KVM: selftests: Add all known XFEATURE masks to common code
[platform/kernel/linux-starfive.git] / tools / testing / selftests / kvm / include / x86_64 / processor.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * tools/testing/selftests/kvm/include/x86_64/processor.h
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7
8 #ifndef SELFTEST_KVM_PROCESSOR_H
9 #define SELFTEST_KVM_PROCESSOR_H
10
11 #include <assert.h>
12 #include <stdint.h>
13 #include <syscall.h>
14
15 #include <asm/msr-index.h>
16 #include <asm/prctl.h>
17
18 #include <linux/stringify.h>
19
20 #include "../kvm_util.h"
21
22 extern bool host_cpu_is_intel;
23 extern bool host_cpu_is_amd;
24
25 #define NMI_VECTOR              0x02
26
27 #define X86_EFLAGS_FIXED         (1u << 1)
28
29 #define X86_CR4_VME             (1ul << 0)
30 #define X86_CR4_PVI             (1ul << 1)
31 #define X86_CR4_TSD             (1ul << 2)
32 #define X86_CR4_DE              (1ul << 3)
33 #define X86_CR4_PSE             (1ul << 4)
34 #define X86_CR4_PAE             (1ul << 5)
35 #define X86_CR4_MCE             (1ul << 6)
36 #define X86_CR4_PGE             (1ul << 7)
37 #define X86_CR4_PCE             (1ul << 8)
38 #define X86_CR4_OSFXSR          (1ul << 9)
39 #define X86_CR4_OSXMMEXCPT      (1ul << 10)
40 #define X86_CR4_UMIP            (1ul << 11)
41 #define X86_CR4_LA57            (1ul << 12)
42 #define X86_CR4_VMXE            (1ul << 13)
43 #define X86_CR4_SMXE            (1ul << 14)
44 #define X86_CR4_FSGSBASE        (1ul << 16)
45 #define X86_CR4_PCIDE           (1ul << 17)
46 #define X86_CR4_OSXSAVE         (1ul << 18)
47 #define X86_CR4_SMEP            (1ul << 20)
48 #define X86_CR4_SMAP            (1ul << 21)
49 #define X86_CR4_PKE             (1ul << 22)
50
51 struct xstate_header {
52         u64                             xstate_bv;
53         u64                             xcomp_bv;
54         u64                             reserved[6];
55 } __attribute__((packed));
56
57 struct xstate {
58         u8                              i387[512];
59         struct xstate_header            header;
60         u8                              extended_state_area[0];
61 } __attribute__ ((packed, aligned (64)));
62
63 #define XFEATURE_MASK_FP                BIT_ULL(0)
64 #define XFEATURE_MASK_SSE               BIT_ULL(1)
65 #define XFEATURE_MASK_YMM               BIT_ULL(2)
66 #define XFEATURE_MASK_BNDREGS           BIT_ULL(3)
67 #define XFEATURE_MASK_BNDCSR            BIT_ULL(4)
68 #define XFEATURE_MASK_OPMASK            BIT_ULL(5)
69 #define XFEATURE_MASK_ZMM_Hi256         BIT_ULL(6)
70 #define XFEATURE_MASK_Hi16_ZMM          BIT_ULL(7)
71 #define XFEATURE_MASK_XTILE_CFG         BIT_ULL(17)
72 #define XFEATURE_MASK_XTILE_DATA        BIT_ULL(18)
73
74 #define XFEATURE_MASK_AVX512            (XFEATURE_MASK_OPMASK | \
75                                          XFEATURE_MASK_ZMM_Hi256 | \
76                                          XFEATURE_MASK_Hi16_ZMM)
77 #define XFEATURE_MASK_XTILE             (XFEATURE_MASK_XTILE_DATA | \
78                                          XFEATURE_MASK_XTILE_CFG)
79
80 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
81 enum cpuid_output_regs {
82         KVM_CPUID_EAX,
83         KVM_CPUID_EBX,
84         KVM_CPUID_ECX,
85         KVM_CPUID_EDX
86 };
87
88 /*
89  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
90  * passed by value with no overhead.
