1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 #include <kvm/arm_pmu.h>
24 #include <kvm/arm_psci.h>
26 #define CREATE_TRACE_POINTS
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_emulate.h>
40 #include <asm/kvm_coproc.h>
41 #include <asm/sections.h>
44 __asm__(".arch_extension virt");
47 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
48 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
50 /* Per-CPU variable containing the currently running vcpu. */
51 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
53 /* The VMID used in the VTTBR */
54 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55 static u32 kvm_next_vmid;
56 static DEFINE_SPINLOCK(kvm_vmid_lock);
58 static bool vgic_present;
60 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
62 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
64 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
67 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
70 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
71 * Must be called from non-preemptible context
73 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 return __this_cpu_read(kvm_arm_running_vcpu);
79 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
81 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
83 return &kvm_arm_running_vcpu;
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
88 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
91 int kvm_arch_hardware_setup(void)
96 void kvm_arch_check_processor_compat(void *rtn)
103 * kvm_arch_init_vm - initializes a VM data structure
104 * @kvm: pointer to the KVM struct
106 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
110 ret = kvm_arm_setup_stage2(kvm, type);
114 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
115 if (!kvm->arch.last_vcpu_ran)
118 for_each_possible_cpu(cpu)
119 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
121 ret = kvm_alloc_stage2_pgd(kvm);
125 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 goto out_free_stage2_pgd;
129 kvm_vgic_early_init(kvm);
131 /* Mark the initial VMID generation invalid */
132 kvm->arch.vmid.vmid_gen = 0;
134 /* The maximum number of VCPUs is limited by the host's GIC model */
135 kvm->arch.max_vcpus = vgic_present ?
136 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
140 kvm_free_stage2_pgd(kvm);
142 free_percpu(kvm->arch.last_vcpu_ran);
143 kvm->arch.last_vcpu_ran = NULL;
147 bool kvm_arch_has_vcpu_debugfs(void)
152 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
157 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 return VM_FAULT_SIGBUS;
164 * kvm_arch_destroy_vm - destroy the VM data structure
165 * @kvm: pointer to the KVM struct
167 void kvm_arch_destroy_vm(struct kvm *kvm)
171 kvm_vgic_destroy(kvm);
173 free_percpu(kvm->arch.last_vcpu_ran);
174 kvm->arch.last_vcpu_ran = NULL;
176 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178 kvm_arch_vcpu_free(kvm->vcpus[i]);
179 kvm->vcpus[i] = NULL;
182 atomic_set(&kvm->online_vcpus, 0);
185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
189 case KVM_CAP_IRQCHIP:
192 case KVM_CAP_IOEVENTFD:
193 case KVM_CAP_DEVICE_CTRL:
194 case KVM_CAP_USER_MEMORY:
195 case KVM_CAP_SYNC_MMU:
196 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197 case KVM_CAP_ONE_REG:
198 case KVM_CAP_ARM_PSCI:
199 case KVM_CAP_ARM_PSCI_0_2:
200 case KVM_CAP_READONLY_MEM:
201 case KVM_CAP_MP_STATE:
202 case KVM_CAP_IMMEDIATE_EXIT:
203 case KVM_CAP_VCPU_EVENTS:
206 case KVM_CAP_ARM_SET_DEVICE_ADDR:
209 case KVM_CAP_NR_VCPUS:
210 r = num_online_cpus();
212 case KVM_CAP_MAX_VCPUS:
215 case KVM_CAP_MAX_VCPU_ID:
218 case KVM_CAP_MSI_DEVID:
222 r = kvm->arch.vgic.msis_require_devid;
224 case KVM_CAP_ARM_USER_IRQ:
226 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
227 * (bump this number if adding more devices)
232 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
238 long kvm_arch_dev_ioctl(struct file *filp,
239 unsigned int ioctl, unsigned long arg)
244 struct kvm *kvm_arch_alloc_vm(void)
247 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
249 return vzalloc(sizeof(struct kvm));
252 void kvm_arch_free_vm(struct kvm *kvm)
260 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
263 struct kvm_vcpu *vcpu;
