2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
86 struct dentry *kvm_debugfs_dir;
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99 struct kvm_memory_slot *new, u64 last_generation);
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
108 static bool largepages_enabled = true;
110 bool kvm_is_mmio_pfn(pfn_t pfn)
113 return PageReserved(pfn_to_page(pfn));
119 * Switches to specified vcpu, until a matching vcpu_put()
121 int vcpu_load(struct kvm_vcpu *vcpu)
125 if (mutex_lock_killable(&vcpu->mutex))
127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 /* The thread running this VCPU changed. */
129 struct pid *oldpid = vcpu->pid;
130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 rcu_assign_pointer(vcpu->pid, newpid);
136 preempt_notifier_register(&vcpu->preempt_notifier);
137 kvm_arch_vcpu_load(vcpu, cpu);
142 void vcpu_put(struct kvm_vcpu *vcpu)
145 kvm_arch_vcpu_put(vcpu);
146 preempt_notifier_unregister(&vcpu->preempt_notifier);
148 mutex_unlock(&vcpu->mutex);
151 static void ack_flush(void *_completed)
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 struct kvm_vcpu *vcpu;
162 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
165 kvm_for_each_vcpu(i, vcpu, kvm) {
166 kvm_make_request(req, vcpu);
169 /* Set ->requests bit before we read ->mode */
172 if (cpus != NULL && cpu != -1 && cpu != me &&
173 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174 cpumask_set_cpu(cpu, cpus);
176 if (unlikely(cpus == NULL))
177 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178 else if (!cpumask_empty(cpus))
179 smp_call_function_many(cpus, ack_flush, NULL, 1);
183 free_cpumask_var(cpus);
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
189 long dirty_count = kvm->tlbs_dirty;
192 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
193 ++kvm->stat.remote_tlb_flush;
194 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
198 void kvm_reload_remote_mmus(struct kvm *kvm)
200 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
203 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
205 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
208 void kvm_make_scan_ioapic_request(struct kvm *kvm)
210 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
218 mutex_init(&vcpu->mutex);
223 init_waitqueue_head(&vcpu->wq);
224 kvm_async_pf_vcpu_init(vcpu);
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
231 vcpu->run = page_address(page);
233 kvm_vcpu_set_in_spin_loop(vcpu, false);
234 kvm_vcpu_set_dy_eligible(vcpu, false);
235 vcpu->preempted = false;
237 r = kvm_arch_vcpu_init(vcpu);
243 free_page((unsigned long)vcpu->run);
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 kvm_arch_vcpu_uninit(vcpu);
253 free_page((unsigned long)vcpu->run);
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 return container_of(mn, struct kvm, mmu_notifier);
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 struct mm_struct *mm,
265 unsigned long address)
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush, idx;
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
288 idx = srcu_read_lock(&kvm->srcu);
289 spin_lock(&kvm->mmu_lock);
291 kvm->mmu_notifier_seq++;
292 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293 /* we've to flush the tlb before the pages can be freed */
295 kvm_flush_remote_tlbs(kvm);
297 spin_unlock(&kvm->mmu_lock);
298 srcu_read_unlock(&kvm->srcu, idx);
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
332 kvm->mmu_notifier_count++;
333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 need_tlb_flush |= kvm->tlbs_dirty;
335 /* we've to flush the tlb before the pages can be freed */
337 kvm_flush_remote_tlbs(kvm);
339 spin_unlock(&kvm->mmu_lock);
340 srcu_read_unlock(&kvm->srcu, idx);
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 struct mm_struct *mm,
348 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 spin_lock(&kvm->mmu_lock);
352 * This sequence increase will notify the kvm page fault that
353 * the page that is going to be mapped in the spte could have
356 kvm->mmu_notifier_seq++;
359 * The above sequence increase must be visible before the
360 * below count decrease, which is ensured by the smp_wmb above
361 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 kvm->mmu_notifier_count--;
364 spin_unlock(&kvm->mmu_lock);
366 BUG_ON(kvm->mmu_notifier_count < 0);
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 struct mm_struct *mm,
371 unsigned long address)
373 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 idx = srcu_read_lock(&kvm->srcu);
377 spin_lock(&kvm->mmu_lock);
379 young = kvm_age_hva(kvm, address);
381 kvm_flush_remote_tlbs(kvm);
383 spin_unlock(&kvm->mmu_lock);
384 srcu_read_unlock(&kvm->srcu, idx);
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390 struct mm_struct *mm,
391 unsigned long address)
393 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 idx = srcu_read_lock(&kvm->srcu);
397 spin_lock(&kvm->mmu_lock);
398 young = kvm_test_age_hva(kvm, address);
399 spin_unlock(&kvm->mmu_lock);
400 srcu_read_unlock(&kvm->srcu, idx);
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406 struct mm_struct *mm)
408 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 idx = srcu_read_lock(&kvm->srcu);
412 kvm_arch_flush_shadow_all(kvm);
413 srcu_read_unlock(&kvm->srcu, idx);
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417 .invalidate_page = kvm_mmu_notifier_invalidate_page,
418 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
419 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
420 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
421 .test_young = kvm_mmu_notifier_test_young,
422 .change_pte = kvm_mmu_notifier_change_pte,
423 .release = kvm_mmu_notifier_release,
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441 static void kvm_init_memslots_id(struct kvm *kvm)
444 struct kvm_memslots *slots = kvm->memslots;
446 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
447 slots->id_to_index[i] = slots->memslots[i].id = i;
450 static struct kvm *kvm_create_vm(unsigned long type)
453 struct kvm *kvm = kvm_arch_alloc_vm();
456 return ERR_PTR(-ENOMEM);
458 r = kvm_arch_init_vm(kvm, type);
460 goto out_err_nodisable;
462 r = hardware_enable_all();
464 goto out_err_nodisable;
466 #ifdef CONFIG_HAVE_KVM_IRQCHIP
467 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
468 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
471 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
474 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
477 kvm_init_memslots_id(kvm);
478 if (init_srcu_struct(&kvm->srcu))
480 for (i = 0; i < KVM_NR_BUSES; i++) {
481 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
487 spin_lock_init(&kvm->mmu_lock);
488 kvm->mm = current->mm;
489 atomic_inc(&kvm->mm->mm_count);
490 kvm_eventfd_init(kvm);
491 mutex_init(&kvm->lock);
492 mutex_init(&kvm->irq_lock);
493 mutex_init(&kvm->slots_lock);
494 atomic_set(&kvm->users_count, 1);
495 INIT_LIST_HEAD(&kvm->devices);
497 r = kvm_init_mmu_notifier(kvm);
501 spin_lock(&kvm_lock);
502 list_add(&kvm->vm_list, &vm_list);
503 spin_unlock(&kvm_lock);
508 cleanup_srcu_struct(&kvm->srcu);
510 hardware_disable_all();
512 for (i = 0; i < KVM_NR_BUSES; i++)
513 kfree(kvm->buses[i]);
514 kfree(kvm->memslots);
515 kvm_arch_free_vm(kvm);
520 * Avoid using vmalloc for a small buffer.
521 * Should not be used when the size is statically known.
