Merge tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-starfive.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension        virt");
57 #endif
58
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static unsigned int kvm_vmid_bits __read_mostly;
69 static DEFINE_RWLOCK(kvm_vmid_lock);
70
71 static bool vgic_present;
72
73 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74
75 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 {
77         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 }
79
80 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
81
82 /**
83  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
84  * Must be called from non-preemptible context
85  */
86 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 {
88         return __this_cpu_read(kvm_arm_running_vcpu);
89 }
90
91 /**
92  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93  */
94 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 {
96         return &kvm_arm_running_vcpu;
97 }
98
99 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 {
101         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106         return 0;
107 }
108
109 void kvm_arch_check_processor_compat(void *rtn)
110 {
111         *(int *)rtn = 0;
112 }
113
114
115 /**
116  * kvm_arch_init_vm - initializes a VM data structure
117  * @kvm:        pointer to the KVM struct
118  */
119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 {
121         int ret, cpu;
122
123         ret = kvm_arm_setup_stage2(kvm, type);
124         if (ret)
125                 return ret;
126
127         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
128         if (!kvm->arch.last_vcpu_ran)
129                 return -ENOMEM;
130
131         for_each_possible_cpu(cpu)
132                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
133
134         ret = kvm_alloc_stage2_pgd(kvm);
135         if (ret)
136                 goto out_fail_alloc;
137
138         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
139         if (ret)
140                 goto out_free_stage2_pgd;
141
142         kvm_vgic_early_init(kvm);
143
144         /* Mark the initial VMID generation invalid */
145         kvm->arch.vmid_gen = 0;
146
147         /* The maximum number of VCPUs is limited by the host's GIC model */
148         kvm->arch.max_vcpus = vgic_present ?
149                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
150
151         return ret;
152 out_free_stage2_pgd:
153         kvm_free_stage2_pgd(kvm);
154 out_fail_alloc:
155         free_percpu(kvm->arch.last_vcpu_ran);
156         kvm->arch.last_vcpu_ran = NULL;
157         return ret;
158 }
159
160 bool kvm_arch_has_vcpu_debugfs(void)
161 {
162         return false;
163 }
164
165 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
166 {
167         return 0;
168 }
169
170 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
171 {
172         return VM_FAULT_SIGBUS;
173 }
174
175
176 /**
177  * kvm_arch_destroy_vm - destroy the VM data structure
178  * @kvm:        pointer to the KVM struct
179  */
180 void kvm_arch_destroy_vm(struct kvm *kvm)
181 {
182         int i;
183
184         kvm_vgic_destroy(kvm);
185
186         free_percpu(kvm->arch.last_vcpu_ran);
187         kvm->arch.last_vcpu_ran = NULL;
188
189         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
190                 if (kvm->vcpus[i]) {
191                         kvm_arch_vcpu_free(kvm->vcpus[i]);
192                         kvm->vcpus[i] = NULL;
193                 }
194         }
195         atomic_set(&kvm->online_vcpus, 0);
196 }
197
198 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
199 {
200         int r;
201         switch (ext) {
202         case KVM_CAP_IRQCHIP:
203                 r = vgic_present;
204                 break;
205         case KVM_CAP_IOEVENTFD:
206         case KVM_CAP_DEVICE_CTRL:
207         case KVM_CAP_USER_MEMORY:
208         case KVM_CAP_SYNC_MMU:
209         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
210         case KVM_CAP_ONE_REG:
211         case KVM_CAP_ARM_PSCI:
212         case KVM_CAP_ARM_PSCI_0_2:
213         case KVM_CAP_READONLY_MEM:
214         case KVM_CAP_MP_STATE:
215         case KVM_CAP_IMMEDIATE_EXIT:
216         case KVM_CAP_VCPU_EVENTS:
217                 r = 1;
218                 break;
219         case KVM_CAP_ARM_SET_DEVICE_ADDR:
220                 r = 1;
221                 break;
222         case KVM_CAP_NR_VCPUS:
223                 r = num_online_cpus();
224                 break;
225         case KVM_CAP_MAX_VCPUS:
226                 r = KVM_MAX_VCPUS;
227                 break;
228         case KVM_CAP_NR_MEMSLOTS:
229                 r = KVM_USER_MEM_SLOTS;
230                 break;
231         case KVM_CAP_MSI_DEVID:
232                 if (!kvm)
233                         r = -EINVAL;
234                 else
235                         r = kvm->arch.vgic.msis_require_devid;
236                 break;
237         case KVM_CAP_ARM_USER_IRQ:
238                 /*
239                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
240                  * (bump this number if adding more devices)
241                  */
242                 r = 1;
243                 break;
244         default:
245                 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
246                 break;
247         }
248         return r;
249 }
250
251 long kvm_arch_dev_ioctl(struct file *filp,
252                         unsigned int ioctl, unsigned long arg)
253 {
254         return -EINVAL;
255 }
256
257 struct kvm *kvm_arch_alloc_vm(void)
258 {
259         if (!has_vhe())
260                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
261
262         return vzalloc(sizeof(struct kvm));
263 }
264
265 void kvm_arch_free_vm(struct kvm *kvm)
266 {
267         if (!has_vhe())
268                 kfree(kvm);
269         else
270                 vfree(kvm);
271 }
272
273 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
274 {
275         int err;
276         struct kvm_vcpu *vcpu;
277
278         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
279                 err = -EBUSY;
280                 goto out;
281         }
282
283         if (id >= kvm->arch.max_vcpus) {
284                 err = -EINVAL;
285                 goto out;
