2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
38 #define CREATE_TRACE_POINTS
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
56 __asm__(".arch_extension virt");
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static unsigned int kvm_vmid_bits __read_mostly;
69 static DEFINE_RWLOCK(kvm_vmid_lock);
71 static bool vgic_present;
73 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
75 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
77 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
80 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
83 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
84 * Must be called from non-preemptible context
86 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
88 return __this_cpu_read(kvm_arm_running_vcpu);
92 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
94 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
96 return &kvm_arm_running_vcpu;
99 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
101 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
104 int kvm_arch_hardware_setup(void)
109 void kvm_arch_check_processor_compat(void *rtn)
116 * kvm_arch_init_vm - initializes a VM data structure
117 * @kvm: pointer to the KVM struct
119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
123 ret = kvm_arm_setup_stage2(kvm, type);
127 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
128 if (!kvm->arch.last_vcpu_ran)
131 for_each_possible_cpu(cpu)
132 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
134 ret = kvm_alloc_stage2_pgd(kvm);
138 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
140 goto out_free_stage2_pgd;
142 kvm_vgic_early_init(kvm);
144 /* Mark the initial VMID generation invalid */
145 kvm->arch.vmid_gen = 0;
147 /* The maximum number of VCPUs is limited by the host's GIC model */
148 kvm->arch.max_vcpus = vgic_present ?
149 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
153 kvm_free_stage2_pgd(kvm);
155 free_percpu(kvm->arch.last_vcpu_ran);
156 kvm->arch.last_vcpu_ran = NULL;
160 bool kvm_arch_has_vcpu_debugfs(void)
165 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
170 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
172 return VM_FAULT_SIGBUS;
177 * kvm_arch_destroy_vm - destroy the VM data structure
178 * @kvm: pointer to the KVM struct
180 void kvm_arch_destroy_vm(struct kvm *kvm)
184 kvm_vgic_destroy(kvm);
186 free_percpu(kvm->arch.last_vcpu_ran);
187 kvm->arch.last_vcpu_ran = NULL;
189 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
191 kvm_arch_vcpu_free(kvm->vcpus[i]);
192 kvm->vcpus[i] = NULL;
195 atomic_set(&kvm->online_vcpus, 0);
198 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
202 case KVM_CAP_IRQCHIP:
205 case KVM_CAP_IOEVENTFD:
206 case KVM_CAP_DEVICE_CTRL:
207 case KVM_CAP_USER_MEMORY:
208 case KVM_CAP_SYNC_MMU:
209 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
210 case KVM_CAP_ONE_REG:
211 case KVM_CAP_ARM_PSCI:
212 case KVM_CAP_ARM_PSCI_0_2:
213 case KVM_CAP_READONLY_MEM:
214 case KVM_CAP_MP_STATE:
215 case KVM_CAP_IMMEDIATE_EXIT:
216 case KVM_CAP_VCPU_EVENTS:
219 case KVM_CAP_ARM_SET_DEVICE_ADDR:
222 case KVM_CAP_NR_VCPUS:
223 r = num_online_cpus();
225 case KVM_CAP_MAX_VCPUS:
228 case KVM_CAP_NR_MEMSLOTS:
229 r = KVM_USER_MEM_SLOTS;
231 case KVM_CAP_MSI_DEVID:
235 r = kvm->arch.vgic.msis_require_devid;
237 case KVM_CAP_ARM_USER_IRQ:
239 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
240 * (bump this number if adding more devices)
245 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
251 long kvm_arch_dev_ioctl(struct file *filp,
252 unsigned int ioctl, unsigned long arg)
257 struct kvm *kvm_arch_alloc_vm(void)
260 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
262 return vzalloc(sizeof(struct kvm));
265 void kvm_arch_free_vm(struct kvm *kvm)
273 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
276 struct kvm_vcpu *vcpu;
278 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
283 if (id >= kvm->arch.max_vcpus) {
288 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
294 err = kvm_vcpu_init(vcpu, kvm, id);
298 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
304 kvm_vcpu_uninit(vcpu);
306 kmem_cache_free(kvm_vcpu_cache, vcpu);
311 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
315 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
317 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
318 static_branch_dec(&userspace_irqchip_in_use);
320 kvm_mmu_free_memory_caches(vcpu);
321 kvm_timer_vcpu_terminate(vcpu);
322 kvm_pmu_vcpu_destroy(vcpu);
323 kvm_vcpu_uninit(vcpu);
324 kmem_cache_free(kvm_vcpu_cache, vcpu);
327 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
329 kvm_arch_vcpu_free(vcpu);
332 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
334 return kvm_timer_is_pending(vcpu);
337 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
339 kvm_timer_schedule(vcpu);
340 kvm_vgic_v4_enable_doorbell(vcpu);
343 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
345 kvm_timer_unschedule(vcpu);
346 kvm_vgic_v4_disable_doorbell(vcpu);
349 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
351 /* Force users to call KVM_ARM_VCPU_INIT */
352 vcpu->arch.target = -1;
353 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
355 /* Set up the timer */
356 kvm_timer_vcpu_init(vcpu);
358 kvm_arm_reset_debug_ptr(vcpu);
360 return kvm_vgic_vcpu_init(vcpu);
363 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
367 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
370 * We might get preempted before the vCPU actually runs, but
371 * over-invalidation doesn't affect correctness.
