powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / tools / testing / selftests / kvm / include / x86_64 / processor.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * tools/testing/selftests/kvm/include/x86_64/processor.h
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7
8 #ifndef SELFTEST_KVM_PROCESSOR_H
9 #define SELFTEST_KVM_PROCESSOR_H
10
11 #include <assert.h>
12 #include <stdint.h>
13 #include <syscall.h>
14
15 #include <asm/msr-index.h>
16 #include <asm/prctl.h>
17
18 #include <linux/stringify.h>
19
20 #include "../kvm_util.h"
21
22 extern bool host_cpu_is_intel;
23 extern bool host_cpu_is_amd;
24
25 #define NMI_VECTOR              0x02
26
27 #define X86_EFLAGS_FIXED         (1u << 1)
28
29 #define X86_CR4_VME             (1ul << 0)
30 #define X86_CR4_PVI             (1ul << 1)
31 #define X86_CR4_TSD             (1ul << 2)
32 #define X86_CR4_DE              (1ul << 3)
33 #define X86_CR4_PSE             (1ul << 4)
34 #define X86_CR4_PAE             (1ul << 5)
35 #define X86_CR4_MCE             (1ul << 6)
36 #define X86_CR4_PGE             (1ul << 7)
37 #define X86_CR4_PCE             (1ul << 8)
38 #define X86_CR4_OSFXSR          (1ul << 9)
39 #define X86_CR4_OSXMMEXCPT      (1ul << 10)
40 #define X86_CR4_UMIP            (1ul << 11)
41 #define X86_CR4_LA57            (1ul << 12)
42 #define X86_CR4_VMXE            (1ul << 13)
43 #define X86_CR4_SMXE            (1ul << 14)
44 #define X86_CR4_FSGSBASE        (1ul << 16)
45 #define X86_CR4_PCIDE           (1ul << 17)
46 #define X86_CR4_OSXSAVE         (1ul << 18)
47 #define X86_CR4_SMEP            (1ul << 20)
48 #define X86_CR4_SMAP            (1ul << 21)
49 #define X86_CR4_PKE             (1ul << 22)
50
51 struct xstate_header {
52         u64                             xstate_bv;
53         u64                             xcomp_bv;
54         u64                             reserved[6];
55 } __attribute__((packed));
56
57 struct xstate {
58         u8                              i387[512];
59         struct xstate_header            header;
60         u8                              extended_state_area[0];
61 } __attribute__ ((packed, aligned (64)));
62
63 #define XFEATURE_MASK_FP                BIT_ULL(0)
64 #define XFEATURE_MASK_SSE               BIT_ULL(1)
65 #define XFEATURE_MASK_YMM               BIT_ULL(2)
66 #define XFEATURE_MASK_BNDREGS           BIT_ULL(3)
67 #define XFEATURE_MASK_BNDCSR            BIT_ULL(4)
68 #define XFEATURE_MASK_OPMASK            BIT_ULL(5)
69 #define XFEATURE_MASK_ZMM_Hi256         BIT_ULL(6)
70 #define XFEATURE_MASK_Hi16_ZMM          BIT_ULL(7)
71 #define XFEATURE_MASK_XTILE_CFG         BIT_ULL(17)
72 #define XFEATURE_MASK_XTILE_DATA        BIT_ULL(18)
73
74 #define XFEATURE_MASK_AVX512            (XFEATURE_MASK_OPMASK | \
75                                          XFEATURE_MASK_ZMM_Hi256 | \
76                                          XFEATURE_MASK_Hi16_ZMM)
77 #define XFEATURE_MASK_XTILE             (XFEATURE_MASK_XTILE_DATA | \
78                                          XFEATURE_MASK_XTILE_CFG)
79
80 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
81 enum cpuid_output_regs {
82         KVM_CPUID_EAX,
83         KVM_CPUID_EBX,
84         KVM_CPUID_ECX,
85         KVM_CPUID_EDX
86 };
87
88 /*
89  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
90  * passed by value with no overhead.