523 void *kvm_kvzalloc(unsigned long size)
525 if (size > PAGE_SIZE)
526 return vzalloc(size);
528 return kzalloc(size, GFP_KERNEL);
531 void kvm_kvfree(const void *addr)
533 if (is_vmalloc_addr(addr))
539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
541 if (!memslot->dirty_bitmap)
544 kvm_kvfree(memslot->dirty_bitmap);
545 memslot->dirty_bitmap = NULL;
549 * Free any memory in @free but not in @dont.
551 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
552 struct kvm_memory_slot *dont)
554 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
555 kvm_destroy_dirty_bitmap(free);
557 kvm_arch_free_memslot(kvm, free, dont);
562 static void kvm_free_physmem(struct kvm *kvm)
564 struct kvm_memslots *slots = kvm->memslots;
565 struct kvm_memory_slot *memslot;
567 kvm_for_each_memslot(memslot, slots)
568 kvm_free_physmem_slot(kvm, memslot, NULL);
570 kfree(kvm->memslots);
573 static void kvm_destroy_devices(struct kvm *kvm)
575 struct list_head *node, *tmp;
577 list_for_each_safe(node, tmp, &kvm->devices) {
578 struct kvm_device *dev =
579 list_entry(node, struct kvm_device, vm_node);
582 dev->ops->destroy(dev);
586 static void kvm_destroy_vm(struct kvm *kvm)
589 struct mm_struct *mm = kvm->mm;
591 kvm_arch_sync_events(kvm);
592 spin_lock(&kvm_lock);
593 list_del(&kvm->vm_list);
594 spin_unlock(&kvm_lock);
595 kvm_free_irq_routing(kvm);
596 for (i = 0; i < KVM_NR_BUSES; i++)
597 kvm_io_bus_destroy(kvm->buses[i]);
598 kvm_coalesced_mmio_free(kvm);
599 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
600 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
602 kvm_arch_flush_shadow_all(kvm);
604 kvm_arch_destroy_vm(kvm);
605 kvm_destroy_devices(kvm);
606 kvm_free_physmem(kvm);
607 cleanup_srcu_struct(&kvm->srcu);
608 kvm_arch_free_vm(kvm);
609 hardware_disable_all();
613 void kvm_get_kvm(struct kvm *kvm)
615 atomic_inc(&kvm->users_count);
617 EXPORT_SYMBOL_GPL(kvm_get_kvm);
619 void kvm_put_kvm(struct kvm *kvm)
621 if (atomic_dec_and_test(&kvm->users_count))
624 EXPORT_SYMBOL_GPL(kvm_put_kvm);
627 static int kvm_vm_release(struct inode *inode, struct file *filp)
629 struct kvm *kvm = filp->private_data;
631 kvm_irqfd_release(kvm);
638 * Allocation size is twice as large as the actual dirty bitmap size.
639 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
641 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
644 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
646 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
647 if (!memslot->dirty_bitmap)
650 #endif /* !CONFIG_S390 */
654 static int cmp_memslot(const void *slot1, const void *slot2)
656 struct kvm_memory_slot *s1, *s2;
658 s1 = (struct kvm_memory_slot *)slot1;
659 s2 = (struct kvm_memory_slot *)slot2;
661 if (s1->npages < s2->npages)
663 if (s1->npages > s2->npages)
670 * Sort the memslots base on its size, so the larger slots
671 * will get better fit.
673 static void sort_memslots(struct kvm_memslots *slots)
677 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
678 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
680 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
681 slots->id_to_index[slots->memslots[i].id] = i;
684 static void update_memslots(struct kvm_memslots *slots,
685 struct kvm_memory_slot *new,
690 struct kvm_memory_slot *old = id_to_memslot(slots, id);
691 unsigned long npages = old->npages;
694 if (new->npages != npages)
695 sort_memslots(slots);
698 slots->generation = last_generation + 1;
701 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
703 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
705 #ifdef KVM_CAP_READONLY_MEM
706 valid_flags |= KVM_MEM_READONLY;
709 if (mem->flags & ~valid_flags)
715 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
716 struct kvm_memslots *slots, struct kvm_memory_slot *new)
718 struct kvm_memslots *old_memslots = kvm->memslots;
720 update_memslots(slots, new, kvm->memslots->generation);
721 rcu_assign_pointer(kvm->memslots, slots);
722 synchronize_srcu_expedited(&kvm->srcu);
724 kvm_arch_memslots_updated(kvm);
730 * Allocate some memory and give it an address in the guest physical address
733 * Discontiguous memory is allowed, mostly for framebuffers.
735 * Must be called holding mmap_sem for write.
737 int __kvm_set_memory_region(struct kvm *kvm,
738 struct kvm_userspace_memory_region *mem)
742 unsigned long npages;
743 struct kvm_memory_slot *slot;
744 struct kvm_memory_slot old, new;
745 struct kvm_memslots *slots = NULL, *old_memslots;
746 enum kvm_mr_change change;
748 r = check_memory_region_flags(mem);
753 /* General sanity checks */
754 if (mem->memory_size & (PAGE_SIZE - 1))
756 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
758 /* We can read the guest memory with __xxx_user() later on. */
759 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
760 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
761 !access_ok(VERIFY_WRITE,
762 (void __user *)(unsigned long)mem->userspace_addr,
765 if (mem->slot >= KVM_MEM_SLOTS_NUM)
767 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
770 slot = id_to_memslot(kvm->memslots, mem->slot);
771 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
772 npages = mem->memory_size >> PAGE_SHIFT;
775 if (npages > KVM_MEM_MAX_NR_PAGES)
779 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
784 new.base_gfn = base_gfn;
786 new.flags = mem->flags;
791 change = KVM_MR_CREATE;
792 else { /* Modify an existing slot. */
793 if ((mem->userspace_addr != old.userspace_addr) ||
794 (npages != old.npages) ||
795 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
798 if (base_gfn != old.base_gfn)
799 change = KVM_MR_MOVE;
800 else if (new.flags != old.flags)
801 change = KVM_MR_FLAGS_ONLY;
802 else { /* Nothing to change. */
807 } else if (old.npages) {
808 change = KVM_MR_DELETE;
809 } else /* Modify a non-existent slot: disallowed. */
812 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
813 /* Check for overlaps */
815 kvm_for_each_memslot(slot, kvm->memslots) {
816 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
817 (slot->id == mem->slot))
819 if (!((base_gfn + npages <= slot->base_gfn) ||
820 (base_gfn >= slot->base_gfn + slot->npages)))
825 /* Free page dirty bitmap if unneeded */
826 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
827 new.dirty_bitmap = NULL;
830 if (change == KVM_MR_CREATE) {
831 new.userspace_addr = mem->userspace_addr;
833 if (kvm_arch_create_memslot(kvm, &new, npages))
837 /* Allocate page dirty bitmap if needed */
838 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
839 if (kvm_create_dirty_bitmap(&new) < 0)
843 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
845 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
849 slot = id_to_memslot(slots, mem->slot);
850 slot->flags |= KVM_MEMSLOT_INVALID;
852 old_memslots = install_new_memslots(kvm, slots, NULL);
854 /* slot was deleted or moved, clear iommu mapping */
855 kvm_iommu_unmap_pages(kvm, &old);
856 /* From this point no new shadow pages pointing to a deleted,
857 * or moved, memslot will be created.
