KVM: arm64: Save the host's PtrAuth keys in non-preemptible context
[platform/kernel/linux-rpi.git] / virt / kvm / arm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 #include <kvm/arm_pmu.h>
24 #include <kvm/arm_psci.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_emulate.h>
40 #include <asm/kvm_coproc.h>
41 #include <asm/sections.h>
42
43 #ifdef REQUIRES_VIRT
44 __asm__(".arch_extension        virt");
45 #endif
46
47 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
48 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
49
50 /* Per-CPU variable containing the currently running vcpu. */
51 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
52
53 /* The VMID used in the VTTBR */
54 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55 static u32 kvm_next_vmid;
56 static DEFINE_SPINLOCK(kvm_vmid_lock);
57
58 static bool vgic_present;
59
60 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
61
62 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
63 {
64         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
65 }
66
67 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68
69 /**
70  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
71  * Must be called from non-preemptible context
72  */
73 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
74 {
75         return __this_cpu_read(kvm_arm_running_vcpu);
76 }
77
78 /**
79  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
80  */
81 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
82 {
83         return &kvm_arm_running_vcpu;
84 }
85
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
89 }
90
91 int kvm_arch_hardware_setup(void)
92 {
93         return 0;
94 }
95
96 int kvm_arch_check_processor_compat(void)
97 {
98         return 0;
99 }
100
101
102 /**
103  * kvm_arch_init_vm - initializes a VM data structure
104  * @kvm:        pointer to the KVM struct
105  */
106 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
107 {
108         int ret, cpu;
109
110         ret = kvm_arm_setup_stage2(kvm, type);
111         if (ret)
112                 return ret;
113
114         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
115         if (!kvm->arch.last_vcpu_ran)
116                 return -ENOMEM;
117
118         for_each_possible_cpu(cpu)
119                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
120
121         ret = kvm_alloc_stage2_pgd(kvm);
122         if (ret)
123                 goto out_fail_alloc;
124
125         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
126         if (ret)
127                 goto out_free_stage2_pgd;
128
129         kvm_vgic_early_init(kvm);
130
131         /* Mark the initial VMID generation invalid */
132         kvm->arch.vmid.vmid_gen = 0;
133
134         /* The maximum number of VCPUs is limited by the host's GIC model */
135         kvm->arch.max_vcpus = vgic_present ?
136                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
137
138         return ret;
139 out_free_stage2_pgd:
140         kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142         free_percpu(kvm->arch.last_vcpu_ran);
143         kvm->arch.last_vcpu_ran = NULL;
144         return ret;
145 }
146
147 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
148 {
149         return 0;
150 }
151
152 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154         return VM_FAULT_SIGBUS;
155 }
156
157
158 /**
159  * kvm_arch_destroy_vm - destroy the VM data structure
160  * @kvm:        pointer to the KVM struct
161  */
162 void kvm_arch_destroy_vm(struct kvm *kvm)
163 {
164         int i;
165
166         kvm_vgic_destroy(kvm);
167
168         free_percpu(kvm->arch.last_vcpu_ran);
169         kvm->arch.last_vcpu_ran = NULL;
170
171         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
172                 if (kvm->vcpus[i]) {
173                         kvm_arch_vcpu_free(kvm->vcpus[i]);
174                         kvm->vcpus[i] = NULL;
175                 }
176         }
177         atomic_set(&kvm->online_vcpus, 0);
178 }
179
180 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
181 {
182         int r;
183         switch (ext) {
184         case KVM_CAP_IRQCHIP:
185                 r = vgic_present;
186                 break;
187         case KVM_CAP_IOEVENTFD:
188         case KVM_CAP_DEVICE_CTRL:
189         case KVM_CAP_USER_MEMORY:
190         case KVM_CAP_SYNC_MMU:
191         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
192         case KVM_CAP_ONE_REG:
193         case KVM_CAP_ARM_PSCI:
194         case KVM_CAP_ARM_PSCI_0_2:
195         case KVM_CAP_READONLY_MEM:
196         case KVM_CAP_MP_STATE:
197         case KVM_CAP_IMMEDIATE_EXIT:
198         case KVM_CAP_VCPU_EVENTS:
199         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
200                 r = 1;
201                 break;
202         case KVM_CAP_ARM_SET_DEVICE_ADDR:
203                 r = 1;
204                 break;
205         case KVM_CAP_NR_VCPUS:
206                 r = num_online_cpus();
207                 break;
208         case KVM_CAP_MAX_VCPUS:
209                 r = KVM_MAX_VCPUS;
210                 break;
211         case KVM_CAP_MAX_VCPU_ID:
212                 r = KVM_MAX_VCPU_ID;
213                 break;
214         case KVM_CAP_MSI_DEVID:
215                 if (!kvm)
216                         r = -EINVAL;
217                 else
218                         r = kvm->arch.vgic.msis_require_devid;
219                 break;
220         case KVM_CAP_ARM_USER_IRQ:
221                 /*
222                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
223                  * (bump this number if adding more devices)
224                  */
225                 r = 1;
226                 break;
227         default:
228                 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
229                 break;
230         }
231         return r;
232 }
233
234 long kvm_arch_dev_ioctl(struct file *filp,
235                         unsigned int ioctl, unsigned long arg)
236 {
237         return -EINVAL;
238 }
239
240 struct kvm *kvm_arch_alloc_vm(void)
241 {
242         if (!has_vhe())
243                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
244
245         return vzalloc(sizeof(struct kvm));
246 }
247
248 void kvm_arch_free_vm(struct kvm *kvm)
249 {
250         if (!has_vhe())
251                 kfree(kvm);
252         else
253                 vfree(kvm);
254 }
255
256 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
257 {
258         int err;
259         struct kvm_vcpu *vcpu;
260
261         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
262                 err = -EBUSY;
263                 goto out;
264         }
265
266         if (id >= kvm->arch.max_vcpus) {
267                 err = -EINVAL;
268                 goto out;
269         }
270
271         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
272         if (!vcpu) {
273                 err = -ENOMEM;
274                 goto out;
275         }
276
277         err = kvm_vcpu_init(vcpu, kvm, id);
278         if (err)
279                 goto free_vcpu;
280
281         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
282         if (err)
283                 goto vcpu_uninit;
284
285         return vcpu;
286 vcpu_uninit:
287         kvm_vcpu_uninit(vcpu);
288 free_vcpu:
289         kmem_cache_free(kvm_vcpu_cache, vcpu);
290 out:
291         return ERR_PTR(err);
292 }
293
294 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
295 {
296 }
297
298 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
299 {
300         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
301                 static_branch_dec(&userspace_irqchip_in_use);
302
303         kvm_mmu_free_memory_caches(vcpu);
304         kvm_timer_vcpu_terminate(vcpu);
305         kvm_pmu_vcpu_destroy(vcpu);
306         kvm_vcpu_uninit(vcpu);
307         kmem_cache_free(kvm_vcpu_cache, vcpu);
308 }
309
310 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
311 {
312         kvm_arch_vcpu_free(vcpu);
313 }
314
315 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
316 {
317         return kvm_timer_is_pending(vcpu);
318 }
319
320 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
321 {
322         /*
323          * If we're about to block (most likely because we've just hit a
324          * WFI), we need to sync back the state of the GIC CPU interface
325          * so that we have the lastest PMR and group enables. This ensures
326          * that kvm_arch_vcpu_runnable has up-to-date data to decide
327          * whether we have pending interrupts.
