2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
33 #include <asm/system_misc.h>
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
46 #define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
47 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
49 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
50 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
58 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59 * @kvm: pointer to kvm structure.
61 * Interface to HYP function to flush all VM TLB entries
63 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
74 * D-Cache management functions. They take the page table entries by
75 * value, as they are flushing the cache using the kernel mapping (or
78 static void kvm_flush_dcache_pte(pte_t pte)
80 __kvm_flush_dcache_pte(pte);
83 static void kvm_flush_dcache_pmd(pmd_t pmd)
85 __kvm_flush_dcache_pmd(pmd);
88 static void kvm_flush_dcache_pud(pud_t pud)
90 __kvm_flush_dcache_pud(pud);
93 static bool kvm_is_device_pfn(unsigned long pfn)
95 return !pfn_valid(pfn);
99 * stage2_dissolve_pmd() - clear and flush huge PMD entry
100 * @kvm: pointer to kvm structure.
102 * @pmd: pmd pointer for IPA
104 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105 * pages in the range dirty.
107 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
109 if (!pmd_thp_or_huge(*pmd))
113 kvm_tlb_flush_vmid_ipa(kvm, addr);
114 put_page(virt_to_page(pmd));
117 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
122 BUG_ON(max > KVM_NR_MEM_OBJS);
123 if (cache->nobjs >= min)
125 while (cache->nobjs < max) {
126 page = (void *)__get_free_page(PGALLOC_GFP);
129 cache->objects[cache->nobjs++] = page;
134 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
137 free_page((unsigned long)mc->objects[--mc->nobjs]);
140 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
144 BUG_ON(!mc || !mc->nobjs);
145 p = mc->objects[--mc->nobjs];
149 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
151 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152 stage2_pgd_clear(pgd);
153 kvm_tlb_flush_vmid_ipa(kvm, addr);
154 stage2_pud_free(pud_table);
155 put_page(virt_to_page(pgd));
158 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
160 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161 VM_BUG_ON(stage2_pud_huge(*pud));
162 stage2_pud_clear(pud);
163 kvm_tlb_flush_vmid_ipa(kvm, addr);
164 stage2_pmd_free(pmd_table);
165 put_page(virt_to_page(pud));
168 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
170 pte_t *pte_table = pte_offset_kernel(pmd, 0);
171 VM_BUG_ON(pmd_thp_or_huge(*pmd));
173 kvm_tlb_flush_vmid_ipa(kvm, addr);
174 pte_free_kernel(NULL, pte_table);
175 put_page(virt_to_page(pmd));
179 * Unmapping vs dcache management:
181 * If a guest maps certain memory pages as uncached, all writes will
182 * bypass the data cache and go directly to RAM. However, the CPUs
183 * can still speculate reads (not writes) and fill cache lines with
186 * Those cache lines will be *clean* cache lines though, so a
187 * clean+invalidate operation is equivalent to an invalidate
188 * operation, because no cache lines are marked dirty.
190 * Those clean cache lines could be filled prior to an uncached write
191 * by the guest, and the cache coherent IO subsystem would therefore
192 * end up writing old data to disk.
194 * This is why right after unmapping a page/section and invalidating
195 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196 * the IO subsystem will never hit in the cache.
198 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199 phys_addr_t addr, phys_addr_t end)
201 phys_addr_t start_addr = addr;
202 pte_t *pte, *start_pte;
204 start_pte = pte = pte_offset_kernel(pmd, addr);
206 if (!pte_none(*pte)) {
207 pte_t old_pte = *pte;
209 kvm_set_pte(pte, __pte(0));
210 kvm_tlb_flush_vmid_ipa(kvm, addr);
212 /* No need to invalidate the cache for device mappings */
213 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214 kvm_flush_dcache_pte(old_pte);
216 put_page(virt_to_page(pte));
218 } while (pte++, addr += PAGE_SIZE, addr != end);
220 if (stage2_pte_table_empty(start_pte))
221 clear_stage2_pmd_entry(kvm, pmd, start_addr);
224 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225 phys_addr_t addr, phys_addr_t end)
227 phys_addr_t next, start_addr = addr;
228 pmd_t *pmd, *start_pmd;
230 start_pmd = pmd = stage2_pmd_offset(pud, addr);
232 next = stage2_pmd_addr_end(addr, end);
233 if (!pmd_none(*pmd)) {
234 if (pmd_thp_or_huge(*pmd)) {
235 pmd_t old_pmd = *pmd;
238 kvm_tlb_flush_vmid_ipa(kvm, addr);
240 kvm_flush_dcache_pmd(old_pmd);
242 put_page(virt_to_page(pmd));
244 unmap_stage2_ptes(kvm, pmd, addr, next);
247 } while (pmd++, addr = next, addr != end);
249 if (stage2_pmd_table_empty(start_pmd))
250 clear_stage2_pud_entry(kvm, pud, start_addr);
253 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254 phys_addr_t addr, phys_addr_t end)
256 phys_addr_t next, start_addr = addr;
257 pud_t *pud, *start_pud;
259 start_pud = pud = stage2_pud_offset(pgd, addr);
261 next = stage2_pud_addr_end(addr, end);
262 if (!stage2_pud_none(*pud)) {
263 if (stage2_pud_huge(*pud)) {
264 pud_t old_pud = *pud;
266 stage2_pud_clear(pud);
267 kvm_tlb_flush_vmid_ipa(kvm, addr);
268 kvm_flush_dcache_pud(old_pud);
269 put_page(virt_to_page(pud));
271 unmap_stage2_pmds(kvm, pud, addr, next);
274 } while (pud++, addr = next, addr != end);
276 if (stage2_pud_table_empty(start_pud))
277 clear_stage2_pgd_entry(kvm, pgd, start_addr);
281 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282 * @kvm: The VM pointer
283 * @start: The intermediate physical base address of the range to unmap
284 * @size: The size of the area to unmap
286 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
287 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288 * destroying the VM), otherwise another faulting VCPU may come in and mess
289 * with things behind our backs.