91  */
92 struct kvm_x86_cpu_feature {
93         u32     function;
94         u16     index;
95         u8      reg;
96         u8      bit;
97 };
98 #define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)                                \
99 ({                                                                              \
100         struct kvm_x86_cpu_feature feature = {                                  \
101                 .function = fn,                                                 \
102                 .index = idx,                                                   \
103                 .reg = KVM_CPUID_##gpr,                                         \
104                 .bit = __bit,                                                   \
105         };                                                                      \
106                                                                                 \
107         kvm_static_assert((fn & 0xc0000000) == 0 ||                             \
108                           (fn & 0xc0000000) == 0x40000000 ||                    \
109                           (fn & 0xc0000000) == 0x80000000 ||                    \
110                           (fn & 0xc0000000) == 0xc0000000);                     \
111         kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));    \
112         feature;                                                                \
113 })
114
115 /*
116  * Basic Leafs, a.k.a. Intel defined
117  */
118 #define X86_FEATURE_MWAIT               KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
119 #define X86_FEATURE_VMX                 KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
120 #define X86_FEATURE_SMX                 KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
121 #define X86_FEATURE_PDCM                KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
122 #define X86_FEATURE_PCID                KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
123 #define X86_FEATURE_X2APIC              KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
124 #define X86_FEATURE_MOVBE               KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
125 #define X86_FEATURE_TSC_DEADLINE_TIMER  KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
126 #define X86_FEATURE_XSAVE               KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
127 #define X86_FEATURE_OSXSAVE             KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
128 #define X86_FEATURE_RDRAND              KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
129 #define X86_FEATURE_HYPERVISOR          KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
130 #define X86_FEATURE_PAE                 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
131 #define X86_FEATURE_MCE                 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
132 #define X86_FEATURE_APIC                KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
133 #define X86_FEATURE_CLFLUSH             KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
134 #define X86_FEATURE_XMM                 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
135 #define X86_FEATURE_XMM2                KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
136 #define X86_FEATURE_FSGSBASE            KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
137 #define X86_FEATURE_TSC_ADJUST          KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
138 #define X86_FEATURE_SGX                 KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
139 #define X86_FEATURE_HLE                 KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
140 #define X86_FEATURE_SMEP                KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
141 #define X86_FEATURE_INVPCID             KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
142 #define X86_FEATURE_RTM                 KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
143 #define X86_FEATURE_MPX                 KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
144 #define X86_FEATURE_SMAP                KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
145 #define X86_FEATURE_PCOMMIT             KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
146 #define X86_FEATURE_CLFLUSHOPT          KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
147 #define X86_FEATURE_CLWB                KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
148 #define X86_FEATURE_UMIP                KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
149 #define X86_FEATURE_PKU                 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
150 #define X86_FEATURE_LA57                KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
151 #define X86_FEATURE_RDPID               KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
152 #define X86_FEATURE_SGX_LC              KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
153 #define X86_FEATURE_SHSTK               KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
154 #define X86_FEATURE_IBT                 KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
155 #define X86_FEATURE_AMX_TILE            KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
156 #define X86_FEATURE_SPEC_CTRL           KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
157 #define X86_FEATURE_ARCH_CAPABILITIES   KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
158 #define X86_FEATURE_PKS                 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
159 #define X86_FEATURE_XTILECFG            KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
160 #define X86_FEATURE_XTILEDATA           KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
161 #define X86_FEATURE_XSAVES              KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
162 #define X86_FEATURE_XFD                 KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
163 #define X86_FEATURE_XTILEDATA_XFD       KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
164
165 /*
166  * Extended Leafs, a.k.a. AMD defined
167  */
168 #define X86_FEATURE_SVM                 KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
169 #define X86_FEATURE_NX                  KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
170 #define X86_FEATURE_GBPAGES             KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
171 #define X86_FEATURE_RDTSCP              KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
172 #define X86_FEATURE_LM                  KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
173 #define X86_FEATURE_INVTSC              KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
174 #define X86_FEATURE_RDPRU               KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
175 #define X86_FEATURE_AMD_IBPB            KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
176 #define X86_FEATURE_NPT                 KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
177 #define X86_FEATURE_LBRV                KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
178 #define X86_FEATURE_NRIPS               KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
179 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
180 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
181 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
182 #define X86_FEATURE_VGIF                KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
183 #define X86_FEATURE_SEV                 KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
184 #define X86_FEATURE_SEV_ES              KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
185
186 /*
187  * KVM defined paravirt features.
188  */
189 #define X86_FEATURE_KVM_CLOCKSOURCE     KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
190 #define X86_FEATURE_KVM_NOP_IO_DELAY    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
191 #define X86_FEATURE_KVM_MMU_OP          KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
192 #define X86_FEATURE_KVM_CLOCKSOURCE2    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
193 #define X86_FEATURE_KVM_ASYNC_PF        KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
194 #define X86_FEATURE_KVM_STEAL_TIME      KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
195 #define X86_FEATURE_KVM_PV_EOI          KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
196 #define X86_FEATURE_KVM_PV_UNHALT       KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
197 /* Bit 8 apparently isn't used?!?! */
198 #define X86_FEATURE_KVM_PV_TLB_FLUSH    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
199 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
200 #define X86_FEATURE_KVM_PV_SEND_IPI     KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
201 #define X86_FEATURE_KVM_POLL_CONTROL    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
202 #define X86_FEATURE_KVM_PV_SCHED_YIELD  KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
203 #define X86_FEATURE_KVM_ASYNC_PF_INT    KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
204 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
205 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE        KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
206 #define X86_FEATURE_KVM_MIGRATION_CONTROL       KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
207
208 /*
209  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
210  * value/property as opposed to a single-bit feature.  Again, pack the info
211  * into a 64-bit value to pass by value with no overhead.