328          */
329         preempt_disable();
330         kvm_vgic_vmcr_sync(vcpu);
331         preempt_enable();
332
333         kvm_vgic_v4_enable_doorbell(vcpu);
334 }
335
336 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
337 {
338         kvm_vgic_v4_disable_doorbell(vcpu);
339 }
340
341 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
342 {
343         /* Force users to call KVM_ARM_VCPU_INIT */
344         vcpu->arch.target = -1;
345         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
346
347         /* Set up the timer */
348         kvm_timer_vcpu_init(vcpu);
349
350         kvm_pmu_vcpu_init(vcpu);
351
352         kvm_arm_reset_debug_ptr(vcpu);
353
354         return kvm_vgic_vcpu_init(vcpu);
355 }
356
357 #ifdef CONFIG_ARM64
358 #define __ptrauth_save_key(regs, key)                                           \
359 ({                                                                              \
360         regs[key ## KEYLO_EL1] = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);       \
361         regs[key ## KEYHI_EL1] = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);       \
362 })
363 #else
364 #define  __ptrauth_save_key(regs, key)  do { } while (0)
365 #endif
366
367 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
368 {
369         int *last_ran;
370         kvm_host_data_t *cpu_data;
371
372         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
373         cpu_data = this_cpu_ptr(&kvm_host_data);
374
375         /*
376          * We might get preempted before the vCPU actually runs, but
377          * over-invalidation doesn't affect correctness.
378          */
379         if (*last_ran != vcpu->vcpu_id) {
380                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
381                 *last_ran = vcpu->vcpu_id;
382         }
383
384         vcpu->cpu = cpu;
385         vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
386
387         kvm_arm_set_running_vcpu(vcpu);
388         kvm_vgic_load(vcpu);
389         kvm_timer_vcpu_load(vcpu);
390         kvm_vcpu_load_sysregs(vcpu);
391         kvm_arch_vcpu_load_fp(vcpu);
392         kvm_vcpu_pmu_restore_guest(vcpu);
393
394         if (single_task_running())
395                 vcpu_clear_wfe_traps(vcpu);
396         else
397                 vcpu_set_wfe_traps(vcpu);
398
399         if (vcpu_has_ptrauth(vcpu)) {
400                 struct kvm_cpu_context __maybe_unused *ctxt = vcpu->arch.host_cpu_context;
401
402                 __ptrauth_save_key(ctxt->sys_regs, APIA);
403                 __ptrauth_save_key(ctxt->sys_regs, APIB);
404                 __ptrauth_save_key(ctxt->sys_regs, APDA);
405                 __ptrauth_save_key(ctxt->sys_regs, APDB);
406                 __ptrauth_save_key(ctxt->sys_regs, APGA);
407
408                 vcpu_ptrauth_disable(vcpu);
409         }
410 }
411
412 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
413 {
414         kvm_arch_vcpu_put_fp(vcpu);
415         kvm_vcpu_put_sysregs(vcpu);
416         kvm_timer_vcpu_put(vcpu);
417         kvm_vgic_put(vcpu);
418         kvm_vcpu_pmu_restore_host(vcpu);
419
420         vcpu->cpu = -1;
421
422         kvm_arm_set_running_vcpu(NULL);
423 }
424
425 static void vcpu_power_off(struct kvm_vcpu *vcpu)
426 {
427         vcpu->arch.power_off = true;
428         kvm_make_request(KVM_REQ_SLEEP, vcpu);
429         kvm_vcpu_kick(vcpu);
430 }
431
432 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
433                                     struct kvm_mp_state *mp_state)
434 {
435         if (vcpu->arch.power_off)
436                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
437         else
438                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
439
440         return 0;
441 }
442
443 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
444                                     struct kvm_mp_state *mp_state)
445 {
446         int ret = 0;
447
448         switch (mp_state->mp_state) {
449         case KVM_MP_STATE_RUNNABLE:
450                 vcpu->arch.power_off = false;
451                 break;
452         case KVM_MP_STATE_STOPPED:
453                 vcpu_power_off(vcpu);
454                 break;
455         default:
456                 ret = -EINVAL;
457         }
458
459         return ret;
460 }
461
462 /**
463  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
464  * @v:          The VCPU pointer
465  *
466  * If the guest CPU is not waiting for interrupts or an interrupt line is
467  * asserted, the CPU is by definition runnable.
