Merge drm/drm-next into drm-intel-next
[platform/kernel/linux-starfive.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <traceevent/event-parse.h>
62 #endif
63
64 /*
65  * magic2 = "PERFILE2"
66  * must be a numerical value to let the endianness
67  * determine the memory layout. That way we are able
68  * to detect endianness when reading the perf.data file
69  * back.
70  *
71  * we check for legacy (PERFFILE) format.
72  */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76
77 #define PERF_MAGIC      __perf_magic2
78
79 const char perf_version_string[] = PERF_VERSION;
80
81 struct perf_file_attr {
82         struct perf_event_attr  attr;
83         struct perf_file_section        ids;
84 };
85
86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88         __set_bit(feat, header->adds_features);
89 }
90
91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93         __clear_bit(feat, header->adds_features);
94 }
95
96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98         return test_bit(feat, header->adds_features);
99 }
100
101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103         ssize_t ret = writen(ff->fd, buf, size);
104
105         if (ret != (ssize_t)size)
106                 return ret < 0 ? (int)ret : -1;
107         return 0;
108 }
109
110 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111 {
112         /* struct perf_event_header::size is u16 */
113         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114         size_t new_size = ff->size;
115         void *addr;
116
117         if (size + ff->offset > max_size)
118                 return -E2BIG;
119
120         while (size > (new_size - ff->offset))
121                 new_size <<= 1;
122         new_size = min(max_size, new_size);
123
124         if (ff->size < new_size) {
125                 addr = realloc(ff->buf, new_size);
126                 if (!addr)
127                         return -ENOMEM;
128                 ff->buf = addr;
129                 ff->size = new_size;
130         }
131
132         memcpy(ff->buf + ff->offset, buf, size);
133         ff->offset += size;
134
135         return 0;
136 }
137
138 /* Return: 0 if succeeded, -ERR if failed. */
139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141         if (!ff->buf)
142                 return __do_write_fd(ff, buf, size);
143         return __do_write_buf(ff, buf, size);
144 }
145
146 /* Return: 0 if succeeded, -ERR if failed. */
147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149         u64 *p = (u64 *) set;
150         int i, ret;
151
152         ret = do_write(ff, &size, sizeof(size));
153         if (ret < 0)
154                 return ret;
155
156         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157                 ret = do_write(ff, p + i, sizeof(*p));
158                 if (ret < 0)
159                         return ret;
160         }
161
162         return 0;
163 }
164
165 /* Return: 0 if succeeded, -ERR if failed. */
166 int write_padded(struct feat_fd *ff, const void *bf,
167                  size_t count, size_t count_aligned)
168 {
169         static const char zero_buf[NAME_ALIGN];
170         int err = do_write(ff, bf, count);
171
172         if (!err)
173                 err = do_write(ff, zero_buf, count_aligned - count);
174
175         return err;
176 }
177
178 #define string_size(str)                                                \
179         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180
181 /* Return: 0 if succeeded, -ERR if failed. */
182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184         u32 len, olen;
185         int ret;
186
187         olen = strlen(str) + 1;
188         len = PERF_ALIGN(olen, NAME_ALIGN);
189
190         /* write len, incl. \0 */
191         ret = do_write(ff, &len, sizeof(len));
192         if (ret < 0)
193                 return ret;
194
195         return write_padded(ff, str, olen, len);
196 }
197
198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200         ssize_t ret = readn(ff->fd, addr, size);
201
202         if (ret != size)
203                 return ret < 0 ? (int)ret : -1;
204         return 0;
205 }
206
207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209         if (size > (ssize_t)ff->size - ff->offset)
210                 return -1;
211
212         memcpy(addr, ff->buf + ff->offset, size);
213         ff->offset += size;
214
215         return 0;
216
217 }
218
219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221         if (!ff->buf)
222                 return __do_read_fd(ff, addr, size);
223         return __do_read_buf(ff, addr, size);
224 }
225
226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228         int ret;
229
230         ret = __do_read(ff, addr, sizeof(*addr));
231         if (ret)
232                 return ret;
233
234         if (ff->ph->needs_swap)
235                 *addr = bswap_32(*addr);
236         return 0;
237 }
238
239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241         int ret;
242
243         ret = __do_read(ff, addr, sizeof(*addr));
244         if (ret)
245                 return ret;
246
247         if (ff->ph->needs_swap)
248                 *addr = bswap_64(*addr);
249         return 0;
250 }
251
252 static char *do_read_string(struct feat_fd *ff)
253 {
254         u32 len;
255         char *buf;
256
257         if (do_read_u32(ff, &len))
258                 return NULL;
259
260         buf = malloc(len);
261         if (!buf)
262                 return NULL;
263
264         if (!__do_read(ff, buf, len)) {
265                 /*