859 * validation of sp->gfn happens in:
860 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
861 * - kvm_is_visible_gfn (mmu_check_roots)
863 kvm_arch_flush_shadow_memslot(kvm, slot);
864 slots = old_memslots;
867 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
873 * We can re-use the old_memslots from above, the only difference
874 * from the currently installed memslots is the invalid flag. This
875 * will get overwritten by update_memslots anyway.
878 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
884 /* actual memory is freed via old in kvm_free_physmem_slot below */
885 if (change == KVM_MR_DELETE) {
886 new.dirty_bitmap = NULL;
887 memset(&new.arch, 0, sizeof(new.arch));
890 old_memslots = install_new_memslots(kvm, slots, &new);
892 kvm_arch_commit_memory_region(kvm, mem, &old, change);
894 kvm_free_physmem_slot(kvm, &old, &new);
898 * IOMMU mapping: New slots need to be mapped. Old slots need to be
899 * un-mapped and re-mapped if their base changes. Since base change
900 * unmapping is handled above with slot deletion, mapping alone is
901 * needed here. Anything else the iommu might care about for existing
902 * slots (size changes, userspace addr changes and read-only flag
903 * changes) is disallowed above, so any other attribute changes getting
904 * here can be skipped.
906 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
907 r = kvm_iommu_map_pages(kvm, &new);
916 kvm_free_physmem_slot(kvm, &new, &old);
920 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
922 int kvm_set_memory_region(struct kvm *kvm,
923 struct kvm_userspace_memory_region *mem)
927 mutex_lock(&kvm->slots_lock);
928 r = __kvm_set_memory_region(kvm, mem);
929 mutex_unlock(&kvm->slots_lock);
932 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
934 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
935 struct kvm_userspace_memory_region *mem)
937 if (mem->slot >= KVM_USER_MEM_SLOTS)
939 return kvm_set_memory_region(kvm, mem);
942 int kvm_get_dirty_log(struct kvm *kvm,
943 struct kvm_dirty_log *log, int *is_dirty)
945 struct kvm_memory_slot *memslot;
948 unsigned long any = 0;
951 if (log->slot >= KVM_USER_MEM_SLOTS)
954 memslot = id_to_memslot(kvm->memslots, log->slot);
956 if (!memslot->dirty_bitmap)
959 n = kvm_dirty_bitmap_bytes(memslot);
961 for (i = 0; !any && i < n/sizeof(long); ++i)
962 any = memslot->dirty_bitmap[i];
965 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
975 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
977 bool kvm_largepages_enabled(void)
979 return largepages_enabled;
982 void kvm_disable_largepages(void)
984 largepages_enabled = false;
986 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
988 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
990 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
992 EXPORT_SYMBOL_GPL(gfn_to_memslot);
994 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
996 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
998 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
999 memslot->flags & KVM_MEMSLOT_INVALID)
1004 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1006 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1008 struct vm_area_struct *vma;
1009 unsigned long addr, size;
1013 addr = gfn_to_hva(kvm, gfn);
1014 if (kvm_is_error_hva(addr))
1017 down_read(¤t->mm->mmap_sem);
1018 vma = find_vma(current->mm, addr);
1022 size = vma_kernel_pagesize(vma);
1025 up_read(¤t->mm->mmap_sem);
1030 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1032 return slot->flags & KVM_MEM_READONLY;
1035 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1036 gfn_t *nr_pages, bool write)
1038 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1039 return KVM_HVA_ERR_BAD;
1041 if (memslot_is_readonly(slot) && write)
1042 return KVM_HVA_ERR_RO_BAD;
1045 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1047 return __gfn_to_hva_memslot(slot, gfn);
1050 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1053 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1056 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1059 return gfn_to_hva_many(slot, gfn, NULL);
1061 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1063 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1065 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1067 EXPORT_SYMBOL_GPL(gfn_to_hva);
1070 * If writable is set to false, the hva returned by this function is only
1071 * allowed to be read.
1073 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1075 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1076 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1078 if (!kvm_is_error_hva(hva) && writable)
1079 *writable = !memslot_is_readonly(slot);
1084 static int kvm_read_hva(void *data, void __user *hva, int len)
1086 return __copy_from_user(data, hva, len);
1089 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1091 return __copy_from_user_inatomic(data, hva, len);
1094 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1095 unsigned long start, int write, struct page **page)
1097 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1100 flags |= FOLL_WRITE;
1102 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1105 static inline int check_user_page_hwpoison(unsigned long addr)
1107 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1109 rc = __get_user_pages(current, current->mm, addr, 1,
1110 flags, NULL, NULL, NULL);
1111 return rc == -EHWPOISON;
1115 * The atomic path to get the writable pfn which will be stored in @pfn,
1116 * true indicates success, otherwise false is returned.
1118 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1119 bool write_fault, bool *writable, pfn_t *pfn)
1121 struct page *page[1];
1124 if (!(async || atomic))
1128 * Fast pin a writable pfn only if it is a write fault request
1129 * or the caller allows to map a writable pfn for a read fault
1132 if (!(write_fault || writable))
1135 npages = __get_user_pages_fast(addr, 1, 1, page);
1137 *pfn = page_to_pfn(page[0]);
1148 * The slow path to get the pfn of the specified host virtual address,
1149 * 1 indicates success, -errno is returned if error is detected.
1151 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1152 bool *writable, pfn_t *pfn)
1154 struct page *page[1];
1160 *writable = write_fault;
1163 down_read(¤t->mm->mmap_sem);
1164 npages = get_user_page_nowait(current, current->mm,
1165 addr, write_fault, page);
1166 up_read(¤t->mm->mmap_sem);
1168 npages = get_user_pages_fast(addr, 1, write_fault,
1173 /* map read fault as writable if possible */
1174 if (unlikely(!write_fault) && writable) {
1175 struct page *wpage[1];
1177 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1186 *pfn = page_to_pfn(page[0]);
1190 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1192 if (unlikely(!(vma->vm_flags & VM_READ)))
1195 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1202 * Pin guest page in memory and return its pfn.
1203 * @addr: host virtual address which maps memory to the guest
1204 * @atomic: whether this function can sleep
1205 * @async: whether this function need to wait IO complete if the
1206 * host page is not in the memory
1207 * @write_fault: whether we should get a writable host page
1208 * @writable: whether it allows to map a writable host page for !@write_fault
1210 * The function will map a writable host page for these two cases:
1211 * 1): @write_fault = true
1212 * 2): @write_fault = false && @writable, @writable will tell the caller
1213 * whether the mapping is writable.