468  */
469 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
470 {
471         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
472         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
473                 && !v->arch.power_off && !v->arch.pause);
474 }
475
476 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
477 {
478         return vcpu_mode_priv(vcpu);
479 }
480
481 /* Just ensure a guest exit from a particular CPU */
482 static void exit_vm_noop(void *info)
483 {
484 }
485
486 void force_vm_exit(const cpumask_t *mask)
487 {
488         preempt_disable();
489         smp_call_function_many(mask, exit_vm_noop, NULL, true);
490         preempt_enable();
491 }
492
493 /**
494  * need_new_vmid_gen - check that the VMID is still valid
495  * @vmid: The VMID to check
496  *
497  * return true if there is a new generation of VMIDs being used
498  *
499  * The hardware supports a limited set of values with the value zero reserved
500  * for the host, so we check if an assigned value belongs to a previous
501  * generation, which which requires us to assign a new value. If we're the
502  * first to use a VMID for the new generation, we must flush necessary caches
503  * and TLBs on all CPUs.
504  */
505 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
506 {
507         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
508         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
509         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
510 }
511
512 /**
513  * update_vmid - Update the vmid with a valid VMID for the current generation
514  * @kvm: The guest that struct vmid belongs to
515  * @vmid: The stage-2 VMID information struct
516  */
517 static void update_vmid(struct kvm_vmid *vmid)
518 {
519         if (!need_new_vmid_gen(vmid))
520                 return;
521
522         spin_lock(&kvm_vmid_lock);
523
524         /*
525          * We need to re-check the vmid_gen here to ensure that if another vcpu
526          * already allocated a valid vmid for this vm, then this vcpu should
527          * use the same vmid.
528          */
529         if (!need_new_vmid_gen(vmid)) {
530                 spin_unlock(&kvm_vmid_lock);
531                 return;
532         }
533
534         /* First user of a new VMID generation? */
535         if (unlikely(kvm_next_vmid == 0)) {
536                 atomic64_inc(&kvm_vmid_gen);
537                 kvm_next_vmid = 1;
538
539                 /*
540                  * On SMP we know no other CPUs can use this CPU's or each
541                  * other's VMID after force_vm_exit returns since the
542                  * kvm_vmid_lock blocks them from reentry to the guest.
543                  */
544                 force_vm_exit(cpu_all_mask);
545                 /*
546                  * Now broadcast TLB + ICACHE invalidation over the inner
547                  * shareable domain to make sure all data structures are
548                  * clean.
549                  */
550                 kvm_call_hyp(__kvm_flush_vm_context);
551         }
552
553         vmid->vmid = kvm_next_vmid;
554         kvm_next_vmid++;
555         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
556
557         smp_wmb();
558         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
559
560         spin_unlock(&kvm_vmid_lock);
561 }
562
563 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
564 {
565         struct kvm *kvm = vcpu->kvm;
566         int ret = 0;
567
568         if (likely(vcpu->arch.has_run_once))
569                 return 0;
570
571         if (!kvm_arm_vcpu_is_finalized(vcpu))
572                 return -EPERM;
573
574         vcpu->arch.has_run_once = true;
575
576         if (likely(irqchip_in_kernel(kvm))) {
577                 /*
578                  * Map the VGIC hardware resources before running a vcpu the
579                  * first time on this VM.
580                  */
581                 if (unlikely(!vgic_ready(kvm))) {
582                         ret = kvm_vgic_map_resources(kvm);
583                         if (ret)
584                                 return ret;
585                 }
586         } else {
587                 /*
588                  * Tell the rest of the code that there are userspace irqchip
589                  * VMs in the wild.
590                  */
591                 static_branch_inc(&userspace_irqchip_in_use);
592         }
593
594         ret = kvm_timer_enable(vcpu);
595         if (ret)
596                 return ret;
597
598         ret = kvm_arm_pmu_v3_enable(vcpu);
599
600         return ret;
601 }
602
603 bool kvm_arch_intc_initialized(struct kvm *kvm)
604 {
605         return vgic_initialized(kvm);
606 }
607
608 void kvm_arm_halt_guest(struct kvm *kvm)
609 {
610         int i;
611         struct kvm_vcpu *vcpu;
612
613         kvm_for_each_vcpu(i, vcpu, kvm)
614                 vcpu->arch.pause = true;
615         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
616 }
617
618 void kvm_arm_resume_guest(struct kvm *kvm)
619 {
620         int i;
621         struct kvm_vcpu *vcpu;
622
623         kvm_for_each_vcpu(i, vcpu, kvm) {
624                 vcpu->arch.pause = false;
625                 swake_up_one(kvm_arch_vcpu_wq(vcpu));
626         }
627 }
628
629 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
630 {
631         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
632
633         swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
634                                        (!vcpu->arch.pause)));
635
636         if (vcpu->arch.power_off || vcpu->arch.pause) {
637                 /* Awaken to handle a signal, request we sleep again later. */
638                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
639         }
640
641         /*
642          * Make sure we will observe a potential reset request if we've
643          * observed a change to the power state. Pairs with the smp_wmb() in
644          * kvm_psci_vcpu_on().
645          */
646         smp_rmb();
647 }
648
649 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
650 {
651         return vcpu->arch.target >= 0;
652 }
653
654 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
655 {
656         if (kvm_request_pending(vcpu)) {
657                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
658                         vcpu_req_sleep(vcpu);
659
660                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
661                         kvm_reset_vcpu(vcpu);
662
663                 /*
664                  * Clear IRQ_PENDING requests that were made to guarantee
665                  * that a VCPU sees new virtual interrupts.
666                  */
667                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
668         }
669 }
670
671 /**
672  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
673  * @vcpu:       The VCPU pointer
674  * @run:        The kvm_run structure pointer used for userspace state exchange
675  *
676  * This function is called through the VCPU_RUN ioctl called from user space. It
677  * will execute VM code in a loop until the time slice for the process is used
678  * or some emulation is needed from user space in which case the function will
679  * return with return value 0 and with the kvm_run structure filled in with the
680  * required data for the requested emulation.
