Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-starfive.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension        virt");
57 #endif
58
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static DEFINE_SPINLOCK(kvm_vmid_lock);
69
70 static bool vgic_present;
71
72 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
73
74 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
75 {
76         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 }
78
79 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
80
81 /**
82  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
83  * Must be called from non-preemptible context
84  */
85 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
86 {
87         return __this_cpu_read(kvm_arm_running_vcpu);
88 }
89
90 /**
91  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
92  */
93 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
94 {
95         return &kvm_arm_running_vcpu;
96 }
97
98 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
99 {
100         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105         return 0;
106 }
107
108 void kvm_arch_check_processor_compat(void *rtn)
109 {
110         *(int *)rtn = 0;
111 }
112
113
114 /**
115  * kvm_arch_init_vm - initializes a VM data structure
116  * @kvm:        pointer to the KVM struct
117  */
118 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
119 {
120         int ret, cpu;
121
122         ret = kvm_arm_setup_stage2(kvm, type);
123         if (ret)
124                 return ret;
125
126         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
127         if (!kvm->arch.last_vcpu_ran)
128                 return -ENOMEM;
129
130         for_each_possible_cpu(cpu)
131                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
132
133         ret = kvm_alloc_stage2_pgd(kvm);
134         if (ret)
135                 goto out_fail_alloc;
136
137         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138         if (ret)
139                 goto out_free_stage2_pgd;
140
141         kvm_vgic_early_init(kvm);
142
143         /* Mark the initial VMID generation invalid */
144         kvm->arch.vmid.vmid_gen = 0;
145
146         /* The maximum number of VCPUs is limited by the host's GIC model */
147         kvm->arch.max_vcpus = vgic_present ?
148                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149
150         return ret;
151 out_free_stage2_pgd:
152         kvm_free_stage2_pgd(kvm);
153 out_fail_alloc:
154         free_percpu(kvm->arch.last_vcpu_ran);
155         kvm->arch.last_vcpu_ran = NULL;
156         return ret;
157 }
158
159 bool kvm_arch_has_vcpu_debugfs(void)
160 {
161         return false;
162 }
163
164 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
165 {
166         return 0;
167 }
168
169 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 {
171         return VM_FAULT_SIGBUS;
172 }
173
174
175 /**
176  * kvm_arch_destroy_vm - destroy the VM data structure
177  * @kvm:        pointer to the KVM struct
178  */
179 void kvm_arch_destroy_vm(struct kvm *kvm)
180 {
181         int i;
182
183         kvm_vgic_destroy(kvm);
184
185         free_percpu(kvm->arch.last_vcpu_ran);
186         kvm->arch.last_vcpu_ran = NULL;
187
188         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
189                 if (kvm->vcpus[i]) {
190                         kvm_arch_vcpu_free(kvm->vcpus[i]);
191                         kvm->vcpus[i] = NULL;
192                 }
193         }
194         atomic_set(&kvm->online_vcpus, 0);
195 }
196
197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 {
199         int r;
200         switch (ext) {
201         case KVM_CAP_IRQCHIP:
202                 r = vgic_present;
203                 break;
204         case KVM_CAP_IOEVENTFD:
205         case KVM_CAP_DEVICE_CTRL:
206         case KVM_CAP_USER_MEMORY:
207         case KVM_CAP_SYNC_MMU:
208         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209         case KVM_CAP_ONE_REG:
210         case KVM_CAP_ARM_PSCI:
211         case KVM_CAP_ARM_PSCI_0_2:
212         case KVM_CAP_READONLY_MEM:
213         case KVM_CAP_MP_STATE:
214         case KVM_CAP_IMMEDIATE_EXIT:
215         case KVM_CAP_VCPU_EVENTS:
216                 r = 1;
217                 break;
218         case KVM_CAP_ARM_SET_DEVICE_ADDR:
219                 r = 1;
220                 break;
221         case KVM_CAP_NR_VCPUS:
222                 r = num_online_cpus();
223                 break;
224         case KVM_CAP_MAX_VCPUS:
225                 r = KVM_MAX_VCPUS;
226                 break;
227         case KVM_CAP_NR_MEMSLOTS:
228                 r = KVM_USER_MEM_SLOTS;
229                 break;
230         case KVM_CAP_MSI_DEVID:
231                 if (!kvm)
232                         r = -EINVAL;
233                 else
234                         r = kvm->arch.vgic.msis_require_devid;
235                 break;
236         case KVM_CAP_ARM_USER_IRQ:
237                 /*
238                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
239                  * (bump this number if adding more devices)
240                  */
241                 r = 1;
242                 break;
243         default:
244                 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
245                 break;
246         }
247         return r;
248 }
249
250 long kvm_arch_dev_ioctl(struct file *filp,
251                         unsigned int ioctl, unsigned long arg)
252 {
253         return -EINVAL;
254 }
255
256 struct kvm *kvm_arch_alloc_vm(void)
257 {
258         if (!has_vhe())
259                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
260
261         return vzalloc(sizeof(struct kvm));
262 }
263
264 void kvm_arch_free_vm(struct kvm *kvm)
265 {
266         if (!has_vhe())
267                 kfree(kvm);
268         else
269                 vfree(kvm);
270 }
271
272 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
273 {
274         int err;
275         struct kvm_vcpu *vcpu;
276
277         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
278                 err = -EBUSY;
279                 goto out;
280         }
281
282         if (id >= kvm->arch.max_vcpus) {
283                 err = -EINVAL;
284                 goto out;
285         }
286
287         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
288         if (!vcpu) {
289                 err = -ENOMEM;
290                 goto out;
291         }
292