91  */
92 struct kvm_x86_cpu_feature {
93         u32     function;
94         u16     index;
95         u8      reg;
96         u8      bit;
97 };
98 #define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)                                \
99 ({                                                                              \
100         struct kvm_x86_cpu_feature feature = {                                  \
101                 .function = fn,                                                 \
102                 .index = idx,                                                   \
103                 .reg = KVM_CPUID_##gpr,                                         \
104                 .bit = __bit,                                                   \
105         };                                                                      \
106                                                                                 \
107         kvm_static_assert((fn & 0xc0000000) == 0 ||                             \
108                           (fn & 0xc0000000) == 0x40000000 ||                    \
109                           (fn & 0xc0000000) == 0x80000000 ||                    \
110                           (fn & 0xc0000000) == 0xc0000000);                     \
111         kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));    \
112         feature;                                                                \
113 })
114
115 /*
116  * Basic Leafs, a.k.a. Intel defined
117  */
118 #define X86_FEATURE_MWAIT               KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
119 #define X86_FEATURE_VMX                 KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
120 #define X86_FEATURE_SMX                 KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
121 #define X86_FEATURE_PDCM                KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
122 #define X86_FEATURE_PCID                KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
123 #define X86_FEATURE_X2APIC              KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
124 #define X86_FEATURE_MOVBE               KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
125 #define X86_FEATURE_TSC_DEADLINE_TIMER  KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
126 #define X86_FEATURE_XSAVE               KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
127 #define X86_FEATURE_OSXSAVE             KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
128 #define X86_FEATURE_RDRAND              KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
129 #define X86_FEATURE_HYPERVISOR          KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
130 #define X86_FEATURE_PAE                 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
131 #define X86_FEATURE_MCE                 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
132 #define X86_FEATURE_APIC                KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
133 #define X86_FEATURE_CLFLUSH             KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
134 #define X86_FEATURE_XMM                 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
135 #define X86_FEATURE_XMM2                KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
136 #define X86_FEATURE_FSGSBASE            KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
137 #define X86_FEATURE_TSC_ADJUST          KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
138 #define X86_FEATURE_SGX                 KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
139 #define X86_FEATURE_HLE                 KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
140 #define X86_FEATURE_SMEP                KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
141 #define X86_FEATURE_INVPCID             KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
142 #define X86_FEATURE_RTM                 KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
143 #define X86_FEATURE_MPX                 KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
144 #define X86_FEATURE_SMAP                KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
145 #define X86_FEATURE_PCOMMIT             KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
146 #define X86_FEATURE_CLFLUSHOPT          KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
147 #define X86_FEATURE_CLWB                KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
148 #define X86_FEATURE_UMIP                KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
149 #define X86_FEATURE_PKU                 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
150 #define X86_FEATURE_LA57                KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
151 #define X86_FEATURE_RDPID               KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
152 #define X86_FEATURE_SGX_LC              KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
153 #define X86_FEATURE_SHSTK               KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
154 #define X86_FEATURE_IBT                 KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
155 #define X86_FEATURE_AMX_TILE            KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
156 #define X86_FEATURE_SPEC_CTRL           KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
157 #define X86_FEATURE_ARCH_CAPABILITIES   KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
158 #define X86_FEATURE_PKS                 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
159 #define X86_FEATURE_XTILECFG            KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
160 #define X86_FEATURE_XTILEDATA           KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
161 #define X86_FEATURE_XSAVES              KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
162 #define X86_FEATURE_XFD                 KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
163 #define X86_FEATURE_XTILEDATA_XFD       KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
164
165 /*
166  * Extended Leafs, a.k.a. AMD defined
167  */
168 #define X86_FEATURE_SVM                 KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
169 #define X86_FEATURE_NX                  KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
170 #define X86_FEATURE_GBPAGES             KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
171 #define X86_FEATURE_RDTSCP              KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
172 #define X86_FEATURE_LM                  KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
173 #define X86_FEATURE_INVTSC              KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
174 #define X86_FEATURE_RDPRU               KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
175 #define X86_FEATURE_AMD_IBPB            KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
176 #define X86_FEATURE_NPT                 KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
177 #define X86_FEATURE_LBRV                KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
178 #define X86_FEATURE_NRIPS               KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
179 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
180 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
181 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
182 #define X86_FEATURE_VGIF                KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
183 #define X86_FEATURE_SEV                 KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
184 #define X86_FEATURE_SEV_ES              KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
185
186 /*
187  * KVM defined paravirt features.
188  */
189 #define X86_FEATURE_KVM_CLOCKSOURCE     KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
190 #define X86_FEATURE_KVM_NOP_IO_DELAY    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
191 #define X86_FEATURE_KVM_MMU_OP          KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
192 #define X86_FEATURE_KVM_CLOCKSOURCE2    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
193 #define X86_FEATURE_KVM_ASYNC_PF        KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
194 #define X86_FEATURE_KVM_STEAL_TIME      KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
195 #define X86_FEATURE_KVM_PV_EOI          KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
196 #define X86_FEATURE_KVM_PV_UNHALT       KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
197 /* Bit 8 apparently isn't used?!?! */
198 #define X86_FEATURE_KVM_PV_TLB_FLUSH    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
199 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
200 #define X86_FEATURE_KVM_PV_SEND_IPI     KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
201 #define X86_FEATURE_KVM_POLL_CONTROL    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
202 #define X86_FEATURE_KVM_PV_SCHED_YIELD  KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
203 #define X86_FEATURE_KVM_ASYNC_PF_INT    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
204 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
205 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE        KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
206 #define X86_FEATURE_KVM_MIGRATION_CONTROL       KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
207
208 /*
209  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
210  * value/property as opposed to a single-bit feature.  Again, pack the info
211  * into a 64-bit value to pass by value with no overhead.
