powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / tools / testing / selftests / bpf / test_verifier.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24
25 #include <linux/unistd.h>
26 #include <linux/filter.h>
27 #include <linux/bpf_perf_event.h>
28 #include <linux/bpf.h>
29 #include <linux/if_ether.h>
30 #include <linux/btf.h>
31
32 #include <bpf/btf.h>
33 #include <bpf/bpf.h>
34 #include <bpf/libbpf.h>
35
36 #include "autoconf_helper.h"
37 #include "unpriv_helpers.h"
38 #include "cap_helpers.h"
39 #include "bpf_rand.h"
40 #include "bpf_util.h"
41 #include "test_btf.h"
42 #include "../../../include/linux/filter.h"
43 #include "testing_helpers.h"
44
45 #ifndef ENOTSUPP
46 #define ENOTSUPP 524
47 #endif
48
49 #define MAX_INSNS       BPF_MAXINSNS
50 #define MAX_EXPECTED_INSNS      32
51 #define MAX_UNEXPECTED_INSNS    32
52 #define MAX_TEST_INSNS  1000000
53 #define MAX_FIXUPS      8
54 #define MAX_NR_MAPS     23
55 #define MAX_TEST_RUNS   8
56 #define POINTER_VALUE   0xcafe4all
57 #define TEST_DATA_LEN   64
58 #define MAX_FUNC_INFOS  8
59 #define MAX_BTF_STRINGS 256
60 #define MAX_BTF_TYPES   256
61
62 #define INSN_OFF_MASK   ((__s16)0xFFFF)
63 #define INSN_IMM_MASK   ((__s32)0xFFFFFFFF)
64 #define SKIP_INSNS()    BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
65
66 #define DEFAULT_LIBBPF_LOG_LEVEL        4
67
68 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS      (1 << 0)
69 #define F_LOAD_WITH_STRICT_ALIGNMENT            (1 << 1)
70
71 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
72 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |     \
73                     1ULL << CAP_PERFMON |       \
74                     1ULL << CAP_BPF)
75 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
76 static bool unpriv_disabled = false;
77 static int skips;
78 static bool verbose = false;
79 static int verif_log_level = 0;
80
81 struct kfunc_btf_id_pair {
82         const char *kfunc;
83         int insn_idx;
84 };
85
86 struct bpf_test {
87         const char *descr;
88         struct bpf_insn insns[MAX_INSNS];
89         struct bpf_insn *fill_insns;
90         /* If specified, test engine looks for this sequence of
91          * instructions in the BPF program after loading. Allows to
92          * test rewrites applied by verifier.  Use values
93          * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
94          * fields if content does not matter.  The test case fails if
95          * specified instructions are not found.
96          *
97          * The sequence could be split into sub-sequences by adding
98          * SKIP_INSNS instruction at the end of each sub-sequence. In
99          * such case sub-sequences are searched for one after another.
100          */
101         struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
102         /* If specified, test engine applies same pattern matching
103          * logic as for `expected_insns`. If the specified pattern is
104          * matched test case is marked as failed.
105          */
106         struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
107         int fixup_map_hash_8b[MAX_FIXUPS];
108         int fixup_map_hash_48b[MAX_FIXUPS];
109         int fixup_map_hash_16b[MAX_FIXUPS];
110         int fixup_map_array_48b[MAX_FIXUPS];
111         int fixup_map_sockmap[MAX_FIXUPS];
112         int fixup_map_sockhash[MAX_FIXUPS];
113         int fixup_map_xskmap[MAX_FIXUPS];
114         int fixup_map_stacktrace[MAX_FIXUPS];
115         int fixup_prog1[MAX_FIXUPS];
116         int fixup_prog2[MAX_FIXUPS];
117         int fixup_map_in_map[MAX_FIXUPS];
118         int fixup_cgroup_storage[MAX_FIXUPS];
119         int fixup_percpu_cgroup_storage[MAX_FIXUPS];
120         int fixup_map_spin_lock[MAX_FIXUPS];
121         int fixup_map_array_ro[MAX_FIXUPS];
122         int fixup_map_array_wo[MAX_FIXUPS];
123         int fixup_map_array_small[MAX_FIXUPS];
124         int fixup_sk_storage_map[MAX_FIXUPS];
125         int fixup_map_event_output[MAX_FIXUPS];
126         int fixup_map_reuseport_array[MAX_FIXUPS];
127         int fixup_map_ringbuf[MAX_FIXUPS];
128         int fixup_map_timer[MAX_FIXUPS];
129         int fixup_map_kptr[MAX_FIXUPS];
130         struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
131         /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
132          * Can be a tab-separated sequence of expected strings. An empty string
133          * means no log verification.
134          */
135         const char *errstr;
136         const char *errstr_unpriv;
137         uint32_t insn_processed;
138         int prog_len;
139         enum {
140                 UNDEF,
141                 ACCEPT,
142                 REJECT,
143                 VERBOSE_ACCEPT,
144         } result, result_unpriv;
145         enum bpf_prog_type prog_type;
146         uint8_t flags;
147         void (*fill_helper)(struct bpf_test *self);
148         int runs;
149 #define bpf_testdata_struct_t                                   \
150         struct {                                                \
151                 uint32_t retval, retval_unpriv;                 \
152                 union {                                         \
153                         __u8 data[TEST_DATA_LEN];               \
154                         __u64 data64[TEST_DATA_LEN / 8];        \
155                 };                                              \
156         }
157         union {
158                 bpf_testdata_struct_t;
159                 bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
160         };
161         enum bpf_attach_type expected_attach_type;
162         const char *kfunc;
163         struct bpf_func_info func_info[MAX_FUNC_INFOS];
164         int func_info_cnt;
165         char btf_strings[MAX_BTF_STRINGS];
166         /* A set of BTF types to load when specified,
167          * use macro definitions from test_btf.h,
168          * must end with BTF_END_RAW
169          */
170         __u32 btf_types[MAX_BTF_TYPES];
171 };
172
173 /* Note we want this to be 64 bit aligned so that the end of our array is
174  * actually the end of the structure.
175  */
176 #define MAX_ENTRIES 11
177
178 struct test_val {
179         unsigned int index;
180         int foo[MAX_ENTRIES];
181 };
182
183 struct other_val {
184         long long foo;
185         long long bar;
186 };
187
188 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
189 {
190         /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
191 #define PUSH_CNT 51
192         /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
193         unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
194         struct bpf_insn *insn = self->fill_insns;
195         int i = 0, j, k = 0;
196
197         insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
198 loop:
199         for (j = 0; j < PUSH_CNT; j++) {
200                 insn[i++] = BPF_LD_ABS(BPF_B, 0);
201                 /* jump to error label */
202                 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
203                 i++;
204                 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
205                 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
206                 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
207                 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
208                                          BPF_FUNC_skb_vlan_push);
209                 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
210                 i++;
211         }
212
213         for (j = 0; j < PUSH_CNT; j++) {
214                 insn[i++] = BPF_LD_ABS(BPF_B, 0);
215                 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
216                 i++;
217                 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
218                 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
219                                          BPF_FUNC_skb_vlan_pop);
220                 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
221                 i++;
222         }
223         if (++k < 5)
224                 goto loop;
225
226         for (; i < len - 3; i++)
227                 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
228         insn[len - 3] = BPF_JMP_A(1);
229         /* error label */
230         insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
231         insn[len - 1] = BPF_EXIT_INSN();
232         self->prog_len = len;
233 }
234
235 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
236 {
237         struct bpf_insn *insn = self->fill_insns;
238         /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
239          * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
240          * to extend the error value of the inlined ld_abs sequence which then
241          * contains 7 insns. so, set the dividend to 7 so the testcase could
242          * work on all arches.