265 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
270 if (id >= kvm->arch.max_vcpus) {
275 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
281 err = kvm_vcpu_init(vcpu, kvm, id);
285 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
291 kvm_vcpu_uninit(vcpu);
293 kmem_cache_free(kvm_vcpu_cache, vcpu);
298 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
302 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
304 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
305 static_branch_dec(&userspace_irqchip_in_use);
307 kvm_mmu_free_memory_caches(vcpu);
308 kvm_timer_vcpu_terminate(vcpu);
309 kvm_pmu_vcpu_destroy(vcpu);
310 kvm_vcpu_uninit(vcpu);
311 kmem_cache_free(kvm_vcpu_cache, vcpu);
314 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
316 kvm_arch_vcpu_free(vcpu);
319 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
321 return kvm_timer_is_pending(vcpu);
324 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
326 kvm_vgic_v4_enable_doorbell(vcpu);
329 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
331 kvm_vgic_v4_disable_doorbell(vcpu);
334 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
336 /* Force users to call KVM_ARM_VCPU_INIT */
337 vcpu->arch.target = -1;
338 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
340 /* Set up the timer */
341 kvm_timer_vcpu_init(vcpu);
343 kvm_arm_reset_debug_ptr(vcpu);
345 return kvm_vgic_vcpu_init(vcpu);
348 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
351 kvm_host_data_t *cpu_data;
353 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
354 cpu_data = this_cpu_ptr(&kvm_host_data);
357 * We might get preempted before the vCPU actually runs, but
358 * over-invalidation doesn't affect correctness.
360 if (*last_ran != vcpu->vcpu_id) {
361 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
362 *last_ran = vcpu->vcpu_id;
366 vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
368 kvm_arm_set_running_vcpu(vcpu);
370 kvm_timer_vcpu_load(vcpu);
371 kvm_vcpu_load_sysregs(vcpu);
372 kvm_arch_vcpu_load_fp(vcpu);
373 kvm_vcpu_pmu_restore_guest(vcpu);
375 if (single_task_running())
376 vcpu_clear_wfe_traps(vcpu);
378 vcpu_set_wfe_traps(vcpu);
380 vcpu_ptrauth_setup_lazy(vcpu);
383 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
385 kvm_arch_vcpu_put_fp(vcpu);
386 kvm_vcpu_put_sysregs(vcpu);
387 kvm_timer_vcpu_put(vcpu);
389 kvm_vcpu_pmu_restore_host(vcpu);
393 kvm_arm_set_running_vcpu(NULL);
396 static void vcpu_power_off(struct kvm_vcpu *vcpu)
398 vcpu->arch.power_off = true;
399 kvm_make_request(KVM_REQ_SLEEP, vcpu);
403 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
404 struct kvm_mp_state *mp_state)
406 if (vcpu->arch.power_off)
407 mp_state->mp_state = KVM_MP_STATE_STOPPED;
409 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
414 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
415 struct kvm_mp_state *mp_state)
419 switch (mp_state->mp_state) {
420 case KVM_MP_STATE_RUNNABLE:
421 vcpu->arch.power_off = false;
423 case KVM_MP_STATE_STOPPED:
424 vcpu_power_off(vcpu);
434 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
435 * @v: The VCPU pointer
437 * If the guest CPU is not waiting for interrupts or an interrupt line is
438 * asserted, the CPU is by definition runnable.
440 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
442 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
443 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
444 && !v->arch.power_off && !v->arch.pause);
447 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
449 return vcpu_mode_priv(vcpu);
452 /* Just ensure a guest exit from a particular CPU */
453 static void exit_vm_noop(void *info)
457 void force_vm_exit(const cpumask_t *mask)
460 smp_call_function_many(mask, exit_vm_noop, NULL, true);
465 * need_new_vmid_gen - check that the VMID is still valid
466 * @vmid: The VMID to check
468 * return true if there is a new generation of VMIDs being used
470 * The hardware supports a limited set of values with the value zero reserved
471 * for the host, so we check if an assigned value belongs to a previous
472 * generation, which which requires us to assign a new value. If we're the
473 * first to use a VMID for the new generation, we must flush necessary caches
474 * and TLBs on all CPUs.