291 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
294 phys_addr_t addr = start, end = start + size;
297 assert_spin_locked(&kvm->mmu_lock);
298 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
301 * Make sure the page table is still active, as another thread
302 * could have possibly freed the page table, while we released
305 if (!READ_ONCE(kvm->arch.pgd))
307 next = stage2_pgd_addr_end(addr, end);
308 if (!stage2_pgd_none(*pgd))
309 unmap_stage2_puds(kvm, pgd, addr, next);
311 * If the range is too large, release the kvm->mmu_lock
312 * to prevent starvation and lockup detector warnings.
315 cond_resched_lock(&kvm->mmu_lock);
316 } while (pgd++, addr = next, addr != end);
319 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
320 phys_addr_t addr, phys_addr_t end)
324 pte = pte_offset_kernel(pmd, addr);
326 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
327 kvm_flush_dcache_pte(*pte);
328 } while (pte++, addr += PAGE_SIZE, addr != end);
331 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
332 phys_addr_t addr, phys_addr_t end)
337 pmd = stage2_pmd_offset(pud, addr);
339 next = stage2_pmd_addr_end(addr, end);
340 if (!pmd_none(*pmd)) {
341 if (pmd_thp_or_huge(*pmd))
342 kvm_flush_dcache_pmd(*pmd);
344 stage2_flush_ptes(kvm, pmd, addr, next);
346 } while (pmd++, addr = next, addr != end);
349 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
350 phys_addr_t addr, phys_addr_t end)
355 pud = stage2_pud_offset(pgd, addr);
357 next = stage2_pud_addr_end(addr, end);
358 if (!stage2_pud_none(*pud)) {
359 if (stage2_pud_huge(*pud))
360 kvm_flush_dcache_pud(*pud);
362 stage2_flush_pmds(kvm, pud, addr, next);
364 } while (pud++, addr = next, addr != end);
367 static void stage2_flush_memslot(struct kvm *kvm,
368 struct kvm_memory_slot *memslot)
370 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
371 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
375 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
377 next = stage2_pgd_addr_end(addr, end);
378 stage2_flush_puds(kvm, pgd, addr, next);
379 } while (pgd++, addr = next, addr != end);
383 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
384 * @kvm: The struct kvm pointer
386 * Go through the stage 2 page tables and invalidate any cache lines
387 * backing memory already mapped to the VM.
389 static void stage2_flush_vm(struct kvm *kvm)
391 struct kvm_memslots *slots;
392 struct kvm_memory_slot *memslot;
395 idx = srcu_read_lock(&kvm->srcu);
396 spin_lock(&kvm->mmu_lock);
398 slots = kvm_memslots(kvm);
399 kvm_for_each_memslot(memslot, slots)
400 stage2_flush_memslot(kvm, memslot);
402 spin_unlock(&kvm->mmu_lock);
403 srcu_read_unlock(&kvm->srcu, idx);
406 static void clear_hyp_pgd_entry(pgd_t *pgd)
408 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
410 pud_free(NULL, pud_table);
411 put_page(virt_to_page(pgd));
414 static void clear_hyp_pud_entry(pud_t *pud)
416 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
417 VM_BUG_ON(pud_huge(*pud));
419 pmd_free(NULL, pmd_table);
420 put_page(virt_to_page(pud));
423 static void clear_hyp_pmd_entry(pmd_t *pmd)
425 pte_t *pte_table = pte_offset_kernel(pmd, 0);
426 VM_BUG_ON(pmd_thp_or_huge(*pmd));
428 pte_free_kernel(NULL, pte_table);
429 put_page(virt_to_page(pmd));
432 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
434 pte_t *pte, *start_pte;
436 start_pte = pte = pte_offset_kernel(pmd, addr);
438 if (!pte_none(*pte)) {
439 kvm_set_pte(pte, __pte(0));
440 put_page(virt_to_page(pte));
442 } while (pte++, addr += PAGE_SIZE, addr != end);
444 if (hyp_pte_table_empty(start_pte))
445 clear_hyp_pmd_entry(pmd);
448 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
451 pmd_t *pmd, *start_pmd;
453 start_pmd = pmd = pmd_offset(pud, addr);
455 next = pmd_addr_end(addr, end);
456 /* Hyp doesn't use huge pmds */
458 unmap_hyp_ptes(pmd, addr, next);
459 } while (pmd++, addr = next, addr != end);
461 if (hyp_pmd_table_empty(start_pmd))
462 clear_hyp_pud_entry(pud);
465 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
468 pud_t *pud, *start_pud;
470 start_pud = pud = pud_offset(pgd, addr);
472 next = pud_addr_end(addr, end);
473 /* Hyp doesn't use huge puds */
475 unmap_hyp_pmds(pud, addr, next);
476 } while (pud++, addr = next, addr != end);
478 if (hyp_pud_table_empty(start_pud))
479 clear_hyp_pgd_entry(pgd);
482 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
485 phys_addr_t addr = start, end = start + size;
489 * We don't unmap anything from HYP, except at the hyp tear down.
490 * Hence, we don't have to invalidate the TLBs here.