681  */
682 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
683 {
684         int ret;
685
686         if (unlikely(!kvm_vcpu_initialized(vcpu)))
687                 return -ENOEXEC;
688
689         ret = kvm_vcpu_first_run_init(vcpu);
690         if (ret)
691                 return ret;
692
693         if (run->exit_reason == KVM_EXIT_MMIO) {
694                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
695                 if (ret)
696                         return ret;
697         }
698
699         if (run->immediate_exit)
700                 return -EINTR;
701
702         vcpu_load(vcpu);
703
704         kvm_sigset_activate(vcpu);
705
706         ret = 1;
707         run->exit_reason = KVM_EXIT_UNKNOWN;
708         while (ret > 0) {
709                 /*
710                  * Check conditions before entering the guest
711                  */
712                 cond_resched();
713
714                 update_vmid(&vcpu->kvm->arch.vmid);
715
716                 check_vcpu_requests(vcpu);
717
718                 /*
719                  * Preparing the interrupts to be injected also
720                  * involves poking the GIC, which must be done in a
721                  * non-preemptible context.
722                  */
723                 preempt_disable();
724
725                 kvm_pmu_flush_hwstate(vcpu);
726
727                 local_irq_disable();
728
729                 kvm_vgic_flush_hwstate(vcpu);
730
731                 /*
732                  * Exit if we have a signal pending so that we can deliver the
733                  * signal to user space.
734                  */
735                 if (signal_pending(current)) {
736                         ret = -EINTR;
737                         run->exit_reason = KVM_EXIT_INTR;
738                 }
739
740                 /*
741                  * If we're using a userspace irqchip, then check if we need
742                  * to tell a userspace irqchip about timer or PMU level
743                  * changes and if so, exit to userspace (the actual level
744                  * state gets updated in kvm_timer_update_run and
745                  * kvm_pmu_update_run below).
746                  */
747                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
748                         if (kvm_timer_should_notify_user(vcpu) ||
749                             kvm_pmu_should_notify_user(vcpu)) {
750                                 ret = -EINTR;
751                                 run->exit_reason = KVM_EXIT_INTR;
752                         }
753                 }
754
755                 /*
756                  * Ensure we set mode to IN_GUEST_MODE after we disable
757                  * interrupts and before the final VCPU requests check.
758                  * See the comment in kvm_vcpu_exiting_guest_mode() and
759                  * Documentation/virt/kvm/vcpu-requests.rst
760                  */
761                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
762
763                 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
764                     kvm_request_pending(vcpu)) {
765                         vcpu->mode = OUTSIDE_GUEST_MODE;
766                         isb(); /* Ensure work in x_flush_hwstate is committed */
767                         kvm_pmu_sync_hwstate(vcpu);
768                         if (static_branch_unlikely(&userspace_irqchip_in_use))
769                                 kvm_timer_sync_hwstate(vcpu);
770                         kvm_vgic_sync_hwstate(vcpu);
771                         local_irq_enable();
772                         preempt_enable();
773                         continue;
774                 }
775
776                 kvm_arm_setup_debug(vcpu);
777
778                 /**************************************************************
779                  * Enter the guest
780                  */
781                 trace_kvm_entry(*vcpu_pc(vcpu));
782                 guest_enter_irqoff();
783
784                 if (has_vhe()) {
785                         kvm_arm_vhe_guest_enter();
786                         ret = kvm_vcpu_run_vhe(vcpu);
787                         kvm_arm_vhe_guest_exit();
788                 } else {
789                         ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
790                 }
791
792                 vcpu->mode = OUTSIDE_GUEST_MODE;
793                 vcpu->stat.exits++;
794                 /*
795                  * Back from guest
796                  *************************************************************/
797
798                 kvm_arm_clear_debug(vcpu);
799
800                 /*
801                  * We must sync the PMU state before the vgic state so
802                  * that the vgic can properly sample the updated state of the
803                  * interrupt line.
804                  */
805                 kvm_pmu_sync_hwstate(vcpu);
806
807                 /*
808                  * Sync the vgic state before syncing the timer state because
809                  * the timer code needs to know if the virtual timer
810                  * interrupts are active.
811                  */
812                 kvm_vgic_sync_hwstate(vcpu);
813
814                 /*
815                  * Sync the timer hardware state before enabling interrupts as
816                  * we don't want vtimer interrupts to race with syncing the
817                  * timer virtual interrupt state.
818                  */
819                 if (static_branch_unlikely(&userspace_irqchip_in_use))
820                         kvm_timer_sync_hwstate(vcpu);
821
822                 kvm_arch_vcpu_ctxsync_fp(vcpu);
823
824                 /*
825                  * We may have taken a host interrupt in HYP mode (ie
826                  * while executing the guest). This interrupt is still
827                  * pending, as we haven't serviced it yet!
828                  *
829                  * We're now back in SVC mode, with interrupts
830                  * disabled.  Enabling the interrupts now will have
831                  * the effect of taking the interrupt again, in SVC
832                  * mode this time.
833                  */
834                 local_irq_enable();
835
836                 /*
837                  * We do local_irq_enable() before calling guest_exit() so
838                  * that if a timer interrupt hits while running the guest we
839                  * account that tick as being spent in the guest.  We enable
840                  * preemption after calling guest_exit() so that if we get
841                  * preempted we make sure ticks after that is not counted as
842                  * guest time.
