arm/arm64: KVM: Consolidate the PSCI include files
[platform/kernel/linux-rpi.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32 #include <kvm/arm_psci.h>
33
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36
37 #include <linux/uaccess.h>
38 #include <asm/ptrace.h>
39 #include <asm/mman.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
42 #include <asm/virt.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_asm.h>
45 #include <asm/kvm_mmu.h>
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_coproc.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension        virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72         BUG_ON(preemptible());
73         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78  * Must be called from non-preemptible context
79  */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82         BUG_ON(preemptible());
83         return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88  */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91         return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101         return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106         *(int *)rtn = 0;
107 }
108
109
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:        pointer to the KVM struct
113  */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116         int ret, cpu;
117
118         if (type)
119                 return -EINVAL;
120
121         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122         if (!kvm->arch.last_vcpu_ran)
123                 return -ENOMEM;
124
125         for_each_possible_cpu(cpu)
126                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127
128         ret = kvm_alloc_stage2_pgd(kvm);
129         if (ret)
130                 goto out_fail_alloc;
131
132         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133         if (ret)
134                 goto out_free_stage2_pgd;
135
136         kvm_vgic_early_init(kvm);
137
138         /* Mark the initial VMID generation invalid */
139         kvm->arch.vmid_gen = 0;
140
141         /* The maximum number of VCPUs is limited by the host's GIC model */
142         kvm->arch.max_vcpus = vgic_present ?
143                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         free_percpu(kvm->arch.last_vcpu_ran);
150         kvm->arch.last_vcpu_ran = NULL;
151         return ret;
152 }
153
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156         return false;
157 }
158
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161         return 0;
162 }
163
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166         return VM_FAULT_SIGBUS;
167 }
168
169
170 /**
171  * kvm_arch_destroy_vm - destroy the VM data structure
172  * @kvm:        pointer to the KVM struct
173  */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176         int i;
177
178         free_percpu(kvm->arch.last_vcpu_ran);
179         kvm->arch.last_vcpu_ran = NULL;
180
181         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182                 if (kvm->vcpus[i]) {
183                         kvm_arch_vcpu_free(kvm->vcpus[i]);
184                         kvm->vcpus[i] = NULL;
185                 }
186         }
187
188         kvm_vgic_destroy(kvm);
189 }
190
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193         int r;
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196                 r = vgic_present;
197                 break;
198         case KVM_CAP_IOEVENTFD:
199         case KVM_CAP_DEVICE_CTRL:
200         case KVM_CAP_USER_MEMORY:
201         case KVM_CAP_SYNC_MMU:
202         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203         case KVM_CAP_ONE_REG:
204         case KVM_CAP_ARM_PSCI:
205         case KVM_CAP_ARM_PSCI_0_2:
206         case KVM_CAP_READONLY_MEM:
207         case KVM_CAP_MP_STATE:
208         case KVM_CAP_IMMEDIATE_EXIT:
209                 r = 1;
210                 break;
211         case KVM_CAP_ARM_SET_DEVICE_ADDR:
212                 r = 1;
213                 break;
214         case KVM_CAP_NR_VCPUS:
215                 r = num_online_cpus();
216                 break;
217         case KVM_CAP_MAX_VCPUS:
218                 r = KVM_MAX_VCPUS;
219                 break;
220         case KVM_CAP_NR_MEMSLOTS:
221                 r = KVM_USER_MEM_SLOTS;
222                 break;
223         case KVM_CAP_MSI_DEVID:
224                 if (!kvm)
225                         r = -EINVAL;
226                 else
227                         r = kvm->arch.vgic.msis_require_devid;
228                 break;
229         case KVM_CAP_ARM_USER_IRQ:
230                 /*
231                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232                  * (bump this number if adding more devices)
233                  */
234                 r = 1;
235                 break;
236         default:
237                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238                 break;
239         }
240         return r;
241 }
242
243 long kvm_arch_dev_ioctl(struct file *filp,
244                         unsigned int ioctl, unsigned long arg)
245 {
246         return -EINVAL;
247 }
248
249
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252         int err;
253         struct kvm_vcpu *vcpu;
254
255         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256                 err = -EBUSY;
257                 goto out;
258         }
259
260         if (id >= kvm->arch.max_vcpus) {
261                 err = -EINVAL;
262                 goto out;
263         }
264
265         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266         if (!vcpu) {
267                 err = -ENOMEM;
268                 goto out;
269         }
270
271         err = kvm_vcpu_init(vcpu, kvm, id);
272         if (err)
273                 goto free_vcpu;
274
275         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276         if (err)
277                 goto vcpu_uninit;
278
279         return vcpu;
280 vcpu_uninit:
281         kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283         kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285         return ERR_PTR(err);
286 }
287
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289 {
290         kvm_vgic_vcpu_early_init(vcpu);
291 }
292
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
294 {
295         kvm_mmu_free_memory_caches(vcpu);
296         kvm_timer_vcpu_terminate(vcpu);
297         kvm_vgic_vcpu_destroy(vcpu);
298         kvm_pmu_vcpu_destroy(vcpu);
299         kvm_vcpu_uninit(vcpu);
300         kmem_cache_free(kvm_vcpu_cache, vcpu);
301 }
302
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
304 {
305         kvm_arch_vcpu_free(vcpu);
306 }
307
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
309 {
310         return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311                kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 }
313
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
315 {
316         kvm_timer_schedule(vcpu);
317 }
318
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321         kvm_timer_unschedule(vcpu);
322 }
323
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
325 {
326         /* Force users to call KVM_ARM_VCPU_INIT */
327         vcpu->arch.target = -1;
328         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329
330         /* Set up the timer */
331         kvm_timer_vcpu_init(vcpu);
332
333         kvm_arm_reset_debug_ptr(vcpu);
334
335         return kvm_vgic_vcpu_init(vcpu);
336 }
337
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
339 {
340         int *last_ran;
341
342         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
343
344         /*
345          * We might get preempted before the vCPU actually runs, but
346          * over-invalidation doesn't affect correctness.