476 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
478 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
479 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
480 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
484 * update_vmid - Update the vmid with a valid VMID for the current generation
485 * @kvm: The guest that struct vmid belongs to
486 * @vmid: The stage-2 VMID information struct
488 static void update_vmid(struct kvm_vmid *vmid)
490 if (!need_new_vmid_gen(vmid))
493 spin_lock(&kvm_vmid_lock);
496 * We need to re-check the vmid_gen here to ensure that if another vcpu
497 * already allocated a valid vmid for this vm, then this vcpu should
500 if (!need_new_vmid_gen(vmid)) {
501 spin_unlock(&kvm_vmid_lock);
505 /* First user of a new VMID generation? */
506 if (unlikely(kvm_next_vmid == 0)) {
507 atomic64_inc(&kvm_vmid_gen);
511 * On SMP we know no other CPUs can use this CPU's or each
512 * other's VMID after force_vm_exit returns since the
513 * kvm_vmid_lock blocks them from reentry to the guest.
515 force_vm_exit(cpu_all_mask);
517 * Now broadcast TLB + ICACHE invalidation over the inner
518 * shareable domain to make sure all data structures are
521 kvm_call_hyp(__kvm_flush_vm_context);
524 vmid->vmid = kvm_next_vmid;
526 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
529 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
531 spin_unlock(&kvm_vmid_lock);
534 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
536 struct kvm *kvm = vcpu->kvm;
539 if (likely(vcpu->arch.has_run_once))
542 if (!kvm_arm_vcpu_is_finalized(vcpu))
545 vcpu->arch.has_run_once = true;
547 if (likely(irqchip_in_kernel(kvm))) {
549 * Map the VGIC hardware resources before running a vcpu the
550 * first time on this VM.
552 if (unlikely(!vgic_ready(kvm))) {
553 ret = kvm_vgic_map_resources(kvm);
559 * Tell the rest of the code that there are userspace irqchip
562 static_branch_inc(&userspace_irqchip_in_use);
565 ret = kvm_timer_enable(vcpu);
569 ret = kvm_arm_pmu_v3_enable(vcpu);
574 bool kvm_arch_intc_initialized(struct kvm *kvm)
576 return vgic_initialized(kvm);
579 void kvm_arm_halt_guest(struct kvm *kvm)
582 struct kvm_vcpu *vcpu;
584 kvm_for_each_vcpu(i, vcpu, kvm)
585 vcpu->arch.pause = true;
586 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
589 void kvm_arm_resume_guest(struct kvm *kvm)
592 struct kvm_vcpu *vcpu;
594 kvm_for_each_vcpu(i, vcpu, kvm) {
595 vcpu->arch.pause = false;
596 swake_up_one(kvm_arch_vcpu_wq(vcpu));
600 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
602 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
604 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
605 (!vcpu->arch.pause)));
607 if (vcpu->arch.power_off || vcpu->arch.pause) {
608 /* Awaken to handle a signal, request we sleep again later. */
609 kvm_make_request(KVM_REQ_SLEEP, vcpu);
613 * Make sure we will observe a potential reset request if we've
614 * observed a change to the power state. Pairs with the smp_wmb() in
615 * kvm_psci_vcpu_on().
620 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
622 return vcpu->arch.target >= 0;
625 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
627 if (kvm_request_pending(vcpu)) {
628 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
629 vcpu_req_sleep(vcpu);
631 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
632 kvm_reset_vcpu(vcpu);
635 * Clear IRQ_PENDING requests that were made to guarantee
636 * that a VCPU sees new virtual interrupts.