373 if (*last_ran != vcpu->vcpu_id) {
374 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
375 *last_ran = vcpu->vcpu_id;
379 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
381 kvm_arm_set_running_vcpu(vcpu);
383 kvm_timer_vcpu_load(vcpu);
384 kvm_vcpu_load_sysregs(vcpu);
385 kvm_arch_vcpu_load_fp(vcpu);
387 if (single_task_running())
388 vcpu_clear_wfe_traps(vcpu);
390 vcpu_set_wfe_traps(vcpu);
393 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
395 kvm_arch_vcpu_put_fp(vcpu);
396 kvm_vcpu_put_sysregs(vcpu);
397 kvm_timer_vcpu_put(vcpu);
402 kvm_arm_set_running_vcpu(NULL);
405 static void vcpu_power_off(struct kvm_vcpu *vcpu)
407 vcpu->arch.power_off = true;
408 kvm_make_request(KVM_REQ_SLEEP, vcpu);
412 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
413 struct kvm_mp_state *mp_state)
415 if (vcpu->arch.power_off)
416 mp_state->mp_state = KVM_MP_STATE_STOPPED;
418 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
423 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
424 struct kvm_mp_state *mp_state)
428 switch (mp_state->mp_state) {
429 case KVM_MP_STATE_RUNNABLE:
430 vcpu->arch.power_off = false;
432 case KVM_MP_STATE_STOPPED:
433 vcpu_power_off(vcpu);
443 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
444 * @v: The VCPU pointer
446 * If the guest CPU is not waiting for interrupts or an interrupt line is
447 * asserted, the CPU is by definition runnable.
449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
451 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
452 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453 && !v->arch.power_off && !v->arch.pause);
456 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
458 return vcpu_mode_priv(vcpu);
461 /* Just ensure a guest exit from a particular CPU */
462 static void exit_vm_noop(void *info)
466 void force_vm_exit(const cpumask_t *mask)
469 smp_call_function_many(mask, exit_vm_noop, NULL, true);
474 * need_new_vmid_gen - check that the VMID is still valid
475 * @kvm: The VM's VMID to check
477 * return true if there is a new generation of VMIDs being used
479 * The hardware supports only 256 values with the value zero reserved for the
480 * host, so we check if an assigned value belongs to a previous generation,
481 * which which requires us to assign a new value. If we're the first to use a
482 * VMID for the new generation, we must flush necessary caches and TLBs on all
485 static bool need_new_vmid_gen(struct kvm *kvm)
487 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
491 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
492 * @kvm The guest that we are about to run
494 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
495 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
498 static void update_vttbr(struct kvm *kvm)
500 phys_addr_t pgd_phys;
501 u64 vmid, cnp = kvm_cpu_has_cnp() ? VTTBR_CNP_BIT : 0;
504 read_lock(&kvm_vmid_lock);
505 new_gen = need_new_vmid_gen(kvm);
506 read_unlock(&kvm_vmid_lock);
511 write_lock(&kvm_vmid_lock);
514 * We need to re-check the vmid_gen here to ensure that if another vcpu
515 * already allocated a valid vmid for this vm, then this vcpu should
518 if (!need_new_vmid_gen(kvm)) {
519 write_unlock(&kvm_vmid_lock);
523 /* First user of a new VMID generation? */
524 if (unlikely(kvm_next_vmid == 0)) {
525 atomic64_inc(&kvm_vmid_gen);
529 * On SMP we know no other CPUs can use this CPU's or each
530 * other's VMID after force_vm_exit returns since the
531 * kvm_vmid_lock blocks them from reentry to the guest.