212  */
213 struct kvm_x86_cpu_property {
214         u32     function;
215         u8      index;
216         u8      reg;
217         u8      lo_bit;
218         u8      hi_bit;
219 };
220 #define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)                   \
221 ({                                                                              \
222         struct kvm_x86_cpu_property property = {                                \
223                 .function = fn,                                                 \
224                 .index = idx,                                                   \
225                 .reg = KVM_CPUID_##gpr,                                         \
226                 .lo_bit = low_bit,                                              \
227                 .hi_bit = high_bit,                                             \
228         };                                                                      \
229                                                                                 \
230         kvm_static_assert(low_bit < high_bit);                                  \
231         kvm_static_assert((fn & 0xc0000000) == 0 ||                             \
232                           (fn & 0xc0000000) == 0x40000000 ||                    \
233                           (fn & 0xc0000000) == 0x80000000 ||                    \
234                           (fn & 0xc0000000) == 0xc0000000);                     \
235         kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));   \
236         property;                                                               \
237 })
238
239 #define X86_PROPERTY_MAX_BASIC_LEAF             KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
240 #define X86_PROPERTY_PMU_VERSION                KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
241 #define X86_PROPERTY_PMU_NR_GP_COUNTERS         KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
242 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH  KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
243 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH  KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
244 #define X86_PROPERTY_PMU_EVENTS_MASK            KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
245 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
246 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS      KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
247 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH       KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
248
249 #define X86_PROPERTY_SUPPORTED_XCR0_LO          KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
250 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0       KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
251 #define X86_PROPERTY_XSTATE_MAX_SIZE            KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
252 #define X86_PROPERTY_SUPPORTED_XCR0_HI          KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
253
254 #define X86_PROPERTY_XSTATE_TILE_SIZE           KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
255 #define X86_PROPERTY_XSTATE_TILE_OFFSET         KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
256 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES     KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
257 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES       KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
258 #define X86_PROPERTY_AMX_BYTES_PER_TILE         KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
259 #define X86_PROPERTY_AMX_BYTES_PER_ROW          KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
260 #define X86_PROPERTY_AMX_NR_TILE_REGS           KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
261 #define X86_PROPERTY_AMX_MAX_ROWS               KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
262
263 #define X86_PROPERTY_MAX_KVM_LEAF               KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
264
265 #define X86_PROPERTY_MAX_EXT_LEAF               KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
266 #define X86_PROPERTY_MAX_PHY_ADDR               KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
267 #define X86_PROPERTY_MAX_VIRT_ADDR              KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
268 #define X86_PROPERTY_PHYS_ADDR_REDUCTION        KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
269
270 #define X86_PROPERTY_MAX_CENTAUR_LEAF           KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
271
272 /*
273  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
274  * that indicates the feature is _not_ supported, and a property that states
275  * the length of the bit mask of unsupported features.  A feature is supported
276  * if the size of the bit mask is larger than the "unavailable" bit, and said
277  * bit is not set.
278  *
279  * Wrap the "unavailable" feature to simplify checking whether or not a given
280  * architectural event is supported.
281  */
282 struct kvm_x86_pmu_feature {
283         struct kvm_x86_cpu_feature anti_feature;
284 };
285 #define KVM_X86_PMU_FEATURE(name, __bit)                                        \
286 ({                                                                              \
287         struct kvm_x86_pmu_feature feature = {                                  \
288                 .anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit),        \
289         };                                                                      \
290                                                                                 \
291         feature;                                                                \
292 })
293
294 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED    KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5)
295
296 static inline unsigned int x86_family(unsigned int eax)
297 {
298         unsigned int x86;
299
300         x86 = (eax >> 8) & 0xf;
301
302         if (x86 == 0xf)
303                 x86 += (eax >> 20) & 0xff;
304
305         return x86;
306 }
307
308 static inline unsigned int x86_model(unsigned int eax)
309 {
310         return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
311 }
312
313 /* Page table bitfield declarations */
314 #define PTE_PRESENT_MASK        BIT_ULL(0)