1215 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1216 bool write_fault, bool *writable)
1218 struct vm_area_struct *vma;
1222 /* we can do it either atomically or asynchronously, not both */
1223 BUG_ON(atomic && async);
1225 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1229 return KVM_PFN_ERR_FAULT;
1231 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1235 down_read(¤t->mm->mmap_sem);
1236 if (npages == -EHWPOISON ||
1237 (!async && check_user_page_hwpoison(addr))) {
1238 pfn = KVM_PFN_ERR_HWPOISON;
1242 vma = find_vma_intersection(current->mm, addr, addr + 1);
1245 pfn = KVM_PFN_ERR_FAULT;
1246 else if ((vma->vm_flags & VM_PFNMAP)) {
1247 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1249 BUG_ON(!kvm_is_mmio_pfn(pfn));
1251 if (async && vma_is_valid(vma, write_fault))
1253 pfn = KVM_PFN_ERR_FAULT;
1256 up_read(¤t->mm->mmap_sem);
1261 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1262 bool *async, bool write_fault, bool *writable)
1264 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1266 if (addr == KVM_HVA_ERR_RO_BAD)
1267 return KVM_PFN_ERR_RO_FAULT;
1269 if (kvm_is_error_hva(addr))
1270 return KVM_PFN_NOSLOT;
1272 /* Do not map writable pfn in the readonly memslot. */
1273 if (writable && memslot_is_readonly(slot)) {
1278 return hva_to_pfn(addr, atomic, async, write_fault,
1282 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1283 bool write_fault, bool *writable)
1285 struct kvm_memory_slot *slot;
1290 slot = gfn_to_memslot(kvm, gfn);
1292 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1296 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1298 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1300 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1302 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1303 bool write_fault, bool *writable)
1305 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1307 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1309 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1311 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1313 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1315 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1318 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1320 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1322 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1324 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1327 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1329 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1331 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1333 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1339 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1340 if (kvm_is_error_hva(addr))
1343 if (entry < nr_pages)
1346 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1348 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1350 static struct page *kvm_pfn_to_page(pfn_t pfn)
1352 if (is_error_noslot_pfn(pfn))
1353 return KVM_ERR_PTR_BAD_PAGE;
1355 if (kvm_is_mmio_pfn(pfn)) {
1357 return KVM_ERR_PTR_BAD_PAGE;
1360 return pfn_to_page(pfn);
1363 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1367 pfn = gfn_to_pfn(kvm, gfn);
1369 return kvm_pfn_to_page(pfn);
1372 EXPORT_SYMBOL_GPL(gfn_to_page);
1374 void kvm_release_page_clean(struct page *page)
1376 WARN_ON(is_error_page(page));
1378 kvm_release_pfn_clean(page_to_pfn(page));
1380 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1382 void kvm_release_pfn_clean(pfn_t pfn)
1384 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1385 put_page(pfn_to_page(pfn));
1387 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1389 void kvm_release_page_dirty(struct page *page)
1391 WARN_ON(is_error_page(page));
1393 kvm_release_pfn_dirty(page_to_pfn(page));
1395 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1397 static void kvm_release_pfn_dirty(pfn_t pfn)
1399 kvm_set_pfn_dirty(pfn);
1400 kvm_release_pfn_clean(pfn);
1403 void kvm_set_pfn_dirty(pfn_t pfn)
1405 if (!kvm_is_mmio_pfn(pfn)) {
1406 struct page *page = pfn_to_page(pfn);
1407 if (!PageReserved(page))
1411 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1413 void kvm_set_pfn_accessed(pfn_t pfn)
1415 if (!kvm_is_mmio_pfn(pfn))
1416 mark_page_accessed(pfn_to_page(pfn));
1418 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1420 void kvm_get_pfn(pfn_t pfn)
1422 if (!kvm_is_mmio_pfn(pfn))
1423 get_page(pfn_to_page(pfn));
1425 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1427 static int next_segment(unsigned long len, int offset)
1429 if (len > PAGE_SIZE - offset)
1430 return PAGE_SIZE - offset;
1435 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1441 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1442 if (kvm_is_error_hva(addr))
1444 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1449 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1451 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1453 gfn_t gfn = gpa >> PAGE_SHIFT;
1455 int offset = offset_in_page(gpa);
1458 while ((seg = next_segment(len, offset)) != 0) {
1459 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1469 EXPORT_SYMBOL_GPL(kvm_read_guest);
1471 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1476 gfn_t gfn = gpa >> PAGE_SHIFT;
1477 int offset = offset_in_page(gpa);
1479 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1480 if (kvm_is_error_hva(addr))
1482 pagefault_disable();
1483 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1489 EXPORT_SYMBOL(kvm_read_guest_atomic);
1491 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1492 int offset, int len)
1497 addr = gfn_to_hva(kvm, gfn);
1498 if (kvm_is_error_hva(addr))
1500 r = __copy_to_user((void __user *)addr + offset, data, len);
1503 mark_page_dirty(kvm, gfn);
1506 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1508 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1511 gfn_t gfn = gpa >> PAGE_SHIFT;
1513 int offset = offset_in_page(gpa);
1516 while ((seg = next_segment(len, offset)) != 0) {
1517 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1529 gpa_t gpa, unsigned long len)
1531 struct kvm_memslots *slots = kvm_memslots(kvm);
1532 int offset = offset_in_page(gpa);
1533 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1534 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1535 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1536 gfn_t nr_pages_avail;
1539 ghc->generation = slots->generation;
1541 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1542 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1543 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1547 * If the requested region crosses two memslots, we still
1548 * verify that the entire region is valid here.
1550 while (start_gfn <= end_gfn) {
1551 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1552 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1554 if (kvm_is_error_hva(ghc->hva))
1556 start_gfn += nr_pages_avail;
1558 /* Use the slow path for cross page reads and writes. */
1559 ghc->memslot = NULL;
1563 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1566 void *data, unsigned long len)
1568 struct kvm_memslots *slots = kvm_memslots(kvm);
1571 BUG_ON(len > ghc->len);
1573 if (slots->generation != ghc->generation)
1574 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1576 if (unlikely(!ghc->memslot))
1577 return kvm_write_guest(kvm, ghc->gpa, data, len);
1579 if (kvm_is_error_hva(ghc->hva))
1582 r = __copy_to_user((void __user *)ghc->hva, data, len);
1585 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1589 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1591 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1592 void *data, unsigned long len)
1594 struct kvm_memslots *slots = kvm_memslots(kvm);
1597 BUG_ON(len > ghc->len);
1599 if (slots->generation != ghc->generation)
1600 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1602 if (unlikely(!ghc->memslot))
1603 return kvm_read_guest(kvm, ghc->gpa, data, len);
1605 if (kvm_is_error_hva(ghc->hva))
1608 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1618 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1620 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1622 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1624 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1626 gfn_t gfn = gpa >> PAGE_SHIFT;
1628 int offset = offset_in_page(gpa);
1631 while ((seg = next_segment(len, offset)) != 0) {
1632 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1641 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1643 static void mark_page_dirty_in_slot(struct kvm *kvm,
1644 struct kvm_memory_slot *memslot,
1647 if (memslot && memslot->dirty_bitmap) {
1648 unsigned long rel_gfn = gfn - memslot->base_gfn;
1650 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1654 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1656 struct kvm_memory_slot *memslot;
1658 memslot = gfn_to_memslot(kvm, gfn);
1659 mark_page_dirty_in_slot(kvm, memslot, gfn);
1661 EXPORT_SYMBOL_GPL(mark_page_dirty);
1664 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1666 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1671 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1673 if (kvm_arch_vcpu_runnable(vcpu)) {
1674 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1677 if (kvm_cpu_has_pending_timer(vcpu))
1679 if (signal_pending(current))
1685 finish_wait(&vcpu->wq, &wait);
1687 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1691 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1693 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1696 int cpu = vcpu->cpu;
1697 wait_queue_head_t *wqp;
1699 wqp = kvm_arch_vcpu_wq(vcpu);
1700 if (waitqueue_active(wqp)) {
1701 wake_up_interruptible(wqp);
1702 ++vcpu->stat.halt_wakeup;
1706 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1707 if (kvm_arch_vcpu_should_kick(vcpu))
1708 smp_send_reschedule(cpu);
1711 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1712 #endif /* !CONFIG_S390 */
1714 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1717 struct task_struct *task = NULL;
1721 pid = rcu_dereference(target->pid);
1723 task = get_pid_task(target->pid, PIDTYPE_PID);
1727 if (task->flags & PF_VCPU) {
1728 put_task_struct(task);
1731 ret = yield_to(task, 1);
1732 put_task_struct(task);
1736 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1739 * Helper that checks whether a VCPU is eligible for directed yield.