293         err = kvm_vcpu_init(vcpu, kvm, id);
294         if (err)
295                 goto free_vcpu;
296
297         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
298         if (err)
299                 goto vcpu_uninit;
300
301         return vcpu;
302 vcpu_uninit:
303         kvm_vcpu_uninit(vcpu);
304 free_vcpu:
305         kmem_cache_free(kvm_vcpu_cache, vcpu);
306 out:
307         return ERR_PTR(err);
308 }
309
310 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
311 {
312 }
313
314 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
315 {
316         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
317                 static_branch_dec(&userspace_irqchip_in_use);
318
319         kvm_mmu_free_memory_caches(vcpu);
320         kvm_timer_vcpu_terminate(vcpu);
321         kvm_pmu_vcpu_destroy(vcpu);
322         kvm_vcpu_uninit(vcpu);
323         kmem_cache_free(kvm_vcpu_cache, vcpu);
324 }
325
326 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
327 {
328         kvm_arch_vcpu_free(vcpu);
329 }
330
331 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
332 {
333         return kvm_timer_is_pending(vcpu);
334 }
335
336 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
337 {
338         kvm_vgic_v4_enable_doorbell(vcpu);
339 }
340
341 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
342 {
343         kvm_vgic_v4_disable_doorbell(vcpu);
344 }
345
346 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
347 {
348         /* Force users to call KVM_ARM_VCPU_INIT */
349         vcpu->arch.target = -1;
350         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
351
352         /* Set up the timer */
353         kvm_timer_vcpu_init(vcpu);
354
355         kvm_arm_reset_debug_ptr(vcpu);
356
357         return kvm_vgic_vcpu_init(vcpu);
358 }
359
360 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
361 {
362         int *last_ran;
363
364         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
365
366         /*
367          * We might get preempted before the vCPU actually runs, but
368          * over-invalidation doesn't affect correctness.
369          */
370         if (*last_ran != vcpu->vcpu_id) {
371                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
372                 *last_ran = vcpu->vcpu_id;
373         }
374
375         vcpu->cpu = cpu;
376         vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
377
378         kvm_arm_set_running_vcpu(vcpu);
379         kvm_vgic_load(vcpu);
380         kvm_timer_vcpu_load(vcpu);
381         kvm_vcpu_load_sysregs(vcpu);
382         kvm_arch_vcpu_load_fp(vcpu);
383
384         if (single_task_running())
385                 vcpu_clear_wfe_traps(vcpu);
386         else
387                 vcpu_set_wfe_traps(vcpu);
388 }
389
390 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
391 {
392         kvm_arch_vcpu_put_fp(vcpu);
393         kvm_vcpu_put_sysregs(vcpu);
394         kvm_timer_vcpu_put(vcpu);
395         kvm_vgic_put(vcpu);
396
397         vcpu->cpu = -1;
398
399         kvm_arm_set_running_vcpu(NULL);
400 }
401
402 static void vcpu_power_off(struct kvm_vcpu *vcpu)
403 {
404         vcpu->arch.power_off = true;
405         kvm_make_request(KVM_REQ_SLEEP, vcpu);
406         kvm_vcpu_kick(vcpu);
407 }
408
409 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
410                                     struct kvm_mp_state *mp_state)
411 {
412         if (vcpu->arch.power_off)
413                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
414         else
415                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
416
417         return 0;
418 }
419
420 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
421                                     struct kvm_mp_state *mp_state)
422 {
423         int ret = 0;
424
425         switch (mp_state->mp_state) {
426         case KVM_MP_STATE_RUNNABLE:
427                 vcpu->arch.power_off = false;
428                 break;
429         case KVM_MP_STATE_STOPPED:
430                 vcpu_power_off(vcpu);
431                 break;
432         default:
433                 ret = -EINVAL;
434         }
435
436         return ret;
437 }
438
439 /**
440  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
441  * @v:          The VCPU pointer
442  *
443  * If the guest CPU is not waiting for interrupts or an interrupt line is
444  * asserted, the CPU is by definition runnable.
445  */
446 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
447 {
448         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
449         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
450                 && !v->arch.power_off && !v->arch.pause);
451 }
452
453 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
454 {
455         return vcpu_mode_priv(vcpu);
456 }
457
458 /* Just ensure a guest exit from a particular CPU */
459 static void exit_vm_noop(void *info)
460 {
461 }
462
463 void force_vm_exit(const cpumask_t *mask)
464 {
465         preempt_disable();
466         smp_call_function_many(mask, exit_vm_noop, NULL, true);
467         preempt_enable();
468 }
469
470 /**
471  * need_new_vmid_gen - check that the VMID is still valid
472  * @vmid: The VMID to check
473  *
474  * return true if there is a new generation of VMIDs being used
475  *
476  * The hardware supports a limited set of values with the value zero reserved
477  * for the host, so we check if an assigned value belongs to a previous
478  * generation, which which requires us to assign a new value. If we're the
479  * first to use a VMID for the new generation, we must flush necessary caches
480  * and TLBs on all CPUs.
481  */
482 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
483 {
484         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
485         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
486         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
487 }
488
489 /**
490  * update_vmid - Update the vmid with a valid VMID for the current generation
491  * @kvm: The guest that struct vmid belongs to
492  * @vmid: The stage-2 VMID information struct
493  */
494 static void update_vmid(struct kvm_vmid *vmid)
495 {
496         if (!need_new_vmid_gen(vmid))
497                 return;
498
499         spin_lock(&kvm_vmid_lock);
500
501         /*
502          * We need to re-check the vmid_gen here to ensure that if another vcpu
503          * already allocated a valid vmid for this vm, then this vcpu should
504          * use the same vmid.