347          */
348         if (*last_ran != vcpu->vcpu_id) {
349                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350                 *last_ran = vcpu->vcpu_id;
351         }
352
353         vcpu->cpu = cpu;
354         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355
356         kvm_arm_set_running_vcpu(vcpu);
357
358         kvm_vgic_load(vcpu);
359 }
360
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363         kvm_vgic_put(vcpu);
364
365         vcpu->cpu = -1;
366
367         kvm_arm_set_running_vcpu(NULL);
368         kvm_timer_vcpu_put(vcpu);
369 }
370
371 static void vcpu_power_off(struct kvm_vcpu *vcpu)
372 {
373         vcpu->arch.power_off = true;
374         kvm_make_request(KVM_REQ_SLEEP, vcpu);
375         kvm_vcpu_kick(vcpu);
376 }
377
378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
379                                     struct kvm_mp_state *mp_state)
380 {
381         if (vcpu->arch.power_off)
382                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
383         else
384                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
385
386         return 0;
387 }
388
389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
390                                     struct kvm_mp_state *mp_state)
391 {
392         switch (mp_state->mp_state) {
393         case KVM_MP_STATE_RUNNABLE:
394                 vcpu->arch.power_off = false;
395                 break;
396         case KVM_MP_STATE_STOPPED:
397                 vcpu_power_off(vcpu);
398                 break;
399         default:
400                 return -EINVAL;
401         }
402
403         return 0;
404 }
405
406 /**
407  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
408  * @v:          The VCPU pointer
409  *
410  * If the guest CPU is not waiting for interrupts or an interrupt line is
411  * asserted, the CPU is by definition runnable.
412  */
413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
414 {
415         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
416                 && !v->arch.power_off && !v->arch.pause);
417 }
418
419 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
420 {
421         return vcpu_mode_priv(vcpu);
422 }
423
424 /* Just ensure a guest exit from a particular CPU */
425 static void exit_vm_noop(void *info)
426 {
427 }
428
429 void force_vm_exit(const cpumask_t *mask)
430 {
431         preempt_disable();
432         smp_call_function_many(mask, exit_vm_noop, NULL, true);
433         preempt_enable();
434 }
435
436 /**
437  * need_new_vmid_gen - check that the VMID is still valid
438  * @kvm: The VM's VMID to check
439  *
440  * return true if there is a new generation of VMIDs being used
441  *
442  * The hardware supports only 256 values with the value zero reserved for the
443  * host, so we check if an assigned value belongs to a previous generation,
444  * which which requires us to assign a new value. If we're the first to use a
445  * VMID for the new generation, we must flush necessary caches and TLBs on all
446  * CPUs.
447  */
448 static bool need_new_vmid_gen(struct kvm *kvm)
449 {
450         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
451 }
452
453 /**
454  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
455  * @kvm The guest that we are about to run
456  *
457  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
458  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
459  * caches and TLBs.
460  */
461 static void update_vttbr(struct kvm *kvm)
462 {
463         phys_addr_t pgd_phys;
464         u64 vmid;
465
466         if (!need_new_vmid_gen(kvm))
467                 return;
468
469         spin_lock(&kvm_vmid_lock);
470
471         /*
472          * We need to re-check the vmid_gen here to ensure that if another vcpu
473          * already allocated a valid vmid for this vm, then this vcpu should
474          * use the same vmid.