315 #define PTE_WRITABLE_MASK       BIT_ULL(1)
316 #define PTE_USER_MASK           BIT_ULL(2)
317 #define PTE_ACCESSED_MASK       BIT_ULL(5)
318 #define PTE_DIRTY_MASK          BIT_ULL(6)
319 #define PTE_LARGE_MASK          BIT_ULL(7)
320 #define PTE_GLOBAL_MASK         BIT_ULL(8)
321 #define PTE_NX_MASK             BIT_ULL(63)
322
323 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
324
325 #define PAGE_SHIFT              12
326 #define PAGE_SIZE               (1ULL << PAGE_SHIFT)
327 #define PAGE_MASK               (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
328
329 #define HUGEPAGE_SHIFT(x)       (PAGE_SHIFT + (((x) - 1) * 9))
330 #define HUGEPAGE_SIZE(x)        (1UL << HUGEPAGE_SHIFT(x))
331 #define HUGEPAGE_MASK(x)        (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
332
333 #define PTE_GET_PA(pte)         ((pte) & PHYSICAL_PAGE_MASK)
334 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
335
336 /* General Registers in 64-Bit Mode */
337 struct gpr64_regs {
338         u64 rax;
339         u64 rcx;
340         u64 rdx;
341         u64 rbx;
342         u64 rsp;
343         u64 rbp;
344         u64 rsi;
345         u64 rdi;
346         u64 r8;
347         u64 r9;
348         u64 r10;
349         u64 r11;
350         u64 r12;
351         u64 r13;
352         u64 r14;
353         u64 r15;
354 };
355
356 struct desc64 {
357         uint16_t limit0;
358         uint16_t base0;
359         unsigned base1:8, type:4, s:1, dpl:2, p:1;
360         unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
361         uint32_t base3;
362         uint32_t zero1;
363 } __attribute__((packed));
364
365 struct desc_ptr {
366         uint16_t size;
367         uint64_t address;
368 } __attribute__((packed));
369
370 struct kvm_x86_state {
371         struct kvm_xsave *xsave;
372         struct kvm_vcpu_events events;
373         struct kvm_mp_state mp_state;
374         struct kvm_regs regs;
375         struct kvm_xcrs xcrs;
376         struct kvm_sregs sregs;
377         struct kvm_debugregs debugregs;
378         union {
379                 struct kvm_nested_state nested;
380                 char nested_[16384];
381         };
382         struct kvm_msrs msrs;
383 };
384
385 static inline uint64_t get_desc64_base(const struct desc64 *desc)
386 {
387         return ((uint64_t)desc->base3 << 32) |
388                 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
389 }
390
391 static inline uint64_t rdtsc(void)
392 {
393         uint32_t eax, edx;
394         uint64_t tsc_val;
395         /*
396          * The lfence is to wait (on Intel CPUs) until all previous
397          * instructions have been executed. If software requires RDTSC to be
398          * executed prior to execution of any subsequent instruction, it can
399          * execute LFENCE immediately after RDTSC
400          */
401         __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
402         tsc_val = ((uint64_t)edx) << 32 | eax;
403         return tsc_val;
404 }
405
406 static inline uint64_t rdtscp(uint32_t *aux)
407 {
408         uint32_t eax, edx;
409
410         __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
411         return ((uint64_t)edx) << 32 | eax;
412 }
413
414 static inline uint64_t rdmsr(uint32_t msr)
415 {
416         uint32_t a, d;
417
418         __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
419
420         return a | ((uint64_t) d << 32);
421 }
422
423 static inline void wrmsr(uint32_t msr, uint64_t value)
424 {
425         uint32_t a = value;
426         uint32_t d = value >> 32;
427
428         __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
429 }
430
431
432 static inline uint16_t inw(uint16_t port)
433 {
434         uint16_t tmp;
435
436         __asm__ __volatile__("in %%dx, %%ax"
437                 : /* output */ "=a" (tmp)
438                 : /* input */ "d" (port));
439
440         return tmp;
441 }
442
443 static inline uint16_t get_es(void)
444 {
445         uint16_t es;
446
447         __asm__ __volatile__("mov %%es, %[es]"
448                              : /* output */ [es]"=rm"(es));
449         return es;
450 }
451
452 static inline uint16_t get_cs(void)
453 {
454         uint16_t cs;
455
456         __asm__ __volatile__("mov %%cs, %[cs]"
457                              : /* output */ [cs]"=rm"(cs));
458         return cs;
459 }
460
461 static inline uint16_t get_ss(void)
462 {
463         uint16_t ss;
464
465         __asm__ __volatile__("mov %%ss, %[ss]"
466                              : /* output */ [ss]"=rm"(ss));
467         return ss;
468 }
469
470 static inline uint16_t get_ds(void)
471 {
472         uint16_t ds;
473
474         __asm__ __volatile__("mov %%ds, %[ds]"
475                              : /* output */ [ds]"=rm"(ds));
476         return ds;
477 }
478
479 static inline uint16_t get_fs(void)
480 {
481         uint16_t fs;
482
483         __asm__ __volatile__("mov %%fs, %[fs]"
484                              : /* output */ [fs]"=rm"(fs));
485         return fs;
486 }
487
488 static inline uint16_t get_gs(void)
489 {
490         uint16_t gs;
491
492         __asm__ __volatile__("mov %%gs, %[gs]"
493                              : /* output */ [gs]"=rm"(gs));
494         return gs;
495 }
496
497 static inline uint16_t get_tr(void)
498 {
499         uint16_t tr;
500
501         __asm__ __volatile__("str %[tr]"
502                              : /* output */ [tr]"=rm"(tr));
503         return tr;
504 }
505
506 static inline uint64_t get_cr0(void)
507 {
508         uint64_t cr0;
509
510         __asm__ __volatile__("mov %%cr0, %[cr0]"
511                              : /* output */ [cr0]"=r"(cr0));
512         return cr0;
513 }
514
515 static inline uint64_t get_cr3(void)
516 {
517         uint64_t cr3;
518
519         __asm__ __volatile__("mov %%cr3, %[cr3]"
520                              : /* output */ [cr3]"=r"(cr3));
521         return cr3;
522 }
523
524 static inline uint64_t get_cr4(void)
525 {
526         uint64_t cr4;
527
528         __asm__ __volatile__("mov %%cr4, %[cr4]"
529                              : /* output */ [cr4]"=r"(cr4));
530         return cr4;
531 }
532
533 static inline void set_cr4(uint64_t val)
534 {
535         __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
536 }
537
538 static inline u64 xgetbv(u32 index)
539 {
540         u32 eax, edx;