266                  * strings are padded by zeroes
267                  * thus the actual strlen of buf
268                  * may be less than len
269                  */
270                 return buf;
271         }
272
273         free(buf);
274         return NULL;
275 }
276
277 /* Return: 0 if succeeded, -ERR if failed. */
278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280         unsigned long *set;
281         u64 size, *p;
282         int i, ret;
283
284         ret = do_read_u64(ff, &size);
285         if (ret)
286                 return ret;
287
288         set = bitmap_zalloc(size);
289         if (!set)
290                 return -ENOMEM;
291
292         p = (u64 *) set;
293
294         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295                 ret = do_read_u64(ff, p + i);
296                 if (ret < 0) {
297                         free(set);
298                         return ret;
299                 }
300         }
301
302         *pset  = set;
303         *psize = size;
304         return 0;
305 }
306
307 #ifdef HAVE_LIBTRACEEVENT
308 static int write_tracing_data(struct feat_fd *ff,
309                               struct evlist *evlist)
310 {
311         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312                 return -1;
313
314         return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317
318 static int write_build_id(struct feat_fd *ff,
319                           struct evlist *evlist __maybe_unused)
320 {
321         struct perf_session *session;
322         int err;
323
324         session = container_of(ff->ph, struct perf_session, header);
325
326         if (!perf_session__read_build_ids(session, true))
327                 return -1;
328
329         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330                 return -1;
331
332         err = perf_session__write_buildid_table(session, ff);
333         if (err < 0) {
334                 pr_debug("failed to write buildid table\n");
335                 return err;
336         }
337         perf_session__cache_build_ids(session);
338
339         return 0;
340 }
341
342 static int write_hostname(struct feat_fd *ff,
343                           struct evlist *evlist __maybe_unused)
344 {
345         struct utsname uts;
346         int ret;
347
348         ret = uname(&uts);
349         if (ret < 0)
350                 return -1;
351
352         return do_write_string(ff, uts.nodename);
353 }
354
355 static int write_osrelease(struct feat_fd *ff,
356                            struct evlist *evlist __maybe_unused)
357 {
358         struct utsname uts;
359         int ret;
360
361         ret = uname(&uts);
362         if (ret < 0)
363                 return -1;
364
365         return do_write_string(ff, uts.release);
366 }
367
368 static int write_arch(struct feat_fd *ff,
369                       struct evlist *evlist __maybe_unused)
370 {
371         struct utsname uts;
372         int ret;
373
374         ret = uname(&uts);
375         if (ret < 0)
376                 return -1;
377
378         return do_write_string(ff, uts.machine);
379 }
380
381 static int write_version(struct feat_fd *ff,
382                          struct evlist *evlist __maybe_unused)
383 {
384         return do_write_string(ff, perf_version_string);
385 }
386
387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389         FILE *file;
390         char *buf = NULL;
391         char *s, *p;
392         const char *search = cpuinfo_proc;
393         size_t len = 0;
394         int ret = -1;
395
396         if (!search)
397                 return -1;
398
399         file = fopen("/proc/cpuinfo", "r");
400         if (!file)
401                 return -1;
402
403         while (getline(&buf, &len, file) > 0) {
404                 ret = strncmp(buf, search, strlen(search));
405                 if (!ret)
406                         break;
407         }
408
409         if (ret) {
410                 ret = -1;
411                 goto done;
412         }
413
414         s = buf;
415
416         p = strchr(buf, ':');
417         if (p && *(p+1) == ' ' && *(p+2))
418                 s = p + 2;
419         p = strchr(s, '\n');
420         if (p)
421                 *p = '\0';
422
423         /* squash extra space characters (branding string) */
424         p = s;
425         while (*p) {
426                 if (isspace(*p)) {
427                         char *r = p + 1;
428                         char *q = skip_spaces(r);
429                         *p = ' ';
430                         if (q != (p+1))
431                                 while ((*r++ = *q++));
432                 }
433                 p++;
434         }
435         ret = do_write_string(ff, s);
436 done:
437         free(buf);
438         fclose(file);
439         return ret;
440 }
441
442 static int write_cpudesc(struct feat_fd *ff,
443                        struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC    { "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC    { "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC    { "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC    { "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC    { "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC    { "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC    { "core ID", }
459 #else
460 #define CPUINFO_PROC    { "model name", }
461 #endif
462         const char *cpuinfo_procs[] = CPUINFO_PROC;
463 #undef CPUINFO_PROC
464         unsigned int i;
465
466         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