475          */
476         if (!need_new_vmid_gen(kvm)) {
477                 spin_unlock(&kvm_vmid_lock);
478                 return;
479         }
480
481         /* First user of a new VMID generation? */
482         if (unlikely(kvm_next_vmid == 0)) {
483                 atomic64_inc(&kvm_vmid_gen);
484                 kvm_next_vmid = 1;
485
486                 /*
487                  * On SMP we know no other CPUs can use this CPU's or each
488                  * other's VMID after force_vm_exit returns since the
489                  * kvm_vmid_lock blocks them from reentry to the guest.
490                  */
491                 force_vm_exit(cpu_all_mask);
492                 /*
493                  * Now broadcast TLB + ICACHE invalidation over the inner
494                  * shareable domain to make sure all data structures are
495                  * clean.
496                  */
497                 kvm_call_hyp(__kvm_flush_vm_context);
498         }
499
500         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
501         kvm->arch.vmid = kvm_next_vmid;
502         kvm_next_vmid++;
503         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
504
505         /* update vttbr to be used with the new vmid */
506         pgd_phys = virt_to_phys(kvm->arch.pgd);
507         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
508         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
509         kvm->arch.vttbr = pgd_phys | vmid;
510
511         spin_unlock(&kvm_vmid_lock);
512 }
513
514 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
515 {
516         struct kvm *kvm = vcpu->kvm;
517         int ret = 0;
518
519         if (likely(vcpu->arch.has_run_once))
520                 return 0;
521
522         vcpu->arch.has_run_once = true;
523
524         /*
525          * Map the VGIC hardware resources before running a vcpu the first
526          * time on this VM.
527          */
528         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
529                 ret = kvm_vgic_map_resources(kvm);
530                 if (ret)
531                         return ret;
532         }
533
534         ret = kvm_timer_enable(vcpu);
535         if (ret)
536                 return ret;
537
538         ret = kvm_arm_pmu_v3_enable(vcpu);
539
540         return ret;
541 }
542
543 bool kvm_arch_intc_initialized(struct kvm *kvm)
544 {
545         return vgic_initialized(kvm);
546 }
547
548 void kvm_arm_halt_guest(struct kvm *kvm)
549 {
550         int i;
551         struct kvm_vcpu *vcpu;
552
553         kvm_for_each_vcpu(i, vcpu, kvm)
554                 vcpu->arch.pause = true;
555         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
556 }
557
558 void kvm_arm_resume_guest(struct kvm *kvm)
559 {
560         int i;
561         struct kvm_vcpu *vcpu;
562
563         kvm_for_each_vcpu(i, vcpu, kvm) {
564                 vcpu->arch.pause = false;
565                 swake_up(kvm_arch_vcpu_wq(vcpu));
566         }
567 }
568
569 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
570 {
571         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
572
573         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
574                                        (!vcpu->arch.pause)));
575
576         if (vcpu->arch.power_off || vcpu->arch.pause) {
577                 /* Awaken to handle a signal, request we sleep again later. */
578                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
579         }
580 }
581
582 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
583 {
584         return vcpu->arch.target >= 0;
585 }
586
587 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
588 {
589         if (kvm_request_pending(vcpu)) {
590                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
591                         vcpu_req_sleep(vcpu);
592
593                 /*
594                  * Clear IRQ_PENDING requests that were made to guarantee
595                  * that a VCPU sees new virtual interrupts.
596                  */
597                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
598         }
599 }
600
601 /**
602  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
603  * @vcpu:       The VCPU pointer
604  * @run:        The kvm_run structure pointer used for userspace state exchange
605  *
606  * This function is called through the VCPU_RUN ioctl called from user space. It
607  * will execute VM code in a loop until the time slice for the process is used
608  * or some emulation is needed from user space in which case the function will
609  * return with return value 0 and with the kvm_run structure filled in with the
610  * required data for the requested emulation.
611  */
612 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
613 {
614         int ret;
615
616         if (unlikely(!kvm_vcpu_initialized(vcpu)))
617                 return -ENOEXEC;
618
619         ret = kvm_vcpu_first_run_init(vcpu);
620         if (ret)
621                 return ret;
622
623         if (run->exit_reason == KVM_EXIT_MMIO) {
624                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
625                 if (ret)
626                         return ret;
627         }
628
629         if (run->immediate_exit)
630                 return -EINTR;
631
632         kvm_sigset_activate(vcpu);
633
634         ret = 1;
635         run->exit_reason = KVM_EXIT_UNKNOWN;
636         while (ret > 0) {
637                 /*
638                  * Check conditions before entering the guest
639                  */
640                 cond_resched();
641
642                 update_vttbr(vcpu->kvm);
643
644                 check_vcpu_requests(vcpu);
645
646                 /*
647                  * Preparing the interrupts to be injected also
648                  * involves poking the GIC, which must be done in a
649                  * non-preemptible context.