505          */
506         if (!need_new_vmid_gen(vmid)) {
507                 spin_unlock(&kvm_vmid_lock);
508                 return;
509         }
510
511         /* First user of a new VMID generation? */
512         if (unlikely(kvm_next_vmid == 0)) {
513                 atomic64_inc(&kvm_vmid_gen);
514                 kvm_next_vmid = 1;
515
516                 /*
517                  * On SMP we know no other CPUs can use this CPU's or each
518                  * other's VMID after force_vm_exit returns since the
519                  * kvm_vmid_lock blocks them from reentry to the guest.
520                  */
521                 force_vm_exit(cpu_all_mask);
522                 /*
523                  * Now broadcast TLB + ICACHE invalidation over the inner
524                  * shareable domain to make sure all data structures are
525                  * clean.
526                  */
527                 kvm_call_hyp(__kvm_flush_vm_context);
528         }
529
530         vmid->vmid = kvm_next_vmid;
531         kvm_next_vmid++;
532         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
533
534         smp_wmb();
535         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
536
537         spin_unlock(&kvm_vmid_lock);
538 }
539
540 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
541 {
542         struct kvm *kvm = vcpu->kvm;
543         int ret = 0;
544
545         if (likely(vcpu->arch.has_run_once))
546                 return 0;
547
548         vcpu->arch.has_run_once = true;
549
550         if (likely(irqchip_in_kernel(kvm))) {
551                 /*
552                  * Map the VGIC hardware resources before running a vcpu the
553                  * first time on this VM.
554                  */
555                 if (unlikely(!vgic_ready(kvm))) {
556                         ret = kvm_vgic_map_resources(kvm);
557                         if (ret)
558                                 return ret;
559                 }
560         } else {
561                 /*
562                  * Tell the rest of the code that there are userspace irqchip
563                  * VMs in the wild.
564                  */
565                 static_branch_inc(&userspace_irqchip_in_use);
566         }
567
568         ret = kvm_timer_enable(vcpu);
569         if (ret)
570                 return ret;
571
572         ret = kvm_arm_pmu_v3_enable(vcpu);
573
574         return ret;
575 }
576
577 bool kvm_arch_intc_initialized(struct kvm *kvm)
578 {
579         return vgic_initialized(kvm);
580 }
581
582 void kvm_arm_halt_guest(struct kvm *kvm)
583 {
584         int i;
585         struct kvm_vcpu *vcpu;
586
587         kvm_for_each_vcpu(i, vcpu, kvm)
588                 vcpu->arch.pause = true;
589         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
590 }
591
592 void kvm_arm_resume_guest(struct kvm *kvm)
593 {
594         int i;
595         struct kvm_vcpu *vcpu;
596
597         kvm_for_each_vcpu(i, vcpu, kvm) {
598                 vcpu->arch.pause = false;
599                 swake_up_one(kvm_arch_vcpu_wq(vcpu));
600         }
601 }
602
603 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
604 {
605         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
606
607         swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
608                                        (!vcpu->arch.pause)));
609
610         if (vcpu->arch.power_off || vcpu->arch.pause) {
611                 /* Awaken to handle a signal, request we sleep again later. */
612                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
613         }
614
615         /*
616          * Make sure we will observe a potential reset request if we've
617          * observed a change to the power state. Pairs with the smp_wmb() in
618          * kvm_psci_vcpu_on().
619          */
620         smp_rmb();
621 }
622
623 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
624 {
625         return vcpu->arch.target >= 0;
626 }
627
628 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
629 {
630         if (kvm_request_pending(vcpu)) {
631                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
632                         vcpu_req_sleep(vcpu);
633
634                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
635                         kvm_reset_vcpu(vcpu);
636
637                 /*
638                  * Clear IRQ_PENDING requests that were made to guarantee
639                  * that a VCPU sees new virtual interrupts.
640                  */
641                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
642         }
643 }
644
645 /**
646  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
647  * @vcpu:       The VCPU pointer
648  * @run:        The kvm_run structure pointer used for userspace state exchange
649  *
650  * This function is called through the VCPU_RUN ioctl called from user space. It
651  * will execute VM code in a loop until the time slice for the process is used
652  * or some emulation is needed from user space in which case the function will
653  * return with return value 0 and with the kvm_run structure filled in with the
654  * required data for the requested emulation.
655  */
656 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
657 {
658         int ret;
659
660         if (unlikely(!kvm_vcpu_initialized(vcpu)))
661                 return -ENOEXEC;
662
663         ret = kvm_vcpu_first_run_init(vcpu);
664         if (ret)
665                 return ret;
666
667         if (run->exit_reason == KVM_EXIT_MMIO) {
668                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
669                 if (ret)
670                         return ret;
671         }
672
673         if (run->immediate_exit)
674                 return -EINTR;
675
676         vcpu_load(vcpu);
677
678         kvm_sigset_activate(vcpu);
679
680         ret = 1;
681         run->exit_reason = KVM_EXIT_UNKNOWN;
682         while (ret > 0) {
683                 /*
684                  * Check conditions before entering the guest
685                  */
686                 cond_resched();
687
688                 update_vmid(&vcpu->kvm->arch.vmid);
689
690                 check_vcpu_requests(vcpu);
691
692                 /*
693                  * Preparing the interrupts to be injected also
694                  * involves poking the GIC, which must be done in a
695                  * non-preemptible context.