467                 int ret;
468                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
469                 if (ret >= 0)
470                         return ret;
471         }
472         return -1;
473 }
474
475
476 static int write_nrcpus(struct feat_fd *ff,
477                         struct evlist *evlist __maybe_unused)
478 {
479         long nr;
480         u32 nrc, nra;
481         int ret;
482
483         nrc = cpu__max_present_cpu().cpu;
484
485         nr = sysconf(_SC_NPROCESSORS_ONLN);
486         if (nr < 0)
487                 return -1;
488
489         nra = (u32)(nr & UINT_MAX);
490
491         ret = do_write(ff, &nrc, sizeof(nrc));
492         if (ret < 0)
493                 return ret;
494
495         return do_write(ff, &nra, sizeof(nra));
496 }
497
498 static int write_event_desc(struct feat_fd *ff,
499                             struct evlist *evlist)
500 {
501         struct evsel *evsel;
502         u32 nre, nri, sz;
503         int ret;
504
505         nre = evlist->core.nr_entries;
506
507         /*
508          * write number of events
509          */
510         ret = do_write(ff, &nre, sizeof(nre));
511         if (ret < 0)
512                 return ret;
513
514         /*
515          * size of perf_event_attr struct
516          */
517         sz = (u32)sizeof(evsel->core.attr);
518         ret = do_write(ff, &sz, sizeof(sz));
519         if (ret < 0)
520                 return ret;
521
522         evlist__for_each_entry(evlist, evsel) {
523                 ret = do_write(ff, &evsel->core.attr, sz);
524                 if (ret < 0)
525                         return ret;
526                 /*
527                  * write number of unique id per event
528                  * there is one id per instance of an event
529                  *
530                  * copy into an nri to be independent of the
531                  * type of ids,
532                  */
533                 nri = evsel->core.ids;
534                 ret = do_write(ff, &nri, sizeof(nri));
535                 if (ret < 0)
536                         return ret;
537
538                 /*
539                  * write event string as passed on cmdline
540                  */
541                 ret = do_write_string(ff, evsel__name(evsel));
542                 if (ret < 0)
543                         return ret;
544                 /*
545                  * write unique ids for this event
546                  */
547                 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
548                 if (ret < 0)
549                         return ret;
550         }
551         return 0;
552 }
553
554 static int write_cmdline(struct feat_fd *ff,
555                          struct evlist *evlist __maybe_unused)
556 {
557         char pbuf[MAXPATHLEN], *buf;
558         int i, ret, n;
559
560         /* actual path to perf binary */
561         buf = perf_exe(pbuf, MAXPATHLEN);
562
563         /* account for binary path */
564         n = perf_env.nr_cmdline + 1;
565
566         ret = do_write(ff, &n, sizeof(n));
567         if (ret < 0)
568                 return ret;
569
570         ret = do_write_string(ff, buf);
571         if (ret < 0)
572                 return ret;
573
574         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
575                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
576                 if (ret < 0)
577                         return ret;
578         }
579         return 0;
580 }
581
582
583 static int write_cpu_topology(struct feat_fd *ff,
584                               struct evlist *evlist __maybe_unused)
585 {
586         struct cpu_topology *tp;
587         u32 i;
588         int ret, j;
589
590         tp = cpu_topology__new();
591         if (!tp)
592                 return -1;
593
594         ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
595         if (ret < 0)
596                 goto done;
597
598         for (i = 0; i < tp->package_cpus_lists; i++) {
599                 ret = do_write_string(ff, tp->package_cpus_list[i]);
600                 if (ret < 0)
601                         goto done;
602         }
603         ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
604         if (ret < 0)
605                 goto done;
606
607         for (i = 0; i < tp->core_cpus_lists; i++) {
608                 ret = do_write_string(ff, tp->core_cpus_list[i]);
609                 if (ret < 0)
610                         break;
611         }
612
613         ret = perf_env__read_cpu_topology_map(&perf_env);
614         if (ret < 0)
615                 goto done;
616
617         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
618                 ret = do_write(ff, &perf_env.cpu[j].core_id,
619                                sizeof(perf_env.cpu[j].core_id));
620                 if (ret < 0)
621                         return ret;
622                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
623                                sizeof(perf_env.cpu[j].socket_id));
624                 if (ret < 0)
625                         return ret;
626         }
627
628         if (!tp->die_cpus_lists)
629                 goto done;
630
631         ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
632         if (ret < 0)
633                 goto done;
634
635         for (i = 0; i < tp->die_cpus_lists; i++) {
636                 ret = do_write_string(ff, tp->die_cpus_list[i]);
637                 if (ret < 0)
638                         goto done;
639         }
640
641         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
