Merge tag 'xfs-5.4-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[platform/kernel/linux-starfive.git] / virt / kvm / arm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 #include <kvm/arm_pmu.h>
24 #include <kvm/arm_psci.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_emulate.h>
40 #include <asm/kvm_coproc.h>
41 #include <asm/sections.h>
42
43 #ifdef REQUIRES_VIRT
44 __asm__(".arch_extension        virt");
45 #endif
46
47 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
48 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
49
50 /* Per-CPU variable containing the currently running vcpu. */
51 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
52
53 /* The VMID used in the VTTBR */
54 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55 static u32 kvm_next_vmid;
56 static DEFINE_SPINLOCK(kvm_vmid_lock);
57
58 static bool vgic_present;
59
60 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
61
62 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
63 {
64         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
65 }
66
67 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68
69 /**
70  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
71  * Must be called from non-preemptible context
72  */
73 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
74 {
75         return __this_cpu_read(kvm_arm_running_vcpu);
76 }
77
78 /**
79  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
80  */
81 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
82 {
83         return &kvm_arm_running_vcpu;
84 }
85
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
89 }
90
91 int kvm_arch_hardware_setup(void)
92 {
93         return 0;
94 }
95
96 int kvm_arch_check_processor_compat(void)
97 {
98         return 0;
99 }
100
101
102 /**
103  * kvm_arch_init_vm - initializes a VM data structure
104  * @kvm:        pointer to the KVM struct
105  */
106 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
107 {
108         int ret, cpu;
109
110         ret = kvm_arm_setup_stage2(kvm, type);
111         if (ret)
112                 return ret;
113
114         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
115         if (!kvm->arch.last_vcpu_ran)
116                 return -ENOMEM;
117
118         for_each_possible_cpu(cpu)
119                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
120
121         ret = kvm_alloc_stage2_pgd(kvm);
122         if (ret)
123                 goto out_fail_alloc;
124
125         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
126         if (ret)
127                 goto out_free_stage2_pgd;
128
129         kvm_vgic_early_init(kvm);
130
131         /* Mark the initial VMID generation invalid */
132         kvm->arch.vmid.vmid_gen = 0;
133
134         /* The maximum number of VCPUs is limited by the host's GIC model */
135         kvm->arch.max_vcpus = vgic_present ?
136                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
137
138         return ret;
139 out_free_stage2_pgd:
140         kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142         free_percpu(kvm->arch.last_vcpu_ran);
143         kvm->arch.last_vcpu_ran = NULL;
144         return ret;
145 }
146
147 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
148 {
149         return 0;
150 }
151
152 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154         return VM_FAULT_SIGBUS;
155 }
156
157
158 /**
159  * kvm_arch_destroy_vm - destroy the VM data structure
160  * @kvm:        pointer to the KVM struct
161  */
162 void kvm_arch_destroy_vm(struct kvm *kvm)
163 {
164         int i;
165
166         kvm_vgic_destroy(kvm);
167
168         free_percpu(kvm->arch.last_vcpu_ran);
169         kvm->arch.last_vcpu_ran = NULL;
170
171         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
172                 if (kvm->vcpus[i]) {
173                         kvm_arch_vcpu_free(kvm->vcpus[i]);
174                         kvm->vcpus[i] = NULL;
175                 }
176         }
177         atomic_set(&kvm->online_vcpus, 0);
178 }
179
180 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
181 {
182         int r;
183         switch (ext) {
184         case KVM_CAP_IRQCHIP:
185                 r = vgic_present;
186                 break;
187         case KVM_CAP_IOEVENTFD:
188         case KVM_CAP_DEVICE_CTRL:
189         case KVM_CAP_USER_MEMORY:
190         case KVM_CAP_SYNC_MMU:
191         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
192         case KVM_CAP_ONE_REG:
193         case KVM_CAP_ARM_PSCI:
194         case KVM_CAP_ARM_PSCI_0_2:
195         case KVM_CAP_READONLY_MEM:
196         case KVM_CAP_MP_STATE:
197         case KVM_CAP_IMMEDIATE_EXIT:
198         case KVM_CAP_VCPU_EVENTS:
199         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
200                 r = 1;
201                 break;
202         case KVM_CAP_ARM_SET_DEVICE_ADDR:
203                 r = 1;
204                 break;
205         case KVM_CAP_NR_VCPUS:
206                 r = num_online_cpus();
207                 break;
208         case KVM_CAP_MAX_VCPUS:
209                 r = KVM_MAX_VCPUS;
210                 break;
211         case KVM_CAP_MAX_VCPU_ID:
212                 r = KVM_MAX_VCPU_ID;
213                 break;
214         case KVM_CAP_MSI_DEVID:
215                 if (!kvm)
216                         r = -EINVAL;
217                 else
218                         r = kvm->arch.vgic.msis_require_devid;
219                 break;
220         case KVM_CAP_ARM_USER_IRQ:
221                 /*
222                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
223                  * (bump this number if adding more devices)
224                  */
225                 r = 1;
226                 break;
227         default:
228                 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
229                 break;
230         }
231         return r;
232 }
233
234 long kvm_arch_dev_ioctl(struct file *filp,
235                         unsigned int ioctl, unsigned long arg)
236 {
237         return -EINVAL;
238 }
239
240 struct kvm *kvm_arch_alloc_vm(void)
241 {
242         if (!has_vhe())
243                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
244
245         return vzalloc(sizeof(struct kvm));
246 }
247
248 void kvm_arch_free_vm(struct kvm *kvm)
249 {
250         if (!has_vhe())
251                 kfree(kvm);
252         else
253                 vfree(kvm);
254 }
255
256 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
257 {
258         int err;
259         struct kvm_vcpu *vcpu;
260
261         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
262                 err = -EBUSY;
263                 goto out;
264         }
265
266         if (id >= kvm->arch.max_vcpus) {
267                 err = -EINVAL;
268                 goto out;
269         }
270
271         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
272         if (!vcpu) {
273                 err = -ENOMEM;
274                 goto out;
275         }
276
277         err = kvm_vcpu_init(vcpu, kvm, id);
278         if (err)
279                 goto free_vcpu;
280
281         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
282         if (err)
283                 goto vcpu_uninit;
284
285         return vcpu;
286 vcpu_uninit:
287         kvm_vcpu_uninit(vcpu);
288 free_vcpu:
289         kmem_cache_free(kvm_vcpu_cache, vcpu);
290 out:
291         return ERR_PTR(err);
292 }
293
294 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
295 {
296 }
297
298 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
299 {
300         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
301                 static_branch_dec(&userspace_irqchip_in_use);
302
303         kvm_mmu_free_memory_caches(vcpu);
304         kvm_timer_vcpu_terminate(vcpu);
305         kvm_pmu_vcpu_destroy(vcpu);
306         kvm_vcpu_uninit(vcpu);
307         kmem_cache_free(kvm_vcpu_cache, vcpu);
308 }
309
310 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
311 {
312         kvm_arch_vcpu_free(vcpu);
313 }
314
315 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
316 {
317         return kvm_timer_is_pending(vcpu);
318 }
319
320 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
321 {
322         /*
323          * If we're about to block (most likely because we've just hit a
324          * WFI), we need to sync back the state of the GIC CPU interface
325          * so that we have the lastest PMR and group enables. This ensures
326          * that kvm_arch_vcpu_runnable has up-to-date data to decide
327          * whether we have pending interrupts.
