ARM: KVM: vgic: simplify vgic_get_target_reg
[platform/adaptation/renesas_rcar/renesas_kernel.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27
28 #include <linux/irqchip/arm-gic.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33
34 /*
35  * How the whole thing works (courtesy of Christoffer Dall):
36  *
37  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38  *   something is pending
39  * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40  *   bitmap (this bitmap is updated by both user land ioctls and guest
41  *   mmio ops, and other in-kernel peripherals such as the
42  *   arch. timers) and indicate the 'wire' state.
43  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
44  *   recalculated
45  * - To calculate the oracle, we need info for each cpu from
46  *   compute_pending_for_cpu, which considers:
47  *   - PPI: dist->irq_state & dist->irq_enable
48  *   - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49  *   - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50  *     registers, stored on each vcpu. We only keep one bit of
51  *     information per interrupt, making sure that only one vcpu can
52  *     accept the interrupt.
53  * - The same is true when injecting an interrupt, except that we only
54  *   consider a single interrupt at a time. The irq_spi_cpu array
55  *   contains the target CPU for each SPI.
56  *
57  * The handling of level interrupts adds some extra complexity. We
58  * need to track when the interrupt has been EOIed, so we can sample
59  * the 'line' again. This is achieved as such:
60  *
61  * - When a level interrupt is moved onto a vcpu, the corresponding
62  *   bit in irq_active is set. As long as this bit is set, the line
63  *   will be ignored for further interrupts. The interrupt is injected
64  *   into the vcpu with the GICH_LR_EOI bit set (generate a
65  *   maintenance interrupt on EOI).
66  * - When the interrupt is EOIed, the maintenance interrupt fires,
67  *   and clears the corresponding bit in irq_active. This allow the
68  *   interrupt line to be sampled again.
69  */
70
71 #define VGIC_ADDR_UNDEF         (-1)
72 #define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)
73
74 /* Physical address of vgic virtual cpu interface */
75 static phys_addr_t vgic_vcpu_base;
76
77 /* Virtual control interface base address */
78 static void __iomem *vgic_vctrl_base;
79
80 static struct device_node *vgic_node;
81
82 #define ACCESS_READ_VALUE       (1 << 0)
83 #define ACCESS_READ_RAZ         (0 << 0)
84 #define ACCESS_READ_MASK(x)     ((x) & (1 << 0))
85 #define ACCESS_WRITE_IGNORED    (0 << 1)
86 #define ACCESS_WRITE_SETBIT     (1 << 1)
87 #define ACCESS_WRITE_CLEARBIT   (2 << 1)
88 #define ACCESS_WRITE_VALUE      (3 << 1)
89 #define ACCESS_WRITE_MASK(x)    ((x) & (3 << 1))
90
91 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
92 static void vgic_update_state(struct kvm *kvm);
93 static void vgic_kick_vcpus(struct kvm *kvm);
94 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
95 static u32 vgic_nr_lr;
96
97 static unsigned int vgic_maint_irq;
98
99 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
100                                 int cpuid, u32 offset)
101 {
102         offset >>= 2;
103         if (!offset)
104                 return x->percpu[cpuid].reg;
105         else
106                 return x->shared.reg + offset - 1;
107 }
108
109 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
110                                    int cpuid, int irq)
111 {
112         if (irq < VGIC_NR_PRIVATE_IRQS)
113                 return test_bit(irq, x->percpu[cpuid].reg_ul);
114
115         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
116 }
117
118 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
119                                     int irq, int val)
120 {
121         unsigned long *reg;
122
123         if (irq < VGIC_NR_PRIVATE_IRQS) {
124                 reg = x->percpu[cpuid].reg_ul;
125         } else {
126                 reg =  x->shared.reg_ul;
127                 irq -= VGIC_NR_PRIVATE_IRQS;
128         }
129
130         if (val)
131                 set_bit(irq, reg);
132         else
133                 clear_bit(irq, reg);
134 }
135
136 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
137 {
138         if (unlikely(cpuid >= VGIC_MAX_CPUS))
139                 return NULL;
140         return x->percpu[cpuid].reg_ul;
141 }
142
143 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
144 {
145         return x->shared.reg_ul;
146 }
147
148 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
149 {
150         offset >>= 2;
151         BUG_ON(offset > (VGIC_NR_IRQS / 4));
152         if (offset < 4)
153                 return x->percpu[cpuid] + offset;
154         else
155                 return x->shared + offset - 8;
156 }
157
158 #define VGIC_CFG_LEVEL  0
159 #define VGIC_CFG_EDGE   1
160
161 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
162 {
163         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
164         int irq_val;
165
166         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
167         return irq_val == VGIC_CFG_EDGE;
168 }
169
170 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
171 {
172         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
173
174         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
175 }
176
177 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
178 {
179         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
180
181         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
182 }
183
184 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
185 {
186         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
187
188         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
189 }
190
191 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
192 {
193         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
194
195         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
196 }
197
198 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
199 {
200         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
201
202         return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
203 }
204
205 static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
206 {
207         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
208
209         vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
210 }
211
212 static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
213 {
214         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
215
216         vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
217 }
218
219 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
220 {
221         if (irq < VGIC_NR_PRIVATE_IRQS)
222                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
223         else
224                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
225                         vcpu->arch.vgic_cpu.pending_shared);
226 }
227
228 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
229 {
230         if (irq < VGIC_NR_PRIVATE_IRQS)
231                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
232         else
233                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
234                           vcpu->arch.vgic_cpu.pending_shared);
235 }
236
237 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
238 {
239         return *((u32 *)mmio->data) & mask;
240 }
241
242 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
243 {
244         *((u32 *)mmio->data) = value & mask;
245 }
246
247 /**
248  * vgic_reg_access - access vgic register
249  * @mmio:   pointer to the data describing the mmio access
250  * @reg:    pointer to the virtual backing of vgic distributor data
