Merge tag 'tty-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[platform/kernel/linux-rpi.git] / tools / testing / selftests / kvm / lib / x86_64 / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/vmx.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12 #include "vmx.h"
13
14 #define PAGE_SHIFT_4K  12
15
16 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
17
18 bool enable_evmcs;
19
20 struct hv_enlightened_vmcs *current_evmcs;
21 struct hv_vp_assist_page *current_vp_assist;
22
23 struct eptPageTableEntry {
24         uint64_t readable:1;
25         uint64_t writable:1;
26         uint64_t executable:1;
27         uint64_t memory_type:3;
28         uint64_t ignore_pat:1;
29         uint64_t page_size:1;
30         uint64_t accessed:1;
31         uint64_t dirty:1;
32         uint64_t ignored_11_10:2;
33         uint64_t address:40;
34         uint64_t ignored_62_52:11;
35         uint64_t suppress_ve:1;
36 };
37
38 struct eptPageTablePointer {
39         uint64_t memory_type:3;
40         uint64_t page_walk_length:3;
41         uint64_t ad_enabled:1;
42         uint64_t reserved_11_07:5;
43         uint64_t address:40;
44         uint64_t reserved_63_52:12;
45 };
46 int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id)
47 {
48         uint16_t evmcs_ver;
49
50         struct kvm_enable_cap enable_evmcs_cap = {
51                 .cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
52                  .args[0] = (unsigned long)&evmcs_ver
53         };
54
55         vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap);
56
57         /* KVM should return supported EVMCS version range */
58         TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
59                     (evmcs_ver & 0xff) > 0,
60                     "Incorrect EVMCS version range: %x:%x\n",
61                     evmcs_ver & 0xff, evmcs_ver >> 8);
62
63         return evmcs_ver;
64 }
65
66 /* Allocate memory regions for nested VMX tests.
67  *
68  * Input Args:
69  *   vm - The VM to allocate guest-virtual addresses in.
70  *
71  * Output Args:
72  *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
73  *
74  * Return:
75  *   Pointer to structure with the addresses of the VMX areas.
76  */
77 struct vmx_pages *
78 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
79 {
80         vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
81         struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
82
83         /* Setup of a region of guest memory for the vmxon region. */
84         vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
85         vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
86         vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
87
88         /* Setup of a region of guest memory for a vmcs. */
89         vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
90         vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
91         vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
92
93         /* Setup of a region of guest memory for the MSR bitmap. */
94         vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
95         vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
96         vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
97         memset(vmx->msr_hva, 0, getpagesize());
98
99         /* Setup of a region of guest memory for the shadow VMCS. */
100         vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
101         vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
102         vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
103
104         /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
105         vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
106         vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
107         vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
108         memset(vmx->vmread_hva, 0, getpagesize());
109
110         vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
111         vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
112         vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
113         memset(vmx->vmwrite_hva, 0, getpagesize());
114
115         /* Setup of a region of guest memory for the VP Assist page. */
116         vmx->vp_assist = (void *)vm_vaddr_alloc(vm, getpagesize(),
117                                                 0x10000, 0, 0);
118         vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
119         vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);
120
121         /* Setup of a region of guest memory for the enlightened VMCS. */
122         vmx->enlightened_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(),
123                                                        0x10000, 0, 0);
124         vmx->enlightened_vmcs_hva =
125                 addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
126         vmx->enlightened_vmcs_gpa =
127                 addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);
128
129         *p_vmx_gva = vmx_gva;
130         return vmx;
131 }
132
133 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
134 {
135         uint64_t feature_control;
136         uint64_t required;
137         unsigned long cr0;
138         unsigned long cr4;
139
140         /*
141          * Ensure bits in CR0 and CR4 are valid in VMX operation:
142          * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
143          * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
144          */
145         __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
146         cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
147         cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
148         __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
149
150         __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
151         cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
152         cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
153         /* Enable VMX operation */
154         cr4 |= X86_CR4_VMXE;
155         __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
156
157         /*
158          * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
159          *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
160          *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
161          *    outside of SMX causes a #GP.