1740 * Most eligible candidate to yield is decided by following heuristics:
1742 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1743 * (preempted lock holder), indicated by @in_spin_loop.
1744 * Set at the beiginning and cleared at the end of interception/PLE handler.
1746 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1747 * chance last time (mostly it has become eligible now since we have probably
1748 * yielded to lockholder in last iteration. This is done by toggling
1749 * @dy_eligible each time a VCPU checked for eligibility.)
1751 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1752 * to preempted lock-holder could result in wrong VCPU selection and CPU
1753 * burning. Giving priority for a potential lock-holder increases lock
1756 * Since algorithm is based on heuristics, accessing another VCPU data without
1757 * locking does not harm. It may result in trying to yield to same VCPU, fail
1758 * and continue with next VCPU and so on.
1760 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1762 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1765 eligible = !vcpu->spin_loop.in_spin_loop ||
1766 (vcpu->spin_loop.in_spin_loop &&
1767 vcpu->spin_loop.dy_eligible);
1769 if (vcpu->spin_loop.in_spin_loop)
1770 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1778 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1780 struct kvm *kvm = me->kvm;
1781 struct kvm_vcpu *vcpu;
1782 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1788 kvm_vcpu_set_in_spin_loop(me, true);
1790 * We boost the priority of a VCPU that is runnable but not
1791 * currently running, because it got preempted by something
1792 * else and called schedule in __vcpu_run. Hopefully that
1793 * VCPU is holding the lock that we need and will release it.
1794 * We approximate round-robin by starting at the last boosted VCPU.
1796 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1797 kvm_for_each_vcpu(i, vcpu, kvm) {
1798 if (!pass && i <= last_boosted_vcpu) {
1799 i = last_boosted_vcpu;
1801 } else if (pass && i > last_boosted_vcpu)
1803 if (!ACCESS_ONCE(vcpu->preempted))
1807 if (waitqueue_active(&vcpu->wq))
1809 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1812 yielded = kvm_vcpu_yield_to(vcpu);
1814 kvm->last_boosted_vcpu = i;
1816 } else if (yielded < 0) {
1823 kvm_vcpu_set_in_spin_loop(me, false);
1825 /* Ensure vcpu is not eligible during next spinloop */
1826 kvm_vcpu_set_dy_eligible(me, false);
1828 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1830 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1832 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1835 if (vmf->pgoff == 0)
1836 page = virt_to_page(vcpu->run);
1838 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1839 page = virt_to_page(vcpu->arch.pio_data);
1841 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1842 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1843 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1846 return kvm_arch_vcpu_fault(vcpu, vmf);
1852 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1853 .fault = kvm_vcpu_fault,
1856 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1858 vma->vm_ops = &kvm_vcpu_vm_ops;
1862 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1864 struct kvm_vcpu *vcpu = filp->private_data;
1866 kvm_put_kvm(vcpu->kvm);
1870 static struct file_operations kvm_vcpu_fops = {
1871 .release = kvm_vcpu_release,
1872 .unlocked_ioctl = kvm_vcpu_ioctl,
1873 #ifdef CONFIG_COMPAT
1874 .compat_ioctl = kvm_vcpu_compat_ioctl,
1876 .mmap = kvm_vcpu_mmap,
1877 .llseek = noop_llseek,
1881 * Allocates an inode for the vcpu.
1883 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1885 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1889 * Creates some virtual cpus. Good luck creating more than one.
1891 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1894 struct kvm_vcpu *vcpu, *v;
1896 if (id >= KVM_MAX_VCPUS)
1899 vcpu = kvm_arch_vcpu_create(kvm, id);
1901 return PTR_ERR(vcpu);
1903 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1905 r = kvm_arch_vcpu_setup(vcpu);
1909 mutex_lock(&kvm->lock);
1910 if (!kvm_vcpu_compatible(vcpu)) {
1912 goto unlock_vcpu_destroy;
1914 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1916 goto unlock_vcpu_destroy;
1919 kvm_for_each_vcpu(r, v, kvm)
1920 if (v->vcpu_id == id) {
1922 goto unlock_vcpu_destroy;
1925 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1927 /* Now it's all set up, let userspace reach it */
1929 r = create_vcpu_fd(vcpu);
1932 goto unlock_vcpu_destroy;
1935 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1937 atomic_inc(&kvm->online_vcpus);
1939 mutex_unlock(&kvm->lock);
1940 kvm_arch_vcpu_postcreate(vcpu);
1943 unlock_vcpu_destroy:
1944 mutex_unlock(&kvm->lock);
1946 kvm_arch_vcpu_destroy(vcpu);
1950 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1953 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1954 vcpu->sigset_active = 1;
1955 vcpu->sigset = *sigset;
1957 vcpu->sigset_active = 0;
1961 static long kvm_vcpu_ioctl(struct file *filp,
1962 unsigned int ioctl, unsigned long arg)
1964 struct kvm_vcpu *vcpu = filp->private_data;
1965 void __user *argp = (void __user *)arg;
1967 struct kvm_fpu *fpu = NULL;
1968 struct kvm_sregs *kvm_sregs = NULL;
1970 if (vcpu->kvm->mm != current->mm)
1973 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1975 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1976 * so vcpu_load() would break it.