696                  */
697                 preempt_disable();
698
699                 kvm_pmu_flush_hwstate(vcpu);
700
701                 local_irq_disable();
702
703                 kvm_vgic_flush_hwstate(vcpu);
704
705                 /*
706                  * Exit if we have a signal pending so that we can deliver the
707                  * signal to user space.
708                  */
709                 if (signal_pending(current)) {
710                         ret = -EINTR;
711                         run->exit_reason = KVM_EXIT_INTR;
712                 }
713
714                 /*
715                  * If we're using a userspace irqchip, then check if we need
716                  * to tell a userspace irqchip about timer or PMU level
717                  * changes and if so, exit to userspace (the actual level
718                  * state gets updated in kvm_timer_update_run and
719                  * kvm_pmu_update_run below).
720                  */
721                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
722                         if (kvm_timer_should_notify_user(vcpu) ||
723                             kvm_pmu_should_notify_user(vcpu)) {
724                                 ret = -EINTR;
725                                 run->exit_reason = KVM_EXIT_INTR;
726                         }
727                 }
728
729                 /*
730                  * Ensure we set mode to IN_GUEST_MODE after we disable
731                  * interrupts and before the final VCPU requests check.
732                  * See the comment in kvm_vcpu_exiting_guest_mode() and
733                  * Documentation/virtual/kvm/vcpu-requests.rst
734                  */
735                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
736
737                 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
738                     kvm_request_pending(vcpu)) {
739                         vcpu->mode = OUTSIDE_GUEST_MODE;
740                         isb(); /* Ensure work in x_flush_hwstate is committed */
741                         kvm_pmu_sync_hwstate(vcpu);
742                         if (static_branch_unlikely(&userspace_irqchip_in_use))
743                                 kvm_timer_sync_hwstate(vcpu);
744                         kvm_vgic_sync_hwstate(vcpu);
745                         local_irq_enable();
746                         preempt_enable();
747                         continue;
748                 }
749
750                 kvm_arm_setup_debug(vcpu);
751
752                 /**************************************************************
753                  * Enter the guest
754                  */
755                 trace_kvm_entry(*vcpu_pc(vcpu));
756                 guest_enter_irqoff();
757
758                 if (has_vhe()) {
759                         kvm_arm_vhe_guest_enter();
760                         ret = kvm_vcpu_run_vhe(vcpu);
761                         kvm_arm_vhe_guest_exit();
762                 } else {
763                         ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
764                 }
765
766                 vcpu->mode = OUTSIDE_GUEST_MODE;
767                 vcpu->stat.exits++;
768                 /*
769                  * Back from guest
770                  *************************************************************/
771
772                 kvm_arm_clear_debug(vcpu);
773
774                 /*
775                  * We must sync the PMU state before the vgic state so
776                  * that the vgic can properly sample the updated state of the
777                  * interrupt line.
778                  */
779                 kvm_pmu_sync_hwstate(vcpu);
780
781                 /*
782                  * Sync the vgic state before syncing the timer state because
783                  * the timer code needs to know if the virtual timer
784                  * interrupts are active.
785                  */
786                 kvm_vgic_sync_hwstate(vcpu);
787
788                 /*
789                  * Sync the timer hardware state before enabling interrupts as
790                  * we don't want vtimer interrupts to race with syncing the
791                  * timer virtual interrupt state.
792                  */
793                 if (static_branch_unlikely(&userspace_irqchip_in_use))
794                         kvm_timer_sync_hwstate(vcpu);
795
796                 kvm_arch_vcpu_ctxsync_fp(vcpu);
797
798                 /*
799                  * We may have taken a host interrupt in HYP mode (ie
800                  * while executing the guest). This interrupt is still
801                  * pending, as we haven't serviced it yet!
802                  *
803                  * We're now back in SVC mode, with interrupts
804                  * disabled.  Enabling the interrupts now will have
805                  * the effect of taking the interrupt again, in SVC
806                  * mode this time.
807                  */
808                 local_irq_enable();
809
810                 /*
811                  * We do local_irq_enable() before calling guest_exit() so
812                  * that if a timer interrupt hits while running the guest we
813                  * account that tick as being spent in the guest.  We enable
814                  * preemption after calling guest_exit() so that if we get
815                  * preempted we make sure ticks after that is not counted as
816                  * guest time.
817                  */
818                 guest_exit();
819                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
820
821                 /* Exit types that need handling before we can be preempted */
822                 handle_exit_early(vcpu, run, ret);
823
824                 preempt_enable();
825
826                 ret = handle_exit(vcpu, run, ret);
827         }
828
829         /* Tell userspace about in-kernel device output levels */
830         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
831                 kvm_timer_update_run(vcpu);
832                 kvm_pmu_update_run(vcpu);
833         }
834
835         kvm_sigset_deactivate(vcpu);
836
837         vcpu_put(vcpu);
838         return ret;
839 }
840
841 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
842 {
843         int bit_index;
844         bool set;
845         unsigned long *hcr;
846
847         if (number == KVM_ARM_IRQ_CPU_IRQ)
848                 bit_index = __ffs(HCR_VI);
849         else /* KVM_ARM_IRQ_CPU_FIQ */
850                 bit_index = __ffs(HCR_VF);
851
852         hcr = vcpu_hcr(vcpu);
853         if (level)
854                 set = test_and_set_bit(bit_index, hcr);
855         else
856                 set = test_and_clear_bit(bit_index, hcr);
857
858         /*
859          * If we didn't change anything, no need to wake up or kick other CPUs
860          */
861         if (set == level)
862                 return 0;
863
864         /*
865          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
866          * trigger a world-switch round on the running physical CPU to set the
867          * virtual IRQ/FIQ fields in the HCR appropriately.
