1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 #include <kvm/arm_pmu.h>
24 #include <kvm/arm_psci.h>
26 #define CREATE_TRACE_POINTS
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_emulate.h>
40 #include <asm/kvm_coproc.h>
41 #include <asm/sections.h>
44 __asm__(".arch_extension virt");
47 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
48 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
50 /* Per-CPU variable containing the currently running vcpu. */
51 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
53 /* The VMID used in the VTTBR */
54 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55 static u32 kvm_next_vmid;
56 static DEFINE_SPINLOCK(kvm_vmid_lock);
58 static bool vgic_present;
60 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
62 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
64 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
67 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
70 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
71 * Must be called from non-preemptible context
73 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 return __this_cpu_read(kvm_arm_running_vcpu);
79 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
81 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
83 return &kvm_arm_running_vcpu;
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
88 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
91 int kvm_arch_hardware_setup(void)
96 int kvm_arch_check_processor_compat(void)
103 * kvm_arch_init_vm - initializes a VM data structure
104 * @kvm: pointer to the KVM struct
106 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
110 ret = kvm_arm_setup_stage2(kvm, type);
114 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
115 if (!kvm->arch.last_vcpu_ran)
118 for_each_possible_cpu(cpu)
119 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
121 ret = kvm_alloc_stage2_pgd(kvm);
125 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 goto out_free_stage2_pgd;
129 kvm_vgic_early_init(kvm);
131 /* Mark the initial VMID generation invalid */
132 kvm->arch.vmid.vmid_gen = 0;
134 /* The maximum number of VCPUs is limited by the host's GIC model */
135 kvm->arch.max_vcpus = vgic_present ?
136 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
140 kvm_free_stage2_pgd(kvm);
142 free_percpu(kvm->arch.last_vcpu_ran);
143 kvm->arch.last_vcpu_ran = NULL;
147 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
152 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
154 return VM_FAULT_SIGBUS;
159 * kvm_arch_destroy_vm - destroy the VM data structure
160 * @kvm: pointer to the KVM struct
162 void kvm_arch_destroy_vm(struct kvm *kvm)
166 kvm_vgic_destroy(kvm);
168 free_percpu(kvm->arch.last_vcpu_ran);
169 kvm->arch.last_vcpu_ran = NULL;
171 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
173 kvm_arch_vcpu_free(kvm->vcpus[i]);
174 kvm->vcpus[i] = NULL;
177 atomic_set(&kvm->online_vcpus, 0);
180 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
184 case KVM_CAP_IRQCHIP:
187 case KVM_CAP_IOEVENTFD:
188 case KVM_CAP_DEVICE_CTRL:
189 case KVM_CAP_USER_MEMORY:
190 case KVM_CAP_SYNC_MMU:
191 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
192 case KVM_CAP_ONE_REG:
193 case KVM_CAP_ARM_PSCI:
194 case KVM_CAP_ARM_PSCI_0_2:
195 case KVM_CAP_READONLY_MEM:
196 case KVM_CAP_MP_STATE:
197 case KVM_CAP_IMMEDIATE_EXIT:
198 case KVM_CAP_VCPU_EVENTS:
199 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
202 case KVM_CAP_ARM_SET_DEVICE_ADDR:
205 case KVM_CAP_NR_VCPUS:
206 r = num_online_cpus();
208 case KVM_CAP_MAX_VCPUS:
211 case KVM_CAP_MAX_VCPU_ID:
214 case KVM_CAP_MSI_DEVID:
218 r = kvm->arch.vgic.msis_require_devid;
220 case KVM_CAP_ARM_USER_IRQ:
222 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
223 * (bump this number if adding more devices)
228 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
234 long kvm_arch_dev_ioctl(struct file *filp,
235 unsigned int ioctl, unsigned long arg)
240 struct kvm *kvm_arch_alloc_vm(void)
243 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
245 return vzalloc(sizeof(struct kvm));
248 void kvm_arch_free_vm(struct kvm *kvm)
256 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
259 struct kvm_vcpu *vcpu;
261 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
266 if (id >= kvm->arch.max_vcpus) {
271 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
277 err = kvm_vcpu_init(vcpu, kvm, id);
281 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
287 kvm_vcpu_uninit(vcpu);
289 kmem_cache_free(kvm_vcpu_cache, vcpu);
294 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
298 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
300 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
301 static_branch_dec(&userspace_irqchip_in_use);
303 kvm_mmu_free_memory_caches(vcpu);
304 kvm_timer_vcpu_terminate(vcpu);
305 kvm_pmu_vcpu_destroy(vcpu);
306 kvm_vcpu_uninit(vcpu);
307 kmem_cache_free(kvm_vcpu_cache, vcpu);
310 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
312 kvm_arch_vcpu_free(vcpu);
315 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
317 return kvm_timer_is_pending(vcpu);
320 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
323 * If we're about to block (most likely because we've just hit a
324 * WFI), we need to sync back the state of the GIC CPU interface
325 * so that we have the lastest PMR and group enables. This ensures
326 * that kvm_arch_vcpu_runnable has up-to-date data to decide
327 * whether we have pending interrupts.