251  * @offset: least significant 2 bits used for word offset
252  * @mode:   ACCESS_ mode (see defines above)
253  *
254  * Helper to make vgic register access easier using one of the access
255  * modes defined for vgic register access
256  * (read,raz,write-ignored,setbit,clearbit,write)
257  */
258 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
259                             phys_addr_t offset, int mode)
260 {
261         int word_offset = (offset & 3) * 8;
262         u32 mask = (1UL << (mmio->len * 8)) - 1;
263         u32 regval;
264
265         /*
266          * Any alignment fault should have been delivered to the guest
267          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
268          */
269
270         if (reg) {
271                 regval = *reg;
272         } else {
273                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
274                 regval = 0;
275         }
276
277         if (mmio->is_write) {
278                 u32 data = mmio_data_read(mmio, mask) << word_offset;
279                 switch (ACCESS_WRITE_MASK(mode)) {
280                 case ACCESS_WRITE_IGNORED:
281                         return;
282
283                 case ACCESS_WRITE_SETBIT:
284                         regval |= data;
285                         break;
286
287                 case ACCESS_WRITE_CLEARBIT:
288                         regval &= ~data;
289                         break;
290
291                 case ACCESS_WRITE_VALUE:
292                         regval = (regval & ~(mask << word_offset)) | data;
293                         break;
294                 }
295                 *reg = regval;
296         } else {
297                 switch (ACCESS_READ_MASK(mode)) {
298                 case ACCESS_READ_RAZ:
299                         regval = 0;
300                         /* fall through */
301
302                 case ACCESS_READ_VALUE:
303                         mmio_data_write(mmio, mask, regval >> word_offset);
304                 }
305         }
306 }
307
308 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
309                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
310 {
311         u32 reg;
312         u32 word_offset = offset & 3;
313
314         switch (offset & ~3) {
315         case 0:                 /* CTLR */
316                 reg = vcpu->kvm->arch.vgic.enabled;
317                 vgic_reg_access(mmio, &reg, word_offset,
318                                 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
319                 if (mmio->is_write) {
320                         vcpu->kvm->arch.vgic.enabled = reg & 1;
321                         vgic_update_state(vcpu->kvm);
322                         return true;
323                 }
324                 break;
325
326         case 4:                 /* TYPER */
327                 reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
328                 reg |= (VGIC_NR_IRQS >> 5) - 1;
329                 vgic_reg_access(mmio, &reg, word_offset,
330                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
331                 break;
332
333         case 8:                 /* IIDR */
334                 reg = 0x4B00043B;
335                 vgic_reg_access(mmio, &reg, word_offset,
336                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
337                 break;
338         }
339
340         return false;
341 }
342
343 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
344                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
345 {
346         vgic_reg_access(mmio, NULL, offset,
347                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
348         return false;
349 }
350
351 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
352                                        struct kvm_exit_mmio *mmio,
353                                        phys_addr_t offset)
354 {
355         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
356                                        vcpu->vcpu_id, offset);
357         vgic_reg_access(mmio, reg, offset,
358                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
359         if (mmio->is_write) {
360                 vgic_update_state(vcpu->kvm);
361                 return true;
362         }
363
364         return false;
365 }
366
367 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
368                                          struct kvm_exit_mmio *mmio,
369                                          phys_addr_t offset)
370 {
371         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
372                                        vcpu->vcpu_id, offset);
373         vgic_reg_access(mmio, reg, offset,
374                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
375         if (mmio->is_write) {
376                 if (offset < 4) /* Force SGI enabled */
377                         *reg |= 0xffff;
378                 vgic_retire_disabled_irqs(vcpu);
379                 vgic_update_state(vcpu->kvm);
380                 return true;
381         }
382
383         return false;
384 }
385
386 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
387                                         struct kvm_exit_mmio *mmio,
388                                         phys_addr_t offset)
389 {
390         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
391                                        vcpu->vcpu_id, offset);
392         vgic_reg_access(mmio, reg, offset,
393                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
394         if (mmio->is_write) {
395                 vgic_update_state(vcpu->kvm);
396                 return true;
397         }
398
399         return false;
400 }
401
402 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
403                                           struct kvm_exit_mmio *mmio,
404                                           phys_addr_t offset)
405 {
406         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
407                                        vcpu->vcpu_id, offset);
408         vgic_reg_access(mmio, reg, offset,
409                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
410         if (mmio->is_write) {
411                 vgic_update_state(vcpu->kvm);
412                 return true;
413         }
414
415         return false;
416 }
417
418 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
419                                      struct kvm_exit_mmio *mmio,
420                                      phys_addr_t offset)
421 {
422         u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
423                                         vcpu->vcpu_id, offset);
424         vgic_reg_access(mmio, reg, offset,
425                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
426         return false;
427 }
428
429 #define GICD_ITARGETSR_SIZE     32
430 #define GICD_CPUTARGETS_BITS    8
431 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
432 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
433 {
434         struct vgic_dist *dist = &kvm->arch.vgic;
435         int i;
436         u32 val = 0;
437
438         irq -= VGIC_NR_PRIVATE_IRQS;
439
440         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
441                 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
442
443         return val;
444 }
445
446 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
447 {
448         struct vgic_dist *dist = &kvm->arch.vgic;
449         struct kvm_vcpu *vcpu;
450         int i, c;
451         unsigned long *bmap;
452         u32 target;
453
454         irq -= VGIC_NR_PRIVATE_IRQS;
455
456         /*
457          * Pick the LSB in each byte. This ensures we target exactly
458          * one vcpu per IRQ. If the byte is null, assume we target
459          * CPU0.