1978 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1979 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1983 r = vcpu_load(vcpu);
1991 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1992 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1994 case KVM_GET_REGS: {
1995 struct kvm_regs *kvm_regs;
1998 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2001 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2005 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2012 case KVM_SET_REGS: {
2013 struct kvm_regs *kvm_regs;
2016 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2017 if (IS_ERR(kvm_regs)) {
2018 r = PTR_ERR(kvm_regs);
2021 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2025 case KVM_GET_SREGS: {
2026 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2030 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2034 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2039 case KVM_SET_SREGS: {
2040 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2041 if (IS_ERR(kvm_sregs)) {
2042 r = PTR_ERR(kvm_sregs);
2046 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2049 case KVM_GET_MP_STATE: {
2050 struct kvm_mp_state mp_state;
2052 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2056 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2061 case KVM_SET_MP_STATE: {
2062 struct kvm_mp_state mp_state;
2065 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2067 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2070 case KVM_TRANSLATE: {
2071 struct kvm_translation tr;
2074 if (copy_from_user(&tr, argp, sizeof tr))
2076 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2080 if (copy_to_user(argp, &tr, sizeof tr))
2085 case KVM_SET_GUEST_DEBUG: {
2086 struct kvm_guest_debug dbg;
2089 if (copy_from_user(&dbg, argp, sizeof dbg))
2091 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2094 case KVM_SET_SIGNAL_MASK: {
2095 struct kvm_signal_mask __user *sigmask_arg = argp;
2096 struct kvm_signal_mask kvm_sigmask;
2097 sigset_t sigset, *p;
2102 if (copy_from_user(&kvm_sigmask, argp,
2103 sizeof kvm_sigmask))
2106 if (kvm_sigmask.len != sizeof sigset)
2109 if (copy_from_user(&sigset, sigmask_arg->sigset,
2114 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2118 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2122 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2126 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2132 fpu = memdup_user(argp, sizeof(*fpu));
2138 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2142 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2151 #ifdef CONFIG_COMPAT
2152 static long kvm_vcpu_compat_ioctl(struct file *filp,
2153 unsigned int ioctl, unsigned long arg)
2155 struct kvm_vcpu *vcpu = filp->private_data;
2156 void __user *argp = compat_ptr(arg);
2159 if (vcpu->kvm->mm != current->mm)
2163 case KVM_SET_SIGNAL_MASK: {
2164 struct kvm_signal_mask __user *sigmask_arg = argp;
2165 struct kvm_signal_mask kvm_sigmask;
2166 compat_sigset_t csigset;
2171 if (copy_from_user(&kvm_sigmask, argp,
2172 sizeof kvm_sigmask))
2175 if (kvm_sigmask.len != sizeof csigset)
2178 if (copy_from_user(&csigset, sigmask_arg->sigset,
2181 sigset_from_compat(&sigset, &csigset);
2182 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2184 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2188 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2196 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2197 int (*accessor)(struct kvm_device *dev,
2198 struct kvm_device_attr *attr),
2201 struct kvm_device_attr attr;
2206 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2209 return accessor(dev, &attr);
2212 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2215 struct kvm_device *dev = filp->private_data;
2218 case KVM_SET_DEVICE_ATTR:
2219 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2220 case KVM_GET_DEVICE_ATTR:
2221 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2222 case KVM_HAS_DEVICE_ATTR:
2223 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2225 if (dev->ops->ioctl)
2226 return dev->ops->ioctl(dev, ioctl, arg);
2232 static int kvm_device_release(struct inode *inode, struct file *filp)
2234 struct kvm_device *dev = filp->private_data;
2235 struct kvm *kvm = dev->kvm;
2241 static const struct file_operations kvm_device_fops = {
2242 .unlocked_ioctl = kvm_device_ioctl,
2243 #ifdef CONFIG_COMPAT
2244 .compat_ioctl = kvm_device_ioctl,
2246 .release = kvm_device_release,
2249 struct kvm_device *kvm_device_from_filp(struct file *filp)
2251 if (filp->f_op != &kvm_device_fops)
2254 return filp->private_data;
2257 static int kvm_ioctl_create_device(struct kvm *kvm,
2258 struct kvm_create_device *cd)
2260 struct kvm_device_ops *ops = NULL;
2261 struct kvm_device *dev;
2262 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2266 #ifdef CONFIG_KVM_MPIC
2267 case KVM_DEV_TYPE_FSL_MPIC_20:
2268 case KVM_DEV_TYPE_FSL_MPIC_42:
2269 ops = &kvm_mpic_ops;
2272 #ifdef CONFIG_KVM_XICS
2273 case KVM_DEV_TYPE_XICS:
2274 ops = &kvm_xics_ops;
2277 #ifdef CONFIG_KVM_VFIO
2278 case KVM_DEV_TYPE_VFIO:
2279 ops = &kvm_vfio_ops;
2282 #ifdef CONFIG_KVM_ARM_VGIC
2283 case KVM_DEV_TYPE_ARM_VGIC_V2:
2284 ops = &kvm_arm_vgic_v2_ops;
2294 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2301 ret = ops->create(dev, cd->type);
2307 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2313 list_add(&dev->vm_node, &kvm->devices);
2319 static long kvm_vm_ioctl(struct file *filp,
2320 unsigned int ioctl, unsigned long arg)
2322 struct kvm *kvm = filp->private_data;
2323 void __user *argp = (void __user *)arg;
2326 if (kvm->mm != current->mm)
2329 case KVM_CREATE_VCPU:
2330 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2332 case KVM_SET_USER_MEMORY_REGION: {
2333 struct kvm_userspace_memory_region kvm_userspace_mem;
2336 if (copy_from_user(&kvm_userspace_mem, argp,
2337 sizeof kvm_userspace_mem))
2340 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2343 case KVM_GET_DIRTY_LOG: {
2344 struct kvm_dirty_log log;
2347 if (copy_from_user(&log, argp, sizeof log))
2349 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353 case KVM_REGISTER_COALESCED_MMIO: {
2354 struct kvm_coalesced_mmio_zone zone;
2356 if (copy_from_user(&zone, argp, sizeof zone))
2358 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2361 case KVM_UNREGISTER_COALESCED_MMIO: {
2362 struct kvm_coalesced_mmio_zone zone;
2364 if (copy_from_user(&zone, argp, sizeof zone))
2366 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2371 struct kvm_irqfd data;
2374 if (copy_from_user(&data, argp, sizeof data))
2376 r = kvm_irqfd(kvm, &data);
2379 case KVM_IOEVENTFD: {
2380 struct kvm_ioeventfd data;
2383 if (copy_from_user(&data, argp, sizeof data))
2385 r = kvm_ioeventfd(kvm, &data);
2388 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2389 case KVM_SET_BOOT_CPU_ID:
2391 mutex_lock(&kvm->lock);
2392 if (atomic_read(&kvm->online_vcpus) != 0)
2395 kvm->bsp_vcpu_id = arg;
2396 mutex_unlock(&kvm->lock);
2399 #ifdef CONFIG_HAVE_KVM_MSI
2400 case KVM_SIGNAL_MSI: {
2404 if (copy_from_user(&msi, argp, sizeof msi))
2406 r = kvm_send_userspace_msi(kvm, &msi);
2410 #ifdef __KVM_HAVE_IRQ_LINE
2411 case KVM_IRQ_LINE_STATUS:
2412 case KVM_IRQ_LINE: {
2413 struct kvm_irq_level irq_event;
2416 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2419 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2420 ioctl == KVM_IRQ_LINE_STATUS);
2425 if (ioctl == KVM_IRQ_LINE_STATUS) {
2426 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2434 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2435 case KVM_SET_GSI_ROUTING: {
2436 struct kvm_irq_routing routing;
2437 struct kvm_irq_routing __user *urouting;
2438 struct kvm_irq_routing_entry *entries;
2441 if (copy_from_user(&routing, argp, sizeof(routing)))
2444 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2449 entries = vmalloc(routing.nr * sizeof(*entries));
2454 if (copy_from_user(entries, urouting->entries,