330 kvm_vgic_vmcr_sync(vcpu);
333 kvm_vgic_v4_enable_doorbell(vcpu);
336 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
338 kvm_vgic_v4_disable_doorbell(vcpu);
341 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
343 /* Force users to call KVM_ARM_VCPU_INIT */
344 vcpu->arch.target = -1;
345 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
347 /* Set up the timer */
348 kvm_timer_vcpu_init(vcpu);
350 kvm_pmu_vcpu_init(vcpu);
352 kvm_arm_reset_debug_ptr(vcpu);
354 return kvm_vgic_vcpu_init(vcpu);
357 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
360 kvm_host_data_t *cpu_data;
362 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
363 cpu_data = this_cpu_ptr(&kvm_host_data);
366 * We might get preempted before the vCPU actually runs, but
367 * over-invalidation doesn't affect correctness.
369 if (*last_ran != vcpu->vcpu_id) {
370 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
371 *last_ran = vcpu->vcpu_id;
375 vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
377 kvm_arm_set_running_vcpu(vcpu);
379 kvm_timer_vcpu_load(vcpu);
380 kvm_vcpu_load_sysregs(vcpu);
381 kvm_arch_vcpu_load_fp(vcpu);
382 kvm_vcpu_pmu_restore_guest(vcpu);
384 if (single_task_running())
385 vcpu_clear_wfe_traps(vcpu);
387 vcpu_set_wfe_traps(vcpu);
389 vcpu_ptrauth_setup_lazy(vcpu);
392 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
394 kvm_arch_vcpu_put_fp(vcpu);
395 kvm_vcpu_put_sysregs(vcpu);
396 kvm_timer_vcpu_put(vcpu);
398 kvm_vcpu_pmu_restore_host(vcpu);
402 kvm_arm_set_running_vcpu(NULL);
405 static void vcpu_power_off(struct kvm_vcpu *vcpu)
407 vcpu->arch.power_off = true;
408 kvm_make_request(KVM_REQ_SLEEP, vcpu);
412 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
413 struct kvm_mp_state *mp_state)
415 if (vcpu->arch.power_off)
416 mp_state->mp_state = KVM_MP_STATE_STOPPED;
418 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
423 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
424 struct kvm_mp_state *mp_state)
428 switch (mp_state->mp_state) {
429 case KVM_MP_STATE_RUNNABLE:
430 vcpu->arch.power_off = false;
432 case KVM_MP_STATE_STOPPED:
433 vcpu_power_off(vcpu);
443 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
444 * @v: The VCPU pointer
446 * If the guest CPU is not waiting for interrupts or an interrupt line is
447 * asserted, the CPU is by definition runnable.