328          */
329         preempt_disable();
330         kvm_vgic_vmcr_sync(vcpu);
331         preempt_enable();
332
333         kvm_vgic_v4_enable_doorbell(vcpu);
334 }
335
336 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
337 {
338         kvm_vgic_v4_disable_doorbell(vcpu);
339 }
340
341 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
342 {
343         /* Force users to call KVM_ARM_VCPU_INIT */
344         vcpu->arch.target = -1;
345         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
346
347         /* Set up the timer */
348         kvm_timer_vcpu_init(vcpu);
349
350         kvm_pmu_vcpu_init(vcpu);
351
352         kvm_arm_reset_debug_ptr(vcpu);
353
354         return kvm_vgic_vcpu_init(vcpu);
355 }
356
357 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
358 {
359         int *last_ran;
360         kvm_host_data_t *cpu_data;
361
362         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
363         cpu_data = this_cpu_ptr(&kvm_host_data);
364
365         /*
366          * We might get preempted before the vCPU actually runs, but
367          * over-invalidation doesn't affect correctness.
368          */
369         if (*last_ran != vcpu->vcpu_id) {
370                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
371                 *last_ran = vcpu->vcpu_id;
372         }
373
374         vcpu->cpu = cpu;
375         vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
376
377         kvm_arm_set_running_vcpu(vcpu);
378         kvm_vgic_load(vcpu);
379         kvm_timer_vcpu_load(vcpu);
380         kvm_vcpu_load_sysregs(vcpu);
381         kvm_arch_vcpu_load_fp(vcpu);
382         kvm_vcpu_pmu_restore_guest(vcpu);
383
384         if (single_task_running())
385                 vcpu_clear_wfe_traps(vcpu);
386         else
387                 vcpu_set_wfe_traps(vcpu);
388
389         vcpu_ptrauth_setup_lazy(vcpu);
390 }
391
392 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
393 {
394         kvm_arch_vcpu_put_fp(vcpu);
395         kvm_vcpu_put_sysregs(vcpu);
396         kvm_timer_vcpu_put(vcpu);
397         kvm_vgic_put(vcpu);
398         kvm_vcpu_pmu_restore_host(vcpu);
399
400         vcpu->cpu = -1;
401
402         kvm_arm_set_running_vcpu(NULL);
403 }
404
405 static void vcpu_power_off(struct kvm_vcpu *vcpu)
406 {
407         vcpu->arch.power_off = true;
408         kvm_make_request(KVM_REQ_SLEEP, vcpu);
409         kvm_vcpu_kick(vcpu);
410 }
411
412 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
413                                     struct kvm_mp_state *mp_state)
414 {
415         if (vcpu->arch.power_off)
416                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
417         else
418                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
419
420         return 0;
421 }
422
423 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
424                                     struct kvm_mp_state *mp_state)
425 {
426         int ret = 0;
427
428         switch (mp_state->mp_state) {
429         case KVM_MP_STATE_RUNNABLE:
430                 vcpu->arch.power_off = false;
431                 break;
432         case KVM_MP_STATE_STOPPED:
433                 vcpu_power_off(vcpu);
434                 break;
435         default:
436                 ret = -EINVAL;
437         }
438
439         return ret;
440 }
441
442 /**
443  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
444  * @v:          The VCPU pointer
445  *
446  * If the guest CPU is not waiting for interrupts or an interrupt line is
447  * asserted, the CPU is by definition runnable.
448  */
449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
450 {
451         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
452         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453                 && !v->arch.power_off && !v->arch.pause);
454 }
455
456 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
457 {
458         return vcpu_mode_priv(vcpu);
459 }
460
461 /* Just ensure a guest exit from a particular CPU */
462 static void exit_vm_noop(void *info)
463 {
464 }
465
466 void force_vm_exit(const cpumask_t *mask)
467 {
468         preempt_disable();
469         smp_call_function_many(mask, exit_vm_noop, NULL, true);
470         preempt_enable();
471 }
472
473 /**
474  * need_new_vmid_gen - check that the VMID is still valid
475  * @vmid: The VMID to check
476  *
477  * return true if there is a new generation of VMIDs being used
478  *
479  * The hardware supports a limited set of values with the value zero reserved
480  * for the host, so we check if an assigned value belongs to a previous
481  * generation, which which requires us to assign a new value. If we're the
482  * first to use a VMID for the new generation, we must flush necessary caches
483  * and TLBs on all CPUs.