638 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
643 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
644 * @vcpu: The VCPU pointer
645 * @run: The kvm_run structure pointer used for userspace state exchange
647 * This function is called through the VCPU_RUN ioctl called from user space. It
648 * will execute VM code in a loop until the time slice for the process is used
649 * or some emulation is needed from user space in which case the function will
650 * return with return value 0 and with the kvm_run structure filled in with the
651 * required data for the requested emulation.
653 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
657 if (unlikely(!kvm_vcpu_initialized(vcpu)))
660 ret = kvm_vcpu_first_run_init(vcpu);
664 if (run->exit_reason == KVM_EXIT_MMIO) {
665 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
670 if (run->immediate_exit)
675 kvm_sigset_activate(vcpu);
678 run->exit_reason = KVM_EXIT_UNKNOWN;
681 * Check conditions before entering the guest
685 update_vmid(&vcpu->kvm->arch.vmid);
687 check_vcpu_requests(vcpu);
690 * Preparing the interrupts to be injected also
691 * involves poking the GIC, which must be done in a
692 * non-preemptible context.
696 kvm_pmu_flush_hwstate(vcpu);
700 kvm_vgic_flush_hwstate(vcpu);
703 * Exit if we have a signal pending so that we can deliver the
704 * signal to user space.
706 if (signal_pending(current)) {
708 run->exit_reason = KVM_EXIT_INTR;
712 * If we're using a userspace irqchip, then check if we need
713 * to tell a userspace irqchip about timer or PMU level
714 * changes and if so, exit to userspace (the actual level
715 * state gets updated in kvm_timer_update_run and
716 * kvm_pmu_update_run below).
718 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
719 if (kvm_timer_should_notify_user(vcpu) ||
720 kvm_pmu_should_notify_user(vcpu)) {
722 run->exit_reason = KVM_EXIT_INTR;
727 * Ensure we set mode to IN_GUEST_MODE after we disable
728 * interrupts and before the final VCPU requests check.
729 * See the comment in kvm_vcpu_exiting_guest_mode() and
730 * Documentation/virtual/kvm/vcpu-requests.rst
732 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
734 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
735 kvm_request_pending(vcpu)) {
736 vcpu->mode = OUTSIDE_GUEST_MODE;
737 isb(); /* Ensure work in x_flush_hwstate is committed */
738 kvm_pmu_sync_hwstate(vcpu);
739 if (static_branch_unlikely(&userspace_irqchip_in_use))
740 kvm_timer_sync_hwstate(vcpu);
741 kvm_vgic_sync_hwstate(vcpu);
747 kvm_arm_setup_debug(vcpu);
749 /**************************************************************
752 trace_kvm_entry(*vcpu_pc(vcpu));
753 guest_enter_irqoff();
756 kvm_arm_vhe_guest_enter();
757 ret = kvm_vcpu_run_vhe(vcpu);
758 kvm_arm_vhe_guest_exit();
760 ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
763 vcpu->mode = OUTSIDE_GUEST_MODE;
767 *************************************************************/
769 kvm_arm_clear_debug(vcpu);
772 * We must sync the PMU state before the vgic state so
773 * that the vgic can properly sample the updated state of the
776 kvm_pmu_sync_hwstate(vcpu);
779 * Sync the vgic state before syncing the timer state because
780 * the timer code needs to know if the virtual timer
781 * interrupts are active.
783 kvm_vgic_sync_hwstate(vcpu);
786 * Sync the timer hardware state before enabling interrupts as
787 * we don't want vtimer interrupts to race with syncing the
788 * timer virtual interrupt state.
790 if (static_branch_unlikely(&userspace_irqchip_in_use))
791 kvm_timer_sync_hwstate(vcpu);
793 kvm_arch_vcpu_ctxsync_fp(vcpu);
796 * We may have taken a host interrupt in HYP mode (ie
797 * while executing the guest). This interrupt is still
798 * pending, as we haven't serviced it yet!