533 force_vm_exit(cpu_all_mask);
535 * Now broadcast TLB + ICACHE invalidation over the inner
536 * shareable domain to make sure all data structures are
539 kvm_call_hyp(__kvm_flush_vm_context);
542 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
543 kvm->arch.vmid = kvm_next_vmid;
545 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
547 /* update vttbr to be used with the new vmid */
548 pgd_phys = virt_to_phys(kvm->arch.pgd);
549 BUG_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm));
550 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
551 kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid | cnp;
553 write_unlock(&kvm_vmid_lock);
556 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
558 struct kvm *kvm = vcpu->kvm;
561 if (likely(vcpu->arch.has_run_once))
564 vcpu->arch.has_run_once = true;
566 if (likely(irqchip_in_kernel(kvm))) {
568 * Map the VGIC hardware resources before running a vcpu the
569 * first time on this VM.
571 if (unlikely(!vgic_ready(kvm))) {
572 ret = kvm_vgic_map_resources(kvm);
578 * Tell the rest of the code that there are userspace irqchip
581 static_branch_inc(&userspace_irqchip_in_use);
584 ret = kvm_timer_enable(vcpu);
588 ret = kvm_arm_pmu_v3_enable(vcpu);
593 bool kvm_arch_intc_initialized(struct kvm *kvm)
595 return vgic_initialized(kvm);
598 void kvm_arm_halt_guest(struct kvm *kvm)
601 struct kvm_vcpu *vcpu;
603 kvm_for_each_vcpu(i, vcpu, kvm)
604 vcpu->arch.pause = true;
605 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
608 void kvm_arm_resume_guest(struct kvm *kvm)
611 struct kvm_vcpu *vcpu;
613 kvm_for_each_vcpu(i, vcpu, kvm) {
614 vcpu->arch.pause = false;
615 swake_up_one(kvm_arch_vcpu_wq(vcpu));
619 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
621 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
623 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
624 (!vcpu->arch.pause)));
626 if (vcpu->arch.power_off || vcpu->arch.pause) {
627 /* Awaken to handle a signal, request we sleep again later. */
628 kvm_make_request(KVM_REQ_SLEEP, vcpu);
632 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
634 return vcpu->arch.target >= 0;
637 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
639 if (kvm_request_pending(vcpu)) {
640 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
641 vcpu_req_sleep(vcpu);
644 * Clear IRQ_PENDING requests that were made to guarantee
645 * that a VCPU sees new virtual interrupts.
647 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
652 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
653 * @vcpu: The VCPU pointer
654 * @run: The kvm_run structure pointer used for userspace state exchange
656 * This function is called through the VCPU_RUN ioctl called from user space. It
657 * will execute VM code in a loop until the time slice for the process is used
658 * or some emulation is needed from user space in which case the function will
659 * return with return value 0 and with the kvm_run structure filled in with the
660 * required data for the requested emulation.
662 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
666 if (unlikely(!kvm_vcpu_initialized(vcpu)))
669 ret = kvm_vcpu_first_run_init(vcpu);
673 if (run->exit_reason == KVM_EXIT_MMIO) {
674 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
677 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
681 if (run->immediate_exit)
686 kvm_sigset_activate(vcpu);
689 run->exit_reason = KVM_EXIT_UNKNOWN;
692 * Check conditions before entering the guest
696 update_vttbr(vcpu->kvm);
698 check_vcpu_requests(vcpu);
701 * Preparing the interrupts to be injected also
702 * involves poking the GIC, which must be done in a
703 * non-preemptible context.
707 kvm_pmu_flush_hwstate(vcpu);
711 kvm_vgic_flush_hwstate(vcpu);
714 * Exit if we have a signal pending so that we can deliver the
715 * signal to user space.
717 if (signal_pending(current)) {
719 run->exit_reason = KVM_EXIT_INTR;
723 * If we're using a userspace irqchip, then check if we need
724 * to tell a userspace irqchip about timer or PMU level
725 * changes and if so, exit to userspace (the actual level
726 * state gets updated in kvm_timer_update_run and
727 * kvm_pmu_update_run below).