484  */
485 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
486 {
487         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
488         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
489         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
490 }
491
492 /**
493  * update_vmid - Update the vmid with a valid VMID for the current generation
494  * @kvm: The guest that struct vmid belongs to
495  * @vmid: The stage-2 VMID information struct
496  */
497 static void update_vmid(struct kvm_vmid *vmid)
498 {
499         if (!need_new_vmid_gen(vmid))
500                 return;
501
502         spin_lock(&kvm_vmid_lock);
503
504         /*
505          * We need to re-check the vmid_gen here to ensure that if another vcpu
506          * already allocated a valid vmid for this vm, then this vcpu should
507          * use the same vmid.
508          */
509         if (!need_new_vmid_gen(vmid)) {
510                 spin_unlock(&kvm_vmid_lock);
511                 return;
512         }
513
514         /* First user of a new VMID generation? */
515         if (unlikely(kvm_next_vmid == 0)) {
516                 atomic64_inc(&kvm_vmid_gen);
517                 kvm_next_vmid = 1;
518
519                 /*
520                  * On SMP we know no other CPUs can use this CPU's or each
521                  * other's VMID after force_vm_exit returns since the
522                  * kvm_vmid_lock blocks them from reentry to the guest.
523                  */
524                 force_vm_exit(cpu_all_mask);
525                 /*
526                  * Now broadcast TLB + ICACHE invalidation over the inner
527                  * shareable domain to make sure all data structures are
528                  * clean.
529                  */
530                 kvm_call_hyp(__kvm_flush_vm_context);
531         }
532
533         vmid->vmid = kvm_next_vmid;
534         kvm_next_vmid++;
535         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
536
537         smp_wmb();
538         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
539
540         spin_unlock(&kvm_vmid_lock);
541 }
542
543 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
544 {
545         struct kvm *kvm = vcpu->kvm;
546         int ret = 0;
547
548         if (likely(vcpu->arch.has_run_once))
549                 return 0;
550
551         if (!kvm_arm_vcpu_is_finalized(vcpu))
552                 return -EPERM;
553
554         vcpu->arch.has_run_once = true;
555
556         if (likely(irqchip_in_kernel(kvm))) {
557                 /*
558                  * Map the VGIC hardware resources before running a vcpu the
559                  * first time on this VM.
560                  */
561                 if (unlikely(!vgic_ready(kvm))) {
562                         ret = kvm_vgic_map_resources(kvm);
563                         if (ret)
564                                 return ret;
565                 }
566         } else {
567                 /*
568                  * Tell the rest of the code that there are userspace irqchip
569                  * VMs in the wild.
570                  */
571                 static_branch_inc(&userspace_irqchip_in_use);
572         }
573
574         ret = kvm_timer_enable(vcpu);
575         if (ret)
576                 return ret;
577
578         ret = kvm_arm_pmu_v3_enable(vcpu);
579
580         return ret;
581 }
582
583 bool kvm_arch_intc_initialized(struct kvm *kvm)
584 {
585         return vgic_initialized(kvm);
586 }
587
588 void kvm_arm_halt_guest(struct kvm *kvm)
589 {
590         int i;
591         struct kvm_vcpu *vcpu;
592
593         kvm_for_each_vcpu(i, vcpu, kvm)
594                 vcpu->arch.pause = true;
595         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
596 }
597
598 void kvm_arm_resume_guest(struct kvm *kvm)
599 {
600         int i;
601         struct kvm_vcpu *vcpu;
602
603         kvm_for_each_vcpu(i, vcpu, kvm) {
604                 vcpu->arch.pause = false;
605                 swake_up_one(kvm_arch_vcpu_wq(vcpu));
606         }
607 }
608
609 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
610 {
611         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
612
613         swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
614                                        (!vcpu->arch.pause)));
615
616         if (vcpu->arch.power_off || vcpu->arch.pause) {
617                 /* Awaken to handle a signal, request we sleep again later. */
618                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
619         }
620
621         /*
622          * Make sure we will observe a potential reset request if we've
623          * observed a change to the power state. Pairs with the smp_wmb() in
624          * kvm_psci_vcpu_on().
625          */
626         smp_rmb();
627 }
628
629 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
630 {
631         return vcpu->arch.target >= 0;
632 }
633
634 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
635 {
636         if (kvm_request_pending(vcpu)) {
637                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
638                         vcpu_req_sleep(vcpu);
639
640                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
641                         kvm_reset_vcpu(vcpu);
642
643                 /*
644                  * Clear IRQ_PENDING requests that were made to guarantee
645                  * that a VCPU sees new virtual interrupts.
646                  */
647                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
648         }
649 }
650
651 /**
652  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
653  * @vcpu:       The VCPU pointer
654  * @run:        The kvm_run structure pointer used for userspace state exchange
655  *
656  * This function is called through the VCPU_RUN ioctl called from user space. It
657  * will execute VM code in a loop until the time slice for the process is used
658  * or some emulation is needed from user space in which case the function will
659  * return with return value 0 and with the kvm_run structure filled in with the
660  * required data for the requested emulation.