800 * We're now back in SVC mode, with interrupts
801 * disabled. Enabling the interrupts now will have
802 * the effect of taking the interrupt again, in SVC
808 * We do local_irq_enable() before calling guest_exit() so
809 * that if a timer interrupt hits while running the guest we
810 * account that tick as being spent in the guest. We enable
811 * preemption after calling guest_exit() so that if we get
812 * preempted we make sure ticks after that is not counted as
816 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
818 /* Exit types that need handling before we can be preempted */
819 handle_exit_early(vcpu, run, ret);
823 ret = handle_exit(vcpu, run, ret);
826 /* Tell userspace about in-kernel device output levels */
827 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
828 kvm_timer_update_run(vcpu);
829 kvm_pmu_update_run(vcpu);
832 kvm_sigset_deactivate(vcpu);
838 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
844 if (number == KVM_ARM_IRQ_CPU_IRQ)
845 bit_index = __ffs(HCR_VI);
846 else /* KVM_ARM_IRQ_CPU_FIQ */
847 bit_index = __ffs(HCR_VF);
849 hcr = vcpu_hcr(vcpu);
851 set = test_and_set_bit(bit_index, hcr);
853 set = test_and_clear_bit(bit_index, hcr);
856 * If we didn't change anything, no need to wake up or kick other CPUs
862 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
863 * trigger a world-switch round on the running physical CPU to set the
864 * virtual IRQ/FIQ fields in the HCR appropriately.
866 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
872 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
875 u32 irq = irq_level->irq;
876 unsigned int irq_type, vcpu_idx, irq_num;
877 int nrcpus = atomic_read(&kvm->online_vcpus);
878 struct kvm_vcpu *vcpu = NULL;
879 bool level = irq_level->level;
881 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
882 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
883 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
885 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
888 case KVM_ARM_IRQ_TYPE_CPU:
889 if (irqchip_in_kernel(kvm))
892 if (vcpu_idx >= nrcpus)
895 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
899 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
902 return vcpu_interrupt_line(vcpu, irq_num, level);
903 case KVM_ARM_IRQ_TYPE_PPI:
904 if (!irqchip_in_kernel(kvm))
907 if (vcpu_idx >= nrcpus)
910 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
914 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
917 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
918 case KVM_ARM_IRQ_TYPE_SPI:
919 if (!irqchip_in_kernel(kvm))
922 if (irq_num < VGIC_NR_PRIVATE_IRQS)
925 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
931 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
932 const struct kvm_vcpu_init *init)
935 int phys_target = kvm_target_cpu();
937 if (init->target != phys_target)
941 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
942 * use the same target.
944 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
947 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
948 for (i = 0; i < sizeof(init->features) * 8; i++) {
949 bool set = (init->features[i / 32] & (1 << (i % 32)));
951 if (set && i >= KVM_VCPU_MAX_FEATURES)
955 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
956 * use the same feature set.
958 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
959 test_bit(i, vcpu->arch.features) != set)
963 set_bit(i, vcpu->arch.features);
966 vcpu->arch.target = phys_target;
968 /* Now we know what it is, we can reset it. */
969 ret = kvm_reset_vcpu(vcpu);
971 vcpu->arch.target = -1;
972 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
978 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
979 struct kvm_vcpu_init *init)
983 ret = kvm_vcpu_set_target(vcpu, init);
988 * Ensure a rebooted VM will fault in RAM pages and detect if the
989 * guest MMU is turned off and flush the caches as needed.
991 if (vcpu->arch.has_run_once)
992 stage2_unmap_vm(vcpu->kvm);
994 vcpu_reset_hcr(vcpu);
997 * Handle the "start in power-off" case.