843                  */
844                 guest_exit();
845                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
846
847                 /* Exit types that need handling before we can be preempted */
848                 handle_exit_early(vcpu, run, ret);
849
850                 preempt_enable();
851
852                 ret = handle_exit(vcpu, run, ret);
853         }
854
855         /* Tell userspace about in-kernel device output levels */
856         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
857                 kvm_timer_update_run(vcpu);
858                 kvm_pmu_update_run(vcpu);
859         }
860
861         kvm_sigset_deactivate(vcpu);
862
863         vcpu_put(vcpu);
864         return ret;
865 }
866
867 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
868 {
869         int bit_index;
870         bool set;
871         unsigned long *hcr;
872
873         if (number == KVM_ARM_IRQ_CPU_IRQ)
874                 bit_index = __ffs(HCR_VI);
875         else /* KVM_ARM_IRQ_CPU_FIQ */
876                 bit_index = __ffs(HCR_VF);
877
878         hcr = vcpu_hcr(vcpu);
879         if (level)
880                 set = test_and_set_bit(bit_index, hcr);
881         else
882                 set = test_and_clear_bit(bit_index, hcr);
883
884         /*
885          * If we didn't change anything, no need to wake up or kick other CPUs
886          */
887         if (set == level)
888                 return 0;
889
890         /*
891          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
892          * trigger a world-switch round on the running physical CPU to set the
893          * virtual IRQ/FIQ fields in the HCR appropriately.
894          */
895         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
896         kvm_vcpu_kick(vcpu);
897
898         return 0;
899 }
900
901 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
902                           bool line_status)
903 {
904         u32 irq = irq_level->irq;
905         unsigned int irq_type, vcpu_idx, irq_num;
906         int nrcpus = atomic_read(&kvm->online_vcpus);
907         struct kvm_vcpu *vcpu = NULL;
908         bool level = irq_level->level;
909
910         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
911         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
912         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
913         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
914
915         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
916
917         switch (irq_type) {
918         case KVM_ARM_IRQ_TYPE_CPU:
919                 if (irqchip_in_kernel(kvm))
920                         return -ENXIO;
921
922                 if (vcpu_idx >= nrcpus)
923                         return -EINVAL;
924
925                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
926                 if (!vcpu)
927                         return -EINVAL;
928
929                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
930                         return -EINVAL;
931
932                 return vcpu_interrupt_line(vcpu, irq_num, level);
933         case KVM_ARM_IRQ_TYPE_PPI:
934                 if (!irqchip_in_kernel(kvm))
935                         return -ENXIO;
936
937                 if (vcpu_idx >= nrcpus)
938                         return -EINVAL;
939
940                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
941                 if (!vcpu)
942                         return -EINVAL;
943
944                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
945                         return -EINVAL;
946
947                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
948         case KVM_ARM_IRQ_TYPE_SPI:
949                 if (!irqchip_in_kernel(kvm))
950                         return -ENXIO;
951
952                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
953                         return -EINVAL;
954
955                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
956         }
957
958         return -EINVAL;
959 }
960
961 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
962                                const struct kvm_vcpu_init *init)
963 {
964         unsigned int i, ret;
965         int phys_target = kvm_target_cpu();
966
967         if (init->target != phys_target)
968                 return -EINVAL;
969
970         /*
971          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
972          * use the same target.
973          */
974         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
975                 return -EINVAL;
976
977         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
978         for (i = 0; i < sizeof(init->features) * 8; i++) {
979                 bool set = (init->features[i / 32] & (1 << (i % 32)));
980
981                 if (set && i >= KVM_VCPU_MAX_FEATURES)
982                         return -ENOENT;
983
984                 /*
985                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
986                  * use the same feature set.
987                  */
988                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
989                     test_bit(i, vcpu->arch.features) != set)
990                         return -EINVAL;
991
992                 if (set)
993                         set_bit(i, vcpu->arch.features);
994         }
995
996         vcpu->arch.target = phys_target;
997
998         /* Now we know what it is, we can reset it. */
999         ret = kvm_reset_vcpu(vcpu);
1000         if (ret) {
1001                 vcpu->arch.target = -1;
1002                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1003         }
1004
1005         return ret;
1006 }
1007
1008 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1009                                          struct kvm_vcpu_init *init)
1010 {
1011         int ret;
1012
1013         ret = kvm_vcpu_set_target(vcpu, init);
1014         if (ret)
1015                 return ret;
1016
1017         /*
1018          * Ensure a rebooted VM will fault in RAM pages and detect if the
1019          * guest MMU is turned off and flush the caches as needed.
1020          */
1021         if (vcpu->arch.has_run_once)
1022                 stage2_unmap_vm(vcpu->kvm);
1023
1024         vcpu_reset_hcr(vcpu);
1025
1026         /*
1027          * Handle the "start in power-off" case.