286         }
287
288         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
289         if (!vcpu) {
290                 err = -ENOMEM;
291                 goto out;
292         }
293
294         err = kvm_vcpu_init(vcpu, kvm, id);
295         if (err)
296                 goto free_vcpu;
297
298         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
299         if (err)
300                 goto vcpu_uninit;
301
302         return vcpu;
303 vcpu_uninit:
304         kvm_vcpu_uninit(vcpu);
305 free_vcpu:
306         kmem_cache_free(kvm_vcpu_cache, vcpu);
307 out:
308         return ERR_PTR(err);
309 }
310
311 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
312 {
313 }
314
315 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
316 {
317         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
318                 static_branch_dec(&userspace_irqchip_in_use);
319
320         kvm_mmu_free_memory_caches(vcpu);
321         kvm_timer_vcpu_terminate(vcpu);
322         kvm_pmu_vcpu_destroy(vcpu);
323         kvm_vcpu_uninit(vcpu);
324         kmem_cache_free(kvm_vcpu_cache, vcpu);
325 }
326
327 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
328 {
329         kvm_arch_vcpu_free(vcpu);
330 }
331
332 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
333 {
334         return kvm_timer_is_pending(vcpu);
335 }
336
337 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
338 {
339         kvm_timer_schedule(vcpu);
340         kvm_vgic_v4_enable_doorbell(vcpu);
341 }
342
343 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
344 {
345         kvm_timer_unschedule(vcpu);
346         kvm_vgic_v4_disable_doorbell(vcpu);
347 }
348
349 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
350 {
351         /* Force users to call KVM_ARM_VCPU_INIT */
352         vcpu->arch.target = -1;
353         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
354
355         /* Set up the timer */
356         kvm_timer_vcpu_init(vcpu);
357
358         kvm_arm_reset_debug_ptr(vcpu);
359
360         return kvm_vgic_vcpu_init(vcpu);
361 }
362
363 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
364 {
365         int *last_ran;
366
367         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
368
369         /*
370          * We might get preempted before the vCPU actually runs, but
371          * over-invalidation doesn't affect correctness.
372          */
373         if (*last_ran != vcpu->vcpu_id) {
374                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
375                 *last_ran = vcpu->vcpu_id;
376         }
377
378         vcpu->cpu = cpu;
379         vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
380
381         kvm_arm_set_running_vcpu(vcpu);
382         kvm_vgic_load(vcpu);
383         kvm_timer_vcpu_load(vcpu);
384         kvm_vcpu_load_sysregs(vcpu);
385         kvm_arch_vcpu_load_fp(vcpu);
386
387         if (single_task_running())
388                 vcpu_clear_wfe_traps(vcpu);
389         else
390                 vcpu_set_wfe_traps(vcpu);
391 }
392
393 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
394 {
395         kvm_arch_vcpu_put_fp(vcpu);
396         kvm_vcpu_put_sysregs(vcpu);
397         kvm_timer_vcpu_put(vcpu);
398         kvm_vgic_put(vcpu);
399
400         vcpu->cpu = -1;
401
402         kvm_arm_set_running_vcpu(NULL);
403 }
404
405 static void vcpu_power_off(struct kvm_vcpu *vcpu)
406 {
407         vcpu->arch.power_off = true;
408         kvm_make_request(KVM_REQ_SLEEP, vcpu);
409         kvm_vcpu_kick(vcpu);
410 }
411
412 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
413                                     struct kvm_mp_state *mp_state)
414 {
415         if (vcpu->arch.power_off)
416                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
417         else
418                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
419
420         return 0;
421 }
422
423 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
424                                     struct kvm_mp_state *mp_state)
425 {
426         int ret = 0;
427
428         switch (mp_state->mp_state) {
429         case KVM_MP_STATE_RUNNABLE:
430                 vcpu->arch.power_off = false;
431                 break;
432         case KVM_MP_STATE_STOPPED:
433                 vcpu_power_off(vcpu);
434                 break;
435         default:
436                 ret = -EINVAL;
437         }
438
439         return ret;
440 }
441
442 /**
443  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
444  * @v:          The VCPU pointer
445  *
446  * If the guest CPU is not waiting for interrupts or an interrupt line is
447  * asserted, the CPU is by definition runnable.
448  */
449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
450 {
451         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
452         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453                 && !v->arch.power_off && !v->arch.pause);
454 }
455
456 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
457 {
458         return vcpu_mode_priv(vcpu);
459 }
460
461 /* Just ensure a guest exit from a particular CPU */
462 static void exit_vm_noop(void *info)
463 {
464 }
465
466 void force_vm_exit(const cpumask_t *mask)
467 {
468         preempt_disable();
469         smp_call_function_many(mask, exit_vm_noop, NULL, true);
470         preempt_enable();
471 }
472
473 /**
474  * need_new_vmid_gen - check that the VMID is still valid
475  * @kvm: The VM's VMID to check
476  *
477  * return true if there is a new generation of VMIDs being used
478  *
479  * The hardware supports only 256 values with the value zero reserved for the
480  * host, so we check if an assigned value belongs to a previous generation,
481  * which which requires us to assign a new value. If we're the first to use a
482  * VMID for the new generation, we must flush necessary caches and TLBs on all
483  * CPUs.
484  */
485 static bool need_new_vmid_gen(struct kvm *kvm)
486 {
487         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
488 }
489
490 /**
491  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
492  * @kvm The guest that we are about to run
493  *
494  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
495  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
496  * caches and TLBs.