729 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
730 if (kvm_timer_should_notify_user(vcpu) ||
731 kvm_pmu_should_notify_user(vcpu)) {
733 run->exit_reason = KVM_EXIT_INTR;
738 * Ensure we set mode to IN_GUEST_MODE after we disable
739 * interrupts and before the final VCPU requests check.
740 * See the comment in kvm_vcpu_exiting_guest_mode() and
741 * Documentation/virtual/kvm/vcpu-requests.rst
743 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
745 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
746 kvm_request_pending(vcpu)) {
747 vcpu->mode = OUTSIDE_GUEST_MODE;
748 isb(); /* Ensure work in x_flush_hwstate is committed */
749 kvm_pmu_sync_hwstate(vcpu);
750 if (static_branch_unlikely(&userspace_irqchip_in_use))
751 kvm_timer_sync_hwstate(vcpu);
752 kvm_vgic_sync_hwstate(vcpu);
758 kvm_arm_setup_debug(vcpu);
760 /**************************************************************
763 trace_kvm_entry(*vcpu_pc(vcpu));
764 guest_enter_irqoff();
767 kvm_arm_vhe_guest_enter();
768 ret = kvm_vcpu_run_vhe(vcpu);
769 kvm_arm_vhe_guest_exit();
771 ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
774 vcpu->mode = OUTSIDE_GUEST_MODE;
778 *************************************************************/
780 kvm_arm_clear_debug(vcpu);
783 * We must sync the PMU state before the vgic state so
784 * that the vgic can properly sample the updated state of the
787 kvm_pmu_sync_hwstate(vcpu);
790 * Sync the vgic state before syncing the timer state because
791 * the timer code needs to know if the virtual timer
792 * interrupts are active.
794 kvm_vgic_sync_hwstate(vcpu);
797 * Sync the timer hardware state before enabling interrupts as
798 * we don't want vtimer interrupts to race with syncing the
799 * timer virtual interrupt state.
801 if (static_branch_unlikely(&userspace_irqchip_in_use))
802 kvm_timer_sync_hwstate(vcpu);
804 kvm_arch_vcpu_ctxsync_fp(vcpu);
807 * We may have taken a host interrupt in HYP mode (ie
808 * while executing the guest). This interrupt is still
809 * pending, as we haven't serviced it yet!
811 * We're now back in SVC mode, with interrupts
812 * disabled. Enabling the interrupts now will have
813 * the effect of taking the interrupt again, in SVC
819 * We do local_irq_enable() before calling guest_exit() so
820 * that if a timer interrupt hits while running the guest we
821 * account that tick as being spent in the guest. We enable
822 * preemption after calling guest_exit() so that if we get
823 * preempted we make sure ticks after that is not counted as
827 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
829 /* Exit types that need handling before we can be preempted */
830 handle_exit_early(vcpu, run, ret);
834 ret = handle_exit(vcpu, run, ret);
837 /* Tell userspace about in-kernel device output levels */
838 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
839 kvm_timer_update_run(vcpu);
840 kvm_pmu_update_run(vcpu);
843 kvm_sigset_deactivate(vcpu);
849 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
855 if (number == KVM_ARM_IRQ_CPU_IRQ)
856 bit_index = __ffs(HCR_VI);
857 else /* KVM_ARM_IRQ_CPU_FIQ */
858 bit_index = __ffs(HCR_VF);
860 hcr = vcpu_hcr(vcpu);
862 set = test_and_set_bit(bit_index, hcr);
864 set = test_and_clear_bit(bit_index, hcr);
867 * If we didn't change anything, no need to wake up or kick other CPUs
873 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
874 * trigger a world-switch round on the running physical CPU to set the
875 * virtual IRQ/FIQ fields in the HCR appropriately.
877 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
883 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
886 u32 irq = irq_level->irq;
887 unsigned int irq_type, vcpu_idx, irq_num;
888 int nrcpus = atomic_read(&kvm->online_vcpus);
889 struct kvm_vcpu *vcpu = NULL;
890 bool level = irq_level->level;
892 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
893 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
894 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
896 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
899 case KVM_ARM_IRQ_TYPE_CPU:
900 if (irqchip_in_kernel(kvm))
903 if (vcpu_idx >= nrcpus)
906 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
910 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
913 return vcpu_interrupt_line(vcpu, irq_num, level);
914 case KVM_ARM_IRQ_TYPE_PPI:
915 if (!irqchip_in_kernel(kvm))
918 if (vcpu_idx >= nrcpus)
921 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
925 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
928 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
929 case KVM_ARM_IRQ_TYPE_SPI:
930 if (!irqchip_in_kernel(kvm))
933 if (irq_num < VGIC_NR_PRIVATE_IRQS)
936 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
942 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
943 const struct kvm_vcpu_init *init)
946 int phys_target = kvm_target_cpu();
948 if (init->target != phys_target)
952 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
953 * use the same target.