661  */
662 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
663 {
664         int ret;
665
666         if (unlikely(!kvm_vcpu_initialized(vcpu)))
667                 return -ENOEXEC;
668
669         ret = kvm_vcpu_first_run_init(vcpu);
670         if (ret)
671                 return ret;
672
673         if (run->exit_reason == KVM_EXIT_MMIO) {
674                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
675                 if (ret)
676                         return ret;
677         }
678
679         if (run->immediate_exit)
680                 return -EINTR;
681
682         vcpu_load(vcpu);
683
684         kvm_sigset_activate(vcpu);
685
686         ret = 1;
687         run->exit_reason = KVM_EXIT_UNKNOWN;
688         while (ret > 0) {
689                 /*
690                  * Check conditions before entering the guest
691                  */
692                 cond_resched();
693
694                 update_vmid(&vcpu->kvm->arch.vmid);
695
696                 check_vcpu_requests(vcpu);
697
698                 /*
699                  * Preparing the interrupts to be injected also
700                  * involves poking the GIC, which must be done in a
701                  * non-preemptible context.
702                  */
703                 preempt_disable();
704
705                 kvm_pmu_flush_hwstate(vcpu);
706
707                 local_irq_disable();
708
709                 kvm_vgic_flush_hwstate(vcpu);
710
711                 /*
712                  * Exit if we have a signal pending so that we can deliver the
713                  * signal to user space.
714                  */
715                 if (signal_pending(current)) {
716                         ret = -EINTR;
717                         run->exit_reason = KVM_EXIT_INTR;
718                 }
719
720                 /*
721                  * If we're using a userspace irqchip, then check if we need
722                  * to tell a userspace irqchip about timer or PMU level
723                  * changes and if so, exit to userspace (the actual level
724                  * state gets updated in kvm_timer_update_run and
725                  * kvm_pmu_update_run below).
726                  */
727                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
728                         if (kvm_timer_should_notify_user(vcpu) ||
729                             kvm_pmu_should_notify_user(vcpu)) {
730                                 ret = -EINTR;
731                                 run->exit_reason = KVM_EXIT_INTR;
732                         }
733                 }
734
735                 /*
736                  * Ensure we set mode to IN_GUEST_MODE after we disable
737                  * interrupts and before the final VCPU requests check.
738                  * See the comment in kvm_vcpu_exiting_guest_mode() and
739                  * Documentation/virt/kvm/vcpu-requests.rst
740                  */
741                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
742
743                 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
744                     kvm_request_pending(vcpu)) {
745                         vcpu->mode = OUTSIDE_GUEST_MODE;
746                         isb(); /* Ensure work in x_flush_hwstate is committed */
747                         kvm_pmu_sync_hwstate(vcpu);
748                         if (static_branch_unlikely(&userspace_irqchip_in_use))
749                                 kvm_timer_sync_hwstate(vcpu);
750                         kvm_vgic_sync_hwstate(vcpu);
751                         local_irq_enable();
752                         preempt_enable();
753                         continue;
754                 }
755
756                 kvm_arm_setup_debug(vcpu);
757
758                 /**************************************************************
759                  * Enter the guest
760                  */
761                 trace_kvm_entry(*vcpu_pc(vcpu));
762                 guest_enter_irqoff();
763
764                 if (has_vhe()) {
765                         kvm_arm_vhe_guest_enter();
766                         ret = kvm_vcpu_run_vhe(vcpu);
767                         kvm_arm_vhe_guest_exit();
768                 } else {
769                         ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
770                 }
771
772                 vcpu->mode = OUTSIDE_GUEST_MODE;
773                 vcpu->stat.exits++;
774                 /*
775                  * Back from guest
776                  *************************************************************/
777
778                 kvm_arm_clear_debug(vcpu);
779
780                 /*
781                  * We must sync the PMU state before the vgic state so
782                  * that the vgic can properly sample the updated state of the
783                  * interrupt line.
784                  */
785                 kvm_pmu_sync_hwstate(vcpu);
786
787                 /*
788                  * Sync the vgic state before syncing the timer state because
789                  * the timer code needs to know if the virtual timer
790                  * interrupts are active.
791                  */
792                 kvm_vgic_sync_hwstate(vcpu);
793
794                 /*
795                  * Sync the timer hardware state before enabling interrupts as
796                  * we don't want vtimer interrupts to race with syncing the
797                  * timer virtual interrupt state.
798                  */
799                 if (static_branch_unlikely(&userspace_irqchip_in_use))
800                         kvm_timer_sync_hwstate(vcpu);
801
802                 kvm_arch_vcpu_ctxsync_fp(vcpu);
803
804                 /*
805                  * We may have taken a host interrupt in HYP mode (ie
806                  * while executing the guest). This interrupt is still
807                  * pending, as we haven't serviced it yet!
808                  *
809                  * We're now back in SVC mode, with interrupts
810                  * disabled.  Enabling the interrupts now will have
811                  * the effect of taking the interrupt again, in SVC
812                  * mode this time.
813                  */
814                 local_irq_enable();
815
816                 /*
817                  * We do local_irq_enable() before calling guest_exit() so
818                  * that if a timer interrupt hits while running the guest we
819                  * account that tick as being spent in the guest.  We enable
820                  * preemption after calling guest_exit() so that if we get
821                  * preempted we make sure ticks after that is not counted as
822                  * guest time.
823                  */
824                 guest_exit();
825                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
826
827                 /* Exit types that need handling before we can be preempted */
828                 handle_exit_early(vcpu, run, ret);
829
830                 preempt_enable();
831
832                 ret = handle_exit(vcpu, run, ret);
833         }
834
835         /* Tell userspace about in-kernel device output levels */
836         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
837                 kvm_timer_update_run(vcpu);
838                 kvm_pmu_update_run(vcpu);
839         }
840
841         kvm_sigset_deactivate(vcpu);
842
843         vcpu_put(vcpu);
844         return ret;
845 }
846
847 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
848 {
849         int bit_index;
850         bool set;
851         unsigned long *hcr;
852
853         if (number == KVM_ARM_IRQ_CPU_IRQ)
854                 bit_index = __ffs(HCR_VI);
855         else /* KVM_ARM_IRQ_CPU_FIQ */
856                 bit_index = __ffs(HCR_VF);
857
858         hcr = vcpu_hcr(vcpu);
859         if (level)
860                 set = test_and_set_bit(bit_index, hcr);
861         else
862                 set = test_and_clear_bit(bit_index, hcr);
863
864         /*
865          * If we didn't change anything, no need to wake up or kick other CPUs
866          */
867         if (set == level)
868                 return 0;
869
870         /*
871          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
872          * trigger a world-switch round on the running physical CPU to set the
873          * virtual IRQ/FIQ fields in the HCR appropriately.