460          */
461         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
462                 int shift = i * GICD_CPUTARGETS_BITS;
463                 target = ffs((val >> shift) & 0xffU);
464                 target = target ? (target - 1) : 0;
465                 dist->irq_spi_cpu[irq + i] = target;
466                 kvm_for_each_vcpu(c, vcpu, kvm) {
467                         bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
468                         if (c == target)
469                                 set_bit(irq + i, bmap);
470                         else
471                                 clear_bit(irq + i, bmap);
472                 }
473         }
474 }
475
476 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
477                                    struct kvm_exit_mmio *mmio,
478                                    phys_addr_t offset)
479 {
480         u32 reg;
481
482         /* We treat the banked interrupts targets as read-only */
483         if (offset < 32) {
484                 u32 roreg = 1 << vcpu->vcpu_id;
485                 roreg |= roreg << 8;
486                 roreg |= roreg << 16;
487
488                 vgic_reg_access(mmio, &roreg, offset,
489                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
490                 return false;
491         }
492
493         reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
494         vgic_reg_access(mmio, &reg, offset,
495                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
496         if (mmio->is_write) {
497                 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
498                 vgic_update_state(vcpu->kvm);
499                 return true;
500         }
501
502         return false;
503 }
504
505 static u32 vgic_cfg_expand(u16 val)
506 {
507         u32 res = 0;
508         int i;
509
510         /*
511          * Turn a 16bit value like abcd...mnop into a 32bit word
512          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
513          */
514         for (i = 0; i < 16; i++)
515                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
516
517         return res;
518 }
519
520 static u16 vgic_cfg_compress(u32 val)
521 {
522         u16 res = 0;
523         int i;
524
525         /*
526          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
527          * abcd...mnop which is what we really care about.
528          */
529         for (i = 0; i < 16; i++)
530                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
531
532         return res;
533 }
534
535 /*
536  * The distributor uses 2 bits per IRQ for the CFG register, but the
537  * LSB is always 0. As such, we only keep the upper bit, and use the
538  * two above functions to compress/expand the bits
539  */
540 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
541                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
542 {
543         u32 val;
544         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
545                                        vcpu->vcpu_id, offset >> 1);
546         if (offset & 2)
547                 val = *reg >> 16;
548         else
549                 val = *reg & 0xffff;
550
551         val = vgic_cfg_expand(val);
552         vgic_reg_access(mmio, &val, offset,
553                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
554         if (mmio->is_write) {
555                 if (offset < 4) {
556                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
557                         return false;
558                 }
559
560                 val = vgic_cfg_compress(val);
561                 if (offset & 2) {
562                         *reg &= 0xffff;
563                         *reg |= val << 16;
564                 } else {
565                         *reg &= 0xffff << 16;
566                         *reg |= val;
567                 }
568         }
569
570         return false;
571 }
572
573 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
574                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
575 {
576         u32 reg;
577         vgic_reg_access(mmio, &reg, offset,
578                         ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
579         if (mmio->is_write) {
580                 vgic_dispatch_sgi(vcpu, reg);
581                 vgic_update_state(vcpu->kvm);
582                 return true;
583         }
584
585         return false;
586 }
587
588 /*
589  * I would have liked to use the kvm_bus_io_*() API instead, but it
590  * cannot cope with banked registers (only the VM pointer is passed
591  * around, and we need the vcpu). One of these days, someone please
592  * fix it!