541
542         __asm__ __volatile__("xgetbv;"
543                      : "=a" (eax), "=d" (edx)
544                      : "c" (index));
545         return eax | ((u64)edx << 32);
546 }
547
548 static inline void xsetbv(u32 index, u64 value)
549 {
550         u32 eax = value;
551         u32 edx = value >> 32;
552
553         __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
554 }
555
556 static inline struct desc_ptr get_gdt(void)
557 {
558         struct desc_ptr gdt;
559         __asm__ __volatile__("sgdt %[gdt]"
560                              : /* output */ [gdt]"=m"(gdt));
561         return gdt;
562 }
563
564 static inline struct desc_ptr get_idt(void)
565 {
566         struct desc_ptr idt;
567         __asm__ __volatile__("sidt %[idt]"
568                              : /* output */ [idt]"=m"(idt));
569         return idt;
570 }
571
572 static inline void outl(uint16_t port, uint32_t value)
573 {
574         __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
575 }
576
577 static inline void __cpuid(uint32_t function, uint32_t index,
578                            uint32_t *eax, uint32_t *ebx,
579                            uint32_t *ecx, uint32_t *edx)
580 {
581         *eax = function;
582         *ecx = index;
583
584         asm volatile("cpuid"
585             : "=a" (*eax),
586               "=b" (*ebx),
587               "=c" (*ecx),
588               "=d" (*edx)
589             : "0" (*eax), "2" (*ecx)
590             : "memory");
591 }
592
593 static inline void cpuid(uint32_t function,
594                          uint32_t *eax, uint32_t *ebx,
595                          uint32_t *ecx, uint32_t *edx)
596 {
597         return __cpuid(function, 0, eax, ebx, ecx, edx);
598 }
599
600 static inline uint32_t this_cpu_fms(void)
601 {
602         uint32_t eax, ebx, ecx, edx;
603
604         cpuid(1, &eax, &ebx, &ecx, &edx);
605         return eax;
606 }
607
608 static inline uint32_t this_cpu_family(void)
609 {
610         return x86_family(this_cpu_fms());
611 }
612
613 static inline uint32_t this_cpu_model(void)
614 {
615         return x86_model(this_cpu_fms());
616 }
617
618 static inline bool this_cpu_vendor_string_is(const char *vendor)
619 {
620         const uint32_t *chunk = (const uint32_t *)vendor;
621         uint32_t eax, ebx, ecx, edx;
622
623         cpuid(0, &eax, &ebx, &ecx, &edx);
624         return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
625 }
626
627 static inline bool this_cpu_is_intel(void)
628 {
629         return this_cpu_vendor_string_is("GenuineIntel");
630 }
631
632 /*
633  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
634  */
635 static inline bool this_cpu_is_amd(void)
636 {
637         return this_cpu_vendor_string_is("AuthenticAMD");
638 }
639
640 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
641                                       uint8_t reg, uint8_t lo, uint8_t hi)
642 {
643         uint32_t gprs[4];
644
645         __cpuid(function, index,
646                 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
647                 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
648
649         return (gprs[reg] & GENMASK(hi, lo)) >> lo;
650 }
651
652 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
653 {
654         return __this_cpu_has(feature.function, feature.index,
655                               feature.reg, feature.bit, feature.bit);
656 }
657
658 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
659 {
660         return __this_cpu_has(property.function, property.index,
661                               property.reg, property.lo_bit, property.hi_bit);
662 }
663
664 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
665 {
666         uint32_t max_leaf;
667
668         switch (property.function & 0xc0000000) {
669         case 0:
670                 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
671                 break;
672         case 0x40000000:
673                 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
674                 break;
675         case 0x80000000:
676                 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
677                 break;
678         case 0xc0000000:
679                 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
680         }
681         return max_leaf >= property.function;
682 }
683
684 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
685 {
686         uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
687
688         return nr_bits > feature.anti_feature.bit &&
689                !this_cpu_has(feature.anti_feature);
690 }
691
692 static __always_inline uint64_t this_cpu_supported_xcr0(void)
693 {
694         if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
695                 return 0;
696
697         return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
698                ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
699 }
700
701 typedef u32             __attribute__((vector_size(16))) sse128_t;
702 #define __sse128_u      union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
703 #define sse128_lo(x)    ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
704 #define sse128_hi(x)    ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
705
706 static inline void read_sse_reg(int reg, sse128_t *data)
707 {
708         switch (reg) {
709         case 0:
710                 asm("movdqa %%xmm0, %0" : "=m"(*data));
711                 break;
712         case 1:
713                 asm("movdqa %%xmm1, %0" : "=m"(*data));
714                 break;
715         case 2:
716                 asm("movdqa %%xmm2, %0" : "=m"(*data));
717                 break;
718         case 3:
719                 asm("movdqa %%xmm3, %0" : "=m"(*data));
720                 break;
721         case 4:
722                 asm("movdqa %%xmm4, %0" : "=m"(*data));
723                 break;
724         case 5:
725                 asm("movdqa %%xmm5, %0" : "=m"(*data));
726                 break;
727         case 6:
728                 asm("movdqa %%xmm6, %0" : "=m"(*data));
729                 break;
730         case 7:
731                 asm("movdqa %%xmm7, %0" : "=m"(*data));
732                 break;
733         default:
734                 BUG();
735         }
736 }
737
738 static inline void write_sse_reg(int reg, const sse128_t *data)
739 {
740         switch (reg) {