212  */
213 struct kvm_x86_cpu_property {
214         u32     function;
215         u8      index;
216         u8      reg;
217         u8      lo_bit;
218         u8      hi_bit;
219 };
220 #define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)                   \
221 ({                                                                              \
222         struct kvm_x86_cpu_property property = {                                \
223                 .function = fn,                                                 \
224                 .index = idx,                                                   \
225                 .reg = KVM_CPUID_##gpr,                                         \
226                 .lo_bit = low_bit,                                              \
227                 .hi_bit = high_bit,                                             \
228         };                                                                      \
229                                                                                 \
230         kvm_static_assert(low_bit < high_bit);                                  \
231         kvm_static_assert((fn & 0xc0000000) == 0 ||                             \
232                           (fn & 0xc0000000) == 0x40000000 ||                    \
233                           (fn & 0xc0000000) == 0x80000000 ||                    \
234                           (fn & 0xc0000000) == 0xc0000000);                     \
235         kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));   \
236         property;                                                               \
237 })
238
239 #define X86_PROPERTY_MAX_BASIC_LEAF             KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
240 #define X86_PROPERTY_PMU_VERSION                KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
241 #define X86_PROPERTY_PMU_NR_GP_COUNTERS         KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
242 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH  KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
243
244 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0       KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
245 #define X86_PROPERTY_XSTATE_MAX_SIZE            KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
246 #define X86_PROPERTY_XSTATE_TILE_SIZE           KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
247 #define X86_PROPERTY_XSTATE_TILE_OFFSET         KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
248 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES     KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
249 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES       KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
250 #define X86_PROPERTY_AMX_BYTES_PER_TILE         KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
251 #define X86_PROPERTY_AMX_BYTES_PER_ROW          KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
252 #define X86_PROPERTY_AMX_NR_TILE_REGS           KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
253 #define X86_PROPERTY_AMX_MAX_ROWS               KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
254
255 #define X86_PROPERTY_MAX_KVM_LEAF               KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
256
257 #define X86_PROPERTY_MAX_EXT_LEAF               KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
258 #define X86_PROPERTY_MAX_PHY_ADDR               KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
259 #define X86_PROPERTY_MAX_VIRT_ADDR              KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
260 #define X86_PROPERTY_PHYS_ADDR_REDUCTION        KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
261
262 #define X86_PROPERTY_MAX_CENTAUR_LEAF           KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
263
264 /*
265  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
266  * that indicates the feature is _not_ supported, and a property that states
267  * the length of the bit mask of unsupported features.  A feature is supported
268  * if the size of the bit mask is larger than the "unavailable" bit, and said
269  * bit is not set.
270  *
271  * Wrap the "unavailable" feature to simplify checking whether or not a given
272  * architectural event is supported.
273  */
274 struct kvm_x86_pmu_feature {
275         struct kvm_x86_cpu_feature anti_feature;
276 };
277 #define KVM_X86_PMU_FEATURE(name, __bit)                                        \
278 ({                                                                              \
279         struct kvm_x86_pmu_feature feature = {                                  \
280                 .anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit),        \
281         };                                                                      \
282                                                                                 \
283         feature;                                                                \
284 })
285
286 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED    KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5)
287
288 static inline unsigned int x86_family(unsigned int eax)
289 {
290         unsigned int x86;
291
292         x86 = (eax >> 8) & 0xf;
293
294         if (x86 == 0xf)
295                 x86 += (eax >> 20) & 0xff;
296
297         return x86;
298 }
299
300 static inline unsigned int x86_model(unsigned int eax)
301 {
302         return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
303 }
304
305 /* Page table bitfield declarations */
306 #define PTE_PRESENT_MASK        BIT_ULL(0)
307 #define PTE_WRITABLE_MASK       BIT_ULL(1)
308 #define PTE_USER_MASK           BIT_ULL(2)
309 #define PTE_ACCESSED_MASK       BIT_ULL(5)
310 #define PTE_DIRTY_MASK          BIT_ULL(6)
311 #define PTE_LARGE_MASK          BIT_ULL(7)
312 #define PTE_GLOBAL_MASK         BIT_ULL(8)
313 #define PTE_NX_MASK             BIT_ULL(63)
314
315 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
316
317 #define PAGE_SHIFT              12
