Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-starfive.git] / virt / kvm / arm / vgic / vgic-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <linux/irqchip/arm-gic-v3.h>
4 #include <linux/kvm.h>
5 #include <linux/kvm_host.h>
6 #include <kvm/arm_vgic.h>
7 #include <asm/kvm_hyp.h>
8 #include <asm/kvm_mmu.h>
9 #include <asm/kvm_asm.h>
10
11 #include "vgic.h"
12
13 static bool group0_trap;
14 static bool group1_trap;
15 static bool common_trap;
16 static bool gicv4_enable;
17
18 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
19 {
20         struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
21
22         cpuif->vgic_hcr |= ICH_HCR_UIE;
23 }
24
25 static bool lr_signals_eoi_mi(u64 lr_val)
26 {
27         return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
28                !(lr_val & ICH_LR_HW);
29 }
30
31 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
32 {
33         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
34         struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
35         u32 model = vcpu->kvm->arch.vgic.vgic_model;
36         int lr;
37
38         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
39
40         cpuif->vgic_hcr &= ~ICH_HCR_UIE;
41
42         for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
43                 u64 val = cpuif->vgic_lr[lr];
44                 u32 intid, cpuid;
45                 struct vgic_irq *irq;
46                 bool is_v2_sgi = false;
47
48                 cpuid = val & GICH_LR_PHYSID_CPUID;
49                 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
50
51                 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
52                         intid = val & ICH_LR_VIRTUAL_ID_MASK;
53                 } else {
54                         intid = val & GICH_LR_VIRTUALID;
55                         is_v2_sgi = vgic_irq_is_sgi(intid);
56                 }
57
58                 /* Notify fds when the guest EOI'ed a level-triggered IRQ */
59                 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
60                         kvm_notify_acked_irq(vcpu->kvm, 0,
61                                              intid - VGIC_NR_PRIVATE_IRQS);
62
63                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
64                 if (!irq)       /* An LPI could have been unmapped. */
65                         continue;
66
67                 raw_spin_lock(&irq->irq_lock);
68
69                 /* Always preserve the active bit */
70                 irq->active = !!(val & ICH_LR_ACTIVE_BIT);
71
72                 if (irq->active && is_v2_sgi)
73                         irq->active_source = cpuid;
74
75                 /* Edge is the only case where we preserve the pending bit */
76                 if (irq->config == VGIC_CONFIG_EDGE &&
77                     (val & ICH_LR_PENDING_BIT)) {
78                         irq->pending_latch = true;
79
80                         if (is_v2_sgi)
81                                 irq->source |= (1 << cpuid);
82                 }
83
84                 /*
85                  * Clear soft pending state when level irqs have been acked.
86                  */
87                 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
88                         irq->pending_latch = false;
89
90                 /*
91                  * Level-triggered mapped IRQs are special because we only
92                  * observe rising edges as input to the VGIC.
93                  *
94                  * If the guest never acked the interrupt we have to sample
95                  * the physical line and set the line level, because the
96                  * device state could have changed or we simply need to
97                  * process the still pending interrupt later.
98                  *
99                  * If this causes us to lower the level, we have to also clear
100                  * the physical active state, since we will otherwise never be
101                  * told when the interrupt becomes asserted again.
102                  */
103                 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
104                         irq->line_level = vgic_get_phys_line_level(irq);
105
106                         if (!irq->line_level)
107                                 vgic_irq_set_phys_active(irq, false);
108                 }
109
110                 raw_spin_unlock(&irq->irq_lock);
111                 vgic_put_irq(vcpu->kvm, irq);
112         }
113
114         vgic_cpu->used_lrs = 0;
115 }
116
117 /* Requires the irq to be locked already */
118 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
119 {
120         u32 model = vcpu->kvm->arch.vgic.vgic_model;
121         u64 val = irq->intid;
122         bool allow_pending = true, is_v2_sgi;
123
124         is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
125                      model == KVM_DEV_TYPE_ARM_VGIC_V2);
126
127         if (irq->active) {
128                 val |= ICH_LR_ACTIVE_BIT;
129                 if (is_v2_sgi)
130                         val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
131                 if (vgic_irq_is_multi_sgi(irq)) {
132                         allow_pending = false;
133                         val |= ICH_LR_EOI;
134                 }
135         }
136
137         if (irq->hw) {
138                 val |= ICH_LR_HW;
139                 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
140                 /*
141                  * Never set pending+active on a HW interrupt, as the
142                  * pending state is kept at the physical distributor
143                  * level.
144                  */
145                 if (irq->active)
146                         allow_pending = false;
147         } else {
148                 if (irq->config == VGIC_CONFIG_LEVEL) {
149                         val |= ICH_LR_EOI;
150
151                         /*
152                          * Software resampling doesn't work very well
153                          * if we allow P+A, so let's not do that.