955 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
958 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
959 for (i = 0; i < sizeof(init->features) * 8; i++) {
960 bool set = (init->features[i / 32] & (1 << (i % 32)));
962 if (set && i >= KVM_VCPU_MAX_FEATURES)
966 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
967 * use the same feature set.
969 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
970 test_bit(i, vcpu->arch.features) != set)
974 set_bit(i, vcpu->arch.features);
977 vcpu->arch.target = phys_target;
979 /* Now we know what it is, we can reset it. */
980 return kvm_reset_vcpu(vcpu);
984 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
985 struct kvm_vcpu_init *init)
989 ret = kvm_vcpu_set_target(vcpu, init);
994 * Ensure a rebooted VM will fault in RAM pages and detect if the
995 * guest MMU is turned off and flush the caches as needed.
997 if (vcpu->arch.has_run_once)
998 stage2_unmap_vm(vcpu->kvm);
1000 vcpu_reset_hcr(vcpu);
1003 * Handle the "start in power-off" case.
1005 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1006 vcpu_power_off(vcpu);
1008 vcpu->arch.power_off = false;
1013 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1014 struct kvm_device_attr *attr)
1018 switch (attr->group) {
1020 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1027 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1028 struct kvm_device_attr *attr)
1032 switch (attr->group) {
1034 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1041 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1042 struct kvm_device_attr *attr)
1046 switch (attr->group) {
1048 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1055 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1056 struct kvm_vcpu_events *events)
1058 memset(events, 0, sizeof(*events));
1060 return __kvm_arm_vcpu_get_events(vcpu, events);
1063 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1064 struct kvm_vcpu_events *events)
1068 /* check whether the reserved field is zero */
1069 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1070 if (events->reserved[i])
1073 /* check whether the pad field is zero */
1074 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1075 if (events->exception.pad[i])
1078 return __kvm_arm_vcpu_set_events(vcpu, events);
1081 long kvm_arch_vcpu_ioctl(struct file *filp,
1082 unsigned int ioctl, unsigned long arg)
1084 struct kvm_vcpu *vcpu = filp->private_data;
1085 void __user *argp = (void __user *)arg;
1086 struct kvm_device_attr attr;
1090 case KVM_ARM_VCPU_INIT: {
1091 struct kvm_vcpu_init init;
1094 if (copy_from_user(&init, argp, sizeof(init)))
1097 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1100 case KVM_SET_ONE_REG:
1101 case KVM_GET_ONE_REG: {
1102 struct kvm_one_reg reg;
1105 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1109 if (copy_from_user(®, argp, sizeof(reg)))
1112 if (ioctl == KVM_SET_ONE_REG)
1113 r = kvm_arm_set_reg(vcpu, ®);
1115 r = kvm_arm_get_reg(vcpu, ®);
1118 case KVM_GET_REG_LIST: {
1119 struct kvm_reg_list __user *user_list = argp;
1120 struct kvm_reg_list reg_list;
1124 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1128 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1131 reg_list.n = kvm_arm_num_regs(vcpu);
1132 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1137 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1140 case KVM_SET_DEVICE_ATTR: {
1142 if (copy_from_user(&attr, argp, sizeof(attr)))
1144 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1147 case KVM_GET_DEVICE_ATTR: {
1149 if (copy_from_user(&attr, argp, sizeof(attr)))
1151 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1154 case KVM_HAS_DEVICE_ATTR: {
1156 if (copy_from_user(&attr, argp, sizeof(attr)))
1158 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1161 case KVM_GET_VCPU_EVENTS: {
1162 struct kvm_vcpu_events events;
1164 if (kvm_arm_vcpu_get_events(vcpu, &events))
1167 if (copy_to_user(argp, &events, sizeof(events)))
1172 case KVM_SET_VCPU_EVENTS: {
1173 struct kvm_vcpu_events events;
1175 if (copy_from_user(&events, argp, sizeof(events)))
1178 return kvm_arm_vcpu_set_events(vcpu, &events);
1188 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1189 * @kvm: kvm instance
1190 * @log: slot id and address to which we copy the log
1192 * Steps 1-4 below provide general overview of dirty page logging. See
1193 * kvm_get_dirty_log_protect() function description for additional details.