650                  */
651                 preempt_disable();
652
653                 kvm_pmu_flush_hwstate(vcpu);
654
655                 kvm_timer_flush_hwstate(vcpu);
656                 kvm_vgic_flush_hwstate(vcpu);
657
658                 local_irq_disable();
659
660                 /*
661                  * If we have a singal pending, or need to notify a userspace
662                  * irqchip about timer or PMU level changes, then we exit (and
663                  * update the timer level state in kvm_timer_update_run
664                  * below).
665                  */
666                 if (signal_pending(current) ||
667                     kvm_timer_should_notify_user(vcpu) ||
668                     kvm_pmu_should_notify_user(vcpu)) {
669                         ret = -EINTR;
670                         run->exit_reason = KVM_EXIT_INTR;
671                 }
672
673                 /*
674                  * Ensure we set mode to IN_GUEST_MODE after we disable
675                  * interrupts and before the final VCPU requests check.
676                  * See the comment in kvm_vcpu_exiting_guest_mode() and
677                  * Documentation/virtual/kvm/vcpu-requests.rst
678                  */
679                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
680
681                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
682                     kvm_request_pending(vcpu)) {
683                         vcpu->mode = OUTSIDE_GUEST_MODE;
684                         local_irq_enable();
685                         kvm_pmu_sync_hwstate(vcpu);
686                         kvm_timer_sync_hwstate(vcpu);
687                         kvm_vgic_sync_hwstate(vcpu);
688                         preempt_enable();
689                         continue;
690                 }
691
692                 kvm_arm_setup_debug(vcpu);
693
694                 /**************************************************************
695                  * Enter the guest
696                  */
697                 trace_kvm_entry(*vcpu_pc(vcpu));
698                 guest_enter_irqoff();
699
700                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
701
702                 vcpu->mode = OUTSIDE_GUEST_MODE;
703                 vcpu->stat.exits++;
704                 /*
705                  * Back from guest
706                  *************************************************************/
707
708                 kvm_arm_clear_debug(vcpu);
709
710                 /*
711                  * We may have taken a host interrupt in HYP mode (ie
712                  * while executing the guest). This interrupt is still
713                  * pending, as we haven't serviced it yet!
714                  *
715                  * We're now back in SVC mode, with interrupts
716                  * disabled.  Enabling the interrupts now will have
717                  * the effect of taking the interrupt again, in SVC
718                  * mode this time.
719                  */
720                 local_irq_enable();
721
722                 /*
723                  * We do local_irq_enable() before calling guest_exit() so
724                  * that if a timer interrupt hits while running the guest we
725                  * account that tick as being spent in the guest.  We enable
726                  * preemption after calling guest_exit() so that if we get
727                  * preempted we make sure ticks after that is not counted as
728                  * guest time.
729                  */
730                 guest_exit();
731                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
732
733                 /*
734                  * We must sync the PMU and timer state before the vgic state so
735                  * that the vgic can properly sample the updated state of the
736                  * interrupt line.
737                  */
738                 kvm_pmu_sync_hwstate(vcpu);
739                 kvm_timer_sync_hwstate(vcpu);
740
741                 kvm_vgic_sync_hwstate(vcpu);
742
743                 preempt_enable();
744
745                 ret = handle_exit(vcpu, run, ret);
746         }
747
748         /* Tell userspace about in-kernel device output levels */
749         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
750                 kvm_timer_update_run(vcpu);
751                 kvm_pmu_update_run(vcpu);
752         }
753
754         kvm_sigset_deactivate(vcpu);
755
756         return ret;
757 }
758
759 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
760 {
761         int bit_index;
762         bool set;
763         unsigned long *ptr;
764
765         if (number == KVM_ARM_IRQ_CPU_IRQ)
766                 bit_index = __ffs(HCR_VI);
767         else /* KVM_ARM_IRQ_CPU_FIQ */
768                 bit_index = __ffs(HCR_VF);
769
770         ptr = (unsigned long *)&vcpu->arch.irq_lines;
771         if (level)
772                 set = test_and_set_bit(bit_index, ptr);
773         else
774                 set = test_and_clear_bit(bit_index, ptr);
775
776         /*
777          * If we didn't change anything, no need to wake up or kick other CPUs
778          */
779         if (set == level)
780                 return 0;
781
782         /*
783          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
784          * trigger a world-switch round on the running physical CPU to set the
785          * virtual IRQ/FIQ fields in the HCR appropriately.