243          */
244         unsigned int len = (1 << 15) / 7;
245         int i = 0;
246
247         insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
248         insn[i++] = BPF_LD_ABS(BPF_B, 0);
249         insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
250         i++;
251         while (i < len - 1)
252                 insn[i++] = BPF_LD_ABS(BPF_B, 1);
253         insn[i] = BPF_EXIT_INSN();
254         self->prog_len = i + 1;
255 }
256
257 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
258 {
259         struct bpf_insn *insn = self->fill_insns;
260         uint64_t res = 0;
261         int i = 0;
262
263         insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
264         while (i < self->retval) {
265                 uint64_t val = bpf_semi_rand_get();
266                 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
267
268                 res ^= val;
269                 insn[i++] = tmp[0];
270                 insn[i++] = tmp[1];
271                 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
272         }
273         insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
274         insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
275         insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
276         insn[i] = BPF_EXIT_INSN();
277         self->prog_len = i + 1;
278         res ^= (res >> 32);
279         self->retval = (uint32_t)res;
280 }
281
282 #define MAX_JMP_SEQ 8192
283
284 /* test the sequence of 8k jumps */
285 static void bpf_fill_scale1(struct bpf_test *self)
286 {
287         struct bpf_insn *insn = self->fill_insns;
288         int i = 0, k = 0;
289
290         insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
291         /* test to check that the long sequence of jumps is acceptable */
292         while (k++ < MAX_JMP_SEQ) {
293                 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
294                                          BPF_FUNC_get_prandom_u32);
295                 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
296                 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
297                 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
298                                         -8 * (k % 64 + 1));
299         }
300         /* is_state_visited() doesn't allocate state for pruning for every jump.
301          * Hence multiply jmps by 4 to accommodate that heuristic
302          */
303         while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
304                 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
305         insn[i] = BPF_EXIT_INSN();
306         self->prog_len = i + 1;
307         self->retval = 42;
308 }
309
310 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
311 static void bpf_fill_scale2(struct bpf_test *self)
312 {
313         struct bpf_insn *insn = self->fill_insns;
314         int i = 0, k = 0;
315
316 #define FUNC_NEST 7
317         for (k = 0; k < FUNC_NEST; k++) {
318                 insn[i++] = BPF_CALL_REL(1);
319                 insn[i++] = BPF_EXIT_INSN();
320         }
321         insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
322         /* test to check that the long sequence of jumps is acceptable */
323         k = 0;
324         while (k++ < MAX_JMP_SEQ) {
325                 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
326                                          BPF_FUNC_get_prandom_u32);
327                 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
328                 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
329                 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
330                                         -8 * (k % (64 - 4 * FUNC_NEST) + 1));
331         }
332         while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
333                 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
334         insn[i] = BPF_EXIT_INSN();
335         self->prog_len = i + 1;
336         self->retval = 42;
337 }
338
339 static void bpf_fill_scale(struct bpf_test *self)
340 {
341         switch (self->retval) {
342         case 1:
343                 return bpf_fill_scale1(self);
344         case 2:
345                 return bpf_fill_scale2(self);
346         default:
347                 self->prog_len = 0;
348                 break;
349         }
350 }
351
352 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
353 {
354         unsigned int len = 259, hlen = 128;
355         int i;
356
357         insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
358         for (i = 1; i <= hlen; i++) {
359                 insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
360                 insn[i + hlen] = BPF_JMP_A(hlen - i);
361         }
362         insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
363         insn[len - 1] = BPF_EXIT_INSN();
364
365         return len;
366 }
367
368 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
369 {
370         unsigned int len = 4100, jmp_off = 2048;
371         int i, j;
372
373         insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
374         for (i = 1; i <= jmp_off; i++) {
375                 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
376         }
377         insn[i++] = BPF_JMP_A(jmp_off);
378         for (; i <= jmp_off * 2 + 1; i+=16) {
379                 for (j = 0; j < 16; j++) {
380                         insn[i + j] = BPF_JMP_A(16 - j - 1);
381                 }
382         }
383
384         insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
385         insn[len - 1] = BPF_EXIT_INSN();
386
387         return len;
388 }
389
390 static void bpf_fill_torturous_jumps(struct bpf_test *self)
391 {
392         struct bpf_insn *insn = self->fill_insns;
393         int i = 0;
394
395         switch (self->retval) {
396         case 1:
397                 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
398                 return;
399         case 2:
400                 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
401                 return;
402         case 3:
403                 /* main */
404                 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
405                 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
406                 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
407                 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
408                 insn[i++] = BPF_EXIT_INSN();
409
410                 /* subprog 1 */
411                 i += bpf_fill_torturous_jumps_insn_1(insn + i);
412
413                 /* subprog 2 */
414                 i += bpf_fill_torturous_jumps_insn_2(insn + i);
415
416                 self->prog_len = i;
417                 return;
418         default:
419                 self->prog_len = 0;
420                 break;
421         }
422 }
423
424 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
425 {
426         struct bpf_insn *insn = self->fill_insns;
427         /* This test was added to catch a specific use after free
428          * error, which happened upon BPF program reallocation.
429          * Reallocation is handled by core.c:bpf_prog_realloc, which
430          * reuses old memory if page boundary is not crossed. The
431          * value of `len` is chosen to cross this boundary on bpf_loop
432          * patching.
433          */
434         const int len = getpagesize() - 25;
435         int callback_load_idx;
436         int callback_idx;
437         int i = 0;
438
439         insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
440         callback_load_idx = i;
441         insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
442                                  BPF_REG_2, BPF_PSEUDO_FUNC, 0,
443                                  777 /* filled below */);
444         insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
445         insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
446         insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
447         insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
448
449         while (i < len - 3)
450                 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
451         insn[i++] = BPF_EXIT_INSN();
452
453         callback_idx = i;
454         insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
455         insn[i++] = BPF_EXIT_INSN();
456
457         insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
458         self->func_info[1].insn_off = callback_idx;
459         self->prog_len = i;
460         assert(i == len);
461 }
462
463 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
464 #define BPF_SK_LOOKUP(func)                                             \
465         /* struct bpf_sock_tuple tuple = {} */                          \
466         BPF_MOV64_IMM(BPF_REG_2, 0),                                    \
467         BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),                  \
468         BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),                \
469         BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),                \
470         BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),                \
471         BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),                \
472         BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),                \
473         /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */                \
474         BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),                           \
475         BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),                         \
476         BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),        \
477         BPF_MOV64_IMM(BPF_REG_4, 0),                                    \
478         BPF_MOV64_IMM(BPF_REG_5, 0),                                    \
479         BPF_EMIT_CALL(BPF_FUNC_ ## func)
480
481 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
482  * value into 0 and does necessary preparation for direct packet access
483  * through r2. The allowed access range is 8 bytes.
484  */
485 #define BPF_DIRECT_PKT_R2                                               \
486         BPF_MOV64_IMM(BPF_REG_0, 0),                                    \
487         BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,                        \
488                     offsetof(struct __sk_buff, data)),                  \
489         BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,                        \
490                     offsetof(struct __sk_buff, data_end)),              \
491         BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),                            \
492         BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),                           \
493         BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),                  \
494         BPF_EXIT_INSN()
495
496 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
497  * positive u32, and zero-extend it into 64-bit.