492 pgd = pgdp + pgd_index(addr);
494 next = pgd_addr_end(addr, end);
496 unmap_hyp_puds(pgd, addr, next);
497 } while (pgd++, addr = next, addr != end);
501 * free_hyp_pgds - free Hyp-mode page tables
503 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
504 * therefore contains either mappings in the kernel memory area (above
505 * PAGE_OFFSET), or device mappings in the vmalloc range (from
506 * VMALLOC_START to VMALLOC_END).
508 * boot_hyp_pgd should only map two pages for the init code.
510 void free_hyp_pgds(void)
514 mutex_lock(&kvm_hyp_pgd_mutex);
517 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
518 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
523 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
524 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
525 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
526 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
527 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
529 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
532 if (merged_hyp_pgd) {
533 clear_page(merged_hyp_pgd);
534 free_page((unsigned long)merged_hyp_pgd);
535 merged_hyp_pgd = NULL;
538 mutex_unlock(&kvm_hyp_pgd_mutex);
541 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
542 unsigned long end, unsigned long pfn,
550 pte = pte_offset_kernel(pmd, addr);
551 kvm_set_pte(pte, pfn_pte(pfn, prot));
552 get_page(virt_to_page(pte));
553 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
555 } while (addr += PAGE_SIZE, addr != end);
558 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
559 unsigned long end, unsigned long pfn,
564 unsigned long addr, next;
568 pmd = pmd_offset(pud, addr);
570 BUG_ON(pmd_sect(*pmd));
572 if (pmd_none(*pmd)) {
573 pte = pte_alloc_one_kernel(NULL, addr);
575 kvm_err("Cannot allocate Hyp pte\n");
578 pmd_populate_kernel(NULL, pmd, pte);
579 get_page(virt_to_page(pmd));
580 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
583 next = pmd_addr_end(addr, end);
585 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
586 pfn += (next - addr) >> PAGE_SHIFT;
587 } while (addr = next, addr != end);
592 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
593 unsigned long end, unsigned long pfn,
598 unsigned long addr, next;
603 pud = pud_offset(pgd, addr);
605 if (pud_none_or_clear_bad(pud)) {
606 pmd = pmd_alloc_one(NULL, addr);
608 kvm_err("Cannot allocate Hyp pmd\n");
611 pud_populate(NULL, pud, pmd);
612 get_page(virt_to_page(pud));
613 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
616 next = pud_addr_end(addr, end);
617 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
620 pfn += (next - addr) >> PAGE_SHIFT;
621 } while (addr = next, addr != end);
626 static int __create_hyp_mappings(pgd_t *pgdp,
627 unsigned long start, unsigned long end,
628 unsigned long pfn, pgprot_t prot)
632 unsigned long addr, next;
635 mutex_lock(&kvm_hyp_pgd_mutex);
636 addr = start & PAGE_MASK;
637 end = PAGE_ALIGN(end);
639 pgd = pgdp + pgd_index(addr);
641 if (pgd_none(*pgd)) {
642 pud = pud_alloc_one(NULL, addr);
644 kvm_err("Cannot allocate Hyp pud\n");
648 pgd_populate(NULL, pgd, pud);
649 get_page(virt_to_page(pgd));
650 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
653 next = pgd_addr_end(addr, end);
654 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
657 pfn += (next - addr) >> PAGE_SHIFT;
658 } while (addr = next, addr != end);
660 mutex_unlock(&kvm_hyp_pgd_mutex);
664 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
666 if (!is_vmalloc_addr(kaddr)) {
667 BUG_ON(!virt_addr_valid(kaddr));
670 return page_to_phys(vmalloc_to_page(kaddr)) +
671 offset_in_page(kaddr);
676 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
677 * @from: The virtual kernel start address of the range
678 * @to: The virtual kernel end address of the range (exclusive)
679 * @prot: The protection to be applied to this range
681 * The same virtual address as the kernel virtual address is also used
682 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
685 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
687 phys_addr_t phys_addr;
688 unsigned long virt_addr;
689 unsigned long start = kern_hyp_va((unsigned long)from);
690 unsigned long end = kern_hyp_va((unsigned long)to);
692 if (is_kernel_in_hyp_mode())
695 start = start & PAGE_MASK;
696 end = PAGE_ALIGN(end);
698 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
701 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
702 err = __create_hyp_mappings(hyp_pgd, virt_addr,
703 virt_addr + PAGE_SIZE,
704 __phys_to_pfn(phys_addr),
714 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
715 * @from: The kernel start VA of the range
716 * @to: The kernel end VA of the range (exclusive)
717 * @phys_addr: The physical start address which gets mapped
719 * The resulting HYP VA is the same as the kernel VA, modulo
722 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
724 unsigned long start = kern_hyp_va((unsigned long)from);
725 unsigned long end = kern_hyp_va((unsigned long)to);
727 if (is_kernel_in_hyp_mode())
730 /* Check for a valid kernel IO mapping */
731 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
734 return __create_hyp_mappings(hyp_pgd, start, end,
735 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
739 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
740 * @kvm: The KVM struct pointer for the VM.
742 * Allocates only the stage-2 HW PGD level table(s) (can support either full
743 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
746 * Note we don't need locking here as this is only called when the VM is
747 * created, which can only be done once.