154                          */
155                         if (irq->active)
156                                 allow_pending = false;
157                 }
158         }
159
160         if (allow_pending && irq_is_pending(irq)) {
161                 val |= ICH_LR_PENDING_BIT;
162
163                 if (irq->config == VGIC_CONFIG_EDGE)
164                         irq->pending_latch = false;
165
166                 if (vgic_irq_is_sgi(irq->intid) &&
167                     model == KVM_DEV_TYPE_ARM_VGIC_V2) {
168                         u32 src = ffs(irq->source);
169
170                         if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
171                                            irq->intid))
172                                 return;
173
174                         val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
175                         irq->source &= ~(1 << (src - 1));
176                         if (irq->source) {
177                                 irq->pending_latch = true;
178                                 val |= ICH_LR_EOI;
179                         }
180                 }
181         }
182
183         /*
184          * Level-triggered mapped IRQs are special because we only observe
185          * rising edges as input to the VGIC.  We therefore lower the line
186          * level here, so that we can take new virtual IRQs.  See
187          * vgic_v3_fold_lr_state for more info.
188          */
189         if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
190                 irq->line_level = false;
191
192         if (irq->group)
193                 val |= ICH_LR_GROUP;
194
195         val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
196
197         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
198 }
199
200 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
201 {
202         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
203 }
204
205 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
206 {
207         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
208         u32 model = vcpu->kvm->arch.vgic.vgic_model;
209         u32 vmcr;
210
211         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
212                 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
213                         ICH_VMCR_ACK_CTL_MASK;
214                 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
215                         ICH_VMCR_FIQ_EN_MASK;
216         } else {
217                 /*
218                  * When emulating GICv3 on GICv3 with SRE=1 on the
219                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
220                  */
221                 vmcr = ICH_VMCR_FIQ_EN_MASK;
222         }
223
224         vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
225         vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
226         vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
227         vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
228         vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
229         vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
230         vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
231
232         cpu_if->vgic_vmcr = vmcr;
233 }
234
235 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
236 {
237         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
238         u32 model = vcpu->kvm->arch.vgic.vgic_model;
239         u32 vmcr;
240
241         vmcr = cpu_if->vgic_vmcr;
242
243         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
244                 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
245                         ICH_VMCR_ACK_CTL_SHIFT;
246                 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
247                         ICH_VMCR_FIQ_EN_SHIFT;
248         } else {
249                 /*
250                  * When emulating GICv3 on GICv3 with SRE=1 on the
251                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
252                  */
253                 vmcrp->fiqen = 1;
254                 vmcrp->ackctl = 0;
255         }
256
257         vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
258         vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
259         vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
260         vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
261         vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
262         vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
263         vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
264 }
265
266 #define INITIAL_PENDBASER_VALUE                                           \
267         (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)            | \
268         GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)      | \
269         GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
270
271 void vgic_v3_enable(struct kvm_vcpu *vcpu)
272 {
273         struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
274
275         /*
276          * By forcing VMCR to zero, the GIC will restore the binary
277          * points to their reset values. Anything else resets to zero
278          * anyway.
279          */
280         vgic_v3->vgic_vmcr = 0;
281
282         /*
283          * If we are emulating a GICv3, we do it in an non-GICv2-compatible
284          * way, so we force SRE to 1 to demonstrate this to the guest.
285          * Also, we don't support any form of IRQ/FIQ bypass.
286          * This goes with the spec allowing the value to be RAO/WI.