498  */
499 #define BPF_RAND_UEXT_R7                                                \
500         BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,                       \
501                      BPF_FUNC_get_prandom_u32),                         \
502         BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),                            \
503         BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),                          \
504         BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
505
506 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
507  * negative u32, and sign-extend it into 64-bit.
508  */
509 #define BPF_RAND_SEXT_R7                                                \
510         BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,                       \
511                      BPF_FUNC_get_prandom_u32),                         \
512         BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),                            \
513         BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),                   \
514         BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),                          \
515         BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
516
517 static struct bpf_test tests[] = {
518 #define FILL_ARRAY
519 #include <verifier/tests.h>
520 #undef FILL_ARRAY
521 };
522
523 static int probe_filter_length(const struct bpf_insn *fp)
524 {
525         int len;
526
527         for (len = MAX_INSNS - 1; len > 0; --len)
528                 if (fp[len].code != 0 || fp[len].imm != 0)
529                         break;
530         return len + 1;
531 }
532
533 static bool skip_unsupported_map(enum bpf_map_type map_type)
534 {
535         if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
536                 printf("SKIP (unsupported map type %d)\n", map_type);
537                 skips++;
538                 return true;
539         }
540         return false;
541 }
542
543 static int __create_map(uint32_t type, uint32_t size_key,
544                         uint32_t size_value, uint32_t max_elem,
545                         uint32_t extra_flags)
546 {
547         LIBBPF_OPTS(bpf_map_create_opts, opts);
548         int fd;
549
550         opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
551         fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
552         if (fd < 0) {
553                 if (skip_unsupported_map(type))
554                         return -1;
555                 printf("Failed to create hash map '%s'!\n", strerror(errno));
556         }
557
558         return fd;
559 }
560
561 static int create_map(uint32_t type, uint32_t size_key,
562                       uint32_t size_value, uint32_t max_elem)
563 {
564         return __create_map(type, size_key, size_value, max_elem, 0);
565 }
566
567 static void update_map(int fd, int index)
568 {
569         struct test_val value = {
570                 .index = (6 + 1) * sizeof(int),
571                 .foo[6] = 0xabcdef12,
572         };
573
574         assert(!bpf_map_update_elem(fd, &index, &value, 0));
575 }
576
577 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
578 {
579         struct bpf_insn prog[] = {
580                 BPF_MOV64_IMM(BPF_REG_0, ret),
581                 BPF_EXIT_INSN(),
582         };
583
584         return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
585 }
586
587 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
588                                   int idx, int ret)
589 {
590         struct bpf_insn prog[] = {
591                 BPF_MOV64_IMM(BPF_REG_3, idx),
592                 BPF_LD_MAP_FD(BPF_REG_2, mfd),
593                 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
594                              BPF_FUNC_tail_call),
595                 BPF_MOV64_IMM(BPF_REG_0, ret),
596                 BPF_EXIT_INSN(),
597         };
598
599         return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
600 }
601
602 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
603                              int p1key, int p2key, int p3key)
604 {
605         int mfd, p1fd, p2fd, p3fd;
606
607         mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
608                              sizeof(int), max_elem, NULL);
609         if (mfd < 0) {
610                 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
611                         return -1;
612                 printf("Failed to create prog array '%s'!\n", strerror(errno));
613                 return -1;
614         }
615
616         p1fd = create_prog_dummy_simple(prog_type, 42);
617         p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
618         p3fd = create_prog_dummy_simple(prog_type, 24);
619         if (p1fd < 0 || p2fd < 0 || p3fd < 0)
620                 goto err;
621         if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
622                 goto err;
623         if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
624                 goto err;
625         if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
626 err:
627                 close(mfd);
628                 mfd = -1;
629         }
630         close(p3fd);
631         close(p2fd);
632         close(p1fd);
633         return mfd;
634 }
635
636 static int create_map_in_map(void)
637 {
638         LIBBPF_OPTS(bpf_map_create_opts, opts);
639         int inner_map_fd, outer_map_fd;
640
641         inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
642                                       sizeof(int), 1, NULL);
643         if (inner_map_fd < 0) {
644                 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
645                         return -1;
646                 printf("Failed to create array '%s'!\n", strerror(errno));
647                 return inner_map_fd;
648         }
649
650         opts.inner_map_fd = inner_map_fd;
651         outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
652                                       sizeof(int), sizeof(int), 1, &opts);
653         if (outer_map_fd < 0) {
654                 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
655                         return -1;
656                 printf("Failed to create array of maps '%s'!\n",
657                        strerror(errno));
658         }
659
660         close(inner_map_fd);
661
662         return outer_map_fd;
663 }
664
665 static int create_cgroup_storage(bool percpu)
666 {
667         enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
668                 BPF_MAP_TYPE_CGROUP_STORAGE;
669         int fd;
670
671         fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
672                             TEST_DATA_LEN, 0, NULL);
673         if (fd < 0) {
674                 if (skip_unsupported_map(type))
675                         return -1;
676                 printf("Failed to create cgroup storage '%s'!\n",
677                        strerror(errno));
678         }
679
680         return fd;
681 }
682
683 /* struct bpf_spin_lock {
684  *   int val;
685  * };
686  * struct val {
687  *   int cnt;
688  *   struct bpf_spin_lock l;
689  * };
690  * struct bpf_timer {
691  *   __u64 :64;
692  *   __u64 :64;
693  * } __attribute__((aligned(8)));
694  * struct timer {
695  *   struct bpf_timer t;
696  * };
697  * struct btf_ptr {
698  *   struct prog_test_ref_kfunc __kptr_untrusted *ptr;
699  *   struct prog_test_ref_kfunc __kptr *ptr;
700  *   struct prog_test_member __kptr *ptr;
701  * }
702  */
703 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
704                                   "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted"
705                                   "\0prog_test_member";
706 static __u32 btf_raw_types[] = {
707         /* int */
708         BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
709         /* struct bpf_spin_lock */                      /* [2] */
710         BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
711         BTF_MEMBER_ENC(15, 1, 0), /* int val; */
712         /* struct val */                                /* [3] */
713         BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
714         BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
715         BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
716         /* struct bpf_timer */                          /* [4] */
717         BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
718         /* struct timer */                              /* [5] */
719         BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
720         BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
721         /* struct prog_test_ref_kfunc */                /* [6] */
722         BTF_STRUCT_ENC(51, 0, 0),
723         BTF_STRUCT_ENC(95, 0, 0),                       /* [7] */
724         /* type tag "kptr_untrusted" */
725         BTF_TYPE_TAG_ENC(80, 6),                        /* [8] */
726         /* type tag "kptr" */
727         BTF_TYPE_TAG_ENC(75, 6),                        /* [9] */
728         BTF_TYPE_TAG_ENC(75, 7),                        /* [10] */
729         BTF_PTR_ENC(8),                                 /* [11] */
730         BTF_PTR_ENC(9),                                 /* [12] */
731         BTF_PTR_ENC(10),                                /* [13] */