874          */
875         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
876         kvm_vcpu_kick(vcpu);
877
878         return 0;
879 }
880
881 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
882                           bool line_status)
883 {
884         u32 irq = irq_level->irq;
885         unsigned int irq_type, vcpu_idx, irq_num;
886         int nrcpus = atomic_read(&kvm->online_vcpus);
887         struct kvm_vcpu *vcpu = NULL;
888         bool level = irq_level->level;
889
890         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
891         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
892         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
893         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
894
895         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
896
897         switch (irq_type) {
898         case KVM_ARM_IRQ_TYPE_CPU:
899                 if (irqchip_in_kernel(kvm))
900                         return -ENXIO;
901
902                 if (vcpu_idx >= nrcpus)
903                         return -EINVAL;
904
905                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
906                 if (!vcpu)
907                         return -EINVAL;
908
909                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
910                         return -EINVAL;
911
912                 return vcpu_interrupt_line(vcpu, irq_num, level);
913         case KVM_ARM_IRQ_TYPE_PPI:
914                 if (!irqchip_in_kernel(kvm))
915                         return -ENXIO;
916
917                 if (vcpu_idx >= nrcpus)
918                         return -EINVAL;
919
920                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
921                 if (!vcpu)
922                         return -EINVAL;
923
924                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
925                         return -EINVAL;
926
927                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
928         case KVM_ARM_IRQ_TYPE_SPI:
929                 if (!irqchip_in_kernel(kvm))
930                         return -ENXIO;
931
932                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
933                         return -EINVAL;
934
935                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
936         }
937
938         return -EINVAL;
939 }
940
941 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
942                                const struct kvm_vcpu_init *init)
943 {
944         unsigned int i, ret;
945         int phys_target = kvm_target_cpu();
946
947         if (init->target != phys_target)
948                 return -EINVAL;
949
950         /*
951          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
952          * use the same target.
953          */
954         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
955                 return -EINVAL;
956
957         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
958         for (i = 0; i < sizeof(init->features) * 8; i++) {
959                 bool set = (init->features[i / 32] & (1 << (i % 32)));
960
961                 if (set && i >= KVM_VCPU_MAX_FEATURES)
962                         return -ENOENT;
963
964                 /*
965                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
966                  * use the same feature set.
967                  */
968                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
969                     test_bit(i, vcpu->arch.features) != set)
970                         return -EINVAL;
971
972                 if (set)
973                         set_bit(i, vcpu->arch.features);
974         }
975
976         vcpu->arch.target = phys_target;
977
978         /* Now we know what it is, we can reset it. */
979         ret = kvm_reset_vcpu(vcpu);
980         if (ret) {
981                 vcpu->arch.target = -1;
982                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
983         }
984
985         return ret;
986 }
987
988 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
989                                          struct kvm_vcpu_init *init)
990 {
991         int ret;
992
993         ret = kvm_vcpu_set_target(vcpu, init);
994         if (ret)
995                 return ret;
996
997         /*
998          * Ensure a rebooted VM will fault in RAM pages and detect if the
999          * guest MMU is turned off and flush the caches as needed.
1000          */
1001         if (vcpu->arch.has_run_once)
1002                 stage2_unmap_vm(vcpu->kvm);
1003
1004         vcpu_reset_hcr(vcpu);
1005
1006         /*
1007          * Handle the "start in power-off" case.
1008          */
1009         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1010                 vcpu_power_off(vcpu);
1011         else
1012                 vcpu->arch.power_off = false;
1013
1014         return 0;
1015 }
1016
1017 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1018                                  struct kvm_device_attr *attr)
1019 {
1020         int ret = -ENXIO;
1021
1022         switch (attr->group) {
1023         default:
1024                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1025                 break;
1026         }
1027
1028         return ret;
1029 }
1030
1031 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1032                                  struct kvm_device_attr *attr)
1033 {
1034         int ret = -ENXIO;
1035
1036         switch (attr->group) {
1037         default:
1038                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1039                 break;
1040         }
1041
1042         return ret;
1043 }
1044
1045 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1046                                  struct kvm_device_attr *attr)
1047 {
1048         int ret = -ENXIO;
1049
1050         switch (attr->group) {
1051         default:
1052                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1053                 break;
1054         }
1055
1056         return ret;
1057 }
1058
1059 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1060                                    struct kvm_vcpu_events *events)