162          */
163         required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
164         required |= FEAT_CTL_LOCKED;
165         feature_control = rdmsr(MSR_IA32_FEAT_CTL);
166         if ((feature_control & required) != required)
167                 wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
168
169         /* Enter VMX root operation. */
170         *(uint32_t *)(vmx->vmxon) = vmcs_revision();
171         if (vmxon(vmx->vmxon_gpa))
172                 return false;
173
174         return true;
175 }
176
177 bool load_vmcs(struct vmx_pages *vmx)
178 {
179         if (!enable_evmcs) {
180                 /* Load a VMCS. */
181                 *(uint32_t *)(vmx->vmcs) = vmcs_revision();
182                 if (vmclear(vmx->vmcs_gpa))
183                         return false;
184
185                 if (vmptrld(vmx->vmcs_gpa))
186                         return false;
187
188                 /* Setup shadow VMCS, do not load it yet. */
189                 *(uint32_t *)(vmx->shadow_vmcs) =
190                         vmcs_revision() | 0x80000000ul;
191                 if (vmclear(vmx->shadow_vmcs_gpa))
192                         return false;
193         } else {
194                 if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
195                                   vmx->enlightened_vmcs))
196                         return false;
197                 current_evmcs->revision_id = EVMCS_VERSION;
198         }
199
200         return true;
201 }
202
203 /*
204  * Initialize the control fields to the most basic settings possible.
205  */
206 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
207 {
208         uint32_t sec_exec_ctl = 0;
209
210         vmwrite(VIRTUAL_PROCESSOR_ID, 0);
211         vmwrite(POSTED_INTR_NV, 0);
212
213         vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
214
215         if (vmx->eptp_gpa) {
216                 uint64_t ept_paddr;
217                 struct eptPageTablePointer eptp = {
218                         .memory_type = VMX_BASIC_MEM_TYPE_WB,
219                         .page_walk_length = 3, /* + 1 */
220                         .ad_enabled = !!(rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & VMX_EPT_VPID_CAP_AD_BITS),
221                         .address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
222                 };
223
224                 memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
225                 vmwrite(EPT_POINTER, ept_paddr);
226                 sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
227         }
228
229         if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
230                 vmwrite(CPU_BASED_VM_EXEC_CONTROL,
231                         rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
232         else {
233                 vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
234                 GUEST_ASSERT(!sec_exec_ctl);
235         }
236
237         vmwrite(EXCEPTION_BITMAP, 0);
238         vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
239         vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
240         vmwrite(CR3_TARGET_COUNT, 0);
241         vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
242                 VM_EXIT_HOST_ADDR_SPACE_SIZE);    /* 64-bit host */
243         vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
244         vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
245         vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
246                 VM_ENTRY_IA32E_MODE);             /* 64-bit guest */
247         vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
248         vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
249         vmwrite(TPR_THRESHOLD, 0);
250
251         vmwrite(CR0_GUEST_HOST_MASK, 0);
252         vmwrite(CR4_GUEST_HOST_MASK, 0);
253         vmwrite(CR0_READ_SHADOW, get_cr0());
254         vmwrite(CR4_READ_SHADOW, get_cr4());
255
256         vmwrite(MSR_BITMAP, vmx->msr_gpa);
257         vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
258         vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
259 }
260
261 /*
262  * Initialize the host state fields based on the current host state, with
263  * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
264  * or vmresume.
265  */
266 static inline void init_vmcs_host_state(void)
267 {
268         uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
269
270         vmwrite(HOST_ES_SELECTOR, get_es());
271         vmwrite(HOST_CS_SELECTOR, get_cs());
272         vmwrite(HOST_SS_SELECTOR, get_ss());
273         vmwrite(HOST_DS_SELECTOR, get_ds());
274         vmwrite(HOST_FS_SELECTOR, get_fs());
275         vmwrite(HOST_GS_SELECTOR, get_gs());
276         vmwrite(HOST_TR_SELECTOR, get_tr());
277
278         if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
279                 vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
280         if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
281                 vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
282         if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
283                 vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
284                         rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
285
286         vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
287
288         vmwrite(HOST_CR0, get_cr0());
289         vmwrite(HOST_CR3, get_cr3());
290         vmwrite(HOST_CR4, get_cr4());
291         vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
292         vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
293         vmwrite(HOST_TR_BASE,
294                 get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
295         vmwrite(HOST_GDTR_BASE, get_gdt().address);
296         vmwrite(HOST_IDTR_BASE, get_idt().address);
297         vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
298         vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
299 }
300
301 /*
302  * Initialize the guest state fields essentially as a clone of
303  * the host state fields. Some host state fields have fixed
304  * values, and we set the corresponding guest state fields accordingly.