749 int kvm_alloc_stage2_pgd(struct kvm *kvm)
753 if (kvm->arch.pgd != NULL) {
754 kvm_err("kvm_arch already initialized?\n");
758 /* Allocate the HW PGD, making sure that each page gets its own refcount */
759 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
767 static void stage2_unmap_memslot(struct kvm *kvm,
768 struct kvm_memory_slot *memslot)
770 hva_t hva = memslot->userspace_addr;
771 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
772 phys_addr_t size = PAGE_SIZE * memslot->npages;
773 hva_t reg_end = hva + size;
776 * A memory region could potentially cover multiple VMAs, and any holes
777 * between them, so iterate over all of them to find out if we should
780 * +--------------------------------------------+
781 * +---------------+----------------+ +----------------+
782 * | : VMA 1 | VMA 2 | | VMA 3 : |
783 * +---------------+----------------+ +----------------+
785 * +--------------------------------------------+
788 struct vm_area_struct *vma = find_vma(current->mm, hva);
789 hva_t vm_start, vm_end;
791 if (!vma || vma->vm_start >= reg_end)
795 * Take the intersection of this VMA with the memory region
797 vm_start = max(hva, vma->vm_start);
798 vm_end = min(reg_end, vma->vm_end);
800 if (!(vma->vm_flags & VM_PFNMAP)) {
801 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
802 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
805 } while (hva < reg_end);
809 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
810 * @kvm: The struct kvm pointer
812 * Go through the memregions and unmap any reguler RAM
813 * backing memory already mapped to the VM.
815 void stage2_unmap_vm(struct kvm *kvm)
817 struct kvm_memslots *slots;
818 struct kvm_memory_slot *memslot;
821 idx = srcu_read_lock(&kvm->srcu);
822 down_read(¤t->mm->mmap_sem);
823 spin_lock(&kvm->mmu_lock);
825 slots = kvm_memslots(kvm);
826 kvm_for_each_memslot(memslot, slots)
827 stage2_unmap_memslot(kvm, memslot);
829 spin_unlock(&kvm->mmu_lock);
830 up_read(¤t->mm->mmap_sem);
831 srcu_read_unlock(&kvm->srcu, idx);
835 * kvm_free_stage2_pgd - free all stage-2 tables
836 * @kvm: The KVM struct pointer for the VM.
838 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
839 * underlying level-2 and level-3 tables before freeing the actual level-1 table
840 * and setting the struct pointer to NULL.
842 void kvm_free_stage2_pgd(struct kvm *kvm)
846 spin_lock(&kvm->mmu_lock);
848 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
849 pgd = READ_ONCE(kvm->arch.pgd);
850 kvm->arch.pgd = NULL;
852 spin_unlock(&kvm->mmu_lock);
854 /* Free the HW pgd, one page at a time */
856 free_pages_exact(pgd, S2_PGD_SIZE);
859 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
865 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
866 if (WARN_ON(stage2_pgd_none(*pgd))) {
869 pud = mmu_memory_cache_alloc(cache);
870 stage2_pgd_populate(pgd, pud);
871 get_page(virt_to_page(pgd));
874 return stage2_pud_offset(pgd, addr);
877 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
883 pud = stage2_get_pud(kvm, cache, addr);
887 if (stage2_pud_none(*pud)) {
890 pmd = mmu_memory_cache_alloc(cache);
891 stage2_pud_populate(pud, pmd);
892 get_page(virt_to_page(pud));
895 return stage2_pmd_offset(pud, addr);
898 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
899 *cache, phys_addr_t addr, const pmd_t *new_pmd)
903 pmd = stage2_get_pmd(kvm, cache, addr);
907 * Mapping in huge pages should only happen through a fault. If a
908 * page is merged into a transparent huge page, the individual
909 * subpages of that huge page should be unmapped through MMU
910 * notifiers before we get here.
912 * Merging of CompoundPages is not supported; they should become
913 * splitting first, unmapped, merged, and mapped back in on-demand.
915 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
918 if (pmd_present(old_pmd)) {
920 kvm_tlb_flush_vmid_ipa(kvm, addr);
922 get_page(virt_to_page(pmd));
925 kvm_set_pmd(pmd, *new_pmd);
929 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
930 phys_addr_t addr, const pte_t *new_pte,
935 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
936 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
938 VM_BUG_ON(logging_active && !cache);
940 /* Create stage-2 page table mapping - Levels 0 and 1 */
941 pmd = stage2_get_pmd(kvm, cache, addr);
944 * Ignore calls from kvm_set_spte_hva for unallocated
951 * While dirty page logging - dissolve huge PMD, then continue on to
955 stage2_dissolve_pmd(kvm, addr, pmd);
957 /* Create stage-2 page mappings - Level 2 */
958 if (pmd_none(*pmd)) {
960 return 0; /* ignore calls from kvm_set_spte_hva */
961 pte = mmu_memory_cache_alloc(cache);
962 pmd_populate_kernel(NULL, pmd, pte);
963 get_page(virt_to_page(pmd));
966 pte = pte_offset_kernel(pmd, addr);
968 if (iomap && pte_present(*pte))
971 /* Create 2nd stage page table mapping - Level 3 */
973 if (pte_present(old_pte)) {
974 kvm_set_pte(pte, __pte(0));
975 kvm_tlb_flush_vmid_ipa(kvm, addr);
977 get_page(virt_to_page(pte));
980 kvm_set_pte(pte, *new_pte);
984 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
985 static int stage2_ptep_test_and_clear_young(pte_t *pte)
987 if (pte_young(*pte)) {
988 *pte = pte_mkold(*pte);
994 static int stage2_ptep_test_and_clear_young(pte_t *pte)
996 return __ptep_test_and_clear_young(pte);
1000 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1002 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1006 * kvm_phys_addr_ioremap - map a device range to guest IPA
1008 * @kvm: The KVM pointer
1009 * @guest_ipa: The IPA at which to insert the mapping
1010 * @pa: The physical address of the device
1011 * @size: The size of the mapping
1013 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1014 phys_addr_t pa, unsigned long size, bool writable)
1016 phys_addr_t addr, end;
1019 struct kvm_mmu_memory_cache cache = { 0, };
1021 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1022 pfn = __phys_to_pfn(pa);
1024 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1025 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1028 pte = kvm_s2pte_mkwrite(pte);
1030 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1034 spin_lock(&kvm->mmu_lock);
1035 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1036 KVM_S2PTE_FLAG_IS_IOMAP);
1037 spin_unlock(&kvm->mmu_lock);
1045 mmu_free_memory_cache(&cache);
1049 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1051 kvm_pfn_t pfn = *pfnp;
1052 gfn_t gfn = *ipap >> PAGE_SHIFT;
1054 if (PageTransCompoundMap(pfn_to_page(pfn))) {
1057 * The address we faulted on is backed by a transparent huge
1058 * page. However, because we map the compound huge page and
1059 * not the individual tail page, we need to transfer the
1060 * refcount to the head page. We have to be careful that the
1061 * THP doesn't start to split while we are adjusting the
1064 * We are sure this doesn't happen, because mmu_notifier_retry
1065 * was successful and we are holding the mmu_lock, so if this
1066 * THP is trying to split, it will be blocked in the mmu
1067 * notifier before touching any of the pages, specifically
1068 * before being able to call __split_huge_page_refcount().