732         /* struct btf_ptr */                            /* [14] */
733         BTF_STRUCT_ENC(43, 3, 24),
734         BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */
735         BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */
736         BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */
737 };
738
739 static char bpf_vlog[UINT_MAX >> 8];
740
741 static int load_btf_spec(__u32 *types, int types_len,
742                          const char *strings, int strings_len)
743 {
744         struct btf_header hdr = {
745                 .magic = BTF_MAGIC,
746                 .version = BTF_VERSION,
747                 .hdr_len = sizeof(struct btf_header),
748                 .type_len = types_len,
749                 .str_off = types_len,
750                 .str_len = strings_len,
751         };
752         void *ptr, *raw_btf;
753         int btf_fd;
754         LIBBPF_OPTS(bpf_btf_load_opts, opts,
755                     .log_buf = bpf_vlog,
756                     .log_size = sizeof(bpf_vlog),
757                     .log_level = (verbose
758                                   ? verif_log_level
759                                   : DEFAULT_LIBBPF_LOG_LEVEL),
760         );
761
762         raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
763
764         ptr = raw_btf;
765         memcpy(ptr, &hdr, sizeof(hdr));
766         ptr += sizeof(hdr);
767         memcpy(ptr, types, hdr.type_len);
768         ptr += hdr.type_len;
769         memcpy(ptr, strings, hdr.str_len);
770         ptr += hdr.str_len;
771
772         btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
773         if (btf_fd < 0)
774                 printf("Failed to load BTF spec: '%s'\n", strerror(errno));
775
776         free(raw_btf);
777
778         return btf_fd < 0 ? -1 : btf_fd;
779 }
780
781 static int load_btf(void)
782 {
783         return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
784                              btf_str_sec, sizeof(btf_str_sec));
785 }
786
787 static int load_btf_for_test(struct bpf_test *test)
788 {
789         int types_num = 0;
790
791         while (types_num < MAX_BTF_TYPES &&
792                test->btf_types[types_num] != BTF_END_RAW)
793                 ++types_num;
794
795         int types_len = types_num * sizeof(test->btf_types[0]);
796
797         return load_btf_spec(test->btf_types, types_len,
798                              test->btf_strings, sizeof(test->btf_strings));
799 }
800
801 static int create_map_spin_lock(void)
802 {
803         LIBBPF_OPTS(bpf_map_create_opts, opts,
804                 .btf_key_type_id = 1,
805                 .btf_value_type_id = 3,
806         );
807         int fd, btf_fd;
808
809         btf_fd = load_btf();
810         if (btf_fd < 0)
811                 return -1;
812         opts.btf_fd = btf_fd;
813         fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
814         if (fd < 0)
815                 printf("Failed to create map with spin_lock\n");
816         return fd;
817 }
818
819 static int create_sk_storage_map(void)
820 {
821         LIBBPF_OPTS(bpf_map_create_opts, opts,
822                 .map_flags = BPF_F_NO_PREALLOC,
823                 .btf_key_type_id = 1,
824                 .btf_value_type_id = 3,
825         );
826         int fd, btf_fd;
827
828         btf_fd = load_btf();
829         if (btf_fd < 0)
830                 return -1;
831         opts.btf_fd = btf_fd;
832         fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
833         close(opts.btf_fd);
834         if (fd < 0)
835                 printf("Failed to create sk_storage_map\n");
836         return fd;
837 }
838
839 static int create_map_timer(void)
840 {
841         LIBBPF_OPTS(bpf_map_create_opts, opts,
842                 .btf_key_type_id = 1,
843                 .btf_value_type_id = 5,
844         );
845         int fd, btf_fd;
846
847         btf_fd = load_btf();
848         if (btf_fd < 0)
849                 return -1;
850
851         opts.btf_fd = btf_fd;
852         fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
853         if (fd < 0)
854                 printf("Failed to create map with timer\n");
855         return fd;
856 }
857
858 static int create_map_kptr(void)
859 {
860         LIBBPF_OPTS(bpf_map_create_opts, opts,
861                 .btf_key_type_id = 1,
862                 .btf_value_type_id = 14,
863         );
864         int fd, btf_fd;
865
866         btf_fd = load_btf();
867         if (btf_fd < 0)
868                 return -1;
869
870         opts.btf_fd = btf_fd;
871         fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
872         if (fd < 0)
873                 printf("Failed to create map with btf_id pointer\n");
874         return fd;
875 }
876
877 static void set_root(bool set)
878 {
879         __u64 caps;
880
881         if (set) {
882                 if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps))
883                         perror("cap_disable_effective(CAP_SYS_ADMIN)");
884         } else {
885                 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps))
886                         perror("cap_disable_effective(CAP_SYS_ADMIN)");
887         }
888 }
889
890 static __u64 ptr_to_u64(const void *ptr)
891 {
892         return (uintptr_t) ptr;
893 }
894
895 static struct btf *btf__load_testmod_btf(struct btf *vmlinux)
896 {
897         struct bpf_btf_info info;
898         __u32 len = sizeof(info);
899         struct btf *btf = NULL;
900         char name[64];
901         __u32 id = 0;
902         int err, fd;
903
904         /* Iterate all loaded BTF objects and find bpf_testmod,
905          * we need SYS_ADMIN cap for that.
906          */
907         set_root(true);
908
909         while (true) {
910                 err = bpf_btf_get_next_id(id, &id);
911                 if (err) {
912                         if (errno == ENOENT)
913                                 break;
914                         perror("bpf_btf_get_next_id failed");
915                         break;
916                 }
917
918                 fd = bpf_btf_get_fd_by_id(id);
919                 if (fd < 0) {
920                         if (errno == ENOENT)
921                                 continue;
922                         perror("bpf_btf_get_fd_by_id failed");
923                         break;
924                 }
925
926                 memset(&info, 0, sizeof(info));
927                 info.name_len = sizeof(name);
928                 info.name = ptr_to_u64(name);
929                 len = sizeof(info);
930
931                 err = bpf_obj_get_info_by_fd(fd, &info, &len);
932                 if (err) {
933                         close(fd);
934                         perror("bpf_obj_get_info_by_fd failed");
935                         break;
936                 }
937
938                 if (strcmp("bpf_testmod", name)) {
939                         close(fd);
940                         continue;
941                 }
942
943                 btf = btf__load_from_kernel_by_id_split(id, vmlinux);
944                 if (!btf) {
945                         close(fd);
946                         break;
947                 }
948
949                 /* We need the fd to stay open so it can be used in fd_array.
950                  * The final cleanup call to btf__free will free btf object
951                  * and close the file descriptor.
952                  */
953                 btf__set_fd(btf, fd);
954                 break;
955         }
956
957         set_root(false);
958         return btf;
959 }
960
961 static struct btf *testmod_btf;
962 static struct btf *vmlinux_btf;
963
964 static void kfuncs_cleanup(void)
965 {
966         btf__free(testmod_btf);
967         btf__free(vmlinux_btf);
968 }
969
970 static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array,
971                               struct kfunc_btf_id_pair *fixup_kfunc_btf_id)
972 {
973         /* Patch in kfunc BTF IDs */
974         while (fixup_kfunc_btf_id->kfunc) {
975                 int btf_id = 0;
976
977                 /* try to find kfunc in kernel BTF */
978                 vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf();
979                 if (vmlinux_btf) {
980                         btf_id = btf__find_by_name_kind(vmlinux_btf,
981                                                         fixup_kfunc_btf_id->kfunc,
982                                                         BTF_KIND_FUNC);
983                         btf_id = btf_id < 0 ? 0 : btf_id;
984                 }
985
986                 /* kfunc not found in kernel BTF, try bpf_testmod BTF */
987                 if (!btf_id) {
988                         testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf);
989                         if (testmod_btf) {
990                                 btf_id = btf__find_by_name_kind(testmod_btf,
991                                                                 fixup_kfunc_btf_id->kfunc,
992                                                                 BTF_KIND_FUNC);
993                                 btf_id = btf_id < 0 ? 0 : btf_id;
994                                 if (btf_id) {
995                                         /* We put bpf_testmod module fd into fd_array
996                                          * and its index 1 into instruction 'off'.