497  */
498 static void update_vttbr(struct kvm *kvm)
499 {
500         phys_addr_t pgd_phys;
501         u64 vmid, cnp = kvm_cpu_has_cnp() ? VTTBR_CNP_BIT : 0;
502         bool new_gen;
503
504         read_lock(&kvm_vmid_lock);
505         new_gen = need_new_vmid_gen(kvm);
506         read_unlock(&kvm_vmid_lock);
507
508         if (!new_gen)
509                 return;
510
511         write_lock(&kvm_vmid_lock);
512
513         /*
514          * We need to re-check the vmid_gen here to ensure that if another vcpu
515          * already allocated a valid vmid for this vm, then this vcpu should
516          * use the same vmid.
517          */
518         if (!need_new_vmid_gen(kvm)) {
519                 write_unlock(&kvm_vmid_lock);
520                 return;
521         }
522
523         /* First user of a new VMID generation? */
524         if (unlikely(kvm_next_vmid == 0)) {
525                 atomic64_inc(&kvm_vmid_gen);
526                 kvm_next_vmid = 1;
527
528                 /*
529                  * On SMP we know no other CPUs can use this CPU's or each
530                  * other's VMID after force_vm_exit returns since the
531                  * kvm_vmid_lock blocks them from reentry to the guest.
532                  */
533                 force_vm_exit(cpu_all_mask);
534                 /*
535                  * Now broadcast TLB + ICACHE invalidation over the inner
536                  * shareable domain to make sure all data structures are
537                  * clean.
538                  */
539                 kvm_call_hyp(__kvm_flush_vm_context);
540         }
541
542         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
543         kvm->arch.vmid = kvm_next_vmid;
544         kvm_next_vmid++;
545         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
546
547         /* update vttbr to be used with the new vmid */
548         pgd_phys = virt_to_phys(kvm->arch.pgd);
549         BUG_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm));
550         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
551         kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid | cnp;
552
553         write_unlock(&kvm_vmid_lock);
554 }
555
556 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
557 {
558         struct kvm *kvm = vcpu->kvm;
559         int ret = 0;
560
561         if (likely(vcpu->arch.has_run_once))
562                 return 0;
563
564         vcpu->arch.has_run_once = true;
565
566         if (likely(irqchip_in_kernel(kvm))) {
567                 /*
568                  * Map the VGIC hardware resources before running a vcpu the
569                  * first time on this VM.
570                  */
571                 if (unlikely(!vgic_ready(kvm))) {
572                         ret = kvm_vgic_map_resources(kvm);
573                         if (ret)
574                                 return ret;
575                 }
576         } else {
577                 /*
578                  * Tell the rest of the code that there are userspace irqchip
579                  * VMs in the wild.
580                  */
581                 static_branch_inc(&userspace_irqchip_in_use);
582         }
583
584         ret = kvm_timer_enable(vcpu);
585         if (ret)
586                 return ret;
587
588         ret = kvm_arm_pmu_v3_enable(vcpu);
589
590         return ret;
591 }
592
593 bool kvm_arch_intc_initialized(struct kvm *kvm)
594 {
595         return vgic_initialized(kvm);
596 }
597
598 void kvm_arm_halt_guest(struct kvm *kvm)
599 {
600         int i;
601         struct kvm_vcpu *vcpu;
602
603         kvm_for_each_vcpu(i, vcpu, kvm)
604                 vcpu->arch.pause = true;
605         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
606 }
607
608 void kvm_arm_resume_guest(struct kvm *kvm)
609 {
610         int i;
611         struct kvm_vcpu *vcpu;
612
613         kvm_for_each_vcpu(i, vcpu, kvm) {
614                 vcpu->arch.pause = false;
615                 swake_up_one(kvm_arch_vcpu_wq(vcpu));
616         }
617 }
618
619 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
620 {
621         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
622
623         swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
624                                        (!vcpu->arch.pause)));
625
626         if (vcpu->arch.power_off || vcpu->arch.pause) {
627                 /* Awaken to handle a signal, request we sleep again later. */
628                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
629         }
630 }
631
632 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
633 {
634         return vcpu->arch.target >= 0;
635 }
636
637 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
638 {
639         if (kvm_request_pending(vcpu)) {
640                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
641                         vcpu_req_sleep(vcpu);
642
643                 /*
644                  * Clear IRQ_PENDING requests that were made to guarantee
645                  * that a VCPU sees new virtual interrupts.
646                  */
647                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
648         }
649 }
650
651 /**
652  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
653  * @vcpu:       The VCPU pointer
654  * @run:        The kvm_run structure pointer used for userspace state exchange
655  *
656  * This function is called through the VCPU_RUN ioctl called from user space. It
657  * will execute VM code in a loop until the time slice for the process is used
658  * or some emulation is needed from user space in which case the function will
659  * return with return value 0 and with the kvm_run structure filled in with the
660  * required data for the requested emulation.
661  */
662 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
663 {
664         int ret;
665
666         if (unlikely(!kvm_vcpu_initialized(vcpu)))
667                 return -ENOEXEC;
668
669         ret = kvm_vcpu_first_run_init(vcpu);
670         if (ret)
671                 return ret;
672
673         if (run->exit_reason == KVM_EXIT_MMIO) {
674                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
675                 if (ret)
676                         return ret;
677                 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
678                         return 0;
679         }
680
681         if (run->immediate_exit)
682                 return -EINTR;
683
684         vcpu_load(vcpu);
685
686         kvm_sigset_activate(vcpu);
687
688         ret = 1;
689         run->exit_reason = KVM_EXIT_UNKNOWN;
690         while (ret > 0) {
691                 /*
692                  * Check conditions before entering the guest
693                  */
694                 cond_resched();
695
696                 update_vttbr(vcpu->kvm);
697
698                 check_vcpu_requests(vcpu);
699
700                 /*
701                  * Preparing the interrupts to be injected also
702                  * involves poking the GIC, which must be done in a
703                  * non-preemptible context.