1195 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1196 * always flush the TLB (step 4) even if previous step failed and the dirty
1197 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1198 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1199 * writes will be marked dirty for next log read.
1201 * 1. Take a snapshot of the bit and clear it if needed.
1202 * 2. Write protect the corresponding page.
1203 * 3. Copy the snapshot to the userspace.
1204 * 4. Flush TLB's if needed.
1206 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1208 bool is_dirty = false;
1211 mutex_lock(&kvm->slots_lock);
1213 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1216 kvm_flush_remote_tlbs(kvm);
1218 mutex_unlock(&kvm->slots_lock);
1222 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1223 struct kvm_arm_device_addr *dev_addr)
1225 unsigned long dev_id, type;
1227 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1228 KVM_ARM_DEVICE_ID_SHIFT;
1229 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1230 KVM_ARM_DEVICE_TYPE_SHIFT;
1233 case KVM_ARM_DEVICE_VGIC_V2:
1236 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1242 long kvm_arch_vm_ioctl(struct file *filp,
1243 unsigned int ioctl, unsigned long arg)
1245 struct kvm *kvm = filp->private_data;
1246 void __user *argp = (void __user *)arg;
1249 case KVM_CREATE_IRQCHIP: {
1253 mutex_lock(&kvm->lock);
1254 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1255 mutex_unlock(&kvm->lock);
1258 case KVM_ARM_SET_DEVICE_ADDR: {
1259 struct kvm_arm_device_addr dev_addr;
1261 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1263 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1265 case KVM_ARM_PREFERRED_TARGET: {
1267 struct kvm_vcpu_init init;
1269 err = kvm_vcpu_preferred_target(&init);
1273 if (copy_to_user(argp, &init, sizeof(init)))
1283 static void cpu_init_hyp_mode(void *dummy)
1285 phys_addr_t pgd_ptr;
1286 unsigned long hyp_stack_ptr;
1287 unsigned long stack_page;
1288 unsigned long vector_ptr;
1290 /* Switch from the HYP stub to our own HYP init vector */
1291 __hyp_set_vectors(kvm_get_idmap_vector());
1293 pgd_ptr = kvm_mmu_get_httbr();
1294 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1295 hyp_stack_ptr = stack_page + PAGE_SIZE;
1296 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1298 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1299 __cpu_init_stage2();
1302 static void cpu_hyp_reset(void)
1304 if (!is_kernel_in_hyp_mode())
1305 __hyp_reset_vectors();
1308 static void cpu_hyp_reinit(void)
1312 if (is_kernel_in_hyp_mode())
1313 kvm_timer_init_vhe();
1315 cpu_init_hyp_mode(NULL);
1317 kvm_arm_init_debug();
1320 kvm_vgic_init_cpu_hardware();
1323 static void _kvm_arch_hardware_enable(void *discard)
1325 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1327 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1331 int kvm_arch_hardware_enable(void)
1333 _kvm_arch_hardware_enable(NULL);
1337 static void _kvm_arch_hardware_disable(void *discard)
1339 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1341 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1345 void kvm_arch_hardware_disable(void)
1347 _kvm_arch_hardware_disable(NULL);
1350 #ifdef CONFIG_CPU_PM
1351 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1356 * kvm_arm_hardware_enabled is left with its old value over
1357 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1362 if (__this_cpu_read(kvm_arm_hardware_enabled))
1364 * don't update kvm_arm_hardware_enabled here
1365 * so that the hardware will be re-enabled
1366 * when we resume. See below.
1371 case CPU_PM_ENTER_FAILED:
1373 if (__this_cpu_read(kvm_arm_hardware_enabled))
1374 /* The hardware was enabled before suspend. */
1384 static struct notifier_block hyp_init_cpu_pm_nb = {
1385 .notifier_call = hyp_init_cpu_pm_notifier,
1388 static void __init hyp_cpu_pm_init(void)
1390 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1392 static void __init hyp_cpu_pm_exit(void)
1394 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1397 static inline void hyp_cpu_pm_init(void)
1400 static inline void hyp_cpu_pm_exit(void)
1405 static int init_common_resources(void)
1407 /* set size of VMID supported by CPU */
1408 kvm_vmid_bits = kvm_get_vmid_bits();
1409 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1411 kvm_set_ipa_limit();
1416 static int init_subsystems(void)
1421 * Enable hardware so that subsystem initialisation can access EL2.