449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
451 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
452 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453 && !v->arch.power_off && !v->arch.pause);
456 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
458 return vcpu_mode_priv(vcpu);
461 /* Just ensure a guest exit from a particular CPU */
462 static void exit_vm_noop(void *info)
466 void force_vm_exit(const cpumask_t *mask)
469 smp_call_function_many(mask, exit_vm_noop, NULL, true);
474 * need_new_vmid_gen - check that the VMID is still valid
475 * @vmid: The VMID to check
477 * return true if there is a new generation of VMIDs being used
479 * The hardware supports a limited set of values with the value zero reserved
480 * for the host, so we check if an assigned value belongs to a previous
481 * generation, which which requires us to assign a new value. If we're the
482 * first to use a VMID for the new generation, we must flush necessary caches
483 * and TLBs on all CPUs.
485 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
487 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
488 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
489 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
493 * update_vmid - Update the vmid with a valid VMID for the current generation
494 * @kvm: The guest that struct vmid belongs to
495 * @vmid: The stage-2 VMID information struct
497 static void update_vmid(struct kvm_vmid *vmid)
499 if (!need_new_vmid_gen(vmid))
502 spin_lock(&kvm_vmid_lock);
505 * We need to re-check the vmid_gen here to ensure that if another vcpu
506 * already allocated a valid vmid for this vm, then this vcpu should
509 if (!need_new_vmid_gen(vmid)) {
510 spin_unlock(&kvm_vmid_lock);
514 /* First user of a new VMID generation? */
515 if (unlikely(kvm_next_vmid == 0)) {
516 atomic64_inc(&kvm_vmid_gen);
520 * On SMP we know no other CPUs can use this CPU's or each
521 * other's VMID after force_vm_exit returns since the
522 * kvm_vmid_lock blocks them from reentry to the guest.
524 force_vm_exit(cpu_all_mask);
526 * Now broadcast TLB + ICACHE invalidation over the inner
527 * shareable domain to make sure all data structures are
530 kvm_call_hyp(__kvm_flush_vm_context);
533 vmid->vmid = kvm_next_vmid;
535 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
538 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
540 spin_unlock(&kvm_vmid_lock);
543 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
545 struct kvm *kvm = vcpu->kvm;
548 if (likely(vcpu->arch.has_run_once))
551 if (!kvm_arm_vcpu_is_finalized(vcpu))
554 vcpu->arch.has_run_once = true;
556 if (likely(irqchip_in_kernel(kvm))) {
558 * Map the VGIC hardware resources before running a vcpu the
559 * first time on this VM.
561 if (unlikely(!vgic_ready(kvm))) {
562 ret = kvm_vgic_map_resources(kvm);
568 * Tell the rest of the code that there are userspace irqchip
571 static_branch_inc(&userspace_irqchip_in_use);
574 ret = kvm_timer_enable(vcpu);
578 ret = kvm_arm_pmu_v3_enable(vcpu);
583 bool kvm_arch_intc_initialized(struct kvm *kvm)
585 return vgic_initialized(kvm);
588 void kvm_arm_halt_guest(struct kvm *kvm)
591 struct kvm_vcpu *vcpu;
593 kvm_for_each_vcpu(i, vcpu, kvm)
594 vcpu->arch.pause = true;
595 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
598 void kvm_arm_resume_guest(struct kvm *kvm)
601 struct kvm_vcpu *vcpu;
603 kvm_for_each_vcpu(i, vcpu, kvm) {
604 vcpu->arch.pause = false;
605 swake_up_one(kvm_arch_vcpu_wq(vcpu));
609 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
611 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
613 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
614 (!vcpu->arch.pause)));
616 if (vcpu->arch.power_off || vcpu->arch.pause) {
617 /* Awaken to handle a signal, request we sleep again later. */
618 kvm_make_request(KVM_REQ_SLEEP, vcpu);
622 * Make sure we will observe a potential reset request if we've
623 * observed a change to the power state. Pairs with the smp_wmb() in
624 * kvm_psci_vcpu_on().