999 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1000 vcpu_power_off(vcpu);
1002 vcpu->arch.power_off = false;
1007 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1008 struct kvm_device_attr *attr)
1012 switch (attr->group) {
1014 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1021 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1022 struct kvm_device_attr *attr)
1026 switch (attr->group) {
1028 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1035 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1036 struct kvm_device_attr *attr)
1040 switch (attr->group) {
1042 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1049 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1050 struct kvm_vcpu_events *events)
1052 memset(events, 0, sizeof(*events));
1054 return __kvm_arm_vcpu_get_events(vcpu, events);
1057 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1058 struct kvm_vcpu_events *events)
1062 /* check whether the reserved field is zero */
1063 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1064 if (events->reserved[i])
1067 /* check whether the pad field is zero */
1068 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1069 if (events->exception.pad[i])
1072 return __kvm_arm_vcpu_set_events(vcpu, events);
1075 long kvm_arch_vcpu_ioctl(struct file *filp,
1076 unsigned int ioctl, unsigned long arg)
1078 struct kvm_vcpu *vcpu = filp->private_data;
1079 void __user *argp = (void __user *)arg;
1080 struct kvm_device_attr attr;
1084 case KVM_ARM_VCPU_INIT: {
1085 struct kvm_vcpu_init init;
1088 if (copy_from_user(&init, argp, sizeof(init)))
1091 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1094 case KVM_SET_ONE_REG:
1095 case KVM_GET_ONE_REG: {
1096 struct kvm_one_reg reg;
1099 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1103 if (copy_from_user(®, argp, sizeof(reg)))
1106 if (ioctl == KVM_SET_ONE_REG)
1107 r = kvm_arm_set_reg(vcpu, ®);
1109 r = kvm_arm_get_reg(vcpu, ®);
1112 case KVM_GET_REG_LIST: {
1113 struct kvm_reg_list __user *user_list = argp;
1114 struct kvm_reg_list reg_list;
1118 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1122 if (!kvm_arm_vcpu_is_finalized(vcpu))
1126 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1129 reg_list.n = kvm_arm_num_regs(vcpu);
1130 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1135 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1138 case KVM_SET_DEVICE_ATTR: {
1140 if (copy_from_user(&attr, argp, sizeof(attr)))
1142 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1145 case KVM_GET_DEVICE_ATTR: {
1147 if (copy_from_user(&attr, argp, sizeof(attr)))
1149 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1152 case KVM_HAS_DEVICE_ATTR: {
1154 if (copy_from_user(&attr, argp, sizeof(attr)))
1156 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1159 case KVM_GET_VCPU_EVENTS: {
1160 struct kvm_vcpu_events events;
1162 if (kvm_arm_vcpu_get_events(vcpu, &events))
1165 if (copy_to_user(argp, &events, sizeof(events)))
1170 case KVM_SET_VCPU_EVENTS: {
1171 struct kvm_vcpu_events events;
1173 if (copy_from_user(&events, argp, sizeof(events)))
1176 return kvm_arm_vcpu_set_events(vcpu, &events);
1178 case KVM_ARM_VCPU_FINALIZE: {
1181 if (!kvm_vcpu_initialized(vcpu))
1184 if (get_user(what, (const int __user *)argp))
1187 return kvm_arm_vcpu_finalize(vcpu, what);
1197 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1198 * @kvm: kvm instance
1199 * @log: slot id and address to which we copy the log
1201 * Steps 1-4 below provide general overview of dirty page logging. See
1202 * kvm_get_dirty_log_protect() function description for additional details.
1204 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1205 * always flush the TLB (step 4) even if previous step failed and the dirty
1206 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1207 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1208 * writes will be marked dirty for next log read.
1210 * 1. Take a snapshot of the bit and clear it if needed.
1211 * 2. Write protect the corresponding page.
1212 * 3. Copy the snapshot to the userspace.
1213 * 4. Flush TLB's if needed.