318 #define PAGE_SIZE               (1ULL << PAGE_SHIFT)
319 #define PAGE_MASK               (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
320
321 #define HUGEPAGE_SHIFT(x)       (PAGE_SHIFT + (((x) - 1) * 9))
322 #define HUGEPAGE_SIZE(x)        (1UL << HUGEPAGE_SHIFT(x))
323 #define HUGEPAGE_MASK(x)        (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
324
325 #define PTE_GET_PA(pte)         ((pte) & PHYSICAL_PAGE_MASK)
326 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
327
328 /* General Registers in 64-Bit Mode */
329 struct gpr64_regs {
330         u64 rax;
331         u64 rcx;
332         u64 rdx;
333         u64 rbx;
334         u64 rsp;
335         u64 rbp;
336         u64 rsi;
337         u64 rdi;
338         u64 r8;
339         u64 r9;
340         u64 r10;
341         u64 r11;
342         u64 r12;
343         u64 r13;
344         u64 r14;
345         u64 r15;
346 };
347
348 struct desc64 {
349         uint16_t limit0;
350         uint16_t base0;
351         unsigned base1:8, type:4, s:1, dpl:2, p:1;
352         unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
353         uint32_t base3;
354         uint32_t zero1;
355 } __attribute__((packed));
356
357 struct desc_ptr {
358         uint16_t size;
359         uint64_t address;
360 } __attribute__((packed));
361
362 struct kvm_x86_state {
363         struct kvm_xsave *xsave;
364         struct kvm_vcpu_events events;
365         struct kvm_mp_state mp_state;
366         struct kvm_regs regs;
367         struct kvm_xcrs xcrs;
368         struct kvm_sregs sregs;
369         struct kvm_debugregs debugregs;
370         union {
371                 struct kvm_nested_state nested;
372                 char nested_[16384];
373         };
374         struct kvm_msrs msrs;
375 };
376
377 static inline uint64_t get_desc64_base(const struct desc64 *desc)
378 {
379         return ((uint64_t)desc->base3 << 32) |
380                 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
381 }
382
383 static inline uint64_t rdtsc(void)
384 {
385         uint32_t eax, edx;
386         uint64_t tsc_val;
387         /*
388          * The lfence is to wait (on Intel CPUs) until all previous
389          * instructions have been executed. If software requires RDTSC to be
390          * executed prior to execution of any subsequent instruction, it can
391          * execute LFENCE immediately after RDTSC
392          */
393         __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
394         tsc_val = ((uint64_t)edx) << 32 | eax;
395         return tsc_val;
396 }
397
398 static inline uint64_t rdtscp(uint32_t *aux)
399 {
400         uint32_t eax, edx;
401
402         __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
403         return ((uint64_t)edx) << 32 | eax;
404 }
405
406 static inline uint64_t rdmsr(uint32_t msr)
407 {
408         uint32_t a, d;
409
410         __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
411
412         return a | ((uint64_t) d << 32);
413 }
414
415 static inline void wrmsr(uint32_t msr, uint64_t value)
416 {
417         uint32_t a = value;
418         uint32_t d = value >> 32;
419
420         __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
421 }
422
423
424 static inline uint16_t inw(uint16_t port)
425 {
426         uint16_t tmp;
427
428         __asm__ __volatile__("in %%dx, %%ax"
429                 : /* output */ "=a" (tmp)
430                 : /* input */ "d" (port));
431
432         return tmp;
433 }
434
435 static inline uint16_t get_es(void)
436 {
437         uint16_t es;
438
439         __asm__ __volatile__("mov %%es, %[es]"
440                              : /* output */ [es]"=rm"(es));
441         return es;
442 }
443
444 static inline uint16_t get_cs(void)
445 {
446         uint16_t cs;
447
448         __asm__ __volatile__("mov %%cs, %[cs]"
449                              : /* output */ [cs]"=rm"(cs));
450         return cs;
451 }
452
453 static inline uint16_t get_ss(void)
454 {
455         uint16_t ss;
456
457         __asm__ __volatile__("mov %%ss, %[ss]"
458                              : /* output */ [ss]"=rm"(ss));
459         return ss;
460 }
461
462 static inline uint16_t get_ds(void)
463 {
464         uint16_t ds;
465
466         __asm__ __volatile__("mov %%ds, %[ds]"
467                              : /* output */ [ds]"=rm"(ds));
468         return ds;
469 }
470
471 static inline uint16_t get_fs(void)
472 {
473         uint16_t fs;
474
475         __asm__ __volatile__("mov %%fs, %[fs]"
476                              : /* output */ [fs]"=rm"(fs));
477         return fs;
478 }
479
480 static inline uint16_t get_gs(void)
481 {
482         uint16_t gs;
483
484         __asm__ __volatile__("mov %%gs, %[gs]"
485                              : /* output */ [gs]"=rm"(gs));
486         return gs;
487 }
488
489 static inline uint16_t get_tr(void)
490 {
491         uint16_t tr;
492
493         __asm__ __volatile__("str %[tr]"
494                              : /* output */ [tr]"=rm"(tr));
495         return tr;
496 }
497
498 static inline uint64_t get_cr0(void)
499 {
500         uint64_t cr0;
501
502         __asm__ __volatile__("mov %%cr0, %[cr0]"
503                              : /* output */ [cr0]"=r"(cr0));
504         return cr0;
505 }
506
507 static inline uint64_t get_cr3(void)
508 {
509         uint64_t cr3;
510
511         __asm__ __volatile__("mov %%cr3, %[cr3]"
512                              : /* output */ [cr3]"=r"(cr3));
513         return cr3;
514 }
515
516 static inline uint64_t get_cr4(void)
517 {
518         uint64_t cr4;
519
520         __asm__ __volatile__("mov %%cr4, %[cr4]"
521                              : /* output */ [cr4]"=r"(cr4));
522         return cr4;
523 }
524
525 static inline void set_cr4(uint64_t val)
526 {
527         __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
528 }
529
530 static inline u64 xgetbv(u32 index)
531 {
532         u32 eax, edx;
533
534         __asm__ __volatile__("xgetbv;"
535                      : "=a" (eax), "=d" (edx)
536                      : "c" (index));
537         return eax | ((u64)edx << 32);
538 }
539