1061 {
1062         memset(events, 0, sizeof(*events));
1063
1064         return __kvm_arm_vcpu_get_events(vcpu, events);
1065 }
1066
1067 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1068                                    struct kvm_vcpu_events *events)
1069 {
1070         int i;
1071
1072         /* check whether the reserved field is zero */
1073         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1074                 if (events->reserved[i])
1075                         return -EINVAL;
1076
1077         /* check whether the pad field is zero */
1078         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1079                 if (events->exception.pad[i])
1080                         return -EINVAL;
1081
1082         return __kvm_arm_vcpu_set_events(vcpu, events);
1083 }
1084
1085 long kvm_arch_vcpu_ioctl(struct file *filp,
1086                          unsigned int ioctl, unsigned long arg)
1087 {
1088         struct kvm_vcpu *vcpu = filp->private_data;
1089         void __user *argp = (void __user *)arg;
1090         struct kvm_device_attr attr;
1091         long r;
1092
1093         switch (ioctl) {
1094         case KVM_ARM_VCPU_INIT: {
1095                 struct kvm_vcpu_init init;
1096
1097                 r = -EFAULT;
1098                 if (copy_from_user(&init, argp, sizeof(init)))
1099                         break;
1100
1101                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1102                 break;
1103         }
1104         case KVM_SET_ONE_REG:
1105         case KVM_GET_ONE_REG: {
1106                 struct kvm_one_reg reg;
1107
1108                 r = -ENOEXEC;
1109                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1110                         break;
1111
1112                 r = -EFAULT;
1113                 if (copy_from_user(&reg, argp, sizeof(reg)))
1114                         break;
1115
1116                 if (ioctl == KVM_SET_ONE_REG)
1117                         r = kvm_arm_set_reg(vcpu, &reg);
1118                 else
1119                         r = kvm_arm_get_reg(vcpu, &reg);
1120                 break;
1121         }
1122         case KVM_GET_REG_LIST: {
1123                 struct kvm_reg_list __user *user_list = argp;
1124                 struct kvm_reg_list reg_list;
1125                 unsigned n;
1126
1127                 r = -ENOEXEC;
1128                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1129                         break;
1130
1131                 r = -EPERM;
1132                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1133                         break;
1134
1135                 r = -EFAULT;
1136                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1137                         break;
1138                 n = reg_list.n;
1139                 reg_list.n = kvm_arm_num_regs(vcpu);
1140                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1141                         break;
1142                 r = -E2BIG;
1143                 if (n < reg_list.n)
1144                         break;
1145                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1146                 break;
1147         }
1148         case KVM_SET_DEVICE_ATTR: {
1149                 r = -EFAULT;
1150                 if (copy_from_user(&attr, argp, sizeof(attr)))
1151                         break;
1152                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1153                 break;
1154         }
1155         case KVM_GET_DEVICE_ATTR: {
1156                 r = -EFAULT;
1157                 if (copy_from_user(&attr, argp, sizeof(attr)))
1158                         break;
1159                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1160                 break;
1161         }
1162         case KVM_HAS_DEVICE_ATTR: {
1163                 r = -EFAULT;
1164                 if (copy_from_user(&attr, argp, sizeof(attr)))
1165                         break;
1166                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1167                 break;
1168         }
1169         case KVM_GET_VCPU_EVENTS: {
1170                 struct kvm_vcpu_events events;
1171
1172                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1173                         return -EINVAL;
1174
1175                 if (copy_to_user(argp, &events, sizeof(events)))
1176                         return -EFAULT;
1177
1178                 return 0;
1179         }
1180         case KVM_SET_VCPU_EVENTS: {
1181                 struct kvm_vcpu_events events;
1182
1183                 if (copy_from_user(&events, argp, sizeof(events)))
1184                         return -EFAULT;
1185
1186                 return kvm_arm_vcpu_set_events(vcpu, &events);
1187         }
1188         case KVM_ARM_VCPU_FINALIZE: {
1189                 int what;
1190
1191                 if (!kvm_vcpu_initialized(vcpu))
1192                         return -ENOEXEC;
1193
1194                 if (get_user(what, (const int __user *)argp))
1195                         return -EFAULT;
1196
1197                 return kvm_arm_vcpu_finalize(vcpu, what);
1198         }
1199         default:
1200                 r = -EINVAL;
1201         }
1202
1203         return r;
1204 }
1205
1206 /**
1207  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1208  * @kvm: kvm instance
1209  * @log: slot id and address to which we copy the log
1210  *
1211  * Steps 1-4 below provide general overview of dirty page logging. See
1212  * kvm_get_dirty_log_protect() function description for additional details.
1213  *
1214  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1215  * always flush the TLB (step 4) even if previous step failed  and the dirty
1216  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1217  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1218  * writes will be marked dirty for next log read.
1219  *
1220  *   1. Take a snapshot of the bit and clear it if needed.
1221  *   2. Write protect the corresponding page.
1222  *   3. Copy the snapshot to the userspace.
1223  *   4. Flush TLB's if needed.