287          */
288         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
289                 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
290                                      ICC_SRE_EL1_DFB |
291                                      ICC_SRE_EL1_SRE);
292                 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
293         } else {
294                 vgic_v3->vgic_sre = 0;
295         }
296
297         vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
298                                            ICH_VTR_ID_BITS_MASK) >>
299                                            ICH_VTR_ID_BITS_SHIFT;
300         vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
301                                             ICH_VTR_PRI_BITS_MASK) >>
302                                             ICH_VTR_PRI_BITS_SHIFT) + 1;
303
304         /* Get the show on the road... */
305         vgic_v3->vgic_hcr = ICH_HCR_EN;
306         if (group0_trap)
307                 vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
308         if (group1_trap)
309                 vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
310         if (common_trap)
311                 vgic_v3->vgic_hcr |= ICH_HCR_TC;
312 }
313
314 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
315 {
316         struct kvm_vcpu *vcpu;
317         int byte_offset, bit_nr;
318         gpa_t pendbase, ptr;
319         bool status;
320         u8 val;
321         int ret;
322         unsigned long flags;
323
324 retry:
325         vcpu = irq->target_vcpu;
326         if (!vcpu)
327                 return 0;
328
329         pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
330
331         byte_offset = irq->intid / BITS_PER_BYTE;
332         bit_nr = irq->intid % BITS_PER_BYTE;
333         ptr = pendbase + byte_offset;
334
335         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
336         if (ret)
337                 return ret;
338
339         status = val & (1 << bit_nr);
340
341         raw_spin_lock_irqsave(&irq->irq_lock, flags);
342         if (irq->target_vcpu != vcpu) {
343                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
344                 goto retry;
345         }
346         irq->pending_latch = status;
347         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
348
349         if (status) {
350                 /* clear consumed data */
351                 val &= ~(1 << bit_nr);
352                 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
353                 if (ret)
354                         return ret;
355         }
356         return 0;
357 }
358
359 /**
360  * vgic_its_save_pending_tables - Save the pending tables into guest RAM
361  * kvm lock and all vcpu lock must be held
362  */
363 int vgic_v3_save_pending_tables(struct kvm *kvm)
364 {
365         struct vgic_dist *dist = &kvm->arch.vgic;
366         int last_byte_offset = -1;
367         struct vgic_irq *irq;
368         int ret;
369         u8 val;
370
371         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
372                 int byte_offset, bit_nr;
373                 struct kvm_vcpu *vcpu;
374                 gpa_t pendbase, ptr;
375                 bool stored;
376
377                 vcpu = irq->target_vcpu;
378                 if (!vcpu)
379                         continue;
380
381                 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
382
383                 byte_offset = irq->intid / BITS_PER_BYTE;
384                 bit_nr = irq->intid % BITS_PER_BYTE;
385                 ptr = pendbase + byte_offset;
386
387                 if (byte_offset != last_byte_offset) {
388                         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
389                         if (ret)
390                                 return ret;
391                         last_byte_offset = byte_offset;
392                 }
393
394                 stored = val & (1U << bit_nr);
395                 if (stored == irq->pending_latch)
396                         continue;
397
398                 if (irq->pending_latch)
399                         val |= 1 << bit_nr;
400                 else
401                         val &= ~(1 << bit_nr);
402
403                 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
404                 if (ret)
405                         return ret;
406         }
407         return 0;
408 }
409
410 /**
411  * vgic_v3_rdist_overlap - check if a region overlaps with any
412  * existing redistributor region
413  *
414  * @kvm: kvm handle
415  * @base: base of the region
416  * @size: size of region
417  *
418  * Return: true if there is an overlap
419  */
420 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
421 {
422         struct vgic_dist *d = &kvm->arch.vgic;
423         struct vgic_redist_region *rdreg;
424
425         list_for_each_entry(rdreg, &d->rd_regions, list) {
426                 if ((base + size > rdreg->base) &&
427                         (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
428                         return true;
429         }
430         return false;
431 }
432
433 /*
434  * Check for overlapping regions and for regions crossing the end of memory
435  * for base addresses which have already been set.
436  */
437 bool vgic_v3_check_base(struct kvm *kvm)
438 {
439         struct vgic_dist *d = &kvm->arch.vgic;
440         struct vgic_redist_region *rdreg;
441
442         if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
443             d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
444                 return false;
445
446         list_for_each_entry(rdreg, &d->rd_regions, list) {
447                 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
448                         rdreg->base)
449                         return false;
450         }
451
452         if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
453                 return true;
454
455         return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
456                                       KVM_VGIC_V3_DIST_SIZE);
457 }
458
459 /**
460  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
461  * which has free space to put a new rdist region.
462  *
463  * @rd_regions: redistributor region list head
464  *
465  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
466  * Stride between redistributors is 0 and regions are filled in the index order.
467  *
468  * Return: the redist region handle, if any, that has space to map a new rdist
469  * region.
470  */
471 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
472 {
473         struct vgic_redist_region *rdreg;
474
475         list_for_each_entry(rdreg, rd_regions, list) {
476                 if (!vgic_v3_redist_region_full(rdreg))
477                         return rdreg;
478         }
479         return NULL;
480 }
481
482 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
483                                                            u32 index)
484 {
485         struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
486         struct vgic_redist_region *rdreg;
487
488         list_for_each_entry(rdreg, rd_regions, list) {
489                 if (rdreg->index == index)
490                         return rdreg;
491         }
492         return NULL;
493 }
494
495
496 int vgic_v3_map_resources(struct kvm *kvm)
497 {
498         struct vgic_dist *dist = &kvm->arch.vgic;
499         struct kvm_vcpu *vcpu;
500         int ret = 0;
501         int c;
502
503         if (vgic_ready(kvm))
504                 goto out;
505
506         kvm_for_each_vcpu(c, vcpu, kvm) {
507                 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
508
509                 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
510                         kvm_debug("vcpu %d redistributor base not set\n", c);
511                         ret = -ENXIO;
512                         goto out;
513                 }
514         }
515
516         if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
517                 kvm_err("Need to set vgic distributor addresses first\n");
518                 ret = -ENXIO;
519                 goto out;
520         }
521
522         if (!vgic_v3_check_base(kvm)) {
523                 kvm_err("VGIC redist and dist frames overlap\n");
524                 ret = -EINVAL;
525                 goto out;
526         }
527
528         /*
529          * For a VGICv3 we require the userland to explicitly initialize
530          * the VGIC before we need to use it.