1070 * We can therefore safely transfer the refcount from PG_tail
1071 * to PG_head and switch the pfn from a tail page to the head
1074 mask = PTRS_PER_PMD - 1;
1075 VM_BUG_ON((gfn & mask) != (pfn & mask));
1078 kvm_release_pfn_clean(pfn);
1090 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1092 if (kvm_vcpu_trap_is_iabt(vcpu))
1095 return kvm_vcpu_dabt_iswrite(vcpu);
1099 * stage2_wp_ptes - write protect PMD range
1100 * @pmd: pointer to pmd entry
1101 * @addr: range start address
1102 * @end: range end address
1104 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1108 pte = pte_offset_kernel(pmd, addr);
1110 if (!pte_none(*pte)) {
1111 if (!kvm_s2pte_readonly(pte))
1112 kvm_set_s2pte_readonly(pte);
1114 } while (pte++, addr += PAGE_SIZE, addr != end);
1118 * stage2_wp_pmds - write protect PUD range
1119 * @pud: pointer to pud entry
1120 * @addr: range start address
1121 * @end: range end address
1123 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1128 pmd = stage2_pmd_offset(pud, addr);
1131 next = stage2_pmd_addr_end(addr, end);
1132 if (!pmd_none(*pmd)) {
1133 if (pmd_thp_or_huge(*pmd)) {
1134 if (!kvm_s2pmd_readonly(pmd))
1135 kvm_set_s2pmd_readonly(pmd);
1137 stage2_wp_ptes(pmd, addr, next);
1140 } while (pmd++, addr = next, addr != end);
1144 * stage2_wp_puds - write protect PGD range
1145 * @pgd: pointer to pgd entry
1146 * @addr: range start address
1147 * @end: range end address
1149 * Process PUD entries, for a huge PUD we cause a panic.
1151 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1156 pud = stage2_pud_offset(pgd, addr);
1158 next = stage2_pud_addr_end(addr, end);
1159 if (!stage2_pud_none(*pud)) {
1160 /* TODO:PUD not supported, revisit later if supported */
1161 BUG_ON(stage2_pud_huge(*pud));
1162 stage2_wp_pmds(pud, addr, next);
1164 } while (pud++, addr = next, addr != end);
1168 * stage2_wp_range() - write protect stage2 memory region range
1169 * @kvm: The KVM pointer
1170 * @addr: Start address of range
1171 * @end: End address of range
1173 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1178 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1181 * Release kvm_mmu_lock periodically if the memory region is
1182 * large. Otherwise, we may see kernel panics with
1183 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1184 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1185 * will also starve other vCPUs. We have to also make sure
1186 * that the page tables are not freed while we released
1189 cond_resched_lock(&kvm->mmu_lock);
1190 if (!READ_ONCE(kvm->arch.pgd))
1192 next = stage2_pgd_addr_end(addr, end);
1193 if (stage2_pgd_present(*pgd))
1194 stage2_wp_puds(pgd, addr, next);
1195 } while (pgd++, addr = next, addr != end);
1199 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1200 * @kvm: The KVM pointer
1201 * @slot: The memory slot to write protect
1203 * Called to start logging dirty pages after memory region
1204 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1205 * all present PMD and PTEs are write protected in the memory region.
1206 * Afterwards read of dirty page log can be called.
1208 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1209 * serializing operations for VM memory regions.
1211 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1213 struct kvm_memslots *slots = kvm_memslots(kvm);
1214 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1215 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1216 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1218 spin_lock(&kvm->mmu_lock);
1219 stage2_wp_range(kvm, start, end);
1220 spin_unlock(&kvm->mmu_lock);
1221 kvm_flush_remote_tlbs(kvm);
1225 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1226 * @kvm: The KVM pointer
1227 * @slot: The memory slot associated with mask
1228 * @gfn_offset: The gfn offset in memory slot
1229 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1230 * slot to be write protected
1232 * Walks bits set in mask write protects the associated pte's. Caller must
1233 * acquire kvm_mmu_lock.