868          */
869         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
870         kvm_vcpu_kick(vcpu);
871
872         return 0;
873 }
874
875 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
876                           bool line_status)
877 {
878         u32 irq = irq_level->irq;
879         unsigned int irq_type, vcpu_idx, irq_num;
880         int nrcpus = atomic_read(&kvm->online_vcpus);
881         struct kvm_vcpu *vcpu = NULL;
882         bool level = irq_level->level;
883
884         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
885         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
886         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
887
888         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
889
890         switch (irq_type) {
891         case KVM_ARM_IRQ_TYPE_CPU:
892                 if (irqchip_in_kernel(kvm))
893                         return -ENXIO;
894
895                 if (vcpu_idx >= nrcpus)
896                         return -EINVAL;
897
898                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
899                 if (!vcpu)
900                         return -EINVAL;
901
902                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
903                         return -EINVAL;
904
905                 return vcpu_interrupt_line(vcpu, irq_num, level);
906         case KVM_ARM_IRQ_TYPE_PPI:
907                 if (!irqchip_in_kernel(kvm))
908                         return -ENXIO;
909
910                 if (vcpu_idx >= nrcpus)
911                         return -EINVAL;
912
913                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
914                 if (!vcpu)
915                         return -EINVAL;
916
917                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
918                         return -EINVAL;
919
920                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
921         case KVM_ARM_IRQ_TYPE_SPI:
922                 if (!irqchip_in_kernel(kvm))
923                         return -ENXIO;
924
925                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
926                         return -EINVAL;
927
928                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
929         }
930
931         return -EINVAL;
932 }
933
934 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
935                                const struct kvm_vcpu_init *init)
936 {
937         unsigned int i;
938         int phys_target = kvm_target_cpu();
939
940         if (init->target != phys_target)
941                 return -EINVAL;
942
943         /*
944          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
945          * use the same target.
946          */
947         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
948                 return -EINVAL;
949
950         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
951         for (i = 0; i < sizeof(init->features) * 8; i++) {
952                 bool set = (init->features[i / 32] & (1 << (i % 32)));
953
954                 if (set && i >= KVM_VCPU_MAX_FEATURES)
955                         return -ENOENT;
956
957                 /*
958                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
959                  * use the same feature set.
960                  */
961                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
962                     test_bit(i, vcpu->arch.features) != set)
963                         return -EINVAL;
964
965                 if (set)
966                         set_bit(i, vcpu->arch.features);
967         }
968
969         vcpu->arch.target = phys_target;
970
971         /* Now we know what it is, we can reset it. */
972         return kvm_reset_vcpu(vcpu);
973 }
974
975
976 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
977                                          struct kvm_vcpu_init *init)
978 {
979         int ret;
980
981         ret = kvm_vcpu_set_target(vcpu, init);
982         if (ret)
983                 return ret;
984
985         /*
986          * Ensure a rebooted VM will fault in RAM pages and detect if the
987          * guest MMU is turned off and flush the caches as needed.
988          */
989         if (vcpu->arch.has_run_once)
990                 stage2_unmap_vm(vcpu->kvm);
991
992         vcpu_reset_hcr(vcpu);
993
994         /*
995          * Handle the "start in power-off" case.
996          */
997         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
998                 vcpu_power_off(vcpu);
999         else
1000                 vcpu->arch.power_off = false;
1001
1002         return 0;
1003 }
1004
1005 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1006                                  struct kvm_device_attr *attr)
1007 {
1008         int ret = -ENXIO;
1009
1010         switch (attr->group) {
1011         default:
1012                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1013                 break;
1014         }
1015
1016         return ret;
1017 }
1018
1019 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1020                                  struct kvm_device_attr *attr)
1021 {
1022         int ret = -ENXIO;
1023
1024         switch (attr->group) {
1025         default:
1026                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1027                 break;
1028         }
1029
1030         return ret;
1031 }
1032
1033 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1034                                  struct kvm_device_attr *attr)
1035 {
1036         int ret = -ENXIO;
1037
1038         switch (attr->group) {
1039         default:
1040                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1041                 break;
1042         }
1043
1044         return ret;
1045 }
1046
1047 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1048                                    struct kvm_vcpu_events *events)
1049 {
1050         memset(events, 0, sizeof(*events));
1051
1052         return __kvm_arm_vcpu_get_events(vcpu, events);
1053 }
1054
1055 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1056                                    struct kvm_vcpu_events *events)