704                  */
705                 preempt_disable();
706
707                 kvm_pmu_flush_hwstate(vcpu);
708
709                 local_irq_disable();
710
711                 kvm_vgic_flush_hwstate(vcpu);
712
713                 /*
714                  * Exit if we have a signal pending so that we can deliver the
715                  * signal to user space.
716                  */
717                 if (signal_pending(current)) {
718                         ret = -EINTR;
719                         run->exit_reason = KVM_EXIT_INTR;
720                 }
721
722                 /*
723                  * If we're using a userspace irqchip, then check if we need
724                  * to tell a userspace irqchip about timer or PMU level
725                  * changes and if so, exit to userspace (the actual level
726                  * state gets updated in kvm_timer_update_run and
727                  * kvm_pmu_update_run below).
728                  */
729                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
730                         if (kvm_timer_should_notify_user(vcpu) ||
731                             kvm_pmu_should_notify_user(vcpu)) {
732                                 ret = -EINTR;
733                                 run->exit_reason = KVM_EXIT_INTR;
734                         }
735                 }
736
737                 /*
738                  * Ensure we set mode to IN_GUEST_MODE after we disable
739                  * interrupts and before the final VCPU requests check.
740                  * See the comment in kvm_vcpu_exiting_guest_mode() and
741                  * Documentation/virtual/kvm/vcpu-requests.rst
742                  */
743                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
744
745                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
746                     kvm_request_pending(vcpu)) {
747                         vcpu->mode = OUTSIDE_GUEST_MODE;
748                         isb(); /* Ensure work in x_flush_hwstate is committed */
749                         kvm_pmu_sync_hwstate(vcpu);
750                         if (static_branch_unlikely(&userspace_irqchip_in_use))
751                                 kvm_timer_sync_hwstate(vcpu);
752                         kvm_vgic_sync_hwstate(vcpu);
753                         local_irq_enable();
754                         preempt_enable();
755                         continue;
756                 }
757
758                 kvm_arm_setup_debug(vcpu);
759
760                 /**************************************************************
761                  * Enter the guest
762                  */
763                 trace_kvm_entry(*vcpu_pc(vcpu));
764                 guest_enter_irqoff();
765
766                 if (has_vhe()) {
767                         kvm_arm_vhe_guest_enter();
768                         ret = kvm_vcpu_run_vhe(vcpu);
769                         kvm_arm_vhe_guest_exit();
770                 } else {
771                         ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
772                 }
773
774                 vcpu->mode = OUTSIDE_GUEST_MODE;
775                 vcpu->stat.exits++;
776                 /*
777                  * Back from guest
778                  *************************************************************/
779
780                 kvm_arm_clear_debug(vcpu);
781
782                 /*
783                  * We must sync the PMU state before the vgic state so
784                  * that the vgic can properly sample the updated state of the
785                  * interrupt line.
786                  */
787                 kvm_pmu_sync_hwstate(vcpu);
788
789                 /*
790                  * Sync the vgic state before syncing the timer state because
791                  * the timer code needs to know if the virtual timer
792                  * interrupts are active.
793                  */
794                 kvm_vgic_sync_hwstate(vcpu);
795
796                 /*
797                  * Sync the timer hardware state before enabling interrupts as
798                  * we don't want vtimer interrupts to race with syncing the
799                  * timer virtual interrupt state.
800                  */
801                 if (static_branch_unlikely(&userspace_irqchip_in_use))
802                         kvm_timer_sync_hwstate(vcpu);
803
804                 kvm_arch_vcpu_ctxsync_fp(vcpu);
805
806                 /*
807                  * We may have taken a host interrupt in HYP mode (ie
808                  * while executing the guest). This interrupt is still
809                  * pending, as we haven't serviced it yet!
810                  *
811                  * We're now back in SVC mode, with interrupts
812                  * disabled.  Enabling the interrupts now will have
813                  * the effect of taking the interrupt again, in SVC
814                  * mode this time.
815                  */
816                 local_irq_enable();
817
818                 /*
819                  * We do local_irq_enable() before calling guest_exit() so
820                  * that if a timer interrupt hits while running the guest we
821                  * account that tick as being spent in the guest.  We enable
822                  * preemption after calling guest_exit() so that if we get
823                  * preempted we make sure ticks after that is not counted as
824                  * guest time.
825                  */
826                 guest_exit();
827                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
828
829                 /* Exit types that need handling before we can be preempted */
830                 handle_exit_early(vcpu, run, ret);
831
832                 preempt_enable();
833
834                 ret = handle_exit(vcpu, run, ret);
835         }
836
837         /* Tell userspace about in-kernel device output levels */
838         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
839                 kvm_timer_update_run(vcpu);
840                 kvm_pmu_update_run(vcpu);
841         }
842
843         kvm_sigset_deactivate(vcpu);
844
845         vcpu_put(vcpu);
846         return ret;
847 }
848
849 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
850 {
851         int bit_index;
852         bool set;
853         unsigned long *hcr;
854
855         if (number == KVM_ARM_IRQ_CPU_IRQ)
856                 bit_index = __ffs(HCR_VI);
857         else /* KVM_ARM_IRQ_CPU_FIQ */
858                 bit_index = __ffs(HCR_VF);
859
860         hcr = vcpu_hcr(vcpu);
861         if (level)
862                 set = test_and_set_bit(bit_index, hcr);
863         else
864                 set = test_and_clear_bit(bit_index, hcr);
865
866         /*
867          * If we didn't change anything, no need to wake up or kick other CPUs
868          */
869         if (set == level)
870                 return 0;
871
872         /*
873          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
874          * trigger a world-switch round on the running physical CPU to set the
875          * virtual IRQ/FIQ fields in the HCR appropriately.