531          */
532         if (!vgic_initialized(kvm)) {
533                 ret = -EBUSY;
534                 goto out;
535         }
536
537         ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
538         if (ret) {
539                 kvm_err("Unable to register VGICv3 dist MMIO regions\n");
540                 goto out;
541         }
542
543         dist->ready = true;
544
545 out:
546         return ret;
547 }
548
549 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
550
551 static int __init early_group0_trap_cfg(char *buf)
552 {
553         return strtobool(buf, &group0_trap);
554 }
555 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
556
557 static int __init early_group1_trap_cfg(char *buf)
558 {
559         return strtobool(buf, &group1_trap);
560 }
561 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
562
563 static int __init early_common_trap_cfg(char *buf)
564 {
565         return strtobool(buf, &common_trap);
566 }
567 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
568
569 static int __init early_gicv4_enable(char *buf)
570 {
571         return strtobool(buf, &gicv4_enable);
572 }
573 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
574
575 /**
576  * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
577  * @info:       pointer to the GIC description
578  *
579  * Returns 0 if the VGICv3 has been probed successfully, returns an error code
580  * otherwise
581  */
582 int vgic_v3_probe(const struct gic_kvm_info *info)
583 {
584         u32 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_ich_vtr_el2);
585         int ret;
586
587         /*
588          * The ListRegs field is 5 bits, but there is a architectural
589          * maximum of 16 list registers. Just ignore bit 4...
590          */
591         kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
592         kvm_vgic_global_state.can_emulate_gicv2 = false;
593         kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
594
595         /* GICv4 support? */
596         if (info->has_v4) {
597                 kvm_vgic_global_state.has_gicv4 = gicv4_enable;
598                 kvm_info("GICv4 support %sabled\n",
599                          gicv4_enable ? "en" : "dis");
600         }
601
602         if (!info->vcpu.start) {
603                 kvm_info("GICv3: no GICV resource entry\n");
604                 kvm_vgic_global_state.vcpu_base = 0;
605         } else if (!PAGE_ALIGNED(info->vcpu.start)) {
606                 pr_warn("GICV physical address 0x%llx not page aligned\n",
607                         (unsigned long long)info->vcpu.start);
608                 kvm_vgic_global_state.vcpu_base = 0;
609         } else {
610                 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
611                 kvm_vgic_global_state.can_emulate_gicv2 = true;
612                 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
613                 if (ret) {
614                         kvm_err("Cannot register GICv2 KVM device.\n");
615                         return ret;
616                 }
617                 kvm_info("vgic-v2@%llx\n", info->vcpu.start);
618         }
619         ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
620         if (ret) {
621                 kvm_err("Cannot register GICv3 KVM device.\n");
622                 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
623                 return ret;
624         }
625
626         if (kvm_vgic_global_state.vcpu_base == 0)
627                 kvm_info("disabling GICv2 emulation\n");
628
629 #ifdef CONFIG_ARM64
630         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
631                 group0_trap = true;
632                 group1_trap = true;
633         }
634 #endif
635
636         if (group0_trap || group1_trap || common_trap) {
637                 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
638                          group0_trap ? "G0" : "",
639                          group1_trap ? "G1" : "",
640                          common_trap ? "C"  : "");
641                 static_branch_enable(&vgic_v3_cpuif_trap);
642         }
643
644         kvm_vgic_global_state.vctrl_base = NULL;
645         kvm_vgic_global_state.type = VGIC_V3;
646         kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
647
648         return 0;
649 }
650
651 void vgic_v3_load(struct kvm_vcpu *vcpu)
652 {
653         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
654
655         /*
656          * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
657          * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
658          * VMCR_EL2 save/restore in the world switch.
659          */
660         if (likely(cpu_if->vgic_sre))
661                 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
662
663         kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
664
665         if (has_vhe())
666                 __vgic_v3_activate_traps(vcpu);
667 }
668
669 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
670 {
671         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
672
673         if (likely(cpu_if->vgic_sre))
674                 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
675 }
676
677 void vgic_v3_put(struct kvm_vcpu *vcpu)
678 {
679         vgic_v3_vmcr_sync(vcpu);
680
681         kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
682
683         if (has_vhe())
684                 __vgic_v3_deactivate_traps(vcpu);
685 }