1235 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1236 struct kvm_memory_slot *slot,
1237 gfn_t gfn_offset, unsigned long mask)
1239 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1240 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1241 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1243 stage2_wp_range(kvm, start, end);
1247 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1250 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1251 * enable dirty logging for them.
1253 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1254 struct kvm_memory_slot *slot,
1255 gfn_t gfn_offset, unsigned long mask)
1257 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1260 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1263 __coherent_cache_guest_page(vcpu, pfn, size);
1266 static void kvm_send_hwpoison_signal(unsigned long address,
1267 struct vm_area_struct *vma)
1271 info.si_signo = SIGBUS;
1273 info.si_code = BUS_MCEERR_AR;
1274 info.si_addr = (void __user *)address;
1276 if (is_vm_hugetlb_page(vma))
1277 info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1279 info.si_addr_lsb = PAGE_SHIFT;
1281 send_sig_info(SIGBUS, &info, current);
1284 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1285 struct kvm_memory_slot *memslot, unsigned long hva,
1286 unsigned long fault_status)
1289 bool write_fault, writable, hugetlb = false, force_pte = false;
1290 unsigned long mmu_seq;
1291 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1292 struct kvm *kvm = vcpu->kvm;
1293 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1294 struct vm_area_struct *vma;
1296 pgprot_t mem_type = PAGE_S2;
1297 bool logging_active = memslot_is_logging(memslot);
1298 unsigned long flags = 0;
1300 write_fault = kvm_is_write_fault(vcpu);
1301 if (fault_status == FSC_PERM && !write_fault) {
1302 kvm_err("Unexpected L2 read permission error\n");
1306 /* Let's check if we will get back a huge page backed by hugetlbfs */
1307 down_read(¤t->mm->mmap_sem);
1308 vma = find_vma_intersection(current->mm, hva, hva + 1);
1309 if (unlikely(!vma)) {
1310 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1311 up_read(¤t->mm->mmap_sem);
1315 if (is_vm_hugetlb_page(vma) && !logging_active) {
1317 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1320 * Pages belonging to memslots that don't have the same
1321 * alignment for userspace and IPA cannot be mapped using
1322 * block descriptors even if the pages belong to a THP for
1323 * the process, because the stage-2 block descriptor will
1324 * cover more than a single THP and we loose atomicity for
1325 * unmapping, updates, and splits of the THP or other pages
1326 * in the stage-2 block range.
1328 if ((memslot->userspace_addr & ~PMD_MASK) !=
1329 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1332 up_read(¤t->mm->mmap_sem);
1334 /* We need minimum second+third level pages */
1335 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1340 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1342 * Ensure the read of mmu_notifier_seq happens before we call
1343 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1344 * the page we just got a reference to gets unmapped before we have a
1345 * chance to grab the mmu_lock, which ensure that if the page gets
1346 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1347 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1348 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1352 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1353 if (pfn == KVM_PFN_ERR_HWPOISON) {
1354 kvm_send_hwpoison_signal(hva, vma);
1357 if (is_error_noslot_pfn(pfn))
1360 if (kvm_is_device_pfn(pfn)) {
1361 mem_type = PAGE_S2_DEVICE;
1362 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1363 } else if (logging_active) {
1365 * Faults on pages in a memslot with logging enabled
1366 * should not be mapped with huge pages (it introduces churn
1367 * and performance degradation), so force a pte mapping.
1370 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1373 * Only actually map the page as writable if this was a write
1380 spin_lock(&kvm->mmu_lock);
1381 if (mmu_notifier_retry(kvm, mmu_seq))
1384 if (!hugetlb && !force_pte)
1385 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1388 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1389 new_pmd = pmd_mkhuge(new_pmd);
1391 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1392 kvm_set_pfn_dirty(pfn);
1394 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1395 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1397 pte_t new_pte = pfn_pte(pfn, mem_type);
1400 new_pte = kvm_s2pte_mkwrite(new_pte);
1401 kvm_set_pfn_dirty(pfn);
1402 mark_page_dirty(kvm, gfn);
1404 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1405 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1409 spin_unlock(&kvm->mmu_lock);
1410 kvm_set_pfn_accessed(pfn);
1411 kvm_release_pfn_clean(pfn);
1416 * Resolve the access fault by making the page young again.
1417 * Note that because the faulting entry is guaranteed not to be
1418 * cached in the TLB, we don't need to invalidate anything.
1419 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1420 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1422 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1427 bool pfn_valid = false;
1429 trace_kvm_access_fault(fault_ipa);
1431 spin_lock(&vcpu->kvm->mmu_lock);
1433 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1434 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1437 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
1438 *pmd = pmd_mkyoung(*pmd);
1439 pfn = pmd_pfn(*pmd);
1444 pte = pte_offset_kernel(pmd, fault_ipa);
1445 if (pte_none(*pte)) /* Nothing there either */
1448 *pte = pte_mkyoung(*pte); /* Just a page... */
1449 pfn = pte_pfn(*pte);
1452 spin_unlock(&vcpu->kvm->mmu_lock);
1454 kvm_set_pfn_accessed(pfn);
1458 * kvm_handle_guest_abort - handles all 2nd stage aborts
1459 * @vcpu: the VCPU pointer
1460 * @run: the kvm_run structure
1462 * Any abort that gets to the host is almost guaranteed to be caused by a
1463 * missing second stage translation table entry, which can mean that either the
1464 * guest simply needs more memory and we must allocate an appropriate page or it
1465 * can mean that the guest tried to access I/O memory, which is emulated by user
1466 * space. The distinction is based on the IPA causing the fault and whether this
1467 * memory region has been registered as standard RAM by user space.