997                                          */
998                                         *fd_array = btf__fd(testmod_btf);
999                                         prog[fixup_kfunc_btf_id->insn_idx].off = 1;
1000                                 }
1001                         }
1002                 }
1003
1004                 prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1005                 fixup_kfunc_btf_id++;
1006         }
1007 }
1008
1009 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
1010                           struct bpf_insn *prog, int *map_fds, int *fd_array)
1011 {
1012         int *fixup_map_hash_8b = test->fixup_map_hash_8b;
1013         int *fixup_map_hash_48b = test->fixup_map_hash_48b;
1014         int *fixup_map_hash_16b = test->fixup_map_hash_16b;
1015         int *fixup_map_array_48b = test->fixup_map_array_48b;
1016         int *fixup_map_sockmap = test->fixup_map_sockmap;
1017         int *fixup_map_sockhash = test->fixup_map_sockhash;
1018         int *fixup_map_xskmap = test->fixup_map_xskmap;
1019         int *fixup_map_stacktrace = test->fixup_map_stacktrace;
1020         int *fixup_prog1 = test->fixup_prog1;
1021         int *fixup_prog2 = test->fixup_prog2;
1022         int *fixup_map_in_map = test->fixup_map_in_map;
1023         int *fixup_cgroup_storage = test->fixup_cgroup_storage;
1024         int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
1025         int *fixup_map_spin_lock = test->fixup_map_spin_lock;
1026         int *fixup_map_array_ro = test->fixup_map_array_ro;
1027         int *fixup_map_array_wo = test->fixup_map_array_wo;
1028         int *fixup_map_array_small = test->fixup_map_array_small;
1029         int *fixup_sk_storage_map = test->fixup_sk_storage_map;
1030         int *fixup_map_event_output = test->fixup_map_event_output;
1031         int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
1032         int *fixup_map_ringbuf = test->fixup_map_ringbuf;
1033         int *fixup_map_timer = test->fixup_map_timer;
1034         int *fixup_map_kptr = test->fixup_map_kptr;
1035
1036         if (test->fill_helper) {
1037                 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
1038                 test->fill_helper(test);
1039         }
1040
1041         /* Allocating HTs with 1 elem is fine here, since we only test
1042          * for verifier and not do a runtime lookup, so the only thing
1043          * that really matters is value size in this case.
1044          */
1045         if (*fixup_map_hash_8b) {
1046                 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1047                                         sizeof(long long), 1);
1048                 do {
1049                         prog[*fixup_map_hash_8b].imm = map_fds[0];
1050                         fixup_map_hash_8b++;
1051                 } while (*fixup_map_hash_8b);
1052         }
1053
1054         if (*fixup_map_hash_48b) {
1055                 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1056                                         sizeof(struct test_val), 1);
1057                 do {
1058                         prog[*fixup_map_hash_48b].imm = map_fds[1];
1059                         fixup_map_hash_48b++;
1060                 } while (*fixup_map_hash_48b);
1061         }
1062
1063         if (*fixup_map_hash_16b) {
1064                 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1065                                         sizeof(struct other_val), 1);
1066                 do {
1067                         prog[*fixup_map_hash_16b].imm = map_fds[2];
1068                         fixup_map_hash_16b++;
1069                 } while (*fixup_map_hash_16b);
1070         }
1071
1072         if (*fixup_map_array_48b) {
1073                 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1074                                         sizeof(struct test_val), 1);
1075                 update_map(map_fds[3], 0);
1076                 do {
1077                         prog[*fixup_map_array_48b].imm = map_fds[3];
1078                         fixup_map_array_48b++;
1079                 } while (*fixup_map_array_48b);
1080         }
1081
1082         if (*fixup_prog1) {
1083                 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
1084                 do {
1085                         prog[*fixup_prog1].imm = map_fds[4];
1086                         fixup_prog1++;
1087                 } while (*fixup_prog1);
1088         }
1089
1090         if (*fixup_prog2) {
1091                 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
1092                 do {
1093                         prog[*fixup_prog2].imm = map_fds[5];
1094                         fixup_prog2++;
1095                 } while (*fixup_prog2);
1096         }
1097
1098         if (*fixup_map_in_map) {
1099                 map_fds[6] = create_map_in_map();
1100                 do {
1101                         prog[*fixup_map_in_map].imm = map_fds[6];
1102                         fixup_map_in_map++;
1103                 } while (*fixup_map_in_map);
1104         }
1105
1106         if (*fixup_cgroup_storage) {
1107                 map_fds[7] = create_cgroup_storage(false);
1108                 do {
1109                         prog[*fixup_cgroup_storage].imm = map_fds[7];
1110                         fixup_cgroup_storage++;
1111                 } while (*fixup_cgroup_storage);
1112         }
1113
1114         if (*fixup_percpu_cgroup_storage) {
1115                 map_fds[8] = create_cgroup_storage(true);
1116                 do {
1117                         prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
1118                         fixup_percpu_cgroup_storage++;
1119                 } while (*fixup_percpu_cgroup_storage);
1120         }
1121         if (*fixup_map_sockmap) {
1122                 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
1123                                         sizeof(int), 1);
1124                 do {
1125                         prog[*fixup_map_sockmap].imm = map_fds[9];
1126                         fixup_map_sockmap++;
1127                 } while (*fixup_map_sockmap);
1128         }
1129         if (*fixup_map_sockhash) {
1130                 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
1131                                         sizeof(int), 1);
1132                 do {
1133                         prog[*fixup_map_sockhash].imm = map_fds[10];
1134                         fixup_map_sockhash++;
1135                 } while (*fixup_map_sockhash);
1136         }
1137         if (*fixup_map_xskmap) {
1138                 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
1139                                         sizeof(int), 1);
1140                 do {
1141                         prog[*fixup_map_xskmap].imm = map_fds[11];
1142                         fixup_map_xskmap++;
1143                 } while (*fixup_map_xskmap);
1144         }
1145         if (*fixup_map_stacktrace) {
1146                 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
1147                                          sizeof(u64), 1);
1148                 do {
1149                         prog[*fixup_map_stacktrace].imm = map_fds[12];
1150                         fixup_map_stacktrace++;
1151                 } while (*fixup_map_stacktrace);
1152         }
1153         if (*fixup_map_spin_lock) {
1154                 map_fds[13] = create_map_spin_lock();
1155                 do {
1156                         prog[*fixup_map_spin_lock].imm = map_fds[13];
1157                         fixup_map_spin_lock++;
1158                 } while (*fixup_map_spin_lock);
1159         }
1160         if (*fixup_map_array_ro) {
1161                 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1162                                            sizeof(struct test_val), 1,
1163                                            BPF_F_RDONLY_PROG);
1164                 update_map(map_fds[14], 0);
1165                 do {
1166                         prog[*fixup_map_array_ro].imm = map_fds[14];
1167                         fixup_map_array_ro++;
1168                 } while (*fixup_map_array_ro);
1169         }
1170         if (*fixup_map_array_wo) {
1171                 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1172                                            sizeof(struct test_val), 1,
1173                                            BPF_F_WRONLY_PROG);
1174                 update_map(map_fds[15], 0);
1175                 do {
1176                         prog[*fixup_map_array_wo].imm = map_fds[15];
1177                         fixup_map_array_wo++;
1178                 } while (*fixup_map_array_wo);
1179         }
1180         if (*fixup_map_array_small) {
1181                 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1182                                            1, 1, 0);
1183                 update_map(map_fds[16], 0);
1184                 do {
1185                         prog[*fixup_map_array_small].imm = map_fds[16];
1186                         fixup_map_array_small++;
1187                 } while (*fixup_map_array_small);
1188         }
1189         if (*fixup_sk_storage_map) {
1190                 map_fds[17] = create_sk_storage_map();
1191                 do {
1192                         prog[*fixup_sk_storage_map].imm = map_fds[17];
1193                         fixup_sk_storage_map++;
1194                 } while (*fixup_sk_storage_map);