629 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
631 return vcpu->arch.target >= 0;
634 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
636 if (kvm_request_pending(vcpu)) {
637 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
638 vcpu_req_sleep(vcpu);
640 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
641 kvm_reset_vcpu(vcpu);
644 * Clear IRQ_PENDING requests that were made to guarantee
645 * that a VCPU sees new virtual interrupts.
647 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
652 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
653 * @vcpu: The VCPU pointer
654 * @run: The kvm_run structure pointer used for userspace state exchange
656 * This function is called through the VCPU_RUN ioctl called from user space. It
657 * will execute VM code in a loop until the time slice for the process is used
658 * or some emulation is needed from user space in which case the function will
659 * return with return value 0 and with the kvm_run structure filled in with the
660 * required data for the requested emulation.
662 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
666 if (unlikely(!kvm_vcpu_initialized(vcpu)))
669 ret = kvm_vcpu_first_run_init(vcpu);
673 if (run->exit_reason == KVM_EXIT_MMIO) {
674 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
679 if (run->immediate_exit)
684 kvm_sigset_activate(vcpu);
687 run->exit_reason = KVM_EXIT_UNKNOWN;
690 * Check conditions before entering the guest
694 update_vmid(&vcpu->kvm->arch.vmid);
696 check_vcpu_requests(vcpu);
699 * Preparing the interrupts to be injected also
700 * involves poking the GIC, which must be done in a
701 * non-preemptible context.
705 kvm_pmu_flush_hwstate(vcpu);
709 kvm_vgic_flush_hwstate(vcpu);
712 * Exit if we have a signal pending so that we can deliver the
713 * signal to user space.
715 if (signal_pending(current)) {
717 run->exit_reason = KVM_EXIT_INTR;
721 * If we're using a userspace irqchip, then check if we need
722 * to tell a userspace irqchip about timer or PMU level
723 * changes and if so, exit to userspace (the actual level
724 * state gets updated in kvm_timer_update_run and
725 * kvm_pmu_update_run below).
727 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
728 if (kvm_timer_should_notify_user(vcpu) ||
729 kvm_pmu_should_notify_user(vcpu)) {
731 run->exit_reason = KVM_EXIT_INTR;
736 * Ensure we set mode to IN_GUEST_MODE after we disable
737 * interrupts and before the final VCPU requests check.
738 * See the comment in kvm_vcpu_exiting_guest_mode() and
739 * Documentation/virt/kvm/vcpu-requests.rst
741 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
743 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
744 kvm_request_pending(vcpu)) {
745 vcpu->mode = OUTSIDE_GUEST_MODE;
746 isb(); /* Ensure work in x_flush_hwstate is committed */
747 kvm_pmu_sync_hwstate(vcpu);
748 if (static_branch_unlikely(&userspace_irqchip_in_use))
749 kvm_timer_sync_hwstate(vcpu);
750 kvm_vgic_sync_hwstate(vcpu);
756 kvm_arm_setup_debug(vcpu);
758 /**************************************************************
761 trace_kvm_entry(*vcpu_pc(vcpu));
762 guest_enter_irqoff();
765 kvm_arm_vhe_guest_enter();
766 ret = kvm_vcpu_run_vhe(vcpu);
767 kvm_arm_vhe_guest_exit();
769 ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
772 vcpu->mode = OUTSIDE_GUEST_MODE;
776 *************************************************************/
778 kvm_arm_clear_debug(vcpu);
781 * We must sync the PMU state before the vgic state so
782 * that the vgic can properly sample the updated state of the
785 kvm_pmu_sync_hwstate(vcpu);
788 * Sync the vgic state before syncing the timer state because
789 * the timer code needs to know if the virtual timer
790 * interrupts are active.
792 kvm_vgic_sync_hwstate(vcpu);
795 * Sync the timer hardware state before enabling interrupts as
796 * we don't want vtimer interrupts to race with syncing the
797 * timer virtual interrupt state.