1057 {
1058         int i;
1059
1060         /* check whether the reserved field is zero */
1061         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1062                 if (events->reserved[i])
1063                         return -EINVAL;
1064
1065         /* check whether the pad field is zero */
1066         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1067                 if (events->exception.pad[i])
1068                         return -EINVAL;
1069
1070         return __kvm_arm_vcpu_set_events(vcpu, events);
1071 }
1072
1073 long kvm_arch_vcpu_ioctl(struct file *filp,
1074                          unsigned int ioctl, unsigned long arg)
1075 {
1076         struct kvm_vcpu *vcpu = filp->private_data;
1077         void __user *argp = (void __user *)arg;
1078         struct kvm_device_attr attr;
1079         long r;
1080
1081         switch (ioctl) {
1082         case KVM_ARM_VCPU_INIT: {
1083                 struct kvm_vcpu_init init;
1084
1085                 r = -EFAULT;
1086                 if (copy_from_user(&init, argp, sizeof(init)))
1087                         break;
1088
1089                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1090                 break;
1091         }
1092         case KVM_SET_ONE_REG:
1093         case KVM_GET_ONE_REG: {
1094                 struct kvm_one_reg reg;
1095
1096                 r = -ENOEXEC;
1097                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1098                         break;
1099
1100                 r = -EFAULT;
1101                 if (copy_from_user(&reg, argp, sizeof(reg)))
1102                         break;
1103
1104                 if (ioctl == KVM_SET_ONE_REG)
1105                         r = kvm_arm_set_reg(vcpu, &reg);
1106                 else
1107                         r = kvm_arm_get_reg(vcpu, &reg);
1108                 break;
1109         }
1110         case KVM_GET_REG_LIST: {
1111                 struct kvm_reg_list __user *user_list = argp;
1112                 struct kvm_reg_list reg_list;
1113                 unsigned n;
1114
1115                 r = -ENOEXEC;
1116                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1117                         break;
1118
1119                 r = -EFAULT;
1120                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1121                         break;
1122                 n = reg_list.n;
1123                 reg_list.n = kvm_arm_num_regs(vcpu);
1124                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1125                         break;
1126                 r = -E2BIG;
1127                 if (n < reg_list.n)
1128                         break;
1129                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1130                 break;
1131         }
1132         case KVM_SET_DEVICE_ATTR: {
1133                 r = -EFAULT;
1134                 if (copy_from_user(&attr, argp, sizeof(attr)))
1135                         break;
1136                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1137                 break;
1138         }
1139         case KVM_GET_DEVICE_ATTR: {
1140                 r = -EFAULT;
1141                 if (copy_from_user(&attr, argp, sizeof(attr)))
1142                         break;
1143                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1144                 break;
1145         }
1146         case KVM_HAS_DEVICE_ATTR: {
1147                 r = -EFAULT;
1148                 if (copy_from_user(&attr, argp, sizeof(attr)))
1149                         break;
1150                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1151                 break;
1152         }
1153         case KVM_GET_VCPU_EVENTS: {
1154                 struct kvm_vcpu_events events;
1155
1156                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1157                         return -EINVAL;
1158
1159                 if (copy_to_user(argp, &events, sizeof(events)))
1160                         return -EFAULT;
1161
1162                 return 0;
1163         }
1164         case KVM_SET_VCPU_EVENTS: {
1165                 struct kvm_vcpu_events events;
1166
1167                 if (copy_from_user(&events, argp, sizeof(events)))
1168                         return -EFAULT;
1169
1170                 return kvm_arm_vcpu_set_events(vcpu, &events);
1171         }
1172         default:
1173                 r = -EINVAL;
1174         }
1175
1176         return r;
1177 }
1178
1179 /**
1180  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1181  * @kvm: kvm instance
1182  * @log: slot id and address to which we copy the log
1183  *
1184  * Steps 1-4 below provide general overview of dirty page logging. See
1185  * kvm_get_dirty_log_protect() function description for additional details.
1186  *
1187  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1188  * always flush the TLB (step 4) even if previous step failed  and the dirty
1189  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1190  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1191  * writes will be marked dirty for next log read.
1192  *
1193  *   1. Take a snapshot of the bit and clear it if needed.
1194  *   2. Write protect the corresponding page.
1195  *   3. Copy the snapshot to the userspace.
1196  *   4. Flush TLB's if needed.
1197  */
1198 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1199 {
1200         bool flush = false;
1201         int r;
1202
1203         mutex_lock(&kvm->slots_lock);
1204
1205         r = kvm_get_dirty_log_protect(kvm, log, &flush);
1206
1207         if (flush)
1208                 kvm_flush_remote_tlbs(kvm);
1209
1210         mutex_unlock(&kvm->slots_lock);
1211         return r;
1212 }
1213
1214 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1215 {
1216         bool flush = false;
1217         int r;
1218
1219         mutex_lock(&kvm->slots_lock);
1220
1221         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1222
1223         if (flush)
1224                 kvm_flush_remote_tlbs(kvm);
1225
1226         mutex_unlock(&kvm->slots_lock);
1227         return r;
1228 }
1229
1230 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1231                                         struct kvm_arm_device_addr *dev_addr)