1195         }
1196         if (*fixup_map_event_output) {
1197                 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1198                                            sizeof(int), sizeof(int), 1, 0);
1199                 do {
1200                         prog[*fixup_map_event_output].imm = map_fds[18];
1201                         fixup_map_event_output++;
1202                 } while (*fixup_map_event_output);
1203         }
1204         if (*fixup_map_reuseport_array) {
1205                 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1206                                            sizeof(u32), sizeof(u64), 1, 0);
1207                 do {
1208                         prog[*fixup_map_reuseport_array].imm = map_fds[19];
1209                         fixup_map_reuseport_array++;
1210                 } while (*fixup_map_reuseport_array);
1211         }
1212         if (*fixup_map_ringbuf) {
1213                 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
1214                                          0, getpagesize());
1215                 do {
1216                         prog[*fixup_map_ringbuf].imm = map_fds[20];
1217                         fixup_map_ringbuf++;
1218                 } while (*fixup_map_ringbuf);
1219         }
1220         if (*fixup_map_timer) {
1221                 map_fds[21] = create_map_timer();
1222                 do {
1223                         prog[*fixup_map_timer].imm = map_fds[21];
1224                         fixup_map_timer++;
1225                 } while (*fixup_map_timer);
1226         }
1227         if (*fixup_map_kptr) {
1228                 map_fds[22] = create_map_kptr();
1229                 do {
1230                         prog[*fixup_map_kptr].imm = map_fds[22];
1231                         fixup_map_kptr++;
1232                 } while (*fixup_map_kptr);
1233         }
1234
1235         fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id);
1236 }
1237
1238 struct libcap {
1239         struct __user_cap_header_struct hdr;
1240         struct __user_cap_data_struct data[2];
1241 };
1242
1243 static int set_admin(bool admin)
1244 {
1245         int err;
1246
1247         if (admin) {
1248                 err = cap_enable_effective(ADMIN_CAPS, NULL);
1249                 if (err)
1250                         perror("cap_enable_effective(ADMIN_CAPS)");
1251         } else {
1252                 err = cap_disable_effective(ADMIN_CAPS, NULL);
1253                 if (err)
1254                         perror("cap_disable_effective(ADMIN_CAPS)");
1255         }
1256
1257         return err;
1258 }
1259
1260 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1261                             void *data, size_t size_data)
1262 {
1263         __u8 tmp[TEST_DATA_LEN << 2];
1264         __u32 size_tmp = sizeof(tmp);
1265         int err, saved_errno;
1266         LIBBPF_OPTS(bpf_test_run_opts, topts,
1267                 .data_in = data,
1268                 .data_size_in = size_data,
1269                 .data_out = tmp,
1270                 .data_size_out = size_tmp,
1271                 .repeat = 1,
1272         );
1273
1274         if (unpriv)
1275                 set_admin(true);
1276         err = bpf_prog_test_run_opts(fd_prog, &topts);
1277         saved_errno = errno;
1278
1279         if (unpriv)
1280                 set_admin(false);
1281
1282         if (err) {
1283                 switch (saved_errno) {
1284                 case ENOTSUPP:
1285                         printf("Did not run the program (not supported) ");
1286                         return 0;
1287                 case EPERM:
1288                         if (unpriv) {
1289                                 printf("Did not run the program (no permission) ");
1290                                 return 0;
1291                         }
1292                         /* fallthrough; */
1293                 default:
1294                         printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1295                                 strerror(saved_errno));
1296                         return err;
1297                 }
1298         }
1299
1300         if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1301                 printf("FAIL retval %d != %d ", topts.retval, expected_val);
1302                 return 1;
1303         }
1304
1305         return 0;
1306 }
1307
1308 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1309  *
1310  * If exp is an empty string, returns true.
1311  */
1312 static bool cmp_str_seq(const char *log, const char *exp)
1313 {
1314         char needle[200];
1315         const char *p, *q;
1316         int len;
1317
1318         do {
1319                 if (!strlen(exp))
1320                         break;
1321                 p = strchr(exp, '\t');
1322                 if (!p)
1323                         p = exp + strlen(exp);
1324
1325                 len = p - exp;
1326                 if (len >= sizeof(needle) || !len) {
1327                         printf("FAIL\nTestcase bug\n");
1328                         return false;
1329                 }
1330                 strncpy(needle, exp, len);
1331                 needle[len] = 0;
1332                 q = strstr(log, needle);
1333                 if (!q) {
1334                         printf("FAIL\nUnexpected verifier log!\n"
1335                                "EXP: %s\nRES:\n", needle);
1336                         return false;
1337                 }
1338                 log = q + len;
1339                 exp = p + 1;
1340         } while (*p);
1341         return true;
1342 }
1343
1344 static struct bpf_insn *get_xlated_program(int fd_prog, int *cnt)
1345 {
1346         __u32 buf_element_size = sizeof(struct bpf_insn);
1347         struct bpf_prog_info info = {};
1348         __u32 info_len = sizeof(info);
1349         __u32 xlated_prog_len;
1350         struct bpf_insn *buf;
1351
1352         if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
1353                 perror("bpf_prog_get_info_by_fd failed");
1354                 return NULL;
1355         }
1356
1357         xlated_prog_len = info.xlated_prog_len;
1358         if (xlated_prog_len % buf_element_size) {
1359                 printf("Program length %d is not multiple of %d\n",
1360                        xlated_prog_len, buf_element_size);
1361                 return NULL;
1362         }
1363
1364         *cnt = xlated_prog_len / buf_element_size;
1365         buf = calloc(*cnt, buf_element_size);
1366         if (!buf) {
1367                 perror("can't allocate xlated program buffer");
1368                 return NULL;
1369         }
1370
1371         bzero(&info, sizeof(info));
1372         info.xlated_prog_len = xlated_prog_len;
1373         info.xlated_prog_insns = (__u64)(unsigned long)buf;
1374         if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
1375                 perror("second bpf_prog_get_info_by_fd failed");
1376                 goto out_free_buf;
1377         }
1378
1379         return buf;
1380
1381 out_free_buf:
1382         free(buf);
1383         return NULL;
1384 }
1385
1386 static bool is_null_insn(struct bpf_insn *insn)
1387 {
1388         struct bpf_insn null_insn = {};
1389
1390         return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
1391 }
1392
1393 static bool is_skip_insn(struct bpf_insn *insn)
1394 {
1395         struct bpf_insn skip_insn = SKIP_INSNS();
1396
1397         return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
1398 }
1399
1400 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1401 {
1402         int i;
1403
1404         for (i = 0; i < max_len; ++i) {
1405                 if (is_null_insn(&seq[i]))
1406                         return i;
1407         }
1408         return max_len;
1409 }
1410
1411 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1412 {
1413         struct bpf_insn orig_masked;
1414
1415         memcpy(&orig_masked, orig, sizeof(orig_masked));
1416         if (masked->imm == INSN_IMM_MASK)
1417                 orig_masked.imm = INSN_IMM_MASK;
1418         if (masked->off == INSN_OFF_MASK)
1419                 orig_masked.off = INSN_OFF_MASK;
1420
1421         return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
1422 }
1423
1424 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1425                             int seq_len, int subseq_len)
1426 {
1427         int i, j;
1428
1429         if (subseq_len > seq_len)
1430                 return -1;
1431
1432         for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1433                 bool found = true;
1434
1435                 for (j = 0; j < subseq_len; ++j) {
1436                         if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
1437                                 found = false;
1438                                 break;
1439                         }
1440                 }
1441                 if (found)
1442                         return i;
1443         }
1444
1445         return -1;
1446 }
1447
1448 static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1449 {
1450         int i;
1451
1452         for (i = 0; i < len; ++i)
1453                 if (is_skip_insn(&seq[i]))
1454                         return i;
1455
1456         return -1;
1457 }
1458
1459 /* Return true if all sub-sequences in `subseqs` could be found in
1460  * `seq` one after another. Sub-sequences are separated by a single
1461  * nil instruction.