2455 routing.nr * sizeof(*entries)))
2456 goto out_free_irq_routing;
2457 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2459 out_free_irq_routing:
2463 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2464 case KVM_CREATE_DEVICE: {
2465 struct kvm_create_device cd;
2468 if (copy_from_user(&cd, argp, sizeof(cd)))
2471 r = kvm_ioctl_create_device(kvm, &cd);
2476 if (copy_to_user(argp, &cd, sizeof(cd)))
2483 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2485 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2491 #ifdef CONFIG_COMPAT
2492 struct compat_kvm_dirty_log {
2496 compat_uptr_t dirty_bitmap; /* one bit per page */
2501 static long kvm_vm_compat_ioctl(struct file *filp,
2502 unsigned int ioctl, unsigned long arg)
2504 struct kvm *kvm = filp->private_data;
2507 if (kvm->mm != current->mm)
2510 case KVM_GET_DIRTY_LOG: {
2511 struct compat_kvm_dirty_log compat_log;
2512 struct kvm_dirty_log log;
2515 if (copy_from_user(&compat_log, (void __user *)arg,
2516 sizeof(compat_log)))
2518 log.slot = compat_log.slot;
2519 log.padding1 = compat_log.padding1;
2520 log.padding2 = compat_log.padding2;
2521 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2523 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2527 r = kvm_vm_ioctl(filp, ioctl, arg);
2535 static struct file_operations kvm_vm_fops = {
2536 .release = kvm_vm_release,
2537 .unlocked_ioctl = kvm_vm_ioctl,
2538 #ifdef CONFIG_COMPAT
2539 .compat_ioctl = kvm_vm_compat_ioctl,
2541 .llseek = noop_llseek,
2544 static int kvm_dev_ioctl_create_vm(unsigned long type)
2549 kvm = kvm_create_vm(type);
2551 return PTR_ERR(kvm);
2552 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2553 r = kvm_coalesced_mmio_init(kvm);
2559 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2566 static long kvm_dev_ioctl_check_extension_generic(long arg)
2569 case KVM_CAP_USER_MEMORY:
2570 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2571 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2572 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2573 case KVM_CAP_SET_BOOT_CPU_ID:
2575 case KVM_CAP_INTERNAL_ERROR_DATA:
2576 #ifdef CONFIG_HAVE_KVM_MSI
2577 case KVM_CAP_SIGNAL_MSI:
2579 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2580 case KVM_CAP_IRQFD_RESAMPLE:
2583 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2584 case KVM_CAP_IRQ_ROUTING:
2585 return KVM_MAX_IRQ_ROUTES;
2590 return kvm_dev_ioctl_check_extension(arg);
2593 static long kvm_dev_ioctl(struct file *filp,
2594 unsigned int ioctl, unsigned long arg)
2599 case KVM_GET_API_VERSION:
2603 r = KVM_API_VERSION;
2606 r = kvm_dev_ioctl_create_vm(arg);
2608 case KVM_CHECK_EXTENSION:
2609 r = kvm_dev_ioctl_check_extension_generic(arg);
2611 case KVM_GET_VCPU_MMAP_SIZE:
2615 r = PAGE_SIZE; /* struct kvm_run */
2617 r += PAGE_SIZE; /* pio data page */
2619 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2620 r += PAGE_SIZE; /* coalesced mmio ring page */
2623 case KVM_TRACE_ENABLE:
2624 case KVM_TRACE_PAUSE:
2625 case KVM_TRACE_DISABLE:
2629 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2635 static struct file_operations kvm_chardev_ops = {
2636 .unlocked_ioctl = kvm_dev_ioctl,
2637 .compat_ioctl = kvm_dev_ioctl,
2638 .llseek = noop_llseek,
2641 static struct miscdevice kvm_dev = {
2647 static void hardware_enable_nolock(void *junk)
2649 int cpu = raw_smp_processor_id();
2652 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2655 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2657 r = kvm_arch_hardware_enable(NULL);
2660 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2661 atomic_inc(&hardware_enable_failed);
2662 printk(KERN_INFO "kvm: enabling virtualization on "
2663 "CPU%d failed\n", cpu);
2667 static void hardware_enable(void)
2669 raw_spin_lock(&kvm_count_lock);
2670 if (kvm_usage_count)
2671 hardware_enable_nolock(NULL);
2672 raw_spin_unlock(&kvm_count_lock);
2675 static void hardware_disable_nolock(void *junk)
2677 int cpu = raw_smp_processor_id();
2679 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2681 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2682 kvm_arch_hardware_disable(NULL);
2685 static void hardware_disable(void)
2687 raw_spin_lock(&kvm_count_lock);
2688 if (kvm_usage_count)
2689 hardware_disable_nolock(NULL);
2690 raw_spin_unlock(&kvm_count_lock);
2693 static void hardware_disable_all_nolock(void)
2695 BUG_ON(!kvm_usage_count);
2698 if (!kvm_usage_count)
2699 on_each_cpu(hardware_disable_nolock, NULL, 1);
2702 static void hardware_disable_all(void)
2704 raw_spin_lock(&kvm_count_lock);
2705 hardware_disable_all_nolock();
2706 raw_spin_unlock(&kvm_count_lock);
2709 static int hardware_enable_all(void)
2713 raw_spin_lock(&kvm_count_lock);
2716 if (kvm_usage_count == 1) {
2717 atomic_set(&hardware_enable_failed, 0);
2718 on_each_cpu(hardware_enable_nolock, NULL, 1);
2720 if (atomic_read(&hardware_enable_failed)) {
2721 hardware_disable_all_nolock();
2726 raw_spin_unlock(&kvm_count_lock);
2731 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2736 val &= ~CPU_TASKS_FROZEN;
2739 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2744 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2752 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2756 * Some (well, at least mine) BIOSes hang on reboot if
2759 * And Intel TXT required VMX off for all cpu when system shutdown.
2761 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2762 kvm_rebooting = true;
2763 on_each_cpu(hardware_disable_nolock, NULL, 1);
2767 static struct notifier_block kvm_reboot_notifier = {
2768 .notifier_call = kvm_reboot,
2772 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2776 for (i = 0; i < bus->dev_count; i++) {
2777 struct kvm_io_device *pos = bus->range[i].dev;
2779 kvm_iodevice_destructor(pos);
2784 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2785 const struct kvm_io_range *r2)
2787 if (r1->addr < r2->addr)
2789 if (r1->addr + r1->len > r2->addr + r2->len)
2794 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2796 return kvm_io_bus_cmp(p1, p2);
2799 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2800 gpa_t addr, int len)
2802 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2808 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2809 kvm_io_bus_sort_cmp, NULL);
2814 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2815 gpa_t addr, int len)
2817 struct kvm_io_range *range, key;
2820 key = (struct kvm_io_range) {
2825 range = bsearch(&key, bus->range, bus->dev_count,
2826 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2830 off = range - bus->range;
2832 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2838 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2839 struct kvm_io_range *range, const void *val)
2843 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2847 while (idx < bus->dev_count &&
2848 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2849 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2858 /* kvm_io_bus_write - called under kvm->slots_lock */
2859 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2860 int len, const void *val)
2862 struct kvm_io_bus *bus;
2863 struct kvm_io_range range;
2866 range = (struct kvm_io_range) {
2871 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2872 r = __kvm_io_bus_write(bus, &range, val);
2873 return r < 0 ? r : 0;
2876 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2877 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2878 int len, const void *val, long cookie)
2880 struct kvm_io_bus *bus;
2881 struct kvm_io_range range;
2883 range = (struct kvm_io_range) {
2888 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2890 /* First try the device referenced by cookie. */
2891 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2892 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2893 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2898 * cookie contained garbage; fall back to search and return the
2899 * correct cookie value.