540 static inline void xsetbv(u32 index, u64 value)
541 {
542         u32 eax = value;
543         u32 edx = value >> 32;
544
545         __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
546 }
547
548 static inline struct desc_ptr get_gdt(void)
549 {
550         struct desc_ptr gdt;
551         __asm__ __volatile__("sgdt %[gdt]"
552                              : /* output */ [gdt]"=m"(gdt));
553         return gdt;
554 }
555
556 static inline struct desc_ptr get_idt(void)
557 {
558         struct desc_ptr idt;
559         __asm__ __volatile__("sidt %[idt]"
560                              : /* output */ [idt]"=m"(idt));
561         return idt;
562 }
563
564 static inline void outl(uint16_t port, uint32_t value)
565 {
566         __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
567 }
568
569 static inline void __cpuid(uint32_t function, uint32_t index,
570                            uint32_t *eax, uint32_t *ebx,
571                            uint32_t *ecx, uint32_t *edx)
572 {
573         *eax = function;
574         *ecx = index;
575
576         asm volatile("cpuid"
577             : "=a" (*eax),
578               "=b" (*ebx),
579               "=c" (*ecx),
580               "=d" (*edx)
581             : "0" (*eax), "2" (*ecx)
582             : "memory");
583 }
584
585 static inline void cpuid(uint32_t function,
586                          uint32_t *eax, uint32_t *ebx,
587                          uint32_t *ecx, uint32_t *edx)
588 {
589         return __cpuid(function, 0, eax, ebx, ecx, edx);
590 }
591
592 static inline uint32_t this_cpu_fms(void)
593 {
594         uint32_t eax, ebx, ecx, edx;
595
596         cpuid(1, &eax, &ebx, &ecx, &edx);
597         return eax;
598 }
599
600 static inline uint32_t this_cpu_family(void)
601 {
602         return x86_family(this_cpu_fms());
603 }
604
605 static inline uint32_t this_cpu_model(void)
606 {
607         return x86_model(this_cpu_fms());
608 }
609
610 static inline bool this_cpu_vendor_string_is(const char *vendor)
611 {
612         const uint32_t *chunk = (const uint32_t *)vendor;
613         uint32_t eax, ebx, ecx, edx;
614
615         cpuid(0, &eax, &ebx, &ecx, &edx);
616         return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
617 }
618
619 static inline bool this_cpu_is_intel(void)
620 {
621         return this_cpu_vendor_string_is("GenuineIntel");
622 }
623
624 /*
625  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
626  */
627 static inline bool this_cpu_is_amd(void)
628 {
629         return this_cpu_vendor_string_is("AuthenticAMD");
630 }
631
632 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
633                                       uint8_t reg, uint8_t lo, uint8_t hi)
634 {
635         uint32_t gprs[4];
636
637         __cpuid(function, index,
638                 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
639                 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
640
641         return (gprs[reg] & GENMASK(hi, lo)) >> lo;
642 }
643
644 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
645 {
646         return __this_cpu_has(feature.function, feature.index,
647                               feature.reg, feature.bit, feature.bit);
648 }
649
650 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
651 {
652         return __this_cpu_has(property.function, property.index,
653                               property.reg, property.lo_bit, property.hi_bit);
654 }
655
656 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
657 {
658         uint32_t max_leaf;
659
660         switch (property.function & 0xc0000000) {
661         case 0:
662                 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
663                 break;
664         case 0x40000000:
665                 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
666                 break;
667         case 0x80000000:
668                 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
669                 break;
670         case 0xc0000000:
671                 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
672         }
673         return max_leaf >= property.function;
674 }
675
676 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
677 {
678         uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
679
680         return nr_bits > feature.anti_feature.bit &&
681                !this_cpu_has(feature.anti_feature);
682 }
683
684 typedef u32             __attribute__((vector_size(16))) sse128_t;
685 #define __sse128_u      union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
686 #define sse128_lo(x)    ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
687 #define sse128_hi(x)    ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
688
689 static inline void read_sse_reg(int reg, sse128_t *data)
690 {
691         switch (reg) {
692         case 0:
693                 asm("movdqa %%xmm0, %0" : "=m"(*data));
694                 break;
695         case 1:
696                 asm("movdqa %%xmm1, %0" : "=m"(*data));
697                 break;
698         case 2:
699                 asm("movdqa %%xmm2, %0" : "=m"(*data));
700                 break;
701         case 3:
702                 asm("movdqa %%xmm3, %0" : "=m"(*data));
703                 break;
704         case 4:
705                 asm("movdqa %%xmm4, %0" : "=m"(*data));
706                 break;
707         case 5:
708                 asm("movdqa %%xmm5, %0" : "=m"(*data));
709                 break;
710         case 6:
711                 asm("movdqa %%xmm6, %0" : "=m"(*data));
712                 break;
713         case 7:
714                 asm("movdqa %%xmm7, %0" : "=m"(*data));
715                 break;
716         default:
717                 BUG();
718         }
719 }
720
721 static inline void write_sse_reg(int reg, const sse128_t *data)
722 {
723         switch (reg) {
724         case 0:
725                 asm("movdqa %0, %%xmm0" : : "m"(*data));
726                 break;
727         case 1:
728                 asm("movdqa %0, %%xmm1" : : "m"(*data));
729                 break;
730         case 2:
731                 asm("movdqa %0, %%xmm2" : : "m"(*data));
732                 break;
733         case 3:
734                 asm("movdqa %0, %%xmm3" : : "m"(*data));
735                 break;
736         case 4:
737                 asm("movdqa %0, %%xmm4" : : "m"(*data));
738                 break;
739         case 5:
740                 asm("movdqa %0, %%xmm5" : : "m"(*data));
741                 break;
742         case 6:
743                 asm("movdqa %0, %%xmm6" : : "m"(*data));
744                 break;
745         case 7:
746                 asm("movdqa %0, %%xmm7" : : "m"(*data));
747                 break;
748         default:
749                 BUG();
750         }
751 }
752
753 static inline void cpu_relax(void)
754 {
755         asm volatile("rep; nop" ::: "memory");
756 }
757
758 #define ud2()                   \
759         __asm__ __volatile__(   \
760                 "ud2\n" \
761                 )
762
763 #define hlt()                   \
764         __asm__ __volatile__(   \
765                 "hlt\n" \
766                 )
767
768 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
769 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
770 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
771
772 const struct kvm_msr_list *kvm_get_msr_index_list(void);
773 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
774 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
775 uint64_t kvm_get_feature_msr(uint64_t msr_index);
776
777 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
778                                  struct kvm_msrs *msrs)
779 {
780         int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
781
782         TEST_ASSERT(r == msrs->nmsrs,
783                     "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
784                     r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
785 }
786 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
787 {
788         int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
789
790         TEST_ASSERT(r == msrs->nmsrs,
791                     "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
792                     r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
793 }
794 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
795                                       struct kvm_debugregs *debugregs)
796 {
797         vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
798 }
799 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
800                                       struct kvm_debugregs *debugregs)
801 {
802         vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
803 }
804 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
805                                   struct kvm_xsave *xsave)
806 {
807         vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
808 }
809 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
810                                    struct kvm_xsave *xsave)
811 {
812         vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
813 }
814 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
815                                   struct kvm_xsave *xsave)
816 {
817         vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
818 }
819 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
820                                  struct kvm_xcrs *xcrs)
821 {
822         vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
823 }
824 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
825 {
826         vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
827 }
828
829 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
830                                                uint32_t function, uint32_t index);
831 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
832 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
833 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
834
835 static inline uint32_t kvm_cpu_fms(void)
836 {
837         return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
838 }
839
840 static inline uint32_t kvm_cpu_family(void)
841 {
842         return x86_family(kvm_cpu_fms());
843 }
844
845 static inline uint32_t kvm_cpu_model(void)
846 {
847         return x86_model(kvm_cpu_fms());
848 }
849
850 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
851                    struct kvm_x86_cpu_feature feature);
852
853 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
854 {
855         return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
856 }
857
858 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
859                             struct kvm_x86_cpu_property property);
860
861 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
862 {
863         return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
864 }
865
866 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
867 {
868         uint32_t max_leaf;
869
870         switch (property.function & 0xc0000000) {
871         case 0:
872                 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
873                 break;
874         case 0x40000000:
875                 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
876                 break;
877         case 0x80000000:
878                 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
879                 break;
880         case 0xc0000000:
881                 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
882         }
883         return max_leaf >= property.function;
884 }
885
886 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
887 {
888         uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
889
890         return nr_bits > feature.anti_feature.bit &&
891                !kvm_cpu_has(feature.anti_feature);
892 }
893
894 static inline size_t kvm_cpuid2_size(int nr_entries)
895 {
896         return sizeof(struct kvm_cpuid2) +
897                sizeof(struct kvm_cpuid_entry2) * nr_entries;
898 }
899
900 /*
901  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
902  * entries sized to hold @nr_entries.  The caller is responsible for freeing
903  * the struct.