593  */
594 struct mmio_range {
595         phys_addr_t base;
596         unsigned long len;
597         bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
598                             phys_addr_t offset);
599 };
600
601 static const struct mmio_range vgic_ranges[] = {
602         {
603                 .base           = GIC_DIST_CTRL,
604                 .len            = 12,
605                 .handle_mmio    = handle_mmio_misc,
606         },
607         {
608                 .base           = GIC_DIST_IGROUP,
609                 .len            = VGIC_NR_IRQS / 8,
610                 .handle_mmio    = handle_mmio_raz_wi,
611         },
612         {
613                 .base           = GIC_DIST_ENABLE_SET,
614                 .len            = VGIC_NR_IRQS / 8,
615                 .handle_mmio    = handle_mmio_set_enable_reg,
616         },
617         {
618                 .base           = GIC_DIST_ENABLE_CLEAR,
619                 .len            = VGIC_NR_IRQS / 8,
620                 .handle_mmio    = handle_mmio_clear_enable_reg,
621         },
622         {
623                 .base           = GIC_DIST_PENDING_SET,
624                 .len            = VGIC_NR_IRQS / 8,
625                 .handle_mmio    = handle_mmio_set_pending_reg,
626         },
627         {
628                 .base           = GIC_DIST_PENDING_CLEAR,
629                 .len            = VGIC_NR_IRQS / 8,
630                 .handle_mmio    = handle_mmio_clear_pending_reg,
631         },
632         {
633                 .base           = GIC_DIST_ACTIVE_SET,
634                 .len            = VGIC_NR_IRQS / 8,
635                 .handle_mmio    = handle_mmio_raz_wi,
636         },
637         {
638                 .base           = GIC_DIST_ACTIVE_CLEAR,
639                 .len            = VGIC_NR_IRQS / 8,
640                 .handle_mmio    = handle_mmio_raz_wi,
641         },
642         {
643                 .base           = GIC_DIST_PRI,
644                 .len            = VGIC_NR_IRQS,
645                 .handle_mmio    = handle_mmio_priority_reg,
646         },
647         {
648                 .base           = GIC_DIST_TARGET,
649                 .len            = VGIC_NR_IRQS,
650                 .handle_mmio    = handle_mmio_target_reg,
651         },
652         {
653                 .base           = GIC_DIST_CONFIG,
654                 .len            = VGIC_NR_IRQS / 4,
655                 .handle_mmio    = handle_mmio_cfg_reg,
656         },
657         {
658                 .base           = GIC_DIST_SOFTINT,
659                 .len            = 4,
660                 .handle_mmio    = handle_mmio_sgi_reg,
661         },
662         {}
663 };
664
665 static const
666 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
667                                        struct kvm_exit_mmio *mmio,
668                                        phys_addr_t base)
669 {
670         const struct mmio_range *r = ranges;
671         phys_addr_t addr = mmio->phys_addr - base;
672
673         while (r->len) {
674                 if (addr >= r->base &&
675                     (addr + mmio->len) <= (r->base + r->len))
676                         return r;
677                 r++;
678         }
679
680         return NULL;
681 }
682
683 /**
684  * vgic_handle_mmio - handle an in-kernel MMIO access
685  * @vcpu:       pointer to the vcpu performing the access
686  * @run:        pointer to the kvm_run structure
687  * @mmio:       pointer to the data describing the access
688  *
689  * returns true if the MMIO access has been performed in kernel space,
690  * and false if it needs to be emulated in user space.
691  */
692 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
693                       struct kvm_exit_mmio *mmio)
694 {
695         const struct mmio_range *range;
696         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
697         unsigned long base = dist->vgic_dist_base;
698         bool updated_state;
699         unsigned long offset;
700
701         if (!irqchip_in_kernel(vcpu->kvm) ||
702             mmio->phys_addr < base ||
703             (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
704                 return false;
705
706         /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
707         if (mmio->len > 4) {
708                 kvm_inject_dabt(vcpu, mmio->phys_addr);
709                 return true;
710         }
711
712         range = find_matching_range(vgic_ranges, mmio, base);
713         if (unlikely(!range || !range->handle_mmio)) {
714                 pr_warn("Unhandled access %d %08llx %d\n",
715                         mmio->is_write, mmio->phys_addr, mmio->len);
716                 return false;
717         }
718
719         spin_lock(&vcpu->kvm->arch.vgic.lock);
720         offset = mmio->phys_addr - range->base - base;
721         updated_state = range->handle_mmio(vcpu, mmio, offset);
722         spin_unlock(&vcpu->kvm->arch.vgic.lock);
723         kvm_prepare_mmio(run, mmio);
724         kvm_handle_mmio_return(vcpu, run);
725
726         if (updated_state)
727                 vgic_kick_vcpus(vcpu->kvm);
728
729         return true;
730 }
731
732 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
733 {
734         struct kvm *kvm = vcpu->kvm;
735         struct vgic_dist *dist = &kvm->arch.vgic;
736         int nrcpus = atomic_read(&kvm->online_vcpus);
737         u8 target_cpus;
738         int sgi, mode, c, vcpu_id;
739
740         vcpu_id = vcpu->vcpu_id;
741
742         sgi = reg & 0xf;
743         target_cpus = (reg >> 16) & 0xff;
744         mode = (reg >> 24) & 3;
745
746         switch (mode) {
747         case 0:
748                 if (!target_cpus)
749                         return;
750
751         case 1:
752                 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
753                 break;
754
755         case 2:
756                 target_cpus = 1 << vcpu_id;
757                 break;
758         }
759
760         kvm_for_each_vcpu(c, vcpu, kvm) {
761                 if (target_cpus & 1) {
762                         /* Flag the SGI as pending */
763                         vgic_dist_irq_set(vcpu, sgi);
764                         dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
765                         kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
766                 }
767
768                 target_cpus >>= 1;
769         }
770 }
771
772 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
773 {
774         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
775         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
776         unsigned long pending_private, pending_shared;
777         int vcpu_id;
778
779         vcpu_id = vcpu->vcpu_id;
780         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
781         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
782
783         pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
784         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
785         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
786
787         pending = vgic_bitmap_get_shared_map(&dist->irq_state);
788         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
789         bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
790         bitmap_and(pend_shared, pend_shared,
791                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
792                    VGIC_NR_SHARED_IRQS);
793
794         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
795         pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
796         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
797                 pending_shared < VGIC_NR_SHARED_IRQS);
798 }
799
800 /*
801  * Update the interrupt state and determine which CPUs have pending
802  * interrupts. Must be called with distributor lock held.