799 if (static_branch_unlikely(&userspace_irqchip_in_use))
800 kvm_timer_sync_hwstate(vcpu);
802 kvm_arch_vcpu_ctxsync_fp(vcpu);
805 * We may have taken a host interrupt in HYP mode (ie
806 * while executing the guest). This interrupt is still
807 * pending, as we haven't serviced it yet!
809 * We're now back in SVC mode, with interrupts
810 * disabled. Enabling the interrupts now will have
811 * the effect of taking the interrupt again, in SVC
817 * We do local_irq_enable() before calling guest_exit() so
818 * that if a timer interrupt hits while running the guest we
819 * account that tick as being spent in the guest. We enable
820 * preemption after calling guest_exit() so that if we get
821 * preempted we make sure ticks after that is not counted as
825 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
827 /* Exit types that need handling before we can be preempted */
828 handle_exit_early(vcpu, run, ret);
832 ret = handle_exit(vcpu, run, ret);
835 /* Tell userspace about in-kernel device output levels */
836 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
837 kvm_timer_update_run(vcpu);
838 kvm_pmu_update_run(vcpu);
841 kvm_sigset_deactivate(vcpu);
847 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
853 if (number == KVM_ARM_IRQ_CPU_IRQ)
854 bit_index = __ffs(HCR_VI);
855 else /* KVM_ARM_IRQ_CPU_FIQ */
856 bit_index = __ffs(HCR_VF);
858 hcr = vcpu_hcr(vcpu);
860 set = test_and_set_bit(bit_index, hcr);
862 set = test_and_clear_bit(bit_index, hcr);
865 * If we didn't change anything, no need to wake up or kick other CPUs
871 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
872 * trigger a world-switch round on the running physical CPU to set the
873 * virtual IRQ/FIQ fields in the HCR appropriately.
875 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
881 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
884 u32 irq = irq_level->irq;
885 unsigned int irq_type, vcpu_idx, irq_num;
886 int nrcpus = atomic_read(&kvm->online_vcpus);
887 struct kvm_vcpu *vcpu = NULL;
888 bool level = irq_level->level;
890 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
891 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
892 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
893 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
895 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
898 case KVM_ARM_IRQ_TYPE_CPU:
899 if (irqchip_in_kernel(kvm))
902 if (vcpu_idx >= nrcpus)
905 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
909 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
912 return vcpu_interrupt_line(vcpu, irq_num, level);
913 case KVM_ARM_IRQ_TYPE_PPI:
914 if (!irqchip_in_kernel(kvm))
917 if (vcpu_idx >= nrcpus)
920 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
924 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
927 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
928 case KVM_ARM_IRQ_TYPE_SPI:
929 if (!irqchip_in_kernel(kvm))
932 if (irq_num < VGIC_NR_PRIVATE_IRQS)
935 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
941 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
942 const struct kvm_vcpu_init *init)
945 int phys_target = kvm_target_cpu();
947 if (init->target != phys_target)
951 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
952 * use the same target.
954 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
957 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
958 for (i = 0; i < sizeof(init->features) * 8; i++) {
959 bool set = (init->features[i / 32] & (1 << (i % 32)));
961 if (set && i >= KVM_VCPU_MAX_FEATURES)
965 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
966 * use the same feature set.
968 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
969 test_bit(i, vcpu->arch.features) != set)
973 set_bit(i, vcpu->arch.features);
976 vcpu->arch.target = phys_target;
978 /* Now we know what it is, we can reset it. */
979 ret = kvm_reset_vcpu(vcpu);
981 vcpu->arch.target = -1;
982 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
988 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
989 struct kvm_vcpu_init *init)
993 ret = kvm_vcpu_set_target(vcpu, init);
998 * Ensure a rebooted VM will fault in RAM pages and detect if the
999 * guest MMU is turned off and flush the caches as needed.
1001 if (vcpu->arch.has_run_once)
1002 stage2_unmap_vm(vcpu->kvm);
1004 vcpu_reset_hcr(vcpu);
1007 * Handle the "start in power-off" case.