305  */
306 static inline void init_vmcs_guest_state(void *rip, void *rsp)
307 {
308         vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
309         vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
310         vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
311         vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
312         vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
313         vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
314         vmwrite(GUEST_LDTR_SELECTOR, 0);
315         vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
316         vmwrite(GUEST_INTR_STATUS, 0);
317         vmwrite(GUEST_PML_INDEX, 0);
318
319         vmwrite(VMCS_LINK_POINTER, -1ll);
320         vmwrite(GUEST_IA32_DEBUGCTL, 0);
321         vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
322         vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
323         vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
324                 vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
325
326         vmwrite(GUEST_ES_LIMIT, -1);
327         vmwrite(GUEST_CS_LIMIT, -1);
328         vmwrite(GUEST_SS_LIMIT, -1);
329         vmwrite(GUEST_DS_LIMIT, -1);
330         vmwrite(GUEST_FS_LIMIT, -1);
331         vmwrite(GUEST_GS_LIMIT, -1);
332         vmwrite(GUEST_LDTR_LIMIT, -1);
333         vmwrite(GUEST_TR_LIMIT, 0x67);
334         vmwrite(GUEST_GDTR_LIMIT, 0xffff);
335         vmwrite(GUEST_IDTR_LIMIT, 0xffff);
336         vmwrite(GUEST_ES_AR_BYTES,
337                 vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
338         vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
339         vmwrite(GUEST_SS_AR_BYTES, 0xc093);
340         vmwrite(GUEST_DS_AR_BYTES,
341                 vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
342         vmwrite(GUEST_FS_AR_BYTES,
343                 vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
344         vmwrite(GUEST_GS_AR_BYTES,
345                 vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
346         vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
347         vmwrite(GUEST_TR_AR_BYTES, 0x8b);
348         vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
349         vmwrite(GUEST_ACTIVITY_STATE, 0);
350         vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
351         vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
352
353         vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
354         vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
355         vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
356         vmwrite(GUEST_ES_BASE, 0);
357         vmwrite(GUEST_CS_BASE, 0);
358         vmwrite(GUEST_SS_BASE, 0);
359         vmwrite(GUEST_DS_BASE, 0);
360         vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
361         vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
362         vmwrite(GUEST_LDTR_BASE, 0);
363         vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
364         vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
365         vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
366         vmwrite(GUEST_DR7, 0x400);
367         vmwrite(GUEST_RSP, (uint64_t)rsp);
368         vmwrite(GUEST_RIP, (uint64_t)rip);
369         vmwrite(GUEST_RFLAGS, 2);
370         vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
371         vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
372         vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
373 }
374
375 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
376 {
377         init_vmcs_control_fields(vmx);
378         init_vmcs_host_state();
379         init_vmcs_guest_state(guest_rip, guest_rsp);
380 }
381
382 bool nested_vmx_supported(void)
383 {
384         struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1);
385
386         return entry->ecx & CPUID_VMX;
387 }
388
389 void nested_vmx_check_supported(void)
390 {
391         if (!nested_vmx_supported()) {
392                 print_skip("nested VMX not enabled");
393                 exit(KSFT_SKIP);
394         }
395 }
396
397 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
398                    uint64_t nested_paddr, uint64_t paddr, uint32_t eptp_memslot)
399 {
400         uint16_t index[4];
401         struct eptPageTableEntry *pml4e;
402
403         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
404                     "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
405
406         TEST_ASSERT((nested_paddr % vm->page_size) == 0,
407                     "Nested physical address not on page boundary,\n"
408                     "  nested_paddr: 0x%lx vm->page_size: 0x%x",
409                     nested_paddr, vm->page_size);
410         TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
411                     "Physical address beyond beyond maximum supported,\n"
412                     "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
413                     paddr, vm->max_gfn, vm->page_size);
414         TEST_ASSERT((paddr % vm->page_size) == 0,
415                     "Physical address not on page boundary,\n"
416                     "  paddr: 0x%lx vm->page_size: 0x%x",
417                     paddr, vm->page_size);
418         TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
419                     "Physical address beyond beyond maximum supported,\n"
420                     "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