904  */
905 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
906 {
907         struct kvm_cpuid2 *cpuid;
908
909         cpuid = malloc(kvm_cpuid2_size(nr_entries));
910         TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
911
912         cpuid->nent = nr_entries;
913
914         return cpuid;
915 }
916
917 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
918 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
919
920 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
921                                                               uint32_t function,
922                                                               uint32_t index)
923 {
924         return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
925                                                           function, index);
926 }
927
928 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
929                                                             uint32_t function)
930 {
931         return __vcpu_get_cpuid_entry(vcpu, function, 0);
932 }
933
934 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
935 {
936         int r;
937
938         TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
939         r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
940         if (r)
941                 return r;
942
943         /* On success, refresh the cache to pick up adjustments made by KVM. */
944         vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
945         return 0;
946 }
947
948 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
949 {
950         TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
951         vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
952
953         /* Refresh the cache to pick up adjustments made by KVM. */
954         vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
955 }
956
957 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
958
959 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
960 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
961                                      struct kvm_x86_cpu_feature feature,
962                                      bool set);
963
964 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
965                                           struct kvm_x86_cpu_feature feature)
966 {
967         vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
968
969 }
970
971 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
972                                             struct kvm_x86_cpu_feature feature)
973 {
974         vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
975 }
976
977 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
978 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
979
980 static inline void vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index,
981                                 uint64_t msr_value)
982 {
983         int r = _vcpu_set_msr(vcpu, msr_index, msr_value);
984
985         TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_SET_MSRS, r));
986 }
987
988
989 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
990 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
991
992 struct ex_regs {
993         uint64_t rax, rcx, rdx, rbx;
994         uint64_t rbp, rsi, rdi;
995         uint64_t r8, r9, r10, r11;
996         uint64_t r12, r13, r14, r15;
997         uint64_t vector;
998         uint64_t error_code;
999         uint64_t rip;
1000         uint64_t cs;
1001         uint64_t rflags;
1002 };
1003
1004 struct idt_entry {
1005         uint16_t offset0;
1006         uint16_t selector;
1007         uint16_t ist : 3;
1008         uint16_t : 5;
1009         uint16_t type : 4;
1010         uint16_t : 1;
1011         uint16_t dpl : 2;
1012         uint16_t p : 1;
1013         uint16_t offset1;
1014         uint32_t offset2; uint32_t reserved;
1015 };
1016
1017 void vm_init_descriptor_tables(struct kvm_vm *vm);
1018 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
1019 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1020                         void (*handler)(struct ex_regs *));
1021
1022 /* If a toddler were to say "abracadabra". */
1023 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1024
1025 /*
1026  * KVM selftest exception fixup uses registers to coordinate with the exception
1027  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1028  * per-CPU data.  Using only registers avoids having to map memory into the
1029  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1030  * for recursive faults when accessing memory in the handler.  The downside to
1031  * using registers is that it restricts what registers can be used by the actual
1032  * instruction.  But, selftests are 64-bit only, making register* pressure a
1033  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1034  * by the callee, and except for r11 are not implicit parameters to any
1035  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1036  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1037  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1038  *
1039  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1040  * is guaranteed to be non-zero on fault.