1215 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1220 mutex_lock(&kvm->slots_lock);
1222 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1225 kvm_flush_remote_tlbs(kvm);
1227 mutex_unlock(&kvm->slots_lock);
1231 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1236 mutex_lock(&kvm->slots_lock);
1238 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1241 kvm_flush_remote_tlbs(kvm);
1243 mutex_unlock(&kvm->slots_lock);
1247 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1248 struct kvm_arm_device_addr *dev_addr)
1250 unsigned long dev_id, type;
1252 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1253 KVM_ARM_DEVICE_ID_SHIFT;
1254 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1255 KVM_ARM_DEVICE_TYPE_SHIFT;
1258 case KVM_ARM_DEVICE_VGIC_V2:
1261 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1267 long kvm_arch_vm_ioctl(struct file *filp,
1268 unsigned int ioctl, unsigned long arg)
1270 struct kvm *kvm = filp->private_data;
1271 void __user *argp = (void __user *)arg;
1274 case KVM_CREATE_IRQCHIP: {
1278 mutex_lock(&kvm->lock);
1279 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1280 mutex_unlock(&kvm->lock);
1283 case KVM_ARM_SET_DEVICE_ADDR: {
1284 struct kvm_arm_device_addr dev_addr;
1286 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1288 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1290 case KVM_ARM_PREFERRED_TARGET: {
1292 struct kvm_vcpu_init init;
1294 err = kvm_vcpu_preferred_target(&init);
1298 if (copy_to_user(argp, &init, sizeof(init)))
1308 static void cpu_init_hyp_mode(void *dummy)
1310 phys_addr_t pgd_ptr;
1311 unsigned long hyp_stack_ptr;
1312 unsigned long stack_page;
1313 unsigned long vector_ptr;
1315 /* Switch from the HYP stub to our own HYP init vector */
1316 __hyp_set_vectors(kvm_get_idmap_vector());
1318 pgd_ptr = kvm_mmu_get_httbr();
1319 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1320 hyp_stack_ptr = stack_page + PAGE_SIZE;
1321 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1323 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1324 __cpu_init_stage2();
1327 static void cpu_hyp_reset(void)
1329 if (!is_kernel_in_hyp_mode())
1330 __hyp_reset_vectors();
1333 static void cpu_hyp_reinit(void)
1337 if (is_kernel_in_hyp_mode())
1338 kvm_timer_init_vhe();
1340 cpu_init_hyp_mode(NULL);
1342 kvm_arm_init_debug();
1345 kvm_vgic_init_cpu_hardware();
1348 static void _kvm_arch_hardware_enable(void *discard)
1350 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1352 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1356 int kvm_arch_hardware_enable(void)
1358 _kvm_arch_hardware_enable(NULL);
1362 static void _kvm_arch_hardware_disable(void *discard)
1364 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1366 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1370 void kvm_arch_hardware_disable(void)
1372 _kvm_arch_hardware_disable(NULL);
1375 #ifdef CONFIG_CPU_PM
1376 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1381 * kvm_arm_hardware_enabled is left with its old value over
1382 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1387 if (__this_cpu_read(kvm_arm_hardware_enabled))
1389 * don't update kvm_arm_hardware_enabled here
1390 * so that the hardware will be re-enabled
1391 * when we resume. See below.
1396 case CPU_PM_ENTER_FAILED:
1398 if (__this_cpu_read(kvm_arm_hardware_enabled))
1399 /* The hardware was enabled before suspend. */
1409 static struct notifier_block hyp_init_cpu_pm_nb = {
1410 .notifier_call = hyp_init_cpu_pm_notifier,
1413 static void __init hyp_cpu_pm_init(void)
1415 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1417 static void __init hyp_cpu_pm_exit(void)
1419 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1422 static inline void hyp_cpu_pm_init(void)
1425 static inline void hyp_cpu_pm_exit(void)
1430 static int init_common_resources(void)
1432 kvm_set_ipa_limit();
1437 static int init_subsystems(void)
1442 * Enable hardware so that subsystem initialisation can access EL2.
