek  = generic_file_llseek,
3641 };
3642
3643 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3644 {
3645         int i;
3646         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3647         struct kvm_vcpu *vcpu;
3648
3649         *val = 0;
3650
3651         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3652                 *val += *(u32 *)((void *)vcpu + stat_data->offset);
3653
3654         return 0;
3655 }
3656
3657 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3658 {
3659         __simple_attr_check_format("%llu\n", 0ull);
3660         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3661                                  NULL, "%llu\n");
3662 }
3663
3664 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3665         .owner   = THIS_MODULE,
3666         .open    = vcpu_stat_get_per_vm_open,
3667         .release = kvm_debugfs_release,
3668         .read    = simple_attr_read,
3669         .write   = simple_attr_write,
3670         .llseek  = generic_file_llseek,
3671 };
3672
3673 static const struct file_operations *stat_fops_per_vm[] = {
3674         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3675         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3676 };
3677
3678 static int vm_stat_get(void *_offset, u64 *val)
3679 {
3680         unsigned offset = (long)_offset;
3681         struct kvm *kvm;
3682         struct kvm_stat_data stat_tmp = {.offset = offset};
3683         u64 tmp_val;
3684
3685         *val = 0;
3686         spin_lock(&kvm_lock);
3687         list_for_each_entry(kvm, &vm_list, vm_list) {
3688                 stat_tmp.kvm = kvm;
3689                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3690                 *val += tmp_val;
3691         }
3692         spin_unlock(&kvm_lock);
3693         return 0;
3694 }
3695
3696 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3697
3698 static int vcpu_stat_get(void *_offset, u64 *val)
3699 {
3700         unsigned offset = (long)_offset;
3701         struct kvm *kvm;
3702         struct kvm_stat_data stat_tmp = {.offset = offset};
3703         u64 tmp_val;
3704
3705         *val = 0;
3706         spin_lock(&kvm_lock);
3707         list_for_each_entry(kvm, &vm_list, vm_list) {
3708                 stat_tmp.kvm = kvm;
3709                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3710                 *val += tmp_val;
3711         }
3712         spin_unlock(&kvm_lock);
3713         return 0;
3714 }
3715
3716 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3717
3718 static const struct file_operations *stat_fops[] = {
3719         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3720         [KVM_STAT_VM]   = &vm_stat_fops,
3721 };
3722
3723 static int kvm_init_debug(void)
3724 {
3725         int r = -EEXIST;
3726         struct kvm_stats_debugfs_item *p;
3727
3728         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3729         if (kvm_debugfs_dir == NULL)
3730                 goto out;
3731
3732         kvm_debugfs_num_entries = 0;
3733         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3734                 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3735                                          (void *)(long)p->offset,
3736                                          stat_fops[p->kind]))
3737                         goto out_dir;
3738         }
3739
3740         return 0;
3741
3742 out_dir:
3743         debugfs_remove_recursive(kvm_debugfs_dir);
3744 out:
3745         return r;
3746 }
3747
3748 static int kvm_suspend(void)
3749 {
3750         if (kvm_usage_count)
3751                 hardware_disable_nolock(NULL);
3752         return 0;
3753 }
3754
3755 static void kvm_resume(void)
3756 {
3757         if (kvm_usage_count) {
3758                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3759                 hardware_enable_nolock(NULL);
3760         }
3761 }
3762
3763 static struct syscore_ops kvm_syscore_ops = {
3764         .suspend = kvm_suspend,
3765         .resume = kvm_resume,
3766 };
3767
3768 static inline
3769 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3770 {
3771         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3772 }
3773
3774 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3775 {
3776         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3777
3778         if (vcpu->preempted)
3779                 vcpu->preempted = false;
3780
3781         kvm_arch_sched_in(vcpu, cpu);
3782
3783         kvm_arch_vcpu_load(vcpu, cpu);
3784 }
3785
3786 static void kvm_sched_out(struct preempt_notifier *pn,
3787                           struct task_struct *next)
3788 {
3789         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3790
3791         if (current->state == TASK_RUNNING)
3792                 vcpu->preempted = true;
3793         kvm_arch_vcpu_put(vcpu);
3794 }
3795
3796 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3797                   struct module *module)
3798 {
3799         int r;
3800         int cpu;
3801
3802         r = kvm_arch_init(opaque);
3803         if (r)
3804                 goto out_fail;
3805
3806         /*
3807          * kvm_arch_init makes sure there's at most one caller
3808          * for architectures that support multiple implementations,
3809          * like intel and amd on x86.