1009 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1010 vcpu_power_off(vcpu);
1012 vcpu->arch.power_off = false;
1017 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1018 struct kvm_device_attr *attr)
1022 switch (attr->group) {
1024 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1031 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1032 struct kvm_device_attr *attr)
1036 switch (attr->group) {
1038 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1045 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1046 struct kvm_device_attr *attr)
1050 switch (attr->group) {
1052 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1059 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1060 struct kvm_vcpu_events *events)
1062 memset(events, 0, sizeof(*events));
1064 return __kvm_arm_vcpu_get_events(vcpu, events);
1067 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1068 struct kvm_vcpu_events *events)
1072 /* check whether the reserved field is zero */
1073 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1074 if (events->reserved[i])
1077 /* check whether the pad field is zero */
1078 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1079 if (events->exception.pad[i])
1082 return __kvm_arm_vcpu_set_events(vcpu, events);
1085 long kvm_arch_vcpu_ioctl(struct file *filp,
1086 unsigned int ioctl, unsigned long arg)
1088 struct kvm_vcpu *vcpu = filp->private_data;
1089 void __user *argp = (void __user *)arg;
1090 struct kvm_device_attr attr;
1094 case KVM_ARM_VCPU_INIT: {
1095 struct kvm_vcpu_init init;
1098 if (copy_from_user(&init, argp, sizeof(init)))
1101 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1104 case KVM_SET_ONE_REG:
1105 case KVM_GET_ONE_REG: {
1106 struct kvm_one_reg reg;
1109 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1113 if (copy_from_user(®, argp, sizeof(reg)))
1116 if (ioctl == KVM_SET_ONE_REG)
1117 r = kvm_arm_set_reg(vcpu, ®);
1119 r = kvm_arm_get_reg(vcpu, ®);
1122 case KVM_GET_REG_LIST: {
1123 struct kvm_reg_list __user *user_list = argp;
1124 struct kvm_reg_list reg_list;
1128 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1132 if (!kvm_arm_vcpu_is_finalized(vcpu))
1136 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1139 reg_list.n = kvm_arm_num_regs(vcpu);
1140 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1145 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1148 case KVM_SET_DEVICE_ATTR: {
1150 if (copy_from_user(&attr, argp, sizeof(attr)))
1152 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1155 case KVM_GET_DEVICE_ATTR: {
1157 if (copy_from_user(&attr, argp, sizeof(attr)))
1159 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1162 case KVM_HAS_DEVICE_ATTR: {
1164 if (copy_from_user(&attr, argp, sizeof(attr)))
1166 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1169 case KVM_GET_VCPU_EVENTS: {
1170 struct kvm_vcpu_events events;
1172 if (kvm_arm_vcpu_get_events(vcpu, &events))
1175 if (copy_to_user(argp, &events, sizeof(events)))
1180 case KVM_SET_VCPU_EVENTS: {
1181 struct kvm_vcpu_events events;
1183 if (copy_from_user(&events, argp, sizeof(events)))
1186 return kvm_arm_vcpu_set_events(vcpu, &events);
1188 case KVM_ARM_VCPU_FINALIZE: {
1191 if (!kvm_vcpu_initialized(vcpu))
1194 if (get_user(what, (const int __user *)argp))
1197 return kvm_arm_vcpu_finalize(vcpu, what);
1207 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1208 * @kvm: kvm instance
1209 * @log: slot id and address to which we copy the log
1211 * Steps 1-4 below provide general overview of dirty page logging. See
1212 * kvm_get_dirty_log_protect() function description for additional details.
1214 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1215 * always flush the TLB (step 4) even if previous step failed and the dirty
1216 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1217 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1218 * writes will be marked dirty for next log read.
1220 * 1. Take a snapshot of the bit and clear it if needed.
1221 * 2. Write protect the corresponding page.
1222 * 3. Copy the snapshot to the userspace.
1223 * 4. Flush TLB's if needed.