741         case 0:
742                 asm("movdqa %0, %%xmm0" : : "m"(*data));
743                 break;
744         case 1:
745                 asm("movdqa %0, %%xmm1" : : "m"(*data));
746                 break;
747         case 2:
748                 asm("movdqa %0, %%xmm2" : : "m"(*data));
749                 break;
750         case 3:
751                 asm("movdqa %0, %%xmm3" : : "m"(*data));
752                 break;
753         case 4:
754                 asm("movdqa %0, %%xmm4" : : "m"(*data));
755                 break;
756         case 5:
757                 asm("movdqa %0, %%xmm5" : : "m"(*data));
758                 break;
759         case 6:
760                 asm("movdqa %0, %%xmm6" : : "m"(*data));
761                 break;
762         case 7:
763                 asm("movdqa %0, %%xmm7" : : "m"(*data));
764                 break;
765         default:
766                 BUG();
767         }
768 }
769
770 static inline void cpu_relax(void)
771 {
772         asm volatile("rep; nop" ::: "memory");
773 }
774
775 #define ud2()                   \
776         __asm__ __volatile__(   \
777                 "ud2\n" \
778                 )
779
780 #define hlt()                   \
781         __asm__ __volatile__(   \
782                 "hlt\n" \
783                 )
784
785 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
786 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
787 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
788
789 const struct kvm_msr_list *kvm_get_msr_index_list(void);
790 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
791 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
792 uint64_t kvm_get_feature_msr(uint64_t msr_index);
793
794 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
795                                  struct kvm_msrs *msrs)
796 {
797         int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
798
799         TEST_ASSERT(r == msrs->nmsrs,
800                     "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
801                     r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
802 }
803 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
804 {
805         int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
806
807         TEST_ASSERT(r == msrs->nmsrs,
808                     "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
809                     r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
810 }
811 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
812                                       struct kvm_debugregs *debugregs)
813 {
814         vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
815 }
816 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
817                                       struct kvm_debugregs *debugregs)
818 {
819         vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
820 }
821 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
822                                   struct kvm_xsave *xsave)
823 {
824         vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
825 }
826 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
827                                    struct kvm_xsave *xsave)
828 {
829         vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
830 }
831 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
832                                   struct kvm_xsave *xsave)
833 {
834         vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
835 }
836 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
837                                  struct kvm_xcrs *xcrs)
838 {
839         vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
840 }
841 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
842 {
843         vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
844 }
845
846 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
847                                                uint32_t function, uint32_t index);
848 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
849 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
850 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
851
852 static inline uint32_t kvm_cpu_fms(void)
853 {
854         return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
855 }
856
857 static inline uint32_t kvm_cpu_family(void)
858 {
859         return x86_family(kvm_cpu_fms());
860 }
861
862 static inline uint32_t kvm_cpu_model(void)
863 {
864         return x86_model(kvm_cpu_fms());
865 }
866
867 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
868                    struct kvm_x86_cpu_feature feature);
869
870 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
871 {
872         return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
873 }
874
875 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
876                             struct kvm_x86_cpu_property property);
877
878 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
879 {
880         return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
881 }
882
883 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
884 {
885         uint32_t max_leaf;
886
887         switch (property.function & 0xc0000000) {
888         case 0:
889                 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
890                 break;
891         case 0x40000000:
892                 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
893                 break;
894         case 0x80000000:
895                 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
896                 break;
897         case 0xc0000000:
898                 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
899         }
900         return max_leaf >= property.function;
901 }
902
903 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
904 {
905         uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
906
907         return nr_bits > feature.anti_feature.bit &&
908                !kvm_cpu_has(feature.anti_feature);
909 }
910
911 static inline size_t kvm_cpuid2_size(int nr_entries)
912 {
913         return sizeof(struct kvm_cpuid2) +
914                sizeof(struct kvm_cpuid_entry2) * nr_entries;
915 }
916
917 /*
918  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
919  * entries sized to hold @nr_entries.  The caller is responsible for freeing
920  * the struct.