1469 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1471 unsigned long fault_status;
1472 phys_addr_t fault_ipa;
1473 struct kvm_memory_slot *memslot;
1475 bool is_iabt, write_fault, writable;
1479 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1481 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1482 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1484 /* Synchronous External Abort? */
1485 if (kvm_vcpu_dabt_isextabt(vcpu)) {
1487 * For RAS the host kernel may handle this abort.
1488 * There is no need to pass the error into the guest.
1490 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1493 if (unlikely(!is_iabt)) {
1494 kvm_inject_vabt(vcpu);
1499 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1500 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1502 /* Check the stage-2 fault is trans. fault or write fault */
1503 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1504 fault_status != FSC_ACCESS) {
1505 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1506 kvm_vcpu_trap_get_class(vcpu),
1507 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1508 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1512 idx = srcu_read_lock(&vcpu->kvm->srcu);
1514 gfn = fault_ipa >> PAGE_SHIFT;
1515 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1516 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1517 write_fault = kvm_is_write_fault(vcpu);
1518 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1520 /* Prefetch Abort on I/O address */
1521 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1527 * Check for a cache maintenance operation. Since we
1528 * ended-up here, we know it is outside of any memory
1529 * slot. But we can't find out if that is for a device,
1530 * or if the guest is just being stupid. The only thing
1531 * we know for sure is that this range cannot be cached.
1533 * So let's assume that the guest is just being
1534 * cautious, and skip the instruction.
1536 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1537 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1543 * The IPA is reported as [MAX:12], so we need to
1544 * complement it with the bottom 12 bits from the
1545 * faulting VA. This is always 12 bits, irrespective
1548 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1549 ret = io_mem_abort(vcpu, run, fault_ipa);
1553 /* Userspace should not be able to register out-of-bounds IPAs */
1554 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1556 if (fault_status == FSC_ACCESS) {
1557 handle_access_fault(vcpu, fault_ipa);
1562 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1566 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1570 static int handle_hva_to_gpa(struct kvm *kvm,
1571 unsigned long start,
1573 int (*handler)(struct kvm *kvm,
1574 gpa_t gpa, u64 size,
1578 struct kvm_memslots *slots;
1579 struct kvm_memory_slot *memslot;
1582 slots = kvm_memslots(kvm);
1584 /* we only care about the pages that the guest sees */
1585 kvm_for_each_memslot(memslot, slots) {
1586 unsigned long hva_start, hva_end;
1589 hva_start = max(start, memslot->userspace_addr);
1590 hva_end = min(end, memslot->userspace_addr +
1591 (memslot->npages << PAGE_SHIFT));
1592 if (hva_start >= hva_end)
1595 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1596 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1602 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1604 unmap_stage2_range(kvm, gpa, size);
1608 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1610 unsigned long end = hva + PAGE_SIZE;
1615 trace_kvm_unmap_hva(hva);
1616 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1620 int kvm_unmap_hva_range(struct kvm *kvm,
1621 unsigned long start, unsigned long end)
1626 trace_kvm_unmap_hva_range(start, end);
1627 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1631 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1633 pte_t *pte = (pte_t *)data;
1635 WARN_ON(size != PAGE_SIZE);
1637 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1638 * flag clear because MMU notifiers will have unmapped a huge PMD before
1639 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1640 * therefore stage2_set_pte() never needs to clear out a huge PMD
1641 * through this calling path.
1643 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1648 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1650 unsigned long end = hva + PAGE_SIZE;
1656 trace_kvm_set_spte_hva(hva);
1657 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1658 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1661 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1666 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1667 pmd = stage2_get_pmd(kvm, NULL, gpa);
1668 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1671 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1672 return stage2_pmdp_test_and_clear_young(pmd);
1674 pte = pte_offset_kernel(pmd, gpa);
1678 return stage2_ptep_test_and_clear_young(pte);
1681 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1686 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1687 pmd = stage2_get_pmd(kvm, NULL, gpa);
1688 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1691 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1692 return pmd_young(*pmd);
1694 pte = pte_offset_kernel(pmd, gpa);
1695 if (!pte_none(*pte)) /* Just a page... */
1696 return pte_young(*pte);
1701 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1705 trace_kvm_age_hva(start, end);
1706 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1709 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1713 trace_kvm_test_age_hva(hva);
1714 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1717 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1719 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1722 phys_addr_t kvm_mmu_get_httbr(void)
1724 if (__kvm_cpu_uses_extended_idmap())
1725 return virt_to_phys(merged_hyp_pgd);
1727 return virt_to_phys(hyp_pgd);
1730 phys_addr_t kvm_get_idmap_vector(void)
1732 return hyp_idmap_vector;
1735 static int kvm_map_idmap_text(pgd_t *pgd)
1739 /* Create the idmap in the boot page tables */
1740 err = __create_hyp_mappings(pgd,
1741 hyp_idmap_start, hyp_idmap_end,
1742 __phys_to_pfn(hyp_idmap_start),
1745 kvm_err("Failed to idmap %lx-%lx\n",
1746 hyp_idmap_start, hyp_idmap_end);
1751 int kvm_mmu_init(void)
1755 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1756 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1757 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1760 * We rely on the linker script to ensure at build time that the HYP
1761 * init code does not cross a page boundary.
1763 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1765 kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1766 kvm_info("HYP VA range: %lx:%lx\n",
1767 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1769 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1770 hyp_idmap_start < kern_hyp_va(~0UL) &&
1771 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1773 * The idmap page is intersecting with the VA space,
1774 * it is not safe to continue further.