803  */
804 static void vgic_update_state(struct kvm *kvm)
805 {
806         struct vgic_dist *dist = &kvm->arch.vgic;
807         struct kvm_vcpu *vcpu;
808         int c;
809
810         if (!dist->enabled) {
811                 set_bit(0, &dist->irq_pending_on_cpu);
812                 return;
813         }
814
815         kvm_for_each_vcpu(c, vcpu, kvm) {
816                 if (compute_pending_for_cpu(vcpu)) {
817                         pr_debug("CPU%d has pending interrupts\n", c);
818                         set_bit(c, &dist->irq_pending_on_cpu);
819                 }
820         }
821 }
822
823 #define LR_CPUID(lr)    \
824         (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
825 #define MK_LR_PEND(src, irq)    \
826         (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
827
828 /*
829  * An interrupt may have been disabled after being made pending on the
830  * CPU interface (the classic case is a timer running while we're
831  * rebooting the guest - the interrupt would kick as soon as the CPU
832  * interface gets enabled, with deadly consequences).
833  *
834  * The solution is to examine already active LRs, and check the
835  * interrupt is still enabled. If not, just retire it.
836  */
837 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
838 {
839         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
840         int lr;
841
842         for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
843                 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
844
845                 if (!vgic_irq_is_enabled(vcpu, irq)) {
846                         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
847                         clear_bit(lr, vgic_cpu->lr_used);
848                         vgic_cpu->vgic_lr[lr] &= ~GICH_LR_STATE;
849                         if (vgic_irq_is_active(vcpu, irq))
850                                 vgic_irq_clear_active(vcpu, irq);
851                 }
852         }
853 }
854
855 /*
856  * Queue an interrupt to a CPU virtual interface. Return true on success,
857  * or false if it wasn't possible to queue it.
858  */
859 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
860 {
861         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
862         int lr;
863
864         /* Sanitize the input... */
865         BUG_ON(sgi_source_id & ~7);
866         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
867         BUG_ON(irq >= VGIC_NR_IRQS);
868
869         kvm_debug("Queue IRQ%d\n", irq);
870
871         lr = vgic_cpu->vgic_irq_lr_map[irq];
872
873         /* Do we have an active interrupt for the same CPUID? */
874         if (lr != LR_EMPTY &&
875             (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
876                 kvm_debug("LR%d piggyback for IRQ%d %x\n",
877                           lr, irq, vgic_cpu->vgic_lr[lr]);
878                 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
879                 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
880                 return true;
881         }
882
883         /* Try to use another LR for this interrupt */
884         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
885                                vgic_cpu->nr_lr);
886         if (lr >= vgic_cpu->nr_lr)
887                 return false;
888
889         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
890         vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
891         vgic_cpu->vgic_irq_lr_map[irq] = lr;
892         set_bit(lr, vgic_cpu->lr_used);
893
894         if (!vgic_irq_is_edge(vcpu, irq))
895                 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
896
897         return true;
898 }
899
900 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
901 {
902         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
903         unsigned long sources;
904         int vcpu_id = vcpu->vcpu_id;
905         int c;
906
907         sources = dist->irq_sgi_sources[vcpu_id][irq];
908
909         for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
910                 if (vgic_queue_irq(vcpu, c, irq))
911                         clear_bit(c, &sources);
912         }
913
914         dist->irq_sgi_sources[vcpu_id][irq] = sources;
915
916         /*
917          * If the sources bitmap has been cleared it means that we
918          * could queue all the SGIs onto link registers (see the
919          * clear_bit above), and therefore we are done with them in
920          * our emulated gic and can get rid of them.