1028          */
1029         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1030                 vcpu_power_off(vcpu);
1031         else
1032                 vcpu->arch.power_off = false;
1033
1034         return 0;
1035 }
1036
1037 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1038                                  struct kvm_device_attr *attr)
1039 {
1040         int ret = -ENXIO;
1041
1042         switch (attr->group) {
1043         default:
1044                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1045                 break;
1046         }
1047
1048         return ret;
1049 }
1050
1051 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1052                                  struct kvm_device_attr *attr)
1053 {
1054         int ret = -ENXIO;
1055
1056         switch (attr->group) {
1057         default:
1058                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1059                 break;
1060         }
1061
1062         return ret;
1063 }
1064
1065 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1066                                  struct kvm_device_attr *attr)
1067 {
1068         int ret = -ENXIO;
1069
1070         switch (attr->group) {
1071         default:
1072                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1073                 break;
1074         }
1075
1076         return ret;
1077 }
1078
1079 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1080                                    struct kvm_vcpu_events *events)
1081 {
1082         memset(events, 0, sizeof(*events));
1083
1084         return __kvm_arm_vcpu_get_events(vcpu, events);
1085 }
1086
1087 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1088                                    struct kvm_vcpu_events *events)
1089 {
1090         int i;
1091
1092         /* check whether the reserved field is zero */
1093         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1094                 if (events->reserved[i])
1095                         return -EINVAL;
1096
1097         /* check whether the pad field is zero */
1098         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1099                 if (events->exception.pad[i])
1100                         return -EINVAL;
1101
1102         return __kvm_arm_vcpu_set_events(vcpu, events);
1103 }
1104
1105 long kvm_arch_vcpu_ioctl(struct file *filp,
1106                          unsigned int ioctl, unsigned long arg)
1107 {
1108         struct kvm_vcpu *vcpu = filp->private_data;
1109         void __user *argp = (void __user *)arg;
1110         struct kvm_device_attr attr;
1111         long r;
1112
1113         switch (ioctl) {
1114         case KVM_ARM_VCPU_INIT: {
1115                 struct kvm_vcpu_init init;
1116
1117                 r = -EFAULT;
1118                 if (copy_from_user(&init, argp, sizeof(init)))
1119                         break;
1120
1121                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1122                 break;
1123         }
1124         case KVM_SET_ONE_REG:
1125         case KVM_GET_ONE_REG: {
1126                 struct kvm_one_reg reg;
1127
1128                 r = -ENOEXEC;
1129                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1130                         break;
1131
1132                 r = -EFAULT;
1133                 if (copy_from_user(&reg, argp, sizeof(reg)))
1134                         break;
1135
1136                 if (ioctl == KVM_SET_ONE_REG)
1137                         r = kvm_arm_set_reg(vcpu, &reg);
1138                 else
1139                         r = kvm_arm_get_reg(vcpu, &reg);
1140                 break;
1141         }
1142         case KVM_GET_REG_LIST: {
1143                 struct kvm_reg_list __user *user_list = argp;
1144                 struct kvm_reg_list reg_list;
1145                 unsigned n;
1146
1147                 r = -ENOEXEC;
1148                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1149                         break;
1150
1151                 r = -EPERM;
1152                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1153                         break;
1154
1155                 r = -EFAULT;
1156                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1157                         break;
1158                 n = reg_list.n;
1159                 reg_list.n = kvm_arm_num_regs(vcpu);
1160                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1161                         break;
1162                 r = -E2BIG;
1163                 if (n < reg_list.n)
1164                         break;
1165                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1166                 break;
1167         }
1168         case KVM_SET_DEVICE_ATTR: {
1169                 r = -EFAULT;
1170                 if (copy_from_user(&attr, argp, sizeof(attr)))
1171                         break;
1172                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1173                 break;
1174         }
1175         case KVM_GET_DEVICE_ATTR: {
1176                 r = -EFAULT;
1177                 if (copy_from_user(&attr, argp, sizeof(attr)))
1178                         break;
1179                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1180                 break;
1181         }
1182         case KVM_HAS_DEVICE_ATTR: {
1183                 r = -EFAULT;
1184                 if (copy_from_user(&attr, argp, sizeof(attr)))
1185                         break;
1186                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1187                 break;
1188         }
1189         case KVM_GET_VCPU_EVENTS: {
1190                 struct kvm_vcpu_events events;
1191
1192                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1193                         return -EINVAL;
1194
1195                 if (copy_to_user(argp, &events, sizeof(events)))
1196                         return -EFAULT;
1197
1198                 return 0;
1199         }
1200         case KVM_SET_VCPU_EVENTS: {
1201                 struct kvm_vcpu_events events;
1202
1203                 if (copy_from_user(&events, argp, sizeof(events)))
1204                         return -EFAULT;
1205
1206                 return kvm_arm_vcpu_set_events(vcpu, &events);
1207         }
1208         case KVM_ARM_VCPU_FINALIZE: {
1209                 int what;
1210
1211                 if (!kvm_vcpu_initialized(vcpu))
1212                         return -ENOEXEC;
1213
1214                 if (get_user(what, (const int __user *)argp))
1215                         return -EFAULT;
1216
1217                 return kvm_arm_vcpu_finalize(vcpu, what);
1218         }
1219         default:
1220                 r = -EINVAL;
1221         }
1222
1223         return r;
1224 }
1225
1226 /**
1227  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1228  * @kvm: kvm instance
1229  * @log: slot id and address to which we copy the log
1230  *
1231  * Steps 1-4 below provide general overview of dirty page logging. See
1232  * kvm_get_dirty_log_protect() function description for additional details.
1233  *
1234  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1235  * always flush the TLB (step 4) even if previous step failed  and the dirty
1236  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1237  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1238  * writes will be marked dirty for next log read.
1239  *
1240  *   1. Take a snapshot of the bit and clear it if needed.
1241  *   2. Write protect the corresponding page.
1242  *   3. Copy the snapshot to the userspace.
1243  *   4. Flush TLB's if needed.