1462  */
1463 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1464                                   int seq_len, int max_subseqs_len)
1465 {
1466         int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);
1467
1468         while (subseqs_len > 0) {
1469                 int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
1470                 int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1471                 int subseq_idx = find_insn_subseq(seq, subseqs,
1472                                                   seq_len, cur_subseq_len);
1473
1474                 if (subseq_idx < 0)
1475                         return false;
1476                 seq += subseq_idx + cur_subseq_len;
1477                 seq_len -= subseq_idx + cur_subseq_len;
1478                 subseqs += cur_subseq_len + 1;
1479                 subseqs_len -= cur_subseq_len + 1;
1480         }
1481
1482         return true;
1483 }
1484
1485 static void print_insn(struct bpf_insn *buf, int cnt)
1486 {
1487         int i;
1488
1489         printf("  addr  op d s off  imm\n");
1490         for (i = 0; i < cnt; ++i) {
1491                 struct bpf_insn *insn = &buf[i];
1492
1493                 if (is_null_insn(insn))
1494                         break;
1495
1496                 if (is_skip_insn(insn))
1497                         printf("  ...\n");
1498                 else
1499                         printf("  %04x: %02x %1x %x %04hx %08x\n",
1500                                i, insn->code, insn->dst_reg,
1501                                insn->src_reg, insn->off, insn->imm);
1502         }
1503 }
1504
1505 static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1506 {
1507         struct bpf_insn *buf;
1508         int cnt;
1509         bool result = true;
1510         bool check_expected = !is_null_insn(test->expected_insns);
1511         bool check_unexpected = !is_null_insn(test->unexpected_insns);
1512
1513         if (!check_expected && !check_unexpected)
1514                 goto out;
1515
1516         buf = get_xlated_program(fd_prog, &cnt);
1517         if (!buf) {
1518                 printf("FAIL: can't get xlated program\n");
1519                 result = false;
1520                 goto out;
1521         }
1522
1523         if (check_expected &&
1524             !find_all_insn_subseqs(buf, test->expected_insns,
1525                                    cnt, MAX_EXPECTED_INSNS)) {
1526                 printf("FAIL: can't find expected subsequence of instructions\n");
1527                 result = false;
1528                 if (verbose) {
1529                         printf("Program:\n");
1530                         print_insn(buf, cnt);
1531                         printf("Expected subsequence:\n");
1532                         print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
1533                 }
1534         }
1535
1536         if (check_unexpected &&
1537             find_all_insn_subseqs(buf, test->unexpected_insns,
1538                                   cnt, MAX_UNEXPECTED_INSNS)) {
1539                 printf("FAIL: found unexpected subsequence of instructions\n");
1540                 result = false;
1541                 if (verbose) {
1542                         printf("Program:\n");
1543                         print_insn(buf, cnt);
1544                         printf("Un-expected subsequence:\n");
1545                         print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1546                 }
1547         }
1548
1549         free(buf);
1550  out:
1551         return result;
1552 }
1553
1554 static void do_test_single(struct bpf_test *test, bool unpriv,
1555                            int *passes, int *errors)
1556 {
1557         int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1558         int prog_len, prog_type = test->prog_type;
1559         struct bpf_insn *prog = test->insns;
1560         LIBBPF_OPTS(bpf_prog_load_opts, opts);
1561         int run_errs, run_successes;
1562         int map_fds[MAX_NR_MAPS];
1563         const char *expected_err;
1564         int fd_array[2] = { -1, -1 };
1565         int saved_errno;
1566         int fixup_skips;
1567         __u32 pflags;
1568         int i, err;
1569
1570         fd_prog = -1;
1571         for (i = 0; i < MAX_NR_MAPS; i++)
1572                 map_fds[i] = -1;
1573         btf_fd = -1;
1574
1575         if (!prog_type)
1576                 prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1577         fixup_skips = skips;
1578         do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]);
1579         if (test->fill_insns) {
1580                 prog = test->fill_insns;
1581                 prog_len = test->prog_len;
1582         } else {
1583                 prog_len = probe_filter_length(prog);
1584         }
1585         /* If there were some map skips during fixup due to missing bpf
1586          * features, skip this test.
1587          */
1588         if (fixup_skips != skips)
1589                 return;
1590
1591         pflags = BPF_F_TEST_RND_HI32;
1592         if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1593                 pflags |= BPF_F_STRICT_ALIGNMENT;
1594         if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1595                 pflags |= BPF_F_ANY_ALIGNMENT;
1596         if (test->flags & ~3)
1597                 pflags |= test->flags;
1598
1599         expected_ret = unpriv && test->result_unpriv != UNDEF ?
1600                        test->result_unpriv : test->result;
1601         expected_err = unpriv && test->errstr_unpriv ?