921          */
922         if (!sources) {
923                 vgic_dist_irq_clear(vcpu, irq);
924                 vgic_cpu_irq_clear(vcpu, irq);
925                 return true;
926         }
927
928         return false;
929 }
930
931 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
932 {
933         if (vgic_irq_is_active(vcpu, irq))
934                 return true; /* level interrupt, already queued */
935
936         if (vgic_queue_irq(vcpu, 0, irq)) {
937                 if (vgic_irq_is_edge(vcpu, irq)) {
938                         vgic_dist_irq_clear(vcpu, irq);
939                         vgic_cpu_irq_clear(vcpu, irq);
940                 } else {
941                         vgic_irq_set_active(vcpu, irq);
942                 }
943
944                 return true;
945         }
946
947         return false;
948 }
949
950 /*
951  * Fill the list registers with pending interrupts before running the
952  * guest.
953  */
954 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
955 {
956         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
957         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
958         int i, vcpu_id;
959         int overflow = 0;
960
961         vcpu_id = vcpu->vcpu_id;
962
963         /*
964          * We may not have any pending interrupt, or the interrupts
965          * may have been serviced from another vcpu. In all cases,
966          * move along.
967          */
968         if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
969                 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
970                 goto epilog;
971         }
972
973         /* SGIs */
974         for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
975                 if (!vgic_queue_sgi(vcpu, i))
976                         overflow = 1;
977         }
978
979         /* PPIs */
980         for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
981                 if (!vgic_queue_hwirq(vcpu, i))
982                         overflow = 1;
983         }
984
985         /* SPIs */
986         for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
987                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
988                         overflow = 1;
989         }
990
991 epilog:
992         if (overflow) {
993                 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
994         } else {
995                 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
996                 /*
997                  * We're about to run this VCPU, and we've consumed
998                  * everything the distributor had in store for
999                  * us. Claim we don't have anything pending. We'll
1000                  * adjust that if needed while exiting.
1001                  */
1002                 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1003         }
1004 }
1005
1006 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1007 {
1008         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1009         bool level_pending = false;
1010
1011         kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1012
1013         if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1014                 /*
1015                  * Some level interrupts have been EOIed. Clear their
1016                  * active bit.
1017                  */
1018                 int lr, irq;
1019
1020                 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1021                                  vgic_cpu->nr_lr) {
1022                         irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1023
1024                         vgic_irq_clear_active(vcpu, irq);
1025                         vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1026
1027                         /* Any additional pending interrupt? */
1028                         if (vgic_dist_irq_is_pending(vcpu, irq)) {
1029                                 vgic_cpu_irq_set(vcpu, irq);
1030                                 level_pending = true;
1031                         } else {
1032                                 vgic_cpu_irq_clear(vcpu, irq);
1033                         }
1034
1035                         /*
1036                          * Despite being EOIed, the LR may not have
1037                          * been marked as empty.
1038                          */
1039                         set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1040                         vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
1041                 }
1042         }
1043
1044         if (vgic_cpu->vgic_misr & GICH_MISR_U)
1045                 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1046
1047         return level_pending;
1048 }
1049
1050 /*
1051  * Sync back the VGIC state after a guest run. The distributor lock is
1052  * needed so we don't get preempted in the middle of the state processing.
1053  */
1054 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1055 {
1056         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1057         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1058         int lr, pending;
1059         bool level_pending;
1060
1061         level_pending = vgic_process_maintenance(vcpu);
1062
1063         /* Clear mappings for empty LRs */
1064         for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1065                          vgic_cpu->nr_lr) {
1066                 int irq;
1067
1068                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1069                         continue;
1070
1071                 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1072
1073                 BUG_ON(irq >= VGIC_NR_IRQS);
1074                 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1075         }
1076
1077         /* Check if we still have something up our sleeve... */
1078         pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1079                                       vgic_cpu->nr_lr);
1080         if (level_pending || pending < vgic_cpu->nr_lr)
1081                 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1082 }
1083
1084 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1085 {
1086         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1087
1088         if (!irqchip_in_kernel(vcpu->kvm))
1089                 return;
1090
1091         spin_lock(&dist->lock);
1092         __kvm_vgic_flush_hwstate(vcpu);
1093         spin_unlock(&dist->lock);
1094 }
1095
1096 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1097 {
1098         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1099
1100         if (!irqchip_in_kernel(vcpu->kvm))
1101                 return;
1102
1103         spin_lock(&dist->lock);
1104         __kvm_vgic_sync_hwstate(vcpu);
1105         spin_unlock(&dist->lock);
1106 }
1107
1108 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1109 {
1110         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1111
1112         if (!irqchip_in_kernel(vcpu->kvm))
1113                 return 0;
1114
1115         return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1116 }
1117
1118 static void vgic_kick_vcpus(struct kvm *kvm)
1119 {
1120         struct kvm_vcpu *vcpu;
1121         int c;
1122
1123         /*
1124          * We've injected an interrupt, time to find out who deserves
1125          * a good kick...