786          */
787         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
788         kvm_vcpu_kick(vcpu);
789
790         return 0;
791 }
792
793 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
794                           bool line_status)
795 {
796         u32 irq = irq_level->irq;
797         unsigned int irq_type, vcpu_idx, irq_num;
798         int nrcpus = atomic_read(&kvm->online_vcpus);
799         struct kvm_vcpu *vcpu = NULL;
800         bool level = irq_level->level;
801
802         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
803         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
804         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
805
806         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
807
808         switch (irq_type) {
809         case KVM_ARM_IRQ_TYPE_CPU:
810                 if (irqchip_in_kernel(kvm))
811                         return -ENXIO;
812
813                 if (vcpu_idx >= nrcpus)
814                         return -EINVAL;
815
816                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
817                 if (!vcpu)
818                         return -EINVAL;
819
820                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
821                         return -EINVAL;
822
823                 return vcpu_interrupt_line(vcpu, irq_num, level);
824         case KVM_ARM_IRQ_TYPE_PPI:
825                 if (!irqchip_in_kernel(kvm))
826                         return -ENXIO;
827
828                 if (vcpu_idx >= nrcpus)
829                         return -EINVAL;
830
831                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
832                 if (!vcpu)
833                         return -EINVAL;
834
835                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
836                         return -EINVAL;
837
838                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
839         case KVM_ARM_IRQ_TYPE_SPI:
840                 if (!irqchip_in_kernel(kvm))
841                         return -ENXIO;
842
843                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
844                         return -EINVAL;
845
846                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
847         }
848
849         return -EINVAL;
850 }
851
852 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
853                                const struct kvm_vcpu_init *init)
854 {
855         unsigned int i;
856         int phys_target = kvm_target_cpu();
857
858         if (init->target != phys_target)
859                 return -EINVAL;
860
861         /*
862          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
863          * use the same target.
864          */
865         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
866                 return -EINVAL;
867
868         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
869         for (i = 0; i < sizeof(init->features) * 8; i++) {
870                 bool set = (init->features[i / 32] & (1 << (i % 32)));
871
872                 if (set && i >= KVM_VCPU_MAX_FEATURES)
873                         return -ENOENT;
874
875                 /*
876                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
877                  * use the same feature set.
878                  */
879                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
880                     test_bit(i, vcpu->arch.features) != set)
881                         return -EINVAL;
882
883                 if (set)
884                         set_bit(i, vcpu->arch.features);
885         }
886
887         vcpu->arch.target = phys_target;
888
889         /* Now we know what it is, we can reset it. */
890         return kvm_reset_vcpu(vcpu);
891 }
892
893
894 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
895                                          struct kvm_vcpu_init *init)
896 {
897         int ret;
898
899         ret = kvm_vcpu_set_target(vcpu, init);
900         if (ret)
901                 return ret;
902
903         /*
904          * Ensure a rebooted VM will fault in RAM pages and detect if the
905          * guest MMU is turned off and flush the caches as needed.
906          */
907         if (vcpu->arch.has_run_once)
908                 stage2_unmap_vm(vcpu->kvm);
909
910         vcpu_reset_hcr(vcpu);
911
912         /*
913          * Handle the "start in power-off" case.
914          */
915         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
916                 vcpu_power_off(vcpu);
917         else
918                 vcpu->arch.power_off = false;
919
920         return 0;
921 }
922
923 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
924                                  struct kvm_device_attr *attr)
925 {
926         int ret = -ENXIO;
927
928         switch (attr->group) {
929         default:
930                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
931                 break;
932         }
933
934         return ret;
935 }
936
937 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
938                                  struct kvm_device_attr *attr)
939 {
940         int ret = -ENXIO;
941
942         switch (attr->group) {
943         default:
944                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
945                 break;
946         }
947
948         return ret;
949 }
950
951 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
952                                  struct kvm_device_attr *attr)
953 {
954         int ret = -ENXIO;
955
956         switch (attr->group) {
957         default:
958                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
959                 break;
960         }
961
962         return ret;
963 }
964
965 long kvm_arch_vcpu_ioctl(struct file *filp,
966                          unsigned int ioctl, unsigned long arg)
967 {
968         struct kvm_vcpu *vcpu = filp->private_data;
969         void __user *argp = (void __user *)arg;
970         struct kvm_device_attr attr;
971
972         switch (ioctl) {
973         case KVM_ARM_VCPU_INIT: {
974                 struct kvm_vcpu_init init;
975
976                 if (copy_from_user(&init, argp, sizeof(init)))
977                         return -EFAULT;
978
979                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
980         }
981         case KVM_SET_ONE_REG:
982         case KVM_GET_ONE_REG: {
983                 struct kvm_one_reg reg;
984
985                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