876          */
877         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
878         kvm_vcpu_kick(vcpu);
879
880         return 0;
881 }
882
883 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
884                           bool line_status)
885 {
886         u32 irq = irq_level->irq;
887         unsigned int irq_type, vcpu_idx, irq_num;
888         int nrcpus = atomic_read(&kvm->online_vcpus);
889         struct kvm_vcpu *vcpu = NULL;
890         bool level = irq_level->level;
891
892         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
893         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
894         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
895
896         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
897
898         switch (irq_type) {
899         case KVM_ARM_IRQ_TYPE_CPU:
900                 if (irqchip_in_kernel(kvm))
901                         return -ENXIO;
902
903                 if (vcpu_idx >= nrcpus)
904                         return -EINVAL;
905
906                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
907                 if (!vcpu)
908                         return -EINVAL;
909
910                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
911                         return -EINVAL;
912
913                 return vcpu_interrupt_line(vcpu, irq_num, level);
914         case KVM_ARM_IRQ_TYPE_PPI:
915                 if (!irqchip_in_kernel(kvm))
916                         return -ENXIO;
917
918                 if (vcpu_idx >= nrcpus)
919                         return -EINVAL;
920
921                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
922                 if (!vcpu)
923                         return -EINVAL;
924
925                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
926                         return -EINVAL;
927
928                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
929         case KVM_ARM_IRQ_TYPE_SPI:
930                 if (!irqchip_in_kernel(kvm))
931                         return -ENXIO;
932
933                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
934                         return -EINVAL;
935
936                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
937         }
938
939         return -EINVAL;
940 }
941
942 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
943                                const struct kvm_vcpu_init *init)
944 {
945         unsigned int i;
946         int phys_target = kvm_target_cpu();
947
948         if (init->target != phys_target)
949                 return -EINVAL;
950
951         /*
952          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
953          * use the same target.
954          */
955         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
956                 return -EINVAL;
957
958         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
959         for (i = 0; i < sizeof(init->features) * 8; i++) {
960                 bool set = (init->features[i / 32] & (1 << (i % 32)));
961
962                 if (set && i >= KVM_VCPU_MAX_FEATURES)
963                         return -ENOENT;
964
965                 /*
966                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
967                  * use the same feature set.
968                  */
969                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
970                     test_bit(i, vcpu->arch.features) != set)
971                         return -EINVAL;
972
973                 if (set)
974                         set_bit(i, vcpu->arch.features);
975         }
976
977         vcpu->arch.target = phys_target;
978
979         /* Now we know what it is, we can reset it. */
980         return kvm_reset_vcpu(vcpu);
981 }
982
983
984 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
985                                          struct kvm_vcpu_init *init)
986 {
987         int ret;
988
989         ret = kvm_vcpu_set_target(vcpu, init);
990         if (ret)
991                 return ret;
992
993         /*
994          * Ensure a rebooted VM will fault in RAM pages and detect if the
995          * guest MMU is turned off and flush the caches as needed.
996          */
997         if (vcpu->arch.has_run_once)
998                 stage2_unmap_vm(vcpu->kvm);
999
1000         vcpu_reset_hcr(vcpu);
1001
1002         /*
1003          * Handle the "start in power-off" case.
1004          */
1005         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1006                 vcpu_power_off(vcpu);
1007         else
1008                 vcpu->arch.power_off = false;
1009
1010         return 0;
1011 }
1012
1013 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1014                                  struct kvm_device_attr *attr)
1015 {
1016         int ret = -ENXIO;
1017
1018         switch (attr->group) {
1019         default:
1020                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1021                 break;
1022         }
1023
1024         return ret;
1025 }
1026
1027 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1028                                  struct kvm_device_attr *attr)
1029 {
1030         int ret = -ENXIO;
1031
1032         switch (attr->group) {
1033         default:
1034                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1035                 break;
1036         }
1037
1038         return ret;
1039 }
1040
1041 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1042                                  struct kvm_device_attr *attr)
1043 {
1044         int ret = -ENXIO;
1045
1046         switch (attr->group) {
1047         default:
1048                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1049                 break;
1050         }
1051
1052         return ret;
1053 }
1054
1055 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1056                                    struct kvm_vcpu_events *events)
1057 {
1058         memset(events, 0, sizeof(*events));
1059
1060         return __kvm_arm_vcpu_get_events(vcpu, events);
1061 }
1062