1041  *
1042  * REGISTER INPUTS:
1043  * r9  = MAGIC
1044  * r10 = RIP
1045  * r11 = new RIP on fault
1046  *
1047  * REGISTER OUTPUTS:
1048  * r9  = exception vector (non-zero)
1049  * r10 = error code
1050  */
1051 #define KVM_ASM_SAFE(insn)                                      \
1052         "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"   \
1053         "lea 1f(%%rip), %%r10\n\t"                              \
1054         "lea 2f(%%rip), %%r11\n\t"                              \
1055         "1: " insn "\n\t"                                       \
1056         "xor %%r9, %%r9\n\t"                                    \
1057         "2:\n\t"                                                \
1058         "mov  %%r9b, %[vector]\n\t"                             \
1059         "mov  %%r10, %[error_code]\n\t"
1060
1061 #define KVM_ASM_SAFE_OUTPUTS(v, ec)     [vector] "=qm"(v), [error_code] "=rm"(ec)
1062 #define KVM_ASM_SAFE_CLOBBERS   "r9", "r10", "r11"
1063
1064 #define kvm_asm_safe(insn, inputs...)                                   \
1065 ({                                                                      \
1066         uint64_t ign_error_code;                                        \
1067         uint8_t vector;                                                 \
1068                                                                         \
1069         asm volatile(KVM_ASM_SAFE(insn)                                 \
1070                      : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)     \
1071                      : inputs                                           \
1072                      : KVM_ASM_SAFE_CLOBBERS);                          \
1073         vector;                                                         \
1074 })
1075
1076 #define kvm_asm_safe_ec(insn, error_code, inputs...)                    \
1077 ({                                                                      \
1078         uint8_t vector;                                                 \
1079                                                                         \
1080         asm volatile(KVM_ASM_SAFE(insn)                                 \
1081                      : KVM_ASM_SAFE_OUTPUTS(vector, error_code)         \
1082                      : inputs                                           \
1083                      : KVM_ASM_SAFE_CLOBBERS);                          \
1084         vector;                                                         \
1085 })
1086
1087 static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
1088 {
1089         uint64_t error_code;
1090         uint8_t vector;
1091         uint32_t a, d;
1092
1093         asm volatile(KVM_ASM_SAFE("rdmsr")
1094                      : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code)
1095                      : "c"(msr)
1096                      : KVM_ASM_SAFE_CLOBBERS);
1097
1098         *val = (uint64_t)a | ((uint64_t)d << 32);
1099         return vector;
1100 }
1101
1102 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1103 {
1104         return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1105 }
1106
1107 bool kvm_is_tdp_enabled(void);
1108
1109 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1110                                     int *level);
1111 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1112
1113 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1114                        uint64_t a3);
1115 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1116 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1117
1118 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1119
1120 #define vm_xsave_require_permission(xfeature)   \
1121         __vm_xsave_require_permission(xfeature, #xfeature)
1122
1123 enum pg_level {
1124         PG_LEVEL_NONE,
1125         PG_LEVEL_4K,
1126         PG_LEVEL_2M,
1127         PG_LEVEL_1G,
1128         PG_LEVEL_512G,
1129         PG_LEVEL_NUM
1130 };
1131
1132 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1133 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1134
1135 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1136 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1137 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1138
1139 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1140 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1141                     uint64_t nr_bytes, int level);
1142
1143 /*
1144  * Basic CPU control in CR0
1145  */
1146 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1147 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1148 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1149 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1150 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1151 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1152 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1153 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1154 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1155 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1156 #define X86_CR0_PG          (1UL<<31) /* Paging */
1157
1158 #define PFERR_PRESENT_BIT 0
1159 #define PFERR_WRITE_BIT 1
1160 #define PFERR_USER_BIT 2
1161 #define PFERR_RSVD_BIT 3
1162 #define PFERR_FETCH_BIT 4
1163 #define PFERR_PK_BIT 5
1164 #define PFERR_SGX_BIT 15
1165 #define PFERR_GUEST_FINAL_BIT 32
1166 #define PFERR_GUEST_PAGE_BIT 33
1167 #define PFERR_IMPLICIT_ACCESS_BIT 48
1168
1169 #define PFERR_PRESENT_MASK      BIT(PFERR_PRESENT_BIT)
1170 #define PFERR_WRITE_MASK        BIT(PFERR_WRITE_BIT)
1171 #define PFERR_USER_MASK         BIT(PFERR_USER_BIT)
1172 #define PFERR_RSVD_MASK         BIT(PFERR_RSVD_BIT)
1173 #define PFERR_FETCH_MASK        BIT(PFERR_FETCH_BIT)
1174 #define PFERR_PK_MASK           BIT(PFERR_PK_BIT)
1175 #define PFERR_SGX_MASK          BIT(PFERR_SGX_BIT)
1176 #define PFERR_GUEST_FINAL_MASK  BIT_ULL(PFERR_GUEST_FINAL_BIT)
1177 #define PFERR_GUEST_PAGE_MASK   BIT_ULL(PFERR_GUEST_PAGE_BIT)
1178 #define PFERR_IMPLICIT_ACCESS   BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1179
1180 #endif /* SELFTEST_KVM_PROCESSOR_H */