921  */
922 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
923 {
924         struct kvm_cpuid2 *cpuid;
925
926         cpuid = malloc(kvm_cpuid2_size(nr_entries));
927         TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
928
929         cpuid->nent = nr_entries;
930
931         return cpuid;
932 }
933
934 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
935 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
936
937 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
938                                                               uint32_t function,
939                                                               uint32_t index)
940 {
941         return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
942                                                           function, index);
943 }
944
945 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
946                                                             uint32_t function)
947 {
948         return __vcpu_get_cpuid_entry(vcpu, function, 0);
949 }
950
951 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
952 {
953         int r;
954
955         TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
956         r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
957         if (r)
958                 return r;
959
960         /* On success, refresh the cache to pick up adjustments made by KVM. */
961         vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
962         return 0;
963 }
964
965 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
966 {
967         TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
968         vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
969
970         /* Refresh the cache to pick up adjustments made by KVM. */
971         vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
972 }
973
974 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
975
976 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
977 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
978                                      struct kvm_x86_cpu_feature feature,
979                                      bool set);
980
981 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
982                                           struct kvm_x86_cpu_feature feature)
983 {
984         vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
985
986 }
987
988 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
989                                             struct kvm_x86_cpu_feature feature)
990 {
991         vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
992 }
993
994 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
995 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
996
997 /*
998  * Assert on an MSR access(es) and pretty print the MSR name when possible.
999  * Note, the caller provides the stringified name so that the name of macro is
1000  * printed, not the value the macro resolves to (due to macro expansion).
1001  */
1002 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)                           \
1003 do {                                                                            \
1004         if (__builtin_constant_p(msr)) {                                        \
1005                 TEST_ASSERT(cond, fmt, str, args);                              \
1006         } else if (!(cond)) {                                                   \
1007                 char buf[16];                                                   \
1008                                                                                 \
1009                 snprintf(buf, sizeof(buf), "MSR 0x%x", msr);                    \
1010                 TEST_ASSERT(cond, fmt, buf, args);                              \
1011         }                                                                       \
1012 } while (0)
1013
1014 /*
1015  * Returns true if KVM should return the last written value when reading an MSR
1016  * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1017  * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1018  * out MSRs that are not durable _and_ that a selftest wants to write.
1019  */
1020 static inline bool is_durable_msr(uint32_t msr)
1021 {
1022         return msr != MSR_IA32_TSC;
1023 }
1024
1025 #define vcpu_set_msr(vcpu, msr, val)                                                    \
1026 do {                                                                                    \
1027         uint64_t r, v = val;                                                            \
1028                                                                                         \
1029         TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,                               \
1030                         "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);      \
1031         if (!is_durable_msr(msr))                                                       \
1032                 break;                                                                  \
1033         r = vcpu_get_msr(vcpu, msr);                                                    \
1034         TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1035 } while (0)
1036
1037 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1038 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1039
1040 struct ex_regs {
1041         uint64_t rax, rcx, rdx, rbx;
1042         uint64_t rbp, rsi, rdi;
1043         uint64_t r8, r9, r10, r11;
1044         uint64_t r12, r13, r14, r15;
1045         uint64_t vector;
1046         uint64_t error_code;
1047         uint64_t rip;
1048         uint64_t cs;
1049         uint64_t rflags;
1050 };
1051
1052 struct idt_entry {
1053         uint16_t offset0;
1054         uint16_t selector;
1055         uint16_t ist : 3;
1056         uint16_t : 5;
1057         uint16_t type : 4;
1058         uint16_t : 1;
1059         uint16_t dpl : 2;
1060         uint16_t p : 1;
1061         uint16_t offset1;
1062         uint32_t offset2; uint32_t reserved;
1063 };
1064
1065 void vm_init_descriptor_tables(struct kvm_vm *vm);
1066 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
1067 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1068                         void (*handler)(struct ex_regs *));
1069
1070 /* If a toddler were to say "abracadabra". */
1071 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1072
1073 /*
1074  * KVM selftest exception fixup uses registers to coordinate with the exception
1075  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1076  * per-CPU data.  Using only registers avoids having to map memory into the
1077  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1078  * for recursive faults when accessing memory in the handler.  The downside to
1079  * using registers is that it restricts what registers can be used by the actual
1080  * instruction.  But, selftests are 64-bit only, making register* pressure a
1081  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1082  * by the callee, and except for r11 are not implicit parameters to any
1083  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1084  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1085  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1086  *
1087  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1088  * is guaranteed to be non-zero on fault.