1244  */
1245 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1246 {
1247         bool flush = false;
1248         int r;
1249
1250         mutex_lock(&kvm->slots_lock);
1251
1252         r = kvm_get_dirty_log_protect(kvm, log, &flush);
1253
1254         if (flush)
1255                 kvm_flush_remote_tlbs(kvm);
1256
1257         mutex_unlock(&kvm->slots_lock);
1258         return r;
1259 }
1260
1261 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1262 {
1263         bool flush = false;
1264         int r;
1265
1266         mutex_lock(&kvm->slots_lock);
1267
1268         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1269
1270         if (flush)
1271                 kvm_flush_remote_tlbs(kvm);
1272
1273         mutex_unlock(&kvm->slots_lock);
1274         return r;
1275 }
1276
1277 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1278                                         struct kvm_arm_device_addr *dev_addr)
1279 {
1280         unsigned long dev_id, type;
1281
1282         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1283                 KVM_ARM_DEVICE_ID_SHIFT;
1284         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1285                 KVM_ARM_DEVICE_TYPE_SHIFT;
1286
1287         switch (dev_id) {
1288         case KVM_ARM_DEVICE_VGIC_V2:
1289                 if (!vgic_present)
1290                         return -ENXIO;
1291                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1292         default:
1293                 return -ENODEV;
1294         }
1295 }
1296
1297 long kvm_arch_vm_ioctl(struct file *filp,
1298                        unsigned int ioctl, unsigned long arg)
1299 {
1300         struct kvm *kvm = filp->private_data;
1301         void __user *argp = (void __user *)arg;
1302
1303         switch (ioctl) {
1304         case KVM_CREATE_IRQCHIP: {
1305                 int ret;
1306                 if (!vgic_present)
1307                         return -ENXIO;
1308                 mutex_lock(&kvm->lock);
1309                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1310                 mutex_unlock(&kvm->lock);
1311                 return ret;
1312         }
1313         case KVM_ARM_SET_DEVICE_ADDR: {
1314                 struct kvm_arm_device_addr dev_addr;
1315
1316                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1317                         return -EFAULT;
1318                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1319         }
1320         case KVM_ARM_PREFERRED_TARGET: {
1321                 int err;
1322                 struct kvm_vcpu_init init;
1323
1324                 err = kvm_vcpu_preferred_target(&init);
1325                 if (err)
1326                         return err;
1327
1328                 if (copy_to_user(argp, &init, sizeof(init)))
1329                         return -EFAULT;
1330
1331                 return 0;
1332         }
1333         default:
1334                 return -EINVAL;
1335         }
1336 }
1337
1338 static void cpu_init_hyp_mode(void *dummy)
1339 {
1340         phys_addr_t pgd_ptr;
1341         unsigned long hyp_stack_ptr;
1342         unsigned long stack_page;
1343         unsigned long vector_ptr;
1344
1345         /* Switch from the HYP stub to our own HYP init vector */
1346         __hyp_set_vectors(kvm_get_idmap_vector());
1347
1348         pgd_ptr = kvm_mmu_get_httbr();
1349         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1350         hyp_stack_ptr = stack_page + PAGE_SIZE;
1351         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1352
1353         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1354         __cpu_init_stage2();
1355 }
1356
1357 static void cpu_hyp_reset(void)
1358 {
1359         if (!is_kernel_in_hyp_mode())
1360                 __hyp_reset_vectors();
1361 }
1362
1363 static void cpu_hyp_reinit(void)
1364 {
1365         kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1366
1367         cpu_hyp_reset();
1368
1369         if (is_kernel_in_hyp_mode())
1370                 kvm_timer_init_vhe();
1371         else
1372                 cpu_init_hyp_mode(NULL);
1373
1374         kvm_arm_init_debug();
1375
1376         if (vgic_present)
1377                 kvm_vgic_init_cpu_hardware();
1378 }
1379
1380 static void _kvm_arch_hardware_enable(void *discard)
1381 {
1382         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1383                 cpu_hyp_reinit();
1384                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1385         }
1386 }
1387
1388 int kvm_arch_hardware_enable(void)
1389 {
1390         _kvm_arch_hardware_enable(NULL);
1391         return 0;
1392 }
1393
1394 static void _kvm_arch_hardware_disable(void *discard)
1395 {
1396         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1397                 cpu_hyp_reset();
1398                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1399         }
1400 }
1401
1402 void kvm_arch_hardware_disable(void)
1403 {
1404         _kvm_arch_hardware_disable(NULL);
1405 }
1406
1407 #ifdef CONFIG_CPU_PM
1408 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1409                                     unsigned long cmd,
1410                                     void *v)
1411 {
1412         /*
1413          * kvm_arm_hardware_enabled is left with its old value over
1414          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1415          * re-enable hyp.
1416          */
1417         switch (cmd) {
1418         case CPU_PM_ENTER:
1419                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1420                         /*
1421                          * don't update kvm_arm_hardware_enabled here
1422                          * so that the hardware will be re-enabled
1423                          * when we resume. See below.
1424                          */
1425                         cpu_hyp_reset();
1426
1427                 return NOTIFY_OK;
1428         case CPU_PM_ENTER_FAILED:
1429         case CPU_PM_EXIT:
1430                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1431                         /* The hardware was enabled before suspend. */
1432                         cpu_hyp_reinit();
1433
1434                 return NOTIFY_OK;
1435
1436         default:
1437                 return NOTIFY_DONE;
1438         }
1439 }
1440
1441 static struct notifier_block hyp_init_cpu_pm_nb = {
1442         .notifier_call = hyp_init_cpu_pm_notifier,
1443 };
1444
1445 static void __init hyp_cpu_pm_init(void)
1446 {
1447         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1448 }
1449 static void __init hyp_cpu_pm_exit(void)
1450 {
1451         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1452 }
1453 #else
1454 static inline void hyp_cpu_pm_init(void)
1455 {
1456 }
1457 static inline void hyp_cpu_pm_exit(void)
1458 {
1459 }
1460 #endif
1461
1462 static int init_common_resources(void)
1463 {
1464         kvm_set_ipa_limit();
1465
1466         return 0;
1467 }
1468
1469 static int init_subsystems(void)
1470 {
1471         int err = 0;
1472
1473         /*
1474          * Enable hardware so that subsystem initialisation can access EL2.