1423 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1426 * Register CPU lower-power notifier
1431 * Init HYP view of VGIC
1433 err = kvm_vgic_hyp_init();
1436 vgic_present = true;
1440 vgic_present = false;
1448 * Init HYP architected timer support
1450 err = kvm_timer_hyp_init(vgic_present);
1455 kvm_coproc_table_init();
1458 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1463 static void teardown_hyp_mode(void)
1468 for_each_possible_cpu(cpu)
1469 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1474 * Inits Hyp-mode on all online CPUs
1476 static int init_hyp_mode(void)
1482 * Allocate Hyp PGD and setup Hyp identity mapping
1484 err = kvm_mmu_init();
1489 * Allocate stack pages for Hypervisor-mode
1491 for_each_possible_cpu(cpu) {
1492 unsigned long stack_page;
1494 stack_page = __get_free_page(GFP_KERNEL);
1500 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1504 * Map the Hyp-code called directly from the host
1506 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1507 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1509 kvm_err("Cannot map world-switch code\n");
1513 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1514 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1516 kvm_err("Cannot map rodata section\n");
1520 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1521 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1523 kvm_err("Cannot map bss section\n");
1527 err = kvm_map_vectors();
1529 kvm_err("Cannot map vectors\n");
1534 * Map the Hyp stack pages
1536 for_each_possible_cpu(cpu) {
1537 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1538 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1542 kvm_err("Cannot map hyp stack\n");
1547 for_each_possible_cpu(cpu) {
1548 kvm_cpu_context_t *cpu_ctxt;
1550 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1551 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1554 kvm_err("Cannot map host CPU state: %d\n", err);
1559 err = hyp_map_aux_data();
1561 kvm_err("Cannot map host auxilary data: %d\n", err);
1566 teardown_hyp_mode();
1567 kvm_err("error initializing Hyp mode: %d\n", err);
1571 static void check_kvm_target_cpu(void *ret)
1573 *(int *)ret = kvm_target_cpu();
1576 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1578 struct kvm_vcpu *vcpu;
1581 mpidr &= MPIDR_HWID_BITMASK;
1582 kvm_for_each_vcpu(i, vcpu, kvm) {
1583 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1589 bool kvm_arch_has_irq_bypass(void)
1594 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1595 struct irq_bypass_producer *prod)
1597 struct kvm_kernel_irqfd *irqfd =
1598 container_of(cons, struct kvm_kernel_irqfd, consumer);
1600 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1603 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1604 struct irq_bypass_producer *prod)
1606 struct kvm_kernel_irqfd *irqfd =
1607 container_of(cons, struct kvm_kernel_irqfd, consumer);
1609 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1613 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1615 struct kvm_kernel_irqfd *irqfd =
1616 container_of(cons, struct kvm_kernel_irqfd, consumer);
1618 kvm_arm_halt_guest(irqfd->kvm);
1621 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1623 struct kvm_kernel_irqfd *irqfd =
1624 container_of(cons, struct kvm_kernel_irqfd, consumer);
1626 kvm_arm_resume_guest(irqfd->kvm);
1630 * Initialize Hyp-mode and memory mappings on all CPUs.
1632 int kvm_arch_init(void *opaque)
1638 if (!is_hyp_mode_available()) {
1639 kvm_info("HYP mode not available\n");
1643 if (!kvm_arch_check_sve_has_vhe()) {
1644 kvm_pr_unimpl("SVE system without VHE unsupported. Broken cpu?");
1648 for_each_online_cpu(cpu) {
1649 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1651 kvm_err("Error, CPU %d not supported!\n", cpu);
1656 err = init_common_resources();
1660 in_hyp_mode = is_kernel_in_hyp_mode();
1663 err = init_hyp_mode();
1668 err = init_subsystems();
1673 kvm_info("VHE mode initialized successfully\n");
1675 kvm_info("Hyp mode initialized successfully\n");
1681 teardown_hyp_mode();
1686 /* NOP: Compiling as a module not supported */
1687 void kvm_arch_exit(void)
1689 kvm_perf_teardown();
1692 static int arm_init(void)
1694 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1698 module_init(arm_init);