3810          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3811          * conflicts in case kvm is already setup for another implementation.
3812          */
3813         r = kvm_irqfd_init();
3814         if (r)
3815                 goto out_irqfd;
3816
3817         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3818                 r = -ENOMEM;
3819                 goto out_free_0;
3820         }
3821
3822         r = kvm_arch_hardware_setup();
3823         if (r < 0)
3824                 goto out_free_0a;
3825
3826         for_each_online_cpu(cpu) {
3827                 smp_call_function_single(cpu,
3828                                 kvm_arch_check_processor_compat,
3829                                 &r, 1);
3830                 if (r < 0)
3831                         goto out_free_1;
3832         }
3833
3834         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3835                                       kvm_starting_cpu, kvm_dying_cpu);
3836         if (r)
3837                 goto out_free_2;
3838         register_reboot_notifier(&kvm_reboot_notifier);
3839
3840         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3841         if (!vcpu_align)
3842                 vcpu_align = __alignof__(struct kvm_vcpu);
3843         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3844                                            0, NULL);
3845         if (!kvm_vcpu_cache) {
3846                 r = -ENOMEM;
3847                 goto out_free_3;
3848         }
3849
3850         r = kvm_async_pf_init();
3851         if (r)
3852                 goto out_free;
3853
3854         kvm_chardev_ops.owner = module;
3855         kvm_vm_fops.owner = module;
3856         kvm_vcpu_fops.owner = module;
3857
3858         r = misc_register(&kvm_dev);
3859         if (r) {
3860                 pr_err("kvm: misc device register failed\n");
3861                 goto out_unreg;
3862         }
3863
3864         register_syscore_ops(&kvm_syscore_ops);
3865
3866         kvm_preempt_ops.sched_in = kvm_sched_in;
3867         kvm_preempt_ops.sched_out = kvm_sched_out;
3868
3869         r = kvm_init_debug();
3870         if (r) {
3871                 pr_err("kvm: create debugfs files failed\n");
3872                 goto out_undebugfs;
3873         }
3874
3875         r = kvm_vfio_ops_init();
3876         WARN_ON(r);
3877
3878         return 0;
3879
3880 out_undebugfs:
3881         unregister_syscore_ops(&kvm_syscore_ops);
3882         misc_deregister(&kvm_dev);
3883 out_unreg:
3884         kvm_async_pf_deinit();
3885 out_free:
3886         kmem_cache_destroy(kvm_vcpu_cache);
3887 out_free_3:
3888         unregister_reboot_notifier(&kvm_reboot_notifier);
3889         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3890 out_free_2:
3891 out_free_1:
3892         kvm_arch_hardware_unsetup();
3893 out_free_0a:
3894         free_cpumask_var(cpus_hardware_enabled);
3895 out_free_0:
3896         kvm_irqfd_exit();
3897 out_irqfd:
3898         kvm_arch_exit();
3899 out_fail:
3900         return r;
3901 }
3902 EXPORT_SYMBOL_GPL(kvm_init);
3903
3904 void kvm_exit(void)
3905 {
3906         debugfs_remove_recursive(kvm_debugfs_dir);
3907         misc_deregister(&kvm_dev);
3908         kmem_cache_destroy(kvm_vcpu_cache);
3909         kvm_async_pf_deinit();
3910         unregister_syscore_ops(&kvm_syscore_ops);
3911         unregister_reboot_notifier(&kvm_reboot_notifier);
3912         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3913         on_each_cpu(hardware_disable_nolock, NULL, 1);
3914         kvm_arch_hardware_unsetup();
3915         kvm_arch_exit();
3916         kvm_irqfd_exit();
3917         free_cpumask_var(cpus_hardware_enabled);
3918         kvm_vfio_ops_exit();
3919 }
3920 EXPORT_SYMBOL_GPL(kvm_exit);