1602                        test->errstr_unpriv : test->errstr;
1603
1604         opts.expected_attach_type = test->expected_attach_type;
1605         if (verbose)
1606                 opts.log_level = verif_log_level | 4; /* force stats */
1607         else if (expected_ret == VERBOSE_ACCEPT)
1608                 opts.log_level = 2;
1609         else
1610                 opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1611         opts.prog_flags = pflags;
1612         if (fd_array[1] != -1)
1613                 opts.fd_array = &fd_array[0];
1614
1615         if ((prog_type == BPF_PROG_TYPE_TRACING ||
1616              prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1617                 int attach_btf_id;
1618
1619                 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1620                                                 opts.expected_attach_type);
1621                 if (attach_btf_id < 0) {
1622                         printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1623                                 test->kfunc);
1624                         (*errors)++;
1625                         return;
1626                 }
1627
1628                 opts.attach_btf_id = attach_btf_id;
1629         }
1630
1631         if (test->btf_types[0] != 0) {
1632                 btf_fd = load_btf_for_test(test);
1633                 if (btf_fd < 0)
1634                         goto fail_log;
1635                 opts.prog_btf_fd = btf_fd;
1636         }
1637
1638         if (test->func_info_cnt != 0) {
1639                 opts.func_info = test->func_info;
1640                 opts.func_info_cnt = test->func_info_cnt;
1641                 opts.func_info_rec_size = sizeof(test->func_info[0]);
1642         }
1643
1644         opts.log_buf = bpf_vlog;
1645         opts.log_size = sizeof(bpf_vlog);
1646         fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1647         saved_errno = errno;
1648
1649         /* BPF_PROG_TYPE_TRACING requires more setup and
1650          * bpf_probe_prog_type won't give correct answer
1651          */
1652         if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1653             !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1654                 printf("SKIP (unsupported program type %d)\n", prog_type);
1655                 skips++;
1656                 goto close_fds;
1657         }
1658
1659         if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1660                 printf("SKIP (program uses an unsupported feature)\n");
1661                 skips++;
1662                 goto close_fds;
1663         }
1664
1665         alignment_prevented_execution = 0;
1666
1667         if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1668                 if (fd_prog < 0) {
1669                         printf("FAIL\nFailed to load prog '%s'!\n",
1670                                strerror(saved_errno));
1671                         goto fail_log;
1672                 }
1673 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1674                 if (fd_prog >= 0 &&
1675                     (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1676                         alignment_prevented_execution = 1;
1677 #endif
1678                 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1679                         goto fail_log;
1680                 }
1681         } else {
1682                 if (fd_prog >= 0) {
1683                         printf("FAIL\nUnexpected success to load!\n");
1684                         goto fail_log;
1685                 }
1686                 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1687                         printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1688                               expected_err, bpf_vlog);
1689                         goto fail_log;
1690                 }
1691         }
1692
1693         if (!unpriv && test->insn_processed) {
1694                 uint32_t insn_processed;
1695                 char *proc;
1696
1697                 proc = strstr(bpf_vlog, "processed ");
1698                 insn_processed = atoi(proc + 10);
1699                 if (test->insn_processed != insn_processed) {
1700                         printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1701                                insn_processed, test->insn_processed);
1702                         goto fail_log;
1703                 }
1704         }
1705
1706         if (verbose)
1707                 printf(", verifier log:\n%s", bpf_vlog);
1708
1709         if (!check_xlated_program(test, fd_prog))
1710                 goto fail_log;
1711
1712         run_errs = 0;
1713         run_successes = 0;
1714         if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1715                 uint32_t expected_val;
1716                 int i;
1717
1718                 if (!test->runs)
1719                         test->runs = 1;
1720
1721                 for (i = 0; i < test->runs; i++) {
1722                         if (unpriv && test->retvals[i].retval_unpriv)
1723                                 expected_val = test->retvals[i].retval_unpriv;
1724                         else
1725                                 expected_val = test->retvals[i].retval;
1726
1727                         err = do_prog_test_run(fd_prog, unpriv, expected_val,
1728                                                test->retvals[i].data,
1729                                                sizeof(test->retvals[i].data));
1730                         if (err) {
1731                                 printf("(run %d/%d) ", i + 1, test->runs);
1732                                 run_errs++;
1733                         } else {
1734                                 run_successes++;
1735                         }
1736                 }
1737         }
1738
1739         if (!run_errs) {
1740                 (*passes)++;
1741                 if (run_successes > 1)
1742                         printf("%d cases ", run_successes);
1743                 printf("OK");
1744                 if (alignment_prevented_execution)
1745                         printf(" (NOTE: not executed due to unknown alignment)");
1746                 printf("\n");
1747         } else {
1748                 printf("\n");
1749                 goto fail_log;
1750         }
1751 close_fds:
1752         if (test->fill_insns)
1753                 free(test->fill_insns);
1754         close(fd_prog);
1755         close(btf_fd);
1756         for (i = 0; i < MAX_NR_MAPS; i++)
1757                 close(map_fds[i]);
1758         sched_yield();
1759         return;
1760 fail_log:
1761         (*errors)++;
1762         printf("%s", bpf_vlog);
1763         goto close_fds;
1764 }
1765
1766 static bool is_admin(void)
1767 {
1768         __u64 caps;
1769
1770         /* The test checks for finer cap as CAP_NET_ADMIN,
1771          * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1772          * Thus, disable CAP_SYS_ADMIN at the beginning.
1773          */
1774         if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
1775                 perror("cap_disable_effective(CAP_SYS_ADMIN)");
1776                 return false;
1777         }
1778
1779         return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1780 }
1781
1782 static bool test_as_unpriv(struct bpf_test *test)
1783 {
1784 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1785         /* Some architectures have strict alignment requirements. In
1786          * that case, the BPF verifier detects if a program has
1787          * unaligned accesses and rejects them. A user can pass
1788          * BPF_F_ANY_ALIGNMENT to a program to override this
1789          * check. That, however, will only work when a privileged user
1790          * loads a program. An unprivileged user loading a program
1791          * with this flag will be rejected prior entering the
1792          * verifier.
1793          */
1794         if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1795                 return false;
1796 #endif
1797         return !test->prog_type ||
1798                test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1799                test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1800 }
1801
1802 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1803 {
1804         int i, passes = 0, errors = 0;
1805
1806         /* ensure previous instance of the module is unloaded */
1807         unload_bpf_testmod(verbose);
1808
1809         if (load_bpf_testmod(verbose))
1810                 return EXIT_FAILURE;
1811
1812         for (i = from; i < to; i++) {
1813                 struct bpf_test *test = &tests[i];
1814
1815                 /* Program types that are not supported by non-root we
1816                  * skip right away.
1817                  */
1818                 if (test_as_unpriv(test) && unpriv_disabled) {
1819                         printf("#%d/u %s SKIP\n", i, test->descr);
1820                         skips++;
1821                 } else if (test_as_unpriv(test)) {
1822                         if (!unpriv)
1823                                 set_admin(false);
1824                         printf("#%d/u %s ", i, test->descr);
1825                         do_test_single(test, true, &passes, &errors);
1826                         if (!unpriv)
1827                                 set_admin(true);
1828                 }
1829
1830                 if (unpriv) {
1831                         printf("#%d/p %s SKIP\n", i, test->descr);
1832                         skips++;
1833                 } else {
1834                         printf("#%d/p %s ", i, test->descr);
1835                         do_test_single(test, false, &passes, &errors);
1836                 }
1837         }
1838
1839         unload_bpf_testmod(verbose);
1840         kfuncs_cleanup();
1841
1842         printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1843                skips, errors);
1844         return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1845 }
1846
1847 int main(int argc, char **argv)
1848 {
1849         unsigned int from = 0, to = ARRAY_SIZE(tests);
1850         bool unpriv = !is_admin();
1851         int arg = 1;
1852
1853         if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1854                 arg++;
1855                 verbose = true;
1856                 verif_log_level = 1;
1857                 argc--;
1858         }
1859         if (argc > 1 && strcmp(argv[1], "-vv") == 0) {
1860                 arg++;
1861                 verbose = true;
1862                 verif_log_level = 2;
1863                 argc--;
1864         }
1865
1866         if (argc == 3) {
1867                 unsigned int l = atoi(argv[arg]);
1868                 unsigned int u = atoi(argv[arg + 1]);
1869
1870                 if (l < to && u < to) {
1871                         from = l;
1872                         to   = u + 1;
1873                 }
1874         } else if (argc == 2) {
1875                 unsigned int t = atoi(argv[arg]);
1876
1877                 if (t < to) {
1878                         from = t;
1879                         to   = t + 1;
1880                 }
1881         }
1882
1883         get_unpriv_disabled();
1884         if (unpriv && unpriv_disabled) {
1885                 printf("Cannot run as unprivileged user with sysctl %s.\n",
1886                        UNPRIV_SYSCTL);
1887                 return EXIT_FAILURE;
1888         }
1889
1890         /* Use libbpf 1.0 API mode */
1891         libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1892
1893         bpf_semi_rand_init();
1894         return do_test(unpriv, from, to);
1895 }