986                         return -ENOEXEC;
987
988                 if (copy_from_user(&reg, argp, sizeof(reg)))
989                         return -EFAULT;
990                 if (ioctl == KVM_SET_ONE_REG)
991                         return kvm_arm_set_reg(vcpu, &reg);
992                 else
993                         return kvm_arm_get_reg(vcpu, &reg);
994         }
995         case KVM_GET_REG_LIST: {
996                 struct kvm_reg_list __user *user_list = argp;
997                 struct kvm_reg_list reg_list;
998                 unsigned n;
999
1000                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1001                         return -ENOEXEC;
1002
1003                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1004                         return -EFAULT;
1005                 n = reg_list.n;
1006                 reg_list.n = kvm_arm_num_regs(vcpu);
1007                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1008                         return -EFAULT;
1009                 if (n < reg_list.n)
1010                         return -E2BIG;
1011                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1012         }
1013         case KVM_SET_DEVICE_ATTR: {
1014                 if (copy_from_user(&attr, argp, sizeof(attr)))
1015                         return -EFAULT;
1016                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1017         }
1018         case KVM_GET_DEVICE_ATTR: {
1019                 if (copy_from_user(&attr, argp, sizeof(attr)))
1020                         return -EFAULT;
1021                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1022         }
1023         case KVM_HAS_DEVICE_ATTR: {
1024                 if (copy_from_user(&attr, argp, sizeof(attr)))
1025                         return -EFAULT;
1026                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1027         }
1028         default:
1029                 return -EINVAL;
1030         }
1031 }
1032
1033 /**
1034  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1035  * @kvm: kvm instance
1036  * @log: slot id and address to which we copy the log
1037  *
1038  * Steps 1-4 below provide general overview of dirty page logging. See
1039  * kvm_get_dirty_log_protect() function description for additional details.
1040  *
1041  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1042  * always flush the TLB (step 4) even if previous step failed  and the dirty
1043  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1044  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1045  * writes will be marked dirty for next log read.
1046  *
1047  *   1. Take a snapshot of the bit and clear it if needed.
1048  *   2. Write protect the corresponding page.
1049  *   3. Copy the snapshot to the userspace.
1050  *   4. Flush TLB's if needed.
1051  */
1052 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1053 {
1054         bool is_dirty = false;
1055         int r;
1056
1057         mutex_lock(&kvm->slots_lock);
1058
1059         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1060
1061         if (is_dirty)
1062                 kvm_flush_remote_tlbs(kvm);
1063
1064         mutex_unlock(&kvm->slots_lock);
1065         return r;
1066 }
1067
1068 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1069                                         struct kvm_arm_device_addr *dev_addr)
1070 {
1071         unsigned long dev_id, type;
1072
1073         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1074                 KVM_ARM_DEVICE_ID_SHIFT;
1075         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1076                 KVM_ARM_DEVICE_TYPE_SHIFT;
1077
1078         switch (dev_id) {
1079         case KVM_ARM_DEVICE_VGIC_V2:
1080                 if (!vgic_present)
1081                         return -ENXIO;
1082                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1083         default:
1084                 return -ENODEV;
1085         }
1086 }
1087
1088 long kvm_arch_vm_ioctl(struct file *filp,
1089                        unsigned int ioctl, unsigned long arg)
1090 {
1091         struct kvm *kvm = filp->private_data;
1092         void __user *argp = (void __user *)arg;
1093
1094         switch (ioctl) {
1095         case KVM_CREATE_IRQCHIP: {
1096                 int ret;
1097                 if (!vgic_present)
1098                         return -ENXIO;
1099                 mutex_lock(&kvm->lock);
1100                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1101                 mutex_unlock(&kvm->lock);
1102                 return ret;
1103         }
1104         case KVM_ARM_SET_DEVICE_ADDR: {
1105                 struct kvm_arm_device_addr dev_addr;
1106
1107                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1108                         return -EFAULT;
1109                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1110         }
1111         case KVM_ARM_PREFERRED_TARGET: {
1112                 int err;
1113                 struct kvm_vcpu_init init;
1114
1115                 err = kvm_vcpu_preferred_target(&init);
1116                 if (err)
1117                         return err;
1118
1119                 if (copy_to_user(argp, &init, sizeof(init)))
1120                         return -EFAULT;
1121
1122                 return 0;
1123         }
1124         default:
1125                 return -EINVAL;
1126         }
1127 }
1128
1129 static void cpu_init_hyp_mode(void *dummy)
1130 {
1131         phys_addr_t pgd_ptr;
1132         unsigned long hyp_stack_ptr;
1133         unsigned long stack_page;
1134         unsigned long vector_ptr;
1135
1136         /* Switch from the HYP stub to our own HYP init vector */
1137         __hyp_set_vectors(kvm_get_idmap_vector());
1138
1139         pgd_ptr = kvm_mmu_get_httbr();
1140         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1141         hyp_stack_ptr = stack_page + PAGE_SIZE;
1142         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1143
1144         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1145         __cpu_init_stage2();
1146
1147         kvm_arm_init_debug();
1148 }
1149
1150 static void cpu_hyp_reset(void)
1151 {
1152         if (!is_kernel_in_hyp_mode())
1153                 __hyp_reset_vectors();
1154 }
1155
1156 static void cpu_hyp_reinit(void)
1157 {
1158         cpu_hyp_reset();
1159
1160         if (is_kernel_in_hyp_mode()) {
1161                 /*
1162                  * __cpu_init_stage2() is safe to call even if the PM
1163                  * event was cancelled before the CPU was reset.