1475          */
1476         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1477
1478         /*
1479          * Register CPU lower-power notifier
1480          */
1481         hyp_cpu_pm_init();
1482
1483         /*
1484          * Init HYP view of VGIC
1485          */
1486         err = kvm_vgic_hyp_init();
1487         switch (err) {
1488         case 0:
1489                 vgic_present = true;
1490                 break;
1491         case -ENODEV:
1492         case -ENXIO:
1493                 vgic_present = false;
1494                 err = 0;
1495                 break;
1496         default:
1497                 goto out;
1498         }
1499
1500         /*
1501          * Init HYP architected timer support
1502          */
1503         err = kvm_timer_hyp_init(vgic_present);
1504         if (err)
1505                 goto out;
1506
1507         kvm_perf_init();
1508         kvm_coproc_table_init();
1509
1510 out:
1511         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1512
1513         return err;
1514 }
1515
1516 static void teardown_hyp_mode(void)
1517 {
1518         int cpu;
1519
1520         free_hyp_pgds();
1521         for_each_possible_cpu(cpu)
1522                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1523         hyp_cpu_pm_exit();
1524 }
1525
1526 /**
1527  * Inits Hyp-mode on all online CPUs
1528  */
1529 static int init_hyp_mode(void)
1530 {
1531         int cpu;
1532         int err = 0;
1533
1534         /*
1535          * Allocate Hyp PGD and setup Hyp identity mapping
1536          */
1537         err = kvm_mmu_init();
1538         if (err)
1539                 goto out_err;
1540
1541         /*
1542          * Allocate stack pages for Hypervisor-mode
1543          */
1544         for_each_possible_cpu(cpu) {
1545                 unsigned long stack_page;
1546
1547                 stack_page = __get_free_page(GFP_KERNEL);
1548                 if (!stack_page) {
1549                         err = -ENOMEM;
1550                         goto out_err;
1551                 }
1552
1553                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1554         }
1555
1556         /*
1557          * Map the Hyp-code called directly from the host
1558          */
1559         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1560                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1561         if (err) {
1562                 kvm_err("Cannot map world-switch code\n");
1563                 goto out_err;
1564         }
1565
1566         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1567                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1568         if (err) {
1569                 kvm_err("Cannot map rodata section\n");
1570                 goto out_err;
1571         }
1572
1573         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1574                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1575         if (err) {
1576                 kvm_err("Cannot map bss section\n");
1577                 goto out_err;
1578         }
1579
1580         err = kvm_map_vectors();
1581         if (err) {
1582                 kvm_err("Cannot map vectors\n");
1583                 goto out_err;
1584         }
1585
1586         /*
1587          * Map the Hyp stack pages
1588          */
1589         for_each_possible_cpu(cpu) {
1590                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1591                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1592                                           PAGE_HYP);
1593
1594                 if (err) {
1595                         kvm_err("Cannot map hyp stack\n");
1596                         goto out_err;
1597                 }
1598         }
1599
1600         for_each_possible_cpu(cpu) {
1601                 kvm_host_data_t *cpu_data;
1602
1603                 cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1604                 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1605
1606                 if (err) {
1607                         kvm_err("Cannot map host CPU state: %d\n", err);
1608                         goto out_err;
1609                 }
1610         }
1611
1612         err = hyp_map_aux_data();
1613         if (err)
1614                 kvm_err("Cannot map host auxiliary data: %d\n", err);
1615
1616         return 0;
1617
1618 out_err:
1619         teardown_hyp_mode();
1620         kvm_err("error initializing Hyp mode: %d\n", err);
1621         return err;
1622 }
1623
1624 static void check_kvm_target_cpu(void *ret)
1625 {
1626         *(int *)ret = kvm_target_cpu();
1627 }
1628
1629 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1630 {
1631         struct kvm_vcpu *vcpu;
1632         int i;
1633
1634         mpidr &= MPIDR_HWID_BITMASK;
1635         kvm_for_each_vcpu(i, vcpu, kvm) {
1636                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1637                         return vcpu;
1638         }
1639         return NULL;
1640 }
1641
1642 bool kvm_arch_has_irq_bypass(void)
1643 {
1644         return true;
1645 }
1646
1647 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1648                                       struct irq_bypass_producer *prod)
1649 {
1650         struct kvm_kernel_irqfd *irqfd =
1651                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1652
1653         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1654                                           &irqfd->irq_entry);
1655 }
1656 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1657                                       struct irq_bypass_producer *prod)
1658 {
1659         struct kvm_kernel_irqfd *irqfd =
1660                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1661
1662         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1663                                      &irqfd->irq_entry);
1664 }
1665
1666 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1667 {
1668         struct kvm_kernel_irqfd *irqfd =
1669                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1670
1671         kvm_arm_halt_guest(irqfd->kvm);
1672 }
1673
1674 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1675 {
1676         struct kvm_kernel_irqfd *irqfd =
1677                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1678
1679         kvm_arm_resume_guest(irqfd->kvm);
1680 }
1681
1682 /**
1683  * Initialize Hyp-mode and memory mappings on all CPUs.
1684  */
1685 int kvm_arch_init(void *opaque)
1686 {
1687         int err;
1688         int ret, cpu;
1689         bool in_hyp_mode;
1690
1691         if (!is_hyp_mode_available()) {
1692                 kvm_info("HYP mode not available\n");
1693                 return -ENODEV;
1694         }
1695
1696         in_hyp_mode = is_kernel_in_hyp_mode();
1697
1698         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1699                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1700                 return -ENODEV;
1701         }
1702
1703         for_each_online_cpu(cpu) {
1704                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1705                 if (ret < 0) {
1706                         kvm_err("Error, CPU %d not supported!\n", cpu);
1707                         return -ENODEV;
1708                 }
1709         }
1710
1711         err = init_common_resources();
1712         if (err)
1713                 return err;
1714
1715         err = kvm_arm_init_sve();
1716         if (err)
1717                 return err;
1718
1719         if (!in_hyp_mode) {
1720                 err = init_hyp_mode();
1721                 if (err)
1722                         goto out_err;
1723         }
1724
1725         err = init_subsystems();
1726         if (err)
1727                 goto out_hyp;
1728
1729         if (in_hyp_mode)
1730                 kvm_info("VHE mode initialized successfully\n");
1731         else
1732                 kvm_info("Hyp mode initialized successfully\n");
1733
1734         return 0;
1735
1736 out_hyp:
1737         if (!in_hyp_mode)
1738                 teardown_hyp_mode();
1739 out_err:
1740         return err;
1741 }
1742
1743 /* NOP: Compiling as a module not supported */
1744 void kvm_arch_exit(void)
1745 {
1746         kvm_perf_teardown();
1747 }
1748
1749 static int arm_init(void)
1750 {
1751         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1752         return rc;
1753 }
1754
1755 module_init(arm_init);