1224  */
1225 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1226 {
1227         bool flush = false;
1228         int r;
1229
1230         mutex_lock(&kvm->slots_lock);
1231
1232         r = kvm_get_dirty_log_protect(kvm, log, &flush);
1233
1234         if (flush)
1235                 kvm_flush_remote_tlbs(kvm);
1236
1237         mutex_unlock(&kvm->slots_lock);
1238         return r;
1239 }
1240
1241 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1242 {
1243         bool flush = false;
1244         int r;
1245
1246         mutex_lock(&kvm->slots_lock);
1247
1248         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1249
1250         if (flush)
1251                 kvm_flush_remote_tlbs(kvm);
1252
1253         mutex_unlock(&kvm->slots_lock);
1254         return r;
1255 }
1256
1257 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1258                                         struct kvm_arm_device_addr *dev_addr)
1259 {
1260         unsigned long dev_id, type;
1261
1262         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1263                 KVM_ARM_DEVICE_ID_SHIFT;
1264         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1265                 KVM_ARM_DEVICE_TYPE_SHIFT;
1266
1267         switch (dev_id) {
1268         case KVM_ARM_DEVICE_VGIC_V2:
1269                 if (!vgic_present)
1270                         return -ENXIO;
1271                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1272         default:
1273                 return -ENODEV;
1274         }
1275 }
1276
1277 long kvm_arch_vm_ioctl(struct file *filp,
1278                        unsigned int ioctl, unsigned long arg)
1279 {
1280         struct kvm *kvm = filp->private_data;
1281         void __user *argp = (void __user *)arg;
1282
1283         switch (ioctl) {
1284         case KVM_CREATE_IRQCHIP: {
1285                 int ret;
1286                 if (!vgic_present)
1287                         return -ENXIO;
1288                 mutex_lock(&kvm->lock);
1289                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1290                 mutex_unlock(&kvm->lock);
1291                 return ret;
1292         }
1293         case KVM_ARM_SET_DEVICE_ADDR: {
1294                 struct kvm_arm_device_addr dev_addr;
1295
1296                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1297                         return -EFAULT;
1298                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1299         }
1300         case KVM_ARM_PREFERRED_TARGET: {
1301                 int err;
1302                 struct kvm_vcpu_init init;
1303
1304                 err = kvm_vcpu_preferred_target(&init);
1305                 if (err)
1306                         return err;
1307
1308                 if (copy_to_user(argp, &init, sizeof(init)))
1309                         return -EFAULT;
1310
1311                 return 0;
1312         }
1313         default:
1314                 return -EINVAL;
1315         }
1316 }
1317
1318 static void cpu_init_hyp_mode(void *dummy)
1319 {
1320         phys_addr_t pgd_ptr;
1321         unsigned long hyp_stack_ptr;
1322         unsigned long stack_page;
1323         unsigned long vector_ptr;
1324
1325         /* Switch from the HYP stub to our own HYP init vector */
1326         __hyp_set_vectors(kvm_get_idmap_vector());
1327
1328         pgd_ptr = kvm_mmu_get_httbr();
1329         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1330         hyp_stack_ptr = stack_page + PAGE_SIZE;
1331         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1332
1333         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1334         __cpu_init_stage2();
1335 }
1336
1337 static void cpu_hyp_reset(void)
1338 {
1339         if (!is_kernel_in_hyp_mode())
1340                 __hyp_reset_vectors();
1341 }
1342
1343 static void cpu_hyp_reinit(void)
1344 {
1345         kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1346
1347         cpu_hyp_reset();
1348
1349         if (is_kernel_in_hyp_mode())
1350                 kvm_timer_init_vhe();
1351         else
1352                 cpu_init_hyp_mode(NULL);
1353
1354         kvm_arm_init_debug();
1355
1356         if (vgic_present)
1357                 kvm_vgic_init_cpu_hardware();
1358 }
1359
1360 static void _kvm_arch_hardware_enable(void *discard)
1361 {
1362         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1363                 cpu_hyp_reinit();
1364                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1365         }
1366 }
1367
1368 int kvm_arch_hardware_enable(void)
1369 {
1370         _kvm_arch_hardware_enable(NULL);
1371         return 0;
1372 }
1373
1374 static void _kvm_arch_hardware_disable(void *discard)
1375 {
1376         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1377                 cpu_hyp_reset();
1378                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1379         }
1380 }
1381
1382 void kvm_arch_hardware_disable(void)
1383 {
1384         _kvm_arch_hardware_disable(NULL);
1385 }
1386
1387 #ifdef CONFIG_CPU_PM
1388 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1389                                     unsigned long cmd,
1390                                     void *v)
1391 {
1392         /*
1393          * kvm_arm_hardware_enabled is left with its old value over
1394          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1395          * re-enable hyp.
1396          */
1397         switch (cmd) {
1398         case CPU_PM_ENTER:
1399                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1400                         /*
1401                          * don't update kvm_arm_hardware_enabled here
1402                          * so that the hardware will be re-enabled
1403                          * when we resume. See below.
1404                          */
1405                         cpu_hyp_reset();
1406
1407                 return NOTIFY_OK;
1408         case CPU_PM_ENTER_FAILED:
1409         case CPU_PM_EXIT:
1410                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1411                         /* The hardware was enabled before suspend. */
1412                         cpu_hyp_reinit();
1413
1414                 return NOTIFY_OK;
1415
1416         default:
1417                 return NOTIFY_DONE;
1418         }
1419 }
1420
1421 static struct notifier_block hyp_init_cpu_pm_nb = {
1422         .notifier_call = hyp_init_cpu_pm_notifier,
1423 };
1424
1425 static void __init hyp_cpu_pm_init(void)
1426 {
1427         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1428 }
1429 static void __init hyp_cpu_pm_exit(void)
1430 {
1431         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1432 }
1433 #else
1434 static inline void hyp_cpu_pm_init(void)
1435 {
1436 }
1437 static inline void hyp_cpu_pm_exit(void)
1438 {
1439 }
1440 #endif
1441
1442 static int init_common_resources(void)
1443 {
1444         kvm_set_ipa_limit();
1445
1446         return 0;
1447 }
1448
1449 static int init_subsystems(void)
1450 {
1451         int err = 0;
1452
1453         /*
1454          * Enable hardware so that subsystem initialisation can access EL2.