1225 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1230 mutex_lock(&kvm->slots_lock);
1232 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1235 kvm_flush_remote_tlbs(kvm);
1237 mutex_unlock(&kvm->slots_lock);
1241 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1246 mutex_lock(&kvm->slots_lock);
1248 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1251 kvm_flush_remote_tlbs(kvm);
1253 mutex_unlock(&kvm->slots_lock);
1257 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1258 struct kvm_arm_device_addr *dev_addr)
1260 unsigned long dev_id, type;
1262 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1263 KVM_ARM_DEVICE_ID_SHIFT;
1264 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1265 KVM_ARM_DEVICE_TYPE_SHIFT;
1268 case KVM_ARM_DEVICE_VGIC_V2:
1271 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1277 long kvm_arch_vm_ioctl(struct file *filp,
1278 unsigned int ioctl, unsigned long arg)
1280 struct kvm *kvm = filp->private_data;
1281 void __user *argp = (void __user *)arg;
1284 case KVM_CREATE_IRQCHIP: {
1288 mutex_lock(&kvm->lock);
1289 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1290 mutex_unlock(&kvm->lock);
1293 case KVM_ARM_SET_DEVICE_ADDR: {
1294 struct kvm_arm_device_addr dev_addr;
1296 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1298 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1300 case KVM_ARM_PREFERRED_TARGET: {
1302 struct kvm_vcpu_init init;
1304 err = kvm_vcpu_preferred_target(&init);
1308 if (copy_to_user(argp, &init, sizeof(init)))
1318 static void cpu_init_hyp_mode(void *dummy)
1320 phys_addr_t pgd_ptr;
1321 unsigned long hyp_stack_ptr;
1322 unsigned long stack_page;
1323 unsigned long vector_ptr;
1325 /* Switch from the HYP stub to our own HYP init vector */
1326 __hyp_set_vectors(kvm_get_idmap_vector());
1328 pgd_ptr = kvm_mmu_get_httbr();
1329 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1330 hyp_stack_ptr = stack_page + PAGE_SIZE;
1331 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1333 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1334 __cpu_init_stage2();
1337 static void cpu_hyp_reset(void)
1339 if (!is_kernel_in_hyp_mode())
1340 __hyp_reset_vectors();
1343 static void cpu_hyp_reinit(void)
1345 kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1349 if (is_kernel_in_hyp_mode())
1350 kvm_timer_init_vhe();
1352 cpu_init_hyp_mode(NULL);
1354 kvm_arm_init_debug();
1357 kvm_vgic_init_cpu_hardware();
1360 static void _kvm_arch_hardware_enable(void *discard)
1362 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1364 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1368 int kvm_arch_hardware_enable(void)
1370 _kvm_arch_hardware_enable(NULL);
1374 static void _kvm_arch_hardware_disable(void *discard)
1376 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1378 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1382 void kvm_arch_hardware_disable(void)
1384 _kvm_arch_hardware_disable(NULL);
1387 #ifdef CONFIG_CPU_PM
1388 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1393 * kvm_arm_hardware_enabled is left with its old value over
1394 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1399 if (__this_cpu_read(kvm_arm_hardware_enabled))
1401 * don't update kvm_arm_hardware_enabled here
1402 * so that the hardware will be re-enabled
1403 * when we resume. See below.
1408 case CPU_PM_ENTER_FAILED:
1410 if (__this_cpu_read(kvm_arm_hardware_enabled))
1411 /* The hardware was enabled before suspend. */
1421 static struct notifier_block hyp_init_cpu_pm_nb = {
1422 .notifier_call = hyp_init_cpu_pm_notifier,
1425 static void __init hyp_cpu_pm_init(void)
1427 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1429 static void __init hyp_cpu_pm_exit(void)
1431 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1434 static inline void hyp_cpu_pm_init(void)
1437 static inline void hyp_cpu_pm_exit(void)
1442 static int init_common_resources(void)
1444 kvm_set_ipa_limit();
1449 static int init_subsystems(void)
1454 * Enable hardware so that subsystem initialisation can access EL2.