1444 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1447 * Register CPU lower-power notifier
1452 * Init HYP view of VGIC
1454 err = kvm_vgic_hyp_init();
1457 vgic_present = true;
1461 vgic_present = false;
1469 * Init HYP architected timer support
1471 err = kvm_timer_hyp_init(vgic_present);
1476 kvm_coproc_table_init();
1479 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1484 static void teardown_hyp_mode(void)
1489 for_each_possible_cpu(cpu)
1490 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1495 * Inits Hyp-mode on all online CPUs
1497 static int init_hyp_mode(void)
1503 * Allocate Hyp PGD and setup Hyp identity mapping
1505 err = kvm_mmu_init();
1510 * Allocate stack pages for Hypervisor-mode
1512 for_each_possible_cpu(cpu) {
1513 unsigned long stack_page;
1515 stack_page = __get_free_page(GFP_KERNEL);
1521 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1525 * Map the Hyp-code called directly from the host
1527 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1528 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1530 kvm_err("Cannot map world-switch code\n");
1534 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1535 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1537 kvm_err("Cannot map rodata section\n");
1541 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1542 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1544 kvm_err("Cannot map bss section\n");
1548 err = kvm_map_vectors();
1550 kvm_err("Cannot map vectors\n");
1555 * Map the Hyp stack pages
1557 for_each_possible_cpu(cpu) {
1558 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1559 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1563 kvm_err("Cannot map hyp stack\n");
1568 for_each_possible_cpu(cpu) {
1569 kvm_host_data_t *cpu_data;
1571 cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1572 kvm_init_host_cpu_context(&cpu_data->host_ctxt, cpu);
1573 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1576 kvm_err("Cannot map host CPU state: %d\n", err);
1581 err = hyp_map_aux_data();
1583 kvm_err("Cannot map host auxiliary data: %d\n", err);
1588 teardown_hyp_mode();
1589 kvm_err("error initializing Hyp mode: %d\n", err);
1593 static void check_kvm_target_cpu(void *ret)
1595 *(int *)ret = kvm_target_cpu();
1598 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1600 struct kvm_vcpu *vcpu;
1603 mpidr &= MPIDR_HWID_BITMASK;
1604 kvm_for_each_vcpu(i, vcpu, kvm) {
1605 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1611 bool kvm_arch_has_irq_bypass(void)
1616 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1617 struct irq_bypass_producer *prod)
1619 struct kvm_kernel_irqfd *irqfd =
1620 container_of(cons, struct kvm_kernel_irqfd, consumer);
1622 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1625 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1626 struct irq_bypass_producer *prod)
1628 struct kvm_kernel_irqfd *irqfd =
1629 container_of(cons, struct kvm_kernel_irqfd, consumer);
1631 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1635 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1637 struct kvm_kernel_irqfd *irqfd =
1638 container_of(cons, struct kvm_kernel_irqfd, consumer);
1640 kvm_arm_halt_guest(irqfd->kvm);
1643 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1645 struct kvm_kernel_irqfd *irqfd =
1646 container_of(cons, struct kvm_kernel_irqfd, consumer);
1648 kvm_arm_resume_guest(irqfd->kvm);
1652 * Initialize Hyp-mode and memory mappings on all CPUs.
1654 int kvm_arch_init(void *opaque)
1660 if (!is_hyp_mode_available()) {
1661 kvm_info("HYP mode not available\n");
1665 in_hyp_mode = is_kernel_in_hyp_mode();
1667 if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1668 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1672 for_each_online_cpu(cpu) {
1673 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1675 kvm_err("Error, CPU %d not supported!\n", cpu);
1680 err = init_common_resources();
1684 err = kvm_arm_init_sve();
1689 err = init_hyp_mode();
1694 err = init_subsystems();
1699 kvm_info("VHE mode initialized successfully\n");
1701 kvm_info("Hyp mode initialized successfully\n");
1707 teardown_hyp_mode();
1712 /* NOP: Compiling as a module not supported */
1713 void kvm_arch_exit(void)
1715 kvm_perf_teardown();
1718 static int arm_init(void)
1720 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1724 module_init(arm_init);