2901 return __kvm_io_bus_write(bus, &range, val);
2904 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2909 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2913 while (idx < bus->dev_count &&
2914 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2915 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2924 /* kvm_io_bus_read - called under kvm->slots_lock */
2925 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2928 struct kvm_io_bus *bus;
2929 struct kvm_io_range range;
2932 range = (struct kvm_io_range) {
2937 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2938 r = __kvm_io_bus_read(bus, &range, val);
2939 return r < 0 ? r : 0;
2943 /* Caller must hold slots_lock. */
2944 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2945 int len, struct kvm_io_device *dev)
2947 struct kvm_io_bus *new_bus, *bus;
2949 bus = kvm->buses[bus_idx];
2950 /* exclude ioeventfd which is limited by maximum fd */
2951 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2954 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2955 sizeof(struct kvm_io_range)), GFP_KERNEL);
2958 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2959 sizeof(struct kvm_io_range)));
2960 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2961 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2962 synchronize_srcu_expedited(&kvm->srcu);
2968 /* Caller must hold slots_lock. */
2969 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2970 struct kvm_io_device *dev)
2973 struct kvm_io_bus *new_bus, *bus;
2975 bus = kvm->buses[bus_idx];
2977 for (i = 0; i < bus->dev_count; i++)
2978 if (bus->range[i].dev == dev) {
2986 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2987 sizeof(struct kvm_io_range)), GFP_KERNEL);
2991 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2992 new_bus->dev_count--;
2993 memcpy(new_bus->range + i, bus->range + i + 1,
2994 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2996 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2997 synchronize_srcu_expedited(&kvm->srcu);
3002 static struct notifier_block kvm_cpu_notifier = {
3003 .notifier_call = kvm_cpu_hotplug,
3006 static int vm_stat_get(void *_offset, u64 *val)
3008 unsigned offset = (long)_offset;
3012 spin_lock(&kvm_lock);
3013 list_for_each_entry(kvm, &vm_list, vm_list)
3014 *val += *(u32 *)((void *)kvm + offset);
3015 spin_unlock(&kvm_lock);
3019 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3021 static int vcpu_stat_get(void *_offset, u64 *val)
3023 unsigned offset = (long)_offset;
3025 struct kvm_vcpu *vcpu;
3029 spin_lock(&kvm_lock);
3030 list_for_each_entry(kvm, &vm_list, vm_list)
3031 kvm_for_each_vcpu(i, vcpu, kvm)
3032 *val += *(u32 *)((void *)vcpu + offset);
3034 spin_unlock(&kvm_lock);
3038 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3040 static const struct file_operations *stat_fops[] = {
3041 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3042 [KVM_STAT_VM] = &vm_stat_fops,
3045 static int kvm_init_debug(void)
3048 struct kvm_stats_debugfs_item *p;
3050 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3051 if (kvm_debugfs_dir == NULL)
3054 for (p = debugfs_entries; p->name; ++p) {
3055 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3056 (void *)(long)p->offset,
3057 stat_fops[p->kind]);
3058 if (p->dentry == NULL)
3065 debugfs_remove_recursive(kvm_debugfs_dir);
3070 static void kvm_exit_debug(void)
3072 struct kvm_stats_debugfs_item *p;
3074 for (p = debugfs_entries; p->name; ++p)
3075 debugfs_remove(p->dentry);
3076 debugfs_remove(kvm_debugfs_dir);
3079 static int kvm_suspend(void)
3081 if (kvm_usage_count)
3082 hardware_disable_nolock(NULL);
3086 static void kvm_resume(void)
3088 if (kvm_usage_count) {
3089 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3090 hardware_enable_nolock(NULL);
3094 static struct syscore_ops kvm_syscore_ops = {
3095 .suspend = kvm_suspend,
3096 .resume = kvm_resume,
3100 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3102 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3105 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3107 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3108 if (vcpu->preempted)
3109 vcpu->preempted = false;
3111 kvm_arch_vcpu_load(vcpu, cpu);
3114 static void kvm_sched_out(struct preempt_notifier *pn,
3115 struct task_struct *next)
3117 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3119 if (current->state == TASK_RUNNING)
3120 vcpu->preempted = true;
3121 kvm_arch_vcpu_put(vcpu);
3124 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3125 struct module *module)
3130 r = kvm_arch_init(opaque);
3135 * kvm_arch_init makes sure there's at most one caller
3136 * for architectures that support multiple implementations,
3137 * like intel and amd on x86.
3138 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3139 * conflicts in case kvm is already setup for another implementation.
3141 r = kvm_irqfd_init();
3145 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3150 r = kvm_arch_hardware_setup();
3154 for_each_online_cpu(cpu) {
3155 smp_call_function_single(cpu,
3156 kvm_arch_check_processor_compat,
3162 r = register_cpu_notifier(&kvm_cpu_notifier);
3165 register_reboot_notifier(&kvm_reboot_notifier);
3167 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3169 vcpu_align = __alignof__(struct kvm_vcpu);
3170 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3172 if (!kvm_vcpu_cache) {
3177 r = kvm_async_pf_init();
3181 kvm_chardev_ops.owner = module;
3182 kvm_vm_fops.owner = module;
3183 kvm_vcpu_fops.owner = module;
3185 r = misc_register(&kvm_dev);
3187 printk(KERN_ERR "kvm: misc device register failed\n");
3191 register_syscore_ops(&kvm_syscore_ops);
3193 kvm_preempt_ops.sched_in = kvm_sched_in;
3194 kvm_preempt_ops.sched_out = kvm_sched_out;
3196 r = kvm_init_debug();
3198 printk(KERN_ERR "kvm: create debugfs files failed\n");
3205 unregister_syscore_ops(&kvm_syscore_ops);
3206 misc_deregister(&kvm_dev);
3208 kvm_async_pf_deinit();
3210 kmem_cache_destroy(kvm_vcpu_cache);
3212 unregister_reboot_notifier(&kvm_reboot_notifier);
3213 unregister_cpu_notifier(&kvm_cpu_notifier);
3216 kvm_arch_hardware_unsetup();
3218 free_cpumask_var(cpus_hardware_enabled);
3226 EXPORT_SYMBOL_GPL(kvm_init);
3231 misc_deregister(&kvm_dev);
3232 kmem_cache_destroy(kvm_vcpu_cache);
3233 kvm_async_pf_deinit();
3234 unregister_syscore_ops(&kvm_syscore_ops);
3235 unregister_reboot_notifier(&kvm_reboot_notifier);
3236 unregister_cpu_notifier(&kvm_cpu_notifier);
3237 on_each_cpu(hardware_disable_nolock, NULL, 1);
3238 kvm_arch_hardware_unsetup();
3241 free_cpumask_var(cpus_hardware_enabled);
3243 EXPORT_SYMBOL_GPL(kvm_exit);