1232 {
1233         unsigned long dev_id, type;
1234
1235         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1236                 KVM_ARM_DEVICE_ID_SHIFT;
1237         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1238                 KVM_ARM_DEVICE_TYPE_SHIFT;
1239
1240         switch (dev_id) {
1241         case KVM_ARM_DEVICE_VGIC_V2:
1242                 if (!vgic_present)
1243                         return -ENXIO;
1244                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1245         default:
1246                 return -ENODEV;
1247         }
1248 }
1249
1250 long kvm_arch_vm_ioctl(struct file *filp,
1251                        unsigned int ioctl, unsigned long arg)
1252 {
1253         struct kvm *kvm = filp->private_data;
1254         void __user *argp = (void __user *)arg;
1255
1256         switch (ioctl) {
1257         case KVM_CREATE_IRQCHIP: {
1258                 int ret;
1259                 if (!vgic_present)
1260                         return -ENXIO;
1261                 mutex_lock(&kvm->lock);
1262                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1263                 mutex_unlock(&kvm->lock);
1264                 return ret;
1265         }
1266         case KVM_ARM_SET_DEVICE_ADDR: {
1267                 struct kvm_arm_device_addr dev_addr;
1268
1269                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1270                         return -EFAULT;
1271                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1272         }
1273         case KVM_ARM_PREFERRED_TARGET: {
1274                 int err;
1275                 struct kvm_vcpu_init init;
1276
1277                 err = kvm_vcpu_preferred_target(&init);
1278                 if (err)
1279                         return err;
1280
1281                 if (copy_to_user(argp, &init, sizeof(init)))
1282                         return -EFAULT;
1283
1284                 return 0;
1285         }
1286         default:
1287                 return -EINVAL;
1288         }
1289 }
1290
1291 static void cpu_init_hyp_mode(void *dummy)
1292 {
1293         phys_addr_t pgd_ptr;
1294         unsigned long hyp_stack_ptr;
1295         unsigned long stack_page;
1296         unsigned long vector_ptr;
1297
1298         /* Switch from the HYP stub to our own HYP init vector */
1299         __hyp_set_vectors(kvm_get_idmap_vector());
1300
1301         pgd_ptr = kvm_mmu_get_httbr();
1302         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1303         hyp_stack_ptr = stack_page + PAGE_SIZE;
1304         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1305
1306         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1307         __cpu_init_stage2();
1308 }
1309
1310 static void cpu_hyp_reset(void)
1311 {
1312         if (!is_kernel_in_hyp_mode())
1313                 __hyp_reset_vectors();
1314 }
1315
1316 static void cpu_hyp_reinit(void)
1317 {
1318         cpu_hyp_reset();
1319
1320         if (is_kernel_in_hyp_mode())
1321                 kvm_timer_init_vhe();
1322         else
1323                 cpu_init_hyp_mode(NULL);
1324
1325         kvm_arm_init_debug();
1326
1327         if (vgic_present)
1328                 kvm_vgic_init_cpu_hardware();
1329 }
1330
1331 static void _kvm_arch_hardware_enable(void *discard)
1332 {
1333         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1334                 cpu_hyp_reinit();
1335                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1336         }
1337 }
1338
1339 int kvm_arch_hardware_enable(void)
1340 {
1341         _kvm_arch_hardware_enable(NULL);
1342         return 0;
1343 }
1344
1345 static void _kvm_arch_hardware_disable(void *discard)
1346 {
1347         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1348                 cpu_hyp_reset();
1349                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1350         }
1351 }
1352
1353 void kvm_arch_hardware_disable(void)
1354 {
1355         _kvm_arch_hardware_disable(NULL);
1356 }
1357
1358 #ifdef CONFIG_CPU_PM
1359 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1360                                     unsigned long cmd,
1361                                     void *v)
1362 {
1363         /*
1364          * kvm_arm_hardware_enabled is left with its old value over
1365          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1366          * re-enable hyp.
1367          */
1368         switch (cmd) {
1369         case CPU_PM_ENTER:
1370                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1371                         /*
1372                          * don't update kvm_arm_hardware_enabled here
1373                          * so that the hardware will be re-enabled
1374                          * when we resume. See below.
1375                          */
1376                         cpu_hyp_reset();
1377
1378                 return NOTIFY_OK;
1379         case CPU_PM_ENTER_FAILED:
1380         case CPU_PM_EXIT:
1381                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1382                         /* The hardware was enabled before suspend. */
1383                         cpu_hyp_reinit();
1384
1385                 return NOTIFY_OK;
1386
1387         default:
1388                 return NOTIFY_DONE;
1389         }
1390 }
1391
1392 static struct notifier_block hyp_init_cpu_pm_nb = {
1393         .notifier_call = hyp_init_cpu_pm_notifier,
1394 };
1395
1396 static void __init hyp_cpu_pm_init(void)
1397 {
1398         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1399 }
1400 static void __init hyp_cpu_pm_exit(void)
1401 {
1402         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1403 }
1404 #else
1405 static inline void hyp_cpu_pm_init(void)
1406 {
1407 }
1408 static inline void hyp_cpu_pm_exit(void)
1409 {
1410 }
1411 #endif
1412
1413 static int init_common_resources(void)
1414 {
1415         kvm_set_ipa_limit();
1416
1417         return 0;
1418 }
1419
1420 static int init_subsystems(void)
1421 {
1422         int err = 0;
1423
1424         /*
1425          * Enable hardware so that subsystem initialisation can access EL2.