1126          */
1127         kvm_for_each_vcpu(c, vcpu, kvm) {
1128                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1129                         kvm_vcpu_kick(vcpu);
1130         }
1131 }
1132
1133 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1134 {
1135         int is_edge = vgic_irq_is_edge(vcpu, irq);
1136         int state = vgic_dist_irq_is_pending(vcpu, irq);
1137
1138         /*
1139          * Only inject an interrupt if:
1140          * - edge triggered and we have a rising edge
1141          * - level triggered and we change level
1142          */
1143         if (is_edge)
1144                 return level > state;
1145         else
1146                 return level != state;
1147 }
1148
1149 static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1150                                   unsigned int irq_num, bool level)
1151 {
1152         struct vgic_dist *dist = &kvm->arch.vgic;
1153         struct kvm_vcpu *vcpu;
1154         int is_edge, is_level;
1155         int enabled;
1156         bool ret = true;
1157
1158         spin_lock(&dist->lock);
1159
1160         vcpu = kvm_get_vcpu(kvm, cpuid);
1161         is_edge = vgic_irq_is_edge(vcpu, irq_num);
1162         is_level = !is_edge;
1163
1164         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1165                 ret = false;
1166                 goto out;
1167         }
1168
1169         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1170                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1171                 vcpu = kvm_get_vcpu(kvm, cpuid);
1172         }
1173
1174         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1175
1176         if (level)
1177                 vgic_dist_irq_set(vcpu, irq_num);
1178         else
1179                 vgic_dist_irq_clear(vcpu, irq_num);
1180
1181         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1182
1183         if (!enabled) {
1184                 ret = false;
1185                 goto out;
1186         }
1187
1188         if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1189                 /*
1190                  * Level interrupt in progress, will be picked up
1191                  * when EOId.
1192                  */
1193                 ret = false;
1194                 goto out;
1195         }
1196
1197         if (level) {
1198                 vgic_cpu_irq_set(vcpu, irq_num);
1199                 set_bit(cpuid, &dist->irq_pending_on_cpu);
1200         }
1201
1202 out:
1203         spin_unlock(&dist->lock);
1204
1205         return ret;
1206 }
1207
1208 /**
1209  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1210  * @kvm:     The VM structure pointer
1211  * @cpuid:   The CPU for PPIs
1212  * @irq_num: The IRQ number that is assigned to the device
1213  * @level:   Edge-triggered:  true:  to trigger the interrupt
1214  *                            false: to ignore the call
1215  *           Level-sensitive  true:  activates an interrupt
1216  *                            false: deactivates an interrupt
1217  *
1218  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1219  * level-sensitive interrupts.  You can think of the level parameter as 1
1220  * being HIGH and 0 being LOW and all devices being active-HIGH.
1221  */
1222 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1223                         bool level)
1224 {
1225         if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1226                 vgic_kick_vcpus(kvm);
1227
1228         return 0;
1229 }
1230
1231 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1232 {
1233         /*
1234          * We cannot rely on the vgic maintenance interrupt to be
1235          * delivered synchronously. This means we can only use it to
1236          * exit the VM, and we perform the handling of EOIed
1237          * interrupts on the exit path (see vgic_process_maintenance).
1238          */
1239         return IRQ_HANDLED;
1240 }
1241
1242 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1243 {
1244         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1245         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1246         int i;
1247
1248         if (!irqchip_in_kernel(vcpu->kvm))
1249                 return 0;
1250
1251         if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1252                 return -EBUSY;
1253
1254         for (i = 0; i < VGIC_NR_IRQS; i++) {
1255                 if (i < VGIC_NR_PPIS)
1256                         vgic_bitmap_set_irq_val(&dist->irq_enabled,
1257                                                 vcpu->vcpu_id, i, 1);
1258                 if (i < VGIC_NR_PRIVATE_IRQS)
1259                         vgic_bitmap_set_irq_val(&dist->irq_cfg,
1260                                                 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1261
1262                 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1263         }
1264
1265         /*
1266          * By forcing VMCR to zero, the GIC will restore the binary
1267          * points to their reset values. Anything else resets to zero
1268          * anyway.