1164                  */
1165                 __cpu_init_stage2();
1166                 kvm_timer_init_vhe();
1167         } else {
1168                 cpu_init_hyp_mode(NULL);
1169         }
1170
1171         if (vgic_present)
1172                 kvm_vgic_init_cpu_hardware();
1173 }
1174
1175 static void _kvm_arch_hardware_enable(void *discard)
1176 {
1177         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1178                 cpu_hyp_reinit();
1179                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1180         }
1181 }
1182
1183 int kvm_arch_hardware_enable(void)
1184 {
1185         _kvm_arch_hardware_enable(NULL);
1186         return 0;
1187 }
1188
1189 static void _kvm_arch_hardware_disable(void *discard)
1190 {
1191         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1192                 cpu_hyp_reset();
1193                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1194         }
1195 }
1196
1197 void kvm_arch_hardware_disable(void)
1198 {
1199         _kvm_arch_hardware_disable(NULL);
1200 }
1201
1202 #ifdef CONFIG_CPU_PM
1203 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1204                                     unsigned long cmd,
1205                                     void *v)
1206 {
1207         /*
1208          * kvm_arm_hardware_enabled is left with its old value over
1209          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1210          * re-enable hyp.
1211          */
1212         switch (cmd) {
1213         case CPU_PM_ENTER:
1214                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1215                         /*
1216                          * don't update kvm_arm_hardware_enabled here
1217                          * so that the hardware will be re-enabled
1218                          * when we resume. See below.
1219                          */
1220                         cpu_hyp_reset();
1221
1222                 return NOTIFY_OK;
1223         case CPU_PM_EXIT:
1224                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1225                         /* The hardware was enabled before suspend. */
1226                         cpu_hyp_reinit();
1227
1228                 return NOTIFY_OK;
1229
1230         default:
1231                 return NOTIFY_DONE;
1232         }
1233 }
1234
1235 static struct notifier_block hyp_init_cpu_pm_nb = {
1236         .notifier_call = hyp_init_cpu_pm_notifier,
1237 };
1238
1239 static void __init hyp_cpu_pm_init(void)
1240 {
1241         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1242 }
1243 static void __init hyp_cpu_pm_exit(void)
1244 {
1245         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1246 }
1247 #else
1248 static inline void hyp_cpu_pm_init(void)
1249 {
1250 }
1251 static inline void hyp_cpu_pm_exit(void)
1252 {
1253 }
1254 #endif
1255
1256 static void teardown_common_resources(void)
1257 {
1258         free_percpu(kvm_host_cpu_state);
1259 }
1260
1261 static int init_common_resources(void)
1262 {
1263         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1264         if (!kvm_host_cpu_state) {
1265                 kvm_err("Cannot allocate host CPU state\n");
1266                 return -ENOMEM;
1267         }
1268
1269         /* set size of VMID supported by CPU */
1270         kvm_vmid_bits = kvm_get_vmid_bits();
1271         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1272
1273         return 0;
1274 }
1275
1276 static int init_subsystems(void)
1277 {
1278         int err = 0;
1279
1280         /*
1281          * Enable hardware so that subsystem initialisation can access EL2.