1426          */
1427         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1428
1429         /*
1430          * Register CPU lower-power notifier
1431          */
1432         hyp_cpu_pm_init();
1433
1434         /*
1435          * Init HYP view of VGIC
1436          */
1437         err = kvm_vgic_hyp_init();
1438         switch (err) {
1439         case 0:
1440                 vgic_present = true;
1441                 break;
1442         case -ENODEV:
1443         case -ENXIO:
1444                 vgic_present = false;
1445                 err = 0;
1446                 break;
1447         default:
1448                 goto out;
1449         }
1450
1451         /*
1452          * Init HYP architected timer support
1453          */
1454         err = kvm_timer_hyp_init(vgic_present);
1455         if (err)
1456                 goto out;
1457
1458         kvm_perf_init();
1459         kvm_coproc_table_init();
1460
1461 out:
1462         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1463
1464         return err;
1465 }
1466
1467 static void teardown_hyp_mode(void)
1468 {
1469         int cpu;
1470
1471         free_hyp_pgds();
1472         for_each_possible_cpu(cpu)
1473                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1474         hyp_cpu_pm_exit();
1475 }
1476
1477 /**
1478  * Inits Hyp-mode on all online CPUs
1479  */
1480 static int init_hyp_mode(void)
1481 {
1482         int cpu;
1483         int err = 0;
1484
1485         /*
1486          * Allocate Hyp PGD and setup Hyp identity mapping
1487          */
1488         err = kvm_mmu_init();
1489         if (err)
1490                 goto out_err;
1491
1492         /*
1493          * Allocate stack pages for Hypervisor-mode
1494          */
1495         for_each_possible_cpu(cpu) {
1496                 unsigned long stack_page;
1497
1498                 stack_page = __get_free_page(GFP_KERNEL);
1499                 if (!stack_page) {
1500                         err = -ENOMEM;
1501                         goto out_err;
1502                 }
1503
1504                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1505         }
1506
1507         /*
1508          * Map the Hyp-code called directly from the host
1509          */
1510         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1511                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1512         if (err) {
1513                 kvm_err("Cannot map world-switch code\n");
1514                 goto out_err;
1515         }
1516
1517         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1518                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1519         if (err) {
1520                 kvm_err("Cannot map rodata section\n");
1521                 goto out_err;
1522         }
1523
1524         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1525                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1526         if (err) {
1527                 kvm_err("Cannot map bss section\n");
1528                 goto out_err;
1529         }
1530
1531         err = kvm_map_vectors();
1532         if (err) {
1533                 kvm_err("Cannot map vectors\n");
1534                 goto out_err;
1535         }
1536
1537         /*
1538          * Map the Hyp stack pages
1539          */
1540         for_each_possible_cpu(cpu) {
1541                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1542                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1543                                           PAGE_HYP);
1544
1545                 if (err) {
1546                         kvm_err("Cannot map hyp stack\n");
1547                         goto out_err;
1548                 }
1549         }
1550
1551         for_each_possible_cpu(cpu) {
1552                 kvm_cpu_context_t *cpu_ctxt;
1553
1554                 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1555                 kvm_init_host_cpu_context(cpu_ctxt, cpu);
1556                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1557
1558                 if (err) {
1559                         kvm_err("Cannot map host CPU state: %d\n", err);
1560                         goto out_err;
1561                 }
1562         }
1563
1564         err = hyp_map_aux_data();
1565         if (err)
1566                 kvm_err("Cannot map host auxiliary data: %d\n", err);
1567
1568         return 0;
1569
1570 out_err:
1571         teardown_hyp_mode();
1572         kvm_err("error initializing Hyp mode: %d\n", err);
1573         return err;
1574 }
1575
1576 static void check_kvm_target_cpu(void *ret)
1577 {
1578         *(int *)ret = kvm_target_cpu();
1579 }
1580
1581 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1582 {
1583         struct kvm_vcpu *vcpu;
1584         int i;
1585
1586         mpidr &= MPIDR_HWID_BITMASK;
1587         kvm_for_each_vcpu(i, vcpu, kvm) {
1588                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1589                         return vcpu;
1590         }
1591         return NULL;
1592 }
1593
1594 bool kvm_arch_has_irq_bypass(void)
1595 {
1596         return true;
1597 }
1598
1599 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1600                                       struct irq_bypass_producer *prod)
1601 {
1602         struct kvm_kernel_irqfd *irqfd =
1603                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1604
1605         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1606                                           &irqfd->irq_entry);
1607 }
1608 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1609                                       struct irq_bypass_producer *prod)
1610 {
1611         struct kvm_kernel_irqfd *irqfd =
1612                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1613
1614         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1615                                      &irqfd->irq_entry);
1616 }
1617
1618 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1619 {
1620         struct kvm_kernel_irqfd *irqfd =
1621                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1622
1623         kvm_arm_halt_guest(irqfd->kvm);
1624 }
1625
1626 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1627 {
1628         struct kvm_kernel_irqfd *irqfd =
1629                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1630
1631         kvm_arm_resume_guest(irqfd->kvm);
1632 }
1633
1634 /**
1635  * Initialize Hyp-mode and memory mappings on all CPUs.
1636  */
1637 int kvm_arch_init(void *opaque)
1638 {
1639         int err;
1640         int ret, cpu;
1641         bool in_hyp_mode;
1642
1643         if (!is_hyp_mode_available()) {
1644                 kvm_info("HYP mode not available\n");
1645                 return -ENODEV;
1646         }
1647
1648         in_hyp_mode = is_kernel_in_hyp_mode();
1649
1650         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1651                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1652                 return -ENODEV;
1653         }
1654
1655         for_each_online_cpu(cpu) {
1656                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1657                 if (ret < 0) {
1658                         kvm_err("Error, CPU %d not supported!\n", cpu);
1659                         return -ENODEV;
1660                 }
1661         }
1662
1663         err = init_common_resources();
1664         if (err)
1665                 return err;
1666
1667         if (!in_hyp_mode) {
1668                 err = init_hyp_mode();
1669                 if (err)
1670                         goto out_err;
1671         }
1672
1673         err = init_subsystems();
1674         if (err)
1675                 goto out_hyp;
1676
1677         if (in_hyp_mode)
1678                 kvm_info("VHE mode initialized successfully\n");
1679         else
1680                 kvm_info("Hyp mode initialized successfully\n");
1681
1682         return 0;
1683
1684 out_hyp:
1685         if (!in_hyp_mode)
1686                 teardown_hyp_mode();
1687 out_err:
1688         return err;
1689 }
1690
1691 /* NOP: Compiling as a module not supported */
1692 void kvm_arch_exit(void)
1693 {
1694         kvm_perf_teardown();
1695 }
1696
1697 static int arm_init(void)
1698 {
1699         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1700         return rc;
1701 }
1702
1703 module_init(arm_init);