1089  *
1090  * REGISTER INPUTS:
1091  * r9  = MAGIC
1092  * r10 = RIP
1093  * r11 = new RIP on fault
1094  *
1095  * REGISTER OUTPUTS:
1096  * r9  = exception vector (non-zero)
1097  * r10 = error code
1098  */
1099 #define KVM_ASM_SAFE(insn)                                      \
1100         "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"   \
1101         "lea 1f(%%rip), %%r10\n\t"                              \
1102         "lea 2f(%%rip), %%r11\n\t"                              \
1103         "1: " insn "\n\t"                                       \
1104         "xor %%r9, %%r9\n\t"                                    \
1105         "2:\n\t"                                                \
1106         "mov  %%r9b, %[vector]\n\t"                             \
1107         "mov  %%r10, %[error_code]\n\t"
1108
1109 #define KVM_ASM_SAFE_OUTPUTS(v, ec)     [vector] "=qm"(v), [error_code] "=rm"(ec)
1110 #define KVM_ASM_SAFE_CLOBBERS   "r9", "r10", "r11"
1111
1112 #define kvm_asm_safe(insn, inputs...)                                   \
1113 ({                                                                      \
1114         uint64_t ign_error_code;                                        \
1115         uint8_t vector;                                                 \
1116                                                                         \
1117         asm volatile(KVM_ASM_SAFE(insn)                                 \
1118                      : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)     \
1119                      : inputs                                           \
1120                      : KVM_ASM_SAFE_CLOBBERS);                          \
1121         vector;                                                         \
1122 })
1123
1124 #define kvm_asm_safe_ec(insn, error_code, inputs...)                    \
1125 ({                                                                      \
1126         uint8_t vector;                                                 \
1127                                                                         \
1128         asm volatile(KVM_ASM_SAFE(insn)                                 \
1129                      : KVM_ASM_SAFE_OUTPUTS(vector, error_code)         \
1130                      : inputs                                           \
1131                      : KVM_ASM_SAFE_CLOBBERS);                          \
1132         vector;                                                         \
1133 })
1134
1135 static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
1136 {
1137         uint64_t error_code;
1138         uint8_t vector;
1139         uint32_t a, d;
1140
1141         asm volatile(KVM_ASM_SAFE("rdmsr")
1142                      : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code)
1143                      : "c"(msr)
1144                      : KVM_ASM_SAFE_CLOBBERS);
1145
1146         *val = (uint64_t)a | ((uint64_t)d << 32);
1147         return vector;
1148 }
1149
1150 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1151 {
1152         return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1153 }
1154
1155 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1156 {
1157         u32 eax = value;
1158         u32 edx = value >> 32;
1159
1160         return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1161 }
1162
1163 bool kvm_is_tdp_enabled(void);
1164
1165 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1166                                     int *level);
1167 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1168
1169 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1170                        uint64_t a3);
1171 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1172 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1173
1174 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1175
1176 #define vm_xsave_require_permission(xfeature)   \
1177         __vm_xsave_require_permission(xfeature, #xfeature)
1178
1179 enum pg_level {
1180         PG_LEVEL_NONE,
1181         PG_LEVEL_4K,
1182         PG_LEVEL_2M,
1183         PG_LEVEL_1G,
1184         PG_LEVEL_512G,
1185         PG_LEVEL_NUM
1186 };
1187
1188 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1189 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1190
1191 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1192 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1193 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1194
1195 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1196 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1197                     uint64_t nr_bytes, int level);
1198
1199 /*
1200  * Basic CPU control in CR0
1201  */
1202 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1203 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1204 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1205 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1206 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1207 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1208 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1209 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1210 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1211 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1212 #define X86_CR0_PG          (1UL<<31) /* Paging */
1213
1214 #define PFERR_PRESENT_BIT 0
1215 #define PFERR_WRITE_BIT 1
1216 #define PFERR_USER_BIT 2
1217 #define PFERR_RSVD_BIT 3
1218 #define PFERR_FETCH_BIT 4
1219 #define PFERR_PK_BIT 5
1220 #define PFERR_SGX_BIT 15
1221 #define PFERR_GUEST_FINAL_BIT 32
1222 #define PFERR_GUEST_PAGE_BIT 33
1223 #define PFERR_IMPLICIT_ACCESS_BIT 48
1224
1225 #define PFERR_PRESENT_MASK      BIT(PFERR_PRESENT_BIT)
1226 #define PFERR_WRITE_MASK        BIT(PFERR_WRITE_BIT)
1227 #define PFERR_USER_MASK         BIT(PFERR_USER_BIT)
1228 #define PFERR_RSVD_MASK         BIT(PFERR_RSVD_BIT)
1229 #define PFERR_FETCH_MASK        BIT(PFERR_FETCH_BIT)
1230 #define PFERR_PK_MASK           BIT(PFERR_PK_BIT)
1231 #define PFERR_SGX_MASK          BIT(PFERR_SGX_BIT)
1232 #define PFERR_GUEST_FINAL_MASK  BIT_ULL(PFERR_GUEST_FINAL_BIT)
1233 #define PFERR_GUEST_PAGE_MASK   BIT_ULL(PFERR_GUEST_PAGE_BIT)
1234 #define PFERR_IMPLICIT_ACCESS   BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1235
1236 #endif /* SELFTEST_KVM_PROCESSOR_H */