1063 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1064                                    struct kvm_vcpu_events *events)
1065 {
1066         int i;
1067
1068         /* check whether the reserved field is zero */
1069         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1070                 if (events->reserved[i])
1071                         return -EINVAL;
1072
1073         /* check whether the pad field is zero */
1074         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1075                 if (events->exception.pad[i])
1076                         return -EINVAL;
1077
1078         return __kvm_arm_vcpu_set_events(vcpu, events);
1079 }
1080
1081 long kvm_arch_vcpu_ioctl(struct file *filp,
1082                          unsigned int ioctl, unsigned long arg)
1083 {
1084         struct kvm_vcpu *vcpu = filp->private_data;
1085         void __user *argp = (void __user *)arg;
1086         struct kvm_device_attr attr;
1087         long r;
1088
1089         switch (ioctl) {
1090         case KVM_ARM_VCPU_INIT: {
1091                 struct kvm_vcpu_init init;
1092
1093                 r = -EFAULT;
1094                 if (copy_from_user(&init, argp, sizeof(init)))
1095                         break;
1096
1097                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1098                 break;
1099         }
1100         case KVM_SET_ONE_REG:
1101         case KVM_GET_ONE_REG: {
1102                 struct kvm_one_reg reg;
1103
1104                 r = -ENOEXEC;
1105                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1106                         break;
1107
1108                 r = -EFAULT;
1109                 if (copy_from_user(&reg, argp, sizeof(reg)))
1110                         break;
1111
1112                 if (ioctl == KVM_SET_ONE_REG)
1113                         r = kvm_arm_set_reg(vcpu, &reg);
1114                 else
1115                         r = kvm_arm_get_reg(vcpu, &reg);
1116                 break;
1117         }
1118         case KVM_GET_REG_LIST: {
1119                 struct kvm_reg_list __user *user_list = argp;
1120                 struct kvm_reg_list reg_list;
1121                 unsigned n;
1122
1123                 r = -ENOEXEC;
1124                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1125                         break;
1126
1127                 r = -EFAULT;
1128                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1129                         break;
1130                 n = reg_list.n;
1131                 reg_list.n = kvm_arm_num_regs(vcpu);
1132                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1133                         break;
1134                 r = -E2BIG;
1135                 if (n < reg_list.n)
1136                         break;
1137                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1138                 break;
1139         }
1140         case KVM_SET_DEVICE_ATTR: {
1141                 r = -EFAULT;
1142                 if (copy_from_user(&attr, argp, sizeof(attr)))
1143                         break;
1144                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1145                 break;
1146         }
1147         case KVM_GET_DEVICE_ATTR: {
1148                 r = -EFAULT;
1149                 if (copy_from_user(&attr, argp, sizeof(attr)))
1150                         break;
1151                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1152                 break;
1153         }
1154         case KVM_HAS_DEVICE_ATTR: {
1155                 r = -EFAULT;
1156                 if (copy_from_user(&attr, argp, sizeof(attr)))
1157                         break;
1158                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1159                 break;
1160         }
1161         case KVM_GET_VCPU_EVENTS: {
1162                 struct kvm_vcpu_events events;
1163
1164                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1165                         return -EINVAL;
1166
1167                 if (copy_to_user(argp, &events, sizeof(events)))
1168                         return -EFAULT;
1169
1170                 return 0;
1171         }
1172         case KVM_SET_VCPU_EVENTS: {
1173                 struct kvm_vcpu_events events;
1174
1175                 if (copy_from_user(&events, argp, sizeof(events)))
1176                         return -EFAULT;
1177
1178                 return kvm_arm_vcpu_set_events(vcpu, &events);
1179         }
1180         default:
1181                 r = -EINVAL;
1182         }
1183
1184         return r;
1185 }
1186
1187 /**
1188  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1189  * @kvm: kvm instance
1190  * @log: slot id and address to which we copy the log
1191  *
1192  * Steps 1-4 below provide general overview of dirty page logging. See
1193  * kvm_get_dirty_log_protect() function description for additional details.
1194  *
1195  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1196  * always flush the TLB (step 4) even if previous step failed  and the dirty
1197  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1198  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1199  * writes will be marked dirty for next log read.
1200  *
1201  *   1. Take a snapshot of the bit and clear it if needed.
1202  *   2. Write protect the corresponding page.
1203  *   3. Copy the snapshot to the userspace.
1204  *   4. Flush TLB's if needed.
1205  */
1206 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1207 {
1208         bool is_dirty = false;
1209         int r;
1210
1211         mutex_lock(&kvm->slots_lock);
1212
1213         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1214
1215         if (is_dirty)
1216                 kvm_flush_remote_tlbs(kvm);
1217
1218         mutex_unlock(&kvm->slots_lock);
1219         return r;
1220 }
1221
1222 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1223                                         struct kvm_arm_device_addr *dev_addr)
1224 {
1225         unsigned long dev_id, type;
1226
1227         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1228                 KVM_ARM_DEVICE_ID_SHIFT;