421                     paddr, vm->max_gfn, vm->page_size);
422
423         index[0] = (nested_paddr >> 12) & 0x1ffu;
424         index[1] = (nested_paddr >> 21) & 0x1ffu;
425         index[2] = (nested_paddr >> 30) & 0x1ffu;
426         index[3] = (nested_paddr >> 39) & 0x1ffu;
427
428         /* Allocate page directory pointer table if not present. */
429         pml4e = vmx->eptp_hva;
430         if (!pml4e[index[3]].readable) {
431                 pml4e[index[3]].address = vm_phy_page_alloc(vm,
432                           KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
433                         >> vm->page_shift;
434                 pml4e[index[3]].writable = true;
435                 pml4e[index[3]].readable = true;
436                 pml4e[index[3]].executable = true;
437         }
438
439         /* Allocate page directory table if not present. */
440         struct eptPageTableEntry *pdpe;
441         pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
442         if (!pdpe[index[2]].readable) {
443                 pdpe[index[2]].address = vm_phy_page_alloc(vm,
444                           KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
445                         >> vm->page_shift;
446                 pdpe[index[2]].writable = true;
447                 pdpe[index[2]].readable = true;
448                 pdpe[index[2]].executable = true;
449         }
450
451         /* Allocate page table if not present. */
452         struct eptPageTableEntry *pde;
453         pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
454         if (!pde[index[1]].readable) {
455                 pde[index[1]].address = vm_phy_page_alloc(vm,
456                           KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
457                         >> vm->page_shift;
458                 pde[index[1]].writable = true;
459                 pde[index[1]].readable = true;
460                 pde[index[1]].executable = true;
461         }
462
463         /* Fill in page table entry. */
464         struct eptPageTableEntry *pte;
465         pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
466         pte[index[0]].address = paddr >> vm->page_shift;
467         pte[index[0]].writable = true;
468         pte[index[0]].readable = true;
469         pte[index[0]].executable = true;
470
471         /*
472          * For now mark these as accessed and dirty because the only
473          * testcase we have needs that.  Can be reconsidered later.
474          */
475         pte[index[0]].accessed = true;
476         pte[index[0]].dirty = true;
477 }
478
479 /*
480  * Map a range of EPT guest physical addresses to the VM's physical address
481  *
482  * Input Args:
483  *   vm - Virtual Machine
484  *   nested_paddr - Nested guest physical address to map
485  *   paddr - VM Physical Address
486  *   size - The size of the range to map
487  *   eptp_memslot - Memory region slot for new virtual translation tables
488  *
489  * Output Args: None
490  *
491  * Return: None
492  *
493  * Within the VM given by vm, creates a nested guest translation for the
494  * page range starting at nested_paddr to the page range starting at paddr.
495  */
496 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
497                 uint64_t nested_paddr, uint64_t paddr, uint64_t size,
498                 uint32_t eptp_memslot)
499 {
500         size_t page_size = vm->page_size;
501         size_t npages = size / page_size;
502
503         TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
504         TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
505
506         while (npages--) {
507                 nested_pg_map(vmx, vm, nested_paddr, paddr, eptp_memslot);
508                 nested_paddr += page_size;
509                 paddr += page_size;
510         }
511 }
512
513 /* Prepare an identity extended page table that maps all the
514  * physical pages in VM.
515  */
516 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
517                         uint32_t memslot, uint32_t eptp_memslot)
518 {
519         sparsebit_idx_t i, last;
520         struct userspace_mem_region *region =
521                 memslot2region(vm, memslot);
522
523         i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
524         last = i + (region->region.memory_size >> vm->page_shift);
525         for (;;) {
526                 i = sparsebit_next_clear(region->unused_phy_pages, i);
527                 if (i > last)
528                         break;
529
530                 nested_map(vmx, vm,
531                            (uint64_t)i << vm->page_shift,
532                            (uint64_t)i << vm->page_shift,
533                            1 << vm->page_shift,
534                            eptp_memslot);
535         }
536 }
537
538 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
539                   uint32_t eptp_memslot)
540 {
541         vmx->eptp = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
542         vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
543         vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
544 }
545
546 void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm,
547                                       uint32_t eptp_memslot)
548 {
549         vmx->apic_access = (void *)vm_vaddr_alloc(vm, getpagesize(),
550                                                   0x10000, 0, 0);
551         vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
552         vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
553 }