1455          */
1456         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1457
1458         /*
1459          * Register CPU lower-power notifier
1460          */
1461         hyp_cpu_pm_init();
1462
1463         /*
1464          * Init HYP view of VGIC
1465          */
1466         err = kvm_vgic_hyp_init();
1467         switch (err) {
1468         case 0:
1469                 vgic_present = true;
1470                 break;
1471         case -ENODEV:
1472         case -ENXIO:
1473                 vgic_present = false;
1474                 err = 0;
1475                 break;
1476         default:
1477                 goto out;
1478         }
1479
1480         /*
1481          * Init HYP architected timer support
1482          */
1483         err = kvm_timer_hyp_init(vgic_present);
1484         if (err)
1485                 goto out;
1486
1487         kvm_perf_init();
1488         kvm_coproc_table_init();
1489
1490 out:
1491         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1492
1493         return err;
1494 }
1495
1496 static void teardown_hyp_mode(void)
1497 {
1498         int cpu;
1499
1500         free_hyp_pgds();
1501         for_each_possible_cpu(cpu)
1502                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1503         hyp_cpu_pm_exit();
1504 }
1505
1506 /**
1507  * Inits Hyp-mode on all online CPUs
1508  */
1509 static int init_hyp_mode(void)
1510 {
1511         int cpu;
1512         int err = 0;
1513
1514         /*
1515          * Allocate Hyp PGD and setup Hyp identity mapping
1516          */
1517         err = kvm_mmu_init();
1518         if (err)
1519                 goto out_err;
1520
1521         /*
1522          * Allocate stack pages for Hypervisor-mode
1523          */
1524         for_each_possible_cpu(cpu) {
1525                 unsigned long stack_page;
1526
1527                 stack_page = __get_free_page(GFP_KERNEL);
1528                 if (!stack_page) {
1529                         err = -ENOMEM;
1530                         goto out_err;
1531                 }
1532
1533                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1534         }
1535
1536         /*
1537          * Map the Hyp-code called directly from the host
1538          */
1539         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1540                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1541         if (err) {
1542                 kvm_err("Cannot map world-switch code\n");
1543                 goto out_err;
1544         }
1545
1546         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1547                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1548         if (err) {
1549                 kvm_err("Cannot map rodata section\n");
1550                 goto out_err;
1551         }
1552
1553         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1554                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1555         if (err) {
1556                 kvm_err("Cannot map bss section\n");
1557                 goto out_err;
1558         }
1559
1560         err = kvm_map_vectors();
1561         if (err) {
1562                 kvm_err("Cannot map vectors\n");
1563                 goto out_err;
1564         }
1565
1566         /*
1567          * Map the Hyp stack pages
1568          */
1569         for_each_possible_cpu(cpu) {
1570                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1571                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1572                                           PAGE_HYP);
1573
1574                 if (err) {
1575                         kvm_err("Cannot map hyp stack\n");
1576                         goto out_err;
1577                 }
1578         }
1579
1580         for_each_possible_cpu(cpu) {
1581                 kvm_host_data_t *cpu_data;
1582
1583                 cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1584                 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1585
1586                 if (err) {
1587                         kvm_err("Cannot map host CPU state: %d\n", err);
1588                         goto out_err;
1589                 }
1590         }
1591
1592         err = hyp_map_aux_data();
1593         if (err)
1594                 kvm_err("Cannot map host auxiliary data: %d\n", err);
1595
1596         return 0;
1597
1598 out_err:
1599         teardown_hyp_mode();
1600         kvm_err("error initializing Hyp mode: %d\n", err);
1601         return err;
1602 }
1603
1604 static void check_kvm_target_cpu(void *ret)
1605 {
1606         *(int *)ret = kvm_target_cpu();
1607 }
1608
1609 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1610 {
1611         struct kvm_vcpu *vcpu;
1612         int i;
1613
1614         mpidr &= MPIDR_HWID_BITMASK;
1615         kvm_for_each_vcpu(i, vcpu, kvm) {
1616                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1617                         return vcpu;
1618         }
1619         return NULL;
1620 }
1621
1622 bool kvm_arch_has_irq_bypass(void)
1623 {
1624         return true;
1625 }
1626
1627 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1628                                       struct irq_bypass_producer *prod)
1629 {
1630         struct kvm_kernel_irqfd *irqfd =
1631                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1632
1633         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1634                                           &irqfd->irq_entry);
1635 }
1636 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1637                                       struct irq_bypass_producer *prod)
1638 {
1639         struct kvm_kernel_irqfd *irqfd =
1640                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1641
1642         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1643                                      &irqfd->irq_entry);
1644 }
1645
1646 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1647 {
1648         struct kvm_kernel_irqfd *irqfd =
1649                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1650
1651         kvm_arm_halt_guest(irqfd->kvm);
1652 }
1653
1654 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1655 {
1656         struct kvm_kernel_irqfd *irqfd =
1657                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1658
1659         kvm_arm_resume_guest(irqfd->kvm);
1660 }
1661
1662 /**
1663  * Initialize Hyp-mode and memory mappings on all CPUs.
1664  */
1665 int kvm_arch_init(void *opaque)
1666 {
1667         int err;
1668         int ret, cpu;
1669         bool in_hyp_mode;
1670
1671         if (!is_hyp_mode_available()) {
1672                 kvm_info("HYP mode not available\n");
1673                 return -ENODEV;
1674         }
1675
1676         in_hyp_mode = is_kernel_in_hyp_mode();
1677
1678         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1679                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1680                 return -ENODEV;
1681         }
1682
1683         for_each_online_cpu(cpu) {
1684                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1685                 if (ret < 0) {
1686                         kvm_err("Error, CPU %d not supported!\n", cpu);
1687                         return -ENODEV;
1688                 }
1689         }
1690
1691         err = init_common_resources();
1692         if (err)
1693                 return err;
1694
1695         err = kvm_arm_init_sve();
1696         if (err)
1697                 return err;
1698
1699         if (!in_hyp_mode) {
1700                 err = init_hyp_mode();
1701                 if (err)
1702                         goto out_err;
1703         }
1704
1705         err = init_subsystems();
1706         if (err)
1707                 goto out_hyp;
1708
1709         if (in_hyp_mode)
1710                 kvm_info("VHE mode initialized successfully\n");
1711         else
1712                 kvm_info("Hyp mode initialized successfully\n");
1713
1714         return 0;
1715
1716 out_hyp:
1717         if (!in_hyp_mode)
1718                 teardown_hyp_mode();
1719 out_err:
1720         return err;
1721 }
1722
1723 /* NOP: Compiling as a module not supported */
1724 void kvm_arch_exit(void)
1725 {
1726         kvm_perf_teardown();
1727 }
1728
1729 static int arm_init(void)
1730 {
1731         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1732         return rc;
1733 }
1734
1735 module_init(arm_init);