1229         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1230                 KVM_ARM_DEVICE_TYPE_SHIFT;
1231
1232         switch (dev_id) {
1233         case KVM_ARM_DEVICE_VGIC_V2:
1234                 if (!vgic_present)
1235                         return -ENXIO;
1236                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1237         default:
1238                 return -ENODEV;
1239         }
1240 }
1241
1242 long kvm_arch_vm_ioctl(struct file *filp,
1243                        unsigned int ioctl, unsigned long arg)
1244 {
1245         struct kvm *kvm = filp->private_data;
1246         void __user *argp = (void __user *)arg;
1247
1248         switch (ioctl) {
1249         case KVM_CREATE_IRQCHIP: {
1250                 int ret;
1251                 if (!vgic_present)
1252                         return -ENXIO;
1253                 mutex_lock(&kvm->lock);
1254                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1255                 mutex_unlock(&kvm->lock);
1256                 return ret;
1257         }
1258         case KVM_ARM_SET_DEVICE_ADDR: {
1259                 struct kvm_arm_device_addr dev_addr;
1260
1261                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1262                         return -EFAULT;
1263                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1264         }
1265         case KVM_ARM_PREFERRED_TARGET: {
1266                 int err;
1267                 struct kvm_vcpu_init init;
1268
1269                 err = kvm_vcpu_preferred_target(&init);
1270                 if (err)
1271                         return err;
1272
1273                 if (copy_to_user(argp, &init, sizeof(init)))
1274                         return -EFAULT;
1275
1276                 return 0;
1277         }
1278         default:
1279                 return -EINVAL;
1280         }
1281 }
1282
1283 static void cpu_init_hyp_mode(void *dummy)
1284 {
1285         phys_addr_t pgd_ptr;
1286         unsigned long hyp_stack_ptr;
1287         unsigned long stack_page;
1288         unsigned long vector_ptr;
1289
1290         /* Switch from the HYP stub to our own HYP init vector */
1291         __hyp_set_vectors(kvm_get_idmap_vector());
1292
1293         pgd_ptr = kvm_mmu_get_httbr();
1294         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1295         hyp_stack_ptr = stack_page + PAGE_SIZE;
1296         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1297
1298         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1299         __cpu_init_stage2();
1300 }
1301
1302 static void cpu_hyp_reset(void)
1303 {
1304         if (!is_kernel_in_hyp_mode())
1305                 __hyp_reset_vectors();
1306 }
1307
1308 static void cpu_hyp_reinit(void)
1309 {
1310         cpu_hyp_reset();
1311
1312         if (is_kernel_in_hyp_mode())
1313                 kvm_timer_init_vhe();
1314         else
1315                 cpu_init_hyp_mode(NULL);
1316
1317         kvm_arm_init_debug();
1318
1319         if (vgic_present)
1320                 kvm_vgic_init_cpu_hardware();
1321 }
1322
1323 static void _kvm_arch_hardware_enable(void *discard)
1324 {
1325         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1326                 cpu_hyp_reinit();
1327                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1328         }
1329 }
1330
1331 int kvm_arch_hardware_enable(void)
1332 {
1333         _kvm_arch_hardware_enable(NULL);
1334         return 0;
1335 }
1336
1337 static void _kvm_arch_hardware_disable(void *discard)
1338 {
1339         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1340                 cpu_hyp_reset();
1341                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1342         }
1343 }
1344
1345 void kvm_arch_hardware_disable(void)
1346 {
1347         _kvm_arch_hardware_disable(NULL);
1348 }
1349
1350 #ifdef CONFIG_CPU_PM
1351 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1352                                     unsigned long cmd,
1353                                     void *v)
1354 {
1355         /*
1356          * kvm_arm_hardware_enabled is left with its old value over
1357          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1358          * re-enable hyp.
1359          */
1360         switch (cmd) {
1361         case CPU_PM_ENTER:
1362                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1363                         /*
1364                          * don't update kvm_arm_hardware_enabled here
1365                          * so that the hardware will be re-enabled
1366                          * when we resume. See below.
1367                          */
1368                         cpu_hyp_reset();
1369
1370                 return NOTIFY_OK;
1371         case CPU_PM_ENTER_FAILED:
1372         case CPU_PM_EXIT:
1373                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1374                         /* The hardware was enabled before suspend. */
1375                         cpu_hyp_reinit();
1376
1377                 return NOTIFY_OK;
1378
1379         default:
1380                 return NOTIFY_DONE;
1381         }
1382 }
1383
1384 static struct notifier_block hyp_init_cpu_pm_nb = {
1385         .notifier_call = hyp_init_cpu_pm_notifier,
1386 };
1387
1388 static void __init hyp_cpu_pm_init(void)
1389 {
1390         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1391 }
1392 static void __init hyp_cpu_pm_exit(void)
1393 {
1394         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1395 }
1396 #else
1397 static inline void hyp_cpu_pm_init(void)
1398 {
1399 }
1400 static inline void hyp_cpu_pm_exit(void)
1401 {
1402 }
1403 #endif
1404
1405 static int init_common_resources(void)
1406 {
1407         /* set size of VMID supported by CPU */
1408         kvm_vmid_bits = kvm_get_vmid_bits();
1409         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1410
1411         kvm_set_ipa_limit();
1412
1413         return 0;
1414 }
1415
1416 static int init_subsystems(void)
1417 {
1418         int err = 0;
1419
1420         /*
1421          * Enable hardware so that subsystem initialisation can access EL2.