1269          */
1270         vgic_cpu->vgic_vmcr = 0;
1271
1272         vgic_cpu->nr_lr = vgic_nr_lr;
1273         vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1274
1275         return 0;
1276 }
1277
1278 static void vgic_init_maintenance_interrupt(void *info)
1279 {
1280         enable_percpu_irq(vgic_maint_irq, 0);
1281 }
1282
1283 static int vgic_cpu_notify(struct notifier_block *self,
1284                            unsigned long action, void *cpu)
1285 {
1286         switch (action) {
1287         case CPU_STARTING:
1288         case CPU_STARTING_FROZEN:
1289                 vgic_init_maintenance_interrupt(NULL);
1290                 break;
1291         case CPU_DYING:
1292         case CPU_DYING_FROZEN:
1293                 disable_percpu_irq(vgic_maint_irq);
1294                 break;
1295         }
1296
1297         return NOTIFY_OK;
1298 }
1299
1300 static struct notifier_block vgic_cpu_nb = {
1301         .notifier_call = vgic_cpu_notify,
1302 };
1303
1304 int kvm_vgic_hyp_init(void)
1305 {
1306         int ret;
1307         struct resource vctrl_res;
1308         struct resource vcpu_res;
1309
1310         vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1311         if (!vgic_node) {
1312                 kvm_err("error: no compatible vgic node in DT\n");
1313                 return -ENODEV;
1314         }
1315
1316         vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1317         if (!vgic_maint_irq) {
1318                 kvm_err("error getting vgic maintenance irq from DT\n");
1319                 ret = -ENXIO;
1320                 goto out;
1321         }
1322
1323         ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1324                                  "vgic", kvm_get_running_vcpus());
1325         if (ret) {
1326                 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1327                 goto out;
1328         }
1329
1330         ret = register_cpu_notifier(&vgic_cpu_nb);
1331         if (ret) {
1332                 kvm_err("Cannot register vgic CPU notifier\n");
1333                 goto out_free_irq;
1334         }
1335
1336         ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1337         if (ret) {
1338                 kvm_err("Cannot obtain VCTRL resource\n");
1339                 goto out_free_irq;
1340         }
1341
1342         vgic_vctrl_base = of_iomap(vgic_node, 2);
1343         if (!vgic_vctrl_base) {
1344                 kvm_err("Cannot ioremap VCTRL\n");
1345                 ret = -ENOMEM;
1346                 goto out_free_irq;
1347         }
1348
1349         vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1350         vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1351
1352         ret = create_hyp_io_mappings(vgic_vctrl_base,
1353                                      vgic_vctrl_base + resource_size(&vctrl_res),
1354                                      vctrl_res.start);
1355         if (ret) {
1356                 kvm_err("Cannot map VCTRL into hyp\n");
1357                 goto out_unmap;
1358         }
1359
1360         kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1361                  vctrl_res.start, vgic_maint_irq);
1362         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1363
1364         if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1365                 kvm_err("Cannot obtain VCPU resource\n");
1366                 ret = -ENXIO;
1367                 goto out_unmap;
1368         }
1369         vgic_vcpu_base = vcpu_res.start;
1370
1371         goto out;
1372
1373 out_unmap:
1374         iounmap(vgic_vctrl_base);
1375 out_free_irq:
1376         free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1377 out:
1378         of_node_put(vgic_node);
1379         return ret;
1380 }
1381
1382 int kvm_vgic_init(struct kvm *kvm)
1383 {
1384         int ret = 0, i;
1385
1386         mutex_lock(&kvm->lock);
1387
1388         if (vgic_initialized(kvm))
1389                 goto out;
1390
1391         if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1392             IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1393                 kvm_err("Need to set vgic cpu and dist addresses first\n");
1394                 ret = -ENXIO;
1395                 goto out;
1396         }
1397
1398         ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1399                                     vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1400         if (ret) {
1401                 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1402                 goto out;
1403         }
1404
1405         for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1406                 vgic_set_target_reg(kvm, 0, i);
1407
1408         kvm_timer_init(kvm);
1409         kvm->arch.vgic.ready = true;
1410 out:
1411         mutex_unlock(&kvm->lock);
1412         return ret;
1413 }
1414
1415 int kvm_vgic_create(struct kvm *kvm)
1416 {
1417         int ret = 0;
1418
1419         mutex_lock(&kvm->lock);
1420
1421         if (atomic_read(&kvm->online_vcpus) || kvm->arch.vgic.vctrl_base) {
1422                 ret = -EEXIST;
1423                 goto out;
1424         }
1425
1426         spin_lock_init(&kvm->arch.vgic.lock);
1427         kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1428         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1429         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1430
1431 out:
1432         mutex_unlock(&kvm->lock);
1433         return ret;
1434 }
1435
1436 static bool vgic_ioaddr_overlap(struct kvm *kvm)
1437 {
1438         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1439         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1440
1441         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1442                 return 0;
1443         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1444             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1445                 return -EBUSY;
1446         return 0;
1447 }
1448
1449 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1450                               phys_addr_t addr, phys_addr_t size)
1451 {
1452         int ret;
1453
1454         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1455                 return -EEXIST;
1456         if (addr + size < addr)
1457                 return -EINVAL;
1458
1459         ret = vgic_ioaddr_overlap(kvm);
1460         if (ret)
1461                 return ret;
1462         *ioaddr = addr;
1463         return ret;
1464 }
1465
1466 int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr)
1467 {
1468         int r = 0;
1469         struct vgic_dist *vgic = &kvm->arch.vgic;
1470
1471         if (addr & ~KVM_PHYS_MASK)
1472                 return -E2BIG;
1473
1474         if (addr & (SZ_4K - 1))
1475                 return -EINVAL;
1476
1477         mutex_lock(&kvm->lock);
1478         switch (type) {
1479         case KVM_VGIC_V2_ADDR_TYPE_DIST:
1480                 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1481                                        addr, KVM_VGIC_V2_DIST_SIZE);
1482                 break;
1483         case KVM_VGIC_V2_ADDR_TYPE_CPU:
1484                 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1485                                        addr, KVM_VGIC_V2_CPU_SIZE);
1486                 break;
1487         default:
1488                 r = -ENODEV;
1489         }
1490
1491         mutex_unlock(&kvm->lock);
1492         return r;
1493 }