1282          */
1283         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1284
1285         /*
1286          * Register CPU lower-power notifier
1287          */
1288         hyp_cpu_pm_init();
1289
1290         /*
1291          * Init HYP view of VGIC
1292          */
1293         err = kvm_vgic_hyp_init();
1294         switch (err) {
1295         case 0:
1296                 vgic_present = true;
1297                 break;
1298         case -ENODEV:
1299         case -ENXIO:
1300                 vgic_present = false;
1301                 err = 0;
1302                 break;
1303         default:
1304                 goto out;
1305         }
1306
1307         /*
1308          * Init HYP architected timer support
1309          */
1310         err = kvm_timer_hyp_init();
1311         if (err)
1312                 goto out;
1313
1314         kvm_perf_init();
1315         kvm_coproc_table_init();
1316
1317 out:
1318         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1319
1320         return err;
1321 }
1322
1323 static void teardown_hyp_mode(void)
1324 {
1325         int cpu;
1326
1327         free_hyp_pgds();
1328         for_each_possible_cpu(cpu)
1329                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1330         hyp_cpu_pm_exit();
1331 }
1332
1333 /**
1334  * Inits Hyp-mode on all online CPUs
1335  */
1336 static int init_hyp_mode(void)
1337 {
1338         int cpu;
1339         int err = 0;
1340
1341         /*
1342          * Allocate Hyp PGD and setup Hyp identity mapping
1343          */
1344         err = kvm_mmu_init();
1345         if (err)
1346                 goto out_err;
1347
1348         /*
1349          * Allocate stack pages for Hypervisor-mode
1350          */
1351         for_each_possible_cpu(cpu) {
1352                 unsigned long stack_page;
1353
1354                 stack_page = __get_free_page(GFP_KERNEL);
1355                 if (!stack_page) {
1356                         err = -ENOMEM;
1357                         goto out_err;
1358                 }
1359
1360                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1361         }
1362
1363         /*
1364          * Map the Hyp-code called directly from the host
1365          */
1366         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1367                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1368         if (err) {
1369                 kvm_err("Cannot map world-switch code\n");
1370                 goto out_err;
1371         }
1372
1373         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1374                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1375         if (err) {
1376                 kvm_err("Cannot map rodata section\n");
1377                 goto out_err;
1378         }
1379
1380         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1381                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1382         if (err) {
1383                 kvm_err("Cannot map bss section\n");
1384                 goto out_err;
1385         }
1386
1387         err = kvm_map_vectors();
1388         if (err) {
1389                 kvm_err("Cannot map vectors\n");
1390                 goto out_err;
1391         }
1392
1393         /*
1394          * Map the Hyp stack pages
1395          */
1396         for_each_possible_cpu(cpu) {
1397                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1398                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1399                                           PAGE_HYP);
1400
1401                 if (err) {
1402                         kvm_err("Cannot map hyp stack\n");
1403                         goto out_err;
1404                 }
1405         }
1406
1407         for_each_possible_cpu(cpu) {
1408                 kvm_cpu_context_t *cpu_ctxt;
1409
1410                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1411                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1412
1413                 if (err) {
1414                         kvm_err("Cannot map host CPU state: %d\n", err);
1415                         goto out_err;
1416                 }
1417         }
1418
1419         return 0;
1420
1421 out_err:
1422         teardown_hyp_mode();
1423         kvm_err("error initializing Hyp mode: %d\n", err);
1424         return err;
1425 }
1426
1427 static void check_kvm_target_cpu(void *ret)
1428 {
1429         *(int *)ret = kvm_target_cpu();
1430 }
1431
1432 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1433 {
1434         struct kvm_vcpu *vcpu;
1435         int i;
1436
1437         mpidr &= MPIDR_HWID_BITMASK;
1438         kvm_for_each_vcpu(i, vcpu, kvm) {
1439                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1440                         return vcpu;
1441         }
1442         return NULL;
1443 }
1444
1445 /**
1446  * Initialize Hyp-mode and memory mappings on all CPUs.
1447  */
1448 int kvm_arch_init(void *opaque)
1449 {
1450         int err;
1451         int ret, cpu;
1452         bool in_hyp_mode;
1453
1454         if (!is_hyp_mode_available()) {
1455                 kvm_err("HYP mode not available\n");
1456                 return -ENODEV;
1457         }
1458
1459         for_each_online_cpu(cpu) {
1460                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1461                 if (ret < 0) {
1462                         kvm_err("Error, CPU %d not supported!\n", cpu);
1463                         return -ENODEV;
1464                 }
1465         }
1466
1467         err = init_common_resources();
1468         if (err)
1469                 return err;
1470
1471         in_hyp_mode = is_kernel_in_hyp_mode();
1472
1473         if (!in_hyp_mode) {
1474                 err = init_hyp_mode();
1475                 if (err)
1476                         goto out_err;
1477         }
1478
1479         err = init_subsystems();
1480         if (err)
1481                 goto out_hyp;
1482
1483         if (in_hyp_mode)
1484                 kvm_info("VHE mode initialized successfully\n");
1485         else
1486                 kvm_info("Hyp mode initialized successfully\n");
1487
1488         return 0;
1489
1490 out_hyp:
1491         if (!in_hyp_mode)
1492                 teardown_hyp_mode();
1493 out_err:
1494         teardown_common_resources();
1495         return err;
1496 }
1497
1498 /* NOP: Compiling as a module not supported */
1499 void kvm_arch_exit(void)
1500 {
1501         kvm_perf_teardown();
1502 }
1503
1504 static int arm_init(void)
1505 {
1506         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1507         return rc;
1508 }
1509
1510 module_init(arm_init);