1422          */
1423         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1424
1425         /*
1426          * Register CPU lower-power notifier
1427          */
1428         hyp_cpu_pm_init();
1429
1430         /*
1431          * Init HYP view of VGIC
1432          */
1433         err = kvm_vgic_hyp_init();
1434         switch (err) {
1435         case 0:
1436                 vgic_present = true;
1437                 break;
1438         case -ENODEV:
1439         case -ENXIO:
1440                 vgic_present = false;
1441                 err = 0;
1442                 break;
1443         default:
1444                 goto out;
1445         }
1446
1447         /*
1448          * Init HYP architected timer support
1449          */
1450         err = kvm_timer_hyp_init(vgic_present);
1451         if (err)
1452                 goto out;
1453
1454         kvm_perf_init();
1455         kvm_coproc_table_init();
1456
1457 out:
1458         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1459
1460         return err;
1461 }
1462
1463 static void teardown_hyp_mode(void)
1464 {
1465         int cpu;
1466
1467         free_hyp_pgds();
1468         for_each_possible_cpu(cpu)
1469                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1470         hyp_cpu_pm_exit();
1471 }
1472
1473 /**
1474  * Inits Hyp-mode on all online CPUs
1475  */
1476 static int init_hyp_mode(void)
1477 {
1478         int cpu;
1479         int err = 0;
1480
1481         /*
1482          * Allocate Hyp PGD and setup Hyp identity mapping
1483          */
1484         err = kvm_mmu_init();
1485         if (err)
1486                 goto out_err;
1487
1488         /*
1489          * Allocate stack pages for Hypervisor-mode
1490          */
1491         for_each_possible_cpu(cpu) {
1492                 unsigned long stack_page;
1493
1494                 stack_page = __get_free_page(GFP_KERNEL);
1495                 if (!stack_page) {
1496                         err = -ENOMEM;
1497                         goto out_err;
1498                 }
1499
1500                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1501         }
1502
1503         /*
1504          * Map the Hyp-code called directly from the host
1505          */
1506         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1507                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1508         if (err) {
1509                 kvm_err("Cannot map world-switch code\n");
1510                 goto out_err;
1511         }
1512
1513         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1514                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1515         if (err) {
1516                 kvm_err("Cannot map rodata section\n");
1517                 goto out_err;
1518         }
1519
1520         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1521                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1522         if (err) {
1523                 kvm_err("Cannot map bss section\n");
1524                 goto out_err;
1525         }
1526
1527         err = kvm_map_vectors();
1528         if (err) {
1529                 kvm_err("Cannot map vectors\n");
1530                 goto out_err;
1531         }
1532
1533         /*
1534          * Map the Hyp stack pages
1535          */
1536         for_each_possible_cpu(cpu) {
1537                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1538                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1539                                           PAGE_HYP);
1540
1541                 if (err) {
1542                         kvm_err("Cannot map hyp stack\n");
1543                         goto out_err;
1544                 }
1545         }
1546
1547         for_each_possible_cpu(cpu) {
1548                 kvm_cpu_context_t *cpu_ctxt;
1549
1550                 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1551                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1552
1553                 if (err) {
1554                         kvm_err("Cannot map host CPU state: %d\n", err);
1555                         goto out_err;
1556                 }
1557         }
1558
1559         err = hyp_map_aux_data();
1560         if (err)
1561                 kvm_err("Cannot map host auxilary data: %d\n", err);
1562
1563         return 0;
1564
1565 out_err:
1566         teardown_hyp_mode();
1567         kvm_err("error initializing Hyp mode: %d\n", err);
1568         return err;
1569 }
1570
1571 static void check_kvm_target_cpu(void *ret)
1572 {
1573         *(int *)ret = kvm_target_cpu();
1574 }
1575
1576 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1577 {
1578         struct kvm_vcpu *vcpu;
1579         int i;
1580
1581         mpidr &= MPIDR_HWID_BITMASK;
1582         kvm_for_each_vcpu(i, vcpu, kvm) {
1583                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1584                         return vcpu;
1585         }
1586         return NULL;
1587 }
1588
1589 bool kvm_arch_has_irq_bypass(void)
1590 {
1591         return true;
1592 }
1593
1594 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1595                                       struct irq_bypass_producer *prod)
1596 {
1597         struct kvm_kernel_irqfd *irqfd =
1598                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1599
1600         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1601                                           &irqfd->irq_entry);
1602 }
1603 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1604                                       struct irq_bypass_producer *prod)
1605 {
1606         struct kvm_kernel_irqfd *irqfd =
1607                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1608
1609         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1610                                      &irqfd->irq_entry);
1611 }
1612
1613 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1614 {
1615         struct kvm_kernel_irqfd *irqfd =
1616                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1617
1618         kvm_arm_halt_guest(irqfd->kvm);
1619 }
1620
1621 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1622 {
1623         struct kvm_kernel_irqfd *irqfd =
1624                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1625
1626         kvm_arm_resume_guest(irqfd->kvm);
1627 }
1628
1629 /**
1630  * Initialize Hyp-mode and memory mappings on all CPUs.
1631  */
1632 int kvm_arch_init(void *opaque)
1633 {
1634         int err;
1635         int ret, cpu;
1636         bool in_hyp_mode;
1637
1638         if (!is_hyp_mode_available()) {
1639                 kvm_info("HYP mode not available\n");
1640                 return -ENODEV;
1641         }
1642
1643         if (!kvm_arch_check_sve_has_vhe()) {
1644                 kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
1645                 return -ENODEV;
1646         }
1647
1648         for_each_online_cpu(cpu) {
1649                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1650                 if (ret < 0) {
1651                         kvm_err("Error, CPU %d not supported!\n", cpu);
1652                         return -ENODEV;
1653                 }
1654         }
1655
1656         err = init_common_resources();
1657         if (err)
1658                 return err;
1659
1660         in_hyp_mode = is_kernel_in_hyp_mode();
1661
1662         if (!in_hyp_mode) {
1663                 err = init_hyp_mode();
1664                 if (err)
1665                         goto out_err;
1666         }
1667
1668         err = init_subsystems();
1669         if (err)
1670                 goto out_hyp;
1671
1672         if (in_hyp_mode)
1673                 kvm_info("VHE mode initialized successfully\n");
1674         else
1675                 kvm_info("Hyp mode initialized successfully\n");
1676
1677         return 0;
1678
1679 out_hyp:
1680         if (!in_hyp_mode)
1681                 teardown_hyp_mode();
1682 out_err:
1683         return err;
1684 }
1685
1686 /* NOP: Compiling as a module not supported */
1687 void kvm_arch_exit(void)
1688 {
1689         kvm_perf_teardown();
1690 }
1691
1692 static int arm_init(void)
1693 {
1694         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1695         return rc;
1696 }
1697
1698 module_init(arm_init);