1456 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1459 * Register CPU lower-power notifier
1464 * Init HYP view of VGIC
1466 err = kvm_vgic_hyp_init();
1469 vgic_present = true;
1473 vgic_present = false;
1481 * Init HYP architected timer support
1483 err = kvm_timer_hyp_init(vgic_present);
1488 kvm_coproc_table_init();
1491 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1496 static void teardown_hyp_mode(void)
1501 for_each_possible_cpu(cpu)
1502 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1507 * Inits Hyp-mode on all online CPUs
1509 static int init_hyp_mode(void)
1515 * Allocate Hyp PGD and setup Hyp identity mapping
1517 err = kvm_mmu_init();
1522 * Allocate stack pages for Hypervisor-mode
1524 for_each_possible_cpu(cpu) {
1525 unsigned long stack_page;
1527 stack_page = __get_free_page(GFP_KERNEL);
1533 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1537 * Map the Hyp-code called directly from the host
1539 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1540 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1542 kvm_err("Cannot map world-switch code\n");
1546 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1547 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1549 kvm_err("Cannot map rodata section\n");
1553 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1554 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1556 kvm_err("Cannot map bss section\n");
1560 err = kvm_map_vectors();
1562 kvm_err("Cannot map vectors\n");
1567 * Map the Hyp stack pages
1569 for_each_possible_cpu(cpu) {
1570 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1571 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1575 kvm_err("Cannot map hyp stack\n");
1580 for_each_possible_cpu(cpu) {
1581 kvm_host_data_t *cpu_data;
1583 cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1584 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1587 kvm_err("Cannot map host CPU state: %d\n", err);
1592 err = hyp_map_aux_data();
1594 kvm_err("Cannot map host auxiliary data: %d\n", err);
1599 teardown_hyp_mode();
1600 kvm_err("error initializing Hyp mode: %d\n", err);
1604 static void check_kvm_target_cpu(void *ret)
1606 *(int *)ret = kvm_target_cpu();
1609 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1611 struct kvm_vcpu *vcpu;
1614 mpidr &= MPIDR_HWID_BITMASK;
1615 kvm_for_each_vcpu(i, vcpu, kvm) {
1616 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1622 bool kvm_arch_has_irq_bypass(void)
1627 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1628 struct irq_bypass_producer *prod)
1630 struct kvm_kernel_irqfd *irqfd =
1631 container_of(cons, struct kvm_kernel_irqfd, consumer);
1633 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1636 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1637 struct irq_bypass_producer *prod)
1639 struct kvm_kernel_irqfd *irqfd =
1640 container_of(cons, struct kvm_kernel_irqfd, consumer);
1642 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1646 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1648 struct kvm_kernel_irqfd *irqfd =
1649 container_of(cons, struct kvm_kernel_irqfd, consumer);
1651 kvm_arm_halt_guest(irqfd->kvm);
1654 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1656 struct kvm_kernel_irqfd *irqfd =
1657 container_of(cons, struct kvm_kernel_irqfd, consumer);
1659 kvm_arm_resume_guest(irqfd->kvm);
1663 * Initialize Hyp-mode and memory mappings on all CPUs.
1665 int kvm_arch_init(void *opaque)
1671 if (!is_hyp_mode_available()) {
1672 kvm_info("HYP mode not available\n");
1676 in_hyp_mode = is_kernel_in_hyp_mode();
1678 if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1679 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1683 for_each_online_cpu(cpu) {
1684 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1686 kvm_err("Error, CPU %d not supported!\n", cpu);
1691 err = init_common_resources();
1695 err = kvm_arm_init_sve();
1700 err = init_hyp_mode();
1705 err = init_subsystems();
1710 kvm_info("VHE mode initialized successfully\n");
1712 kvm_info("Hyp mode initialized successfully\n");
1718 teardown_hyp_mode();
1723 /* NOP: Compiling as a module not supported */
1724 void kvm_arch_exit(void)
1726 kvm_perf_teardown();
1729 static int arm_init(void)
1731 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1735 module_init(arm_init);