1776 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1781 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1783 kvm_err("Hyp mode PGD not allocated\n");
1788 if (__kvm_cpu_uses_extended_idmap()) {
1789 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1791 if (!boot_hyp_pgd) {
1792 kvm_err("Hyp boot PGD not allocated\n");
1797 err = kvm_map_idmap_text(boot_hyp_pgd);
1801 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1802 if (!merged_hyp_pgd) {
1803 kvm_err("Failed to allocate extra HYP pgd\n");
1806 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1809 err = kvm_map_idmap_text(hyp_pgd);
1820 void kvm_arch_commit_memory_region(struct kvm *kvm,
1821 const struct kvm_userspace_memory_region *mem,
1822 const struct kvm_memory_slot *old,
1823 const struct kvm_memory_slot *new,
1824 enum kvm_mr_change change)
1827 * At this point memslot has been committed and there is an
1828 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1829 * memory slot is write protected.
1831 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1832 kvm_mmu_wp_memory_region(kvm, mem->slot);
1835 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1836 struct kvm_memory_slot *memslot,
1837 const struct kvm_userspace_memory_region *mem,
1838 enum kvm_mr_change change)
1840 hva_t hva = mem->userspace_addr;
1841 hva_t reg_end = hva + mem->memory_size;
1842 bool writable = !(mem->flags & KVM_MEM_READONLY);
1845 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1846 change != KVM_MR_FLAGS_ONLY)
1850 * Prevent userspace from creating a memory region outside of the IPA
1851 * space addressable by the KVM guest IPA space.
1853 if (memslot->base_gfn + memslot->npages >=
1854 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1857 down_read(¤t->mm->mmap_sem);
1859 * A memory region could potentially cover multiple VMAs, and any holes
1860 * between them, so iterate over all of them to find out if we can map
1861 * any of them right now.
1863 * +--------------------------------------------+
1864 * +---------------+----------------+ +----------------+
1865 * | : VMA 1 | VMA 2 | | VMA 3 : |
1866 * +---------------+----------------+ +----------------+
1868 * +--------------------------------------------+
1871 struct vm_area_struct *vma = find_vma(current->mm, hva);
1872 hva_t vm_start, vm_end;
1874 if (!vma || vma->vm_start >= reg_end)
1878 * Mapping a read-only VMA is only allowed if the
1879 * memory region is configured as read-only.
1881 if (writable && !(vma->vm_flags & VM_WRITE)) {
1887 * Take the intersection of this VMA with the memory region
1889 vm_start = max(hva, vma->vm_start);
1890 vm_end = min(reg_end, vma->vm_end);
1892 if (vma->vm_flags & VM_PFNMAP) {
1893 gpa_t gpa = mem->guest_phys_addr +
1894 (vm_start - mem->userspace_addr);
1897 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1898 pa += vm_start - vma->vm_start;
1900 /* IO region dirty page logging not allowed */
1901 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1906 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1913 } while (hva < reg_end);
1915 if (change == KVM_MR_FLAGS_ONLY)
1918 spin_lock(&kvm->mmu_lock);
1920 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1922 stage2_flush_memslot(kvm, memslot);
1923 spin_unlock(&kvm->mmu_lock);
1925 up_read(¤t->mm->mmap_sem);
1929 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1930 struct kvm_memory_slot *dont)
1934 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1935 unsigned long npages)
1940 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1944 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1946 kvm_free_stage2_pgd(kvm);
1949 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1950 struct kvm_memory_slot *slot)
1952 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1953 phys_addr_t size = slot->npages << PAGE_SHIFT;
1955 spin_lock(&kvm->mmu_lock);
1956 unmap_stage2_range(kvm, gpa, size);
1957 spin_unlock(&kvm->mmu_lock);
1961 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1964 * - S/W ops are local to a CPU (not broadcast)
1965 * - We have line migration behind our back (speculation)
1966 * - System caches don't support S/W at all (damn!)
1968 * In the face of the above, the best we can do is to try and convert
1969 * S/W ops to VA ops. Because the guest is not allowed to infer the
1970 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1971 * which is a rather good thing for us.
1973 * Also, it is only used when turning caches on/off ("The expected
1974 * usage of the cache maintenance instructions that operate by set/way
1975 * is associated with the cache maintenance instructions associated
1976 * with the powerdown and powerup of caches, if this is required by
1977 * the implementation.").
1979 * We use the following policy:
1981 * - If we trap a S/W operation, we enable VM trapping to detect
1982 * caches being turned on/off, and do a full clean.
1984 * - We flush the caches on both caches being turned on and off.
1986 * - Once the caches are enabled, we stop trapping VM ops.
1988 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1990 unsigned long hcr = vcpu_get_hcr(vcpu);
1993 * If this is the first time we do a S/W operation
1994 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1997 * Otherwise, rely on the VM trapping to wait for the MMU +
1998 * Caches to be turned off. At that point, we'll be able to
1999 * clean the caches again.
2001 if (!(hcr & HCR_TVM)) {
2002 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2003 vcpu_has_cache_enabled(vcpu));
2004 stage2_flush_vm(vcpu->kvm);
2005 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
2009 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2011 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2014 * If switching the MMU+caches on, need to invalidate the caches.
2015 * If switching it off, need to clean the caches.
2016 * Clean + invalidate does the trick always.
2018 if (now_enabled != was_enabled)
2019 stage2_flush_vm(vcpu->kvm);
2021 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2023 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2025 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);