642                 ret = do_write(ff, &perf_env.cpu[j].die_id,
643                                sizeof(perf_env.cpu[j].die_id));
644                 if (ret < 0)
645                         return ret;
646         }
647
648 done:
649         cpu_topology__delete(tp);
650         return ret;
651 }
652
653
654
655 static int write_total_mem(struct feat_fd *ff,
656                            struct evlist *evlist __maybe_unused)
657 {
658         char *buf = NULL;
659         FILE *fp;
660         size_t len = 0;
661         int ret = -1, n;
662         uint64_t mem;
663
664         fp = fopen("/proc/meminfo", "r");
665         if (!fp)
666                 return -1;
667
668         while (getline(&buf, &len, fp) > 0) {
669                 ret = strncmp(buf, "MemTotal:", 9);
670                 if (!ret)
671                         break;
672         }
673         if (!ret) {
674                 n = sscanf(buf, "%*s %"PRIu64, &mem);
675                 if (n == 1)
676                         ret = do_write(ff, &mem, sizeof(mem));
677         } else
678                 ret = -1;
679         free(buf);
680         fclose(fp);
681         return ret;
682 }
683
684 static int write_numa_topology(struct feat_fd *ff,
685                                struct evlist *evlist __maybe_unused)
686 {
687         struct numa_topology *tp;
688         int ret = -1;
689         u32 i;
690
691         tp = numa_topology__new();
692         if (!tp)
693                 return -ENOMEM;
694
695         ret = do_write(ff, &tp->nr, sizeof(u32));
696         if (ret < 0)
697                 goto err;
698
699         for (i = 0; i < tp->nr; i++) {
700                 struct numa_topology_node *n = &tp->nodes[i];
701
702                 ret = do_write(ff, &n->node, sizeof(u32));
703                 if (ret < 0)
704                         goto err;
705
706                 ret = do_write(ff, &n->mem_total, sizeof(u64));
707                 if (ret)
708                         goto err;
709
710                 ret = do_write(ff, &n->mem_free, sizeof(u64));
711                 if (ret)
712                         goto err;
713
714                 ret = do_write_string(ff, n->cpus);
715                 if (ret < 0)
716                         goto err;
717         }
718
719         ret = 0;
720
721 err:
722         numa_topology__delete(tp);
723         return ret;
724 }
725
726 /*
727  * File format:
728  *
729  * struct pmu_mappings {
730  *      u32     pmu_num;
731  *      struct pmu_map {
732  *              u32     type;
733  *              char    name[];
734  *      }[pmu_num];
735  * };
736  */
737
738 static int write_pmu_mappings(struct feat_fd *ff,
739                               struct evlist *evlist __maybe_unused)
740 {
741         struct perf_pmu *pmu = NULL;
742         u32 pmu_num = 0;
743         int ret;
744
745         /*
746          * Do a first pass to count number of pmu to avoid lseek so this
747          * works in pipe mode as well.
748          */
749         while ((pmu = perf_pmus__scan(pmu))) {
750                 if (!pmu->name)
751                         continue;
752                 pmu_num++;
753         }
754
755         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
756         if (ret < 0)
757                 return ret;
758
759         while ((pmu = perf_pmus__scan(pmu))) {
760                 if (!pmu->name)
761                         continue;
762
763                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
764                 if (ret < 0)
765                         return ret;
766
767                 ret = do_write_string(ff, pmu->name);
768                 if (ret < 0)
769                         return ret;
770         }
771
772         return 0;
773 }
774
775 /*
776  * File format:
777  *
778  * struct group_descs {
779  *      u32     nr_groups;
780  *      struct group_desc {
781  *              char    name[];
782  *              u32     leader_idx;
783  *              u32     nr_members;
784  *      }[nr_groups];
785  * };
786  */
787 static int write_group_desc(struct feat_fd *ff,
788                             struct evlist *evlist)
789 {
790         u32 nr_groups = evlist__nr_groups(evlist);
791         struct evsel *evsel;
792         int ret;
793
794         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
795         if (ret < 0)
796                 return ret;
797
798         evlist__for_each_entry(evlist, evsel) {
799                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
800                         const char *name = evsel->group_name ?: "{anon_group}";
801                         u32 leader_idx = evsel->core.idx;
802                         u32 nr_members = evsel->core.nr_members;
803
804                         ret = do_write_string(ff, name);
805                         if (ret < 0)
806                                 return ret;
807
808                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
809                         if (ret < 0)
810                                 return ret;
811
812                         ret = do_write(ff, &nr_members, sizeof(nr_members));
813                         if (ret < 0)
814                                 return ret;
815                 }
816         }
817         return 0;
818 }
819
820 /*
821  * Return the CPU id as a raw string.
822  *
823  * Each architecture should provide a more precise id string that
824  * can be use to match the architecture's "mapfile".
825  */
826 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
827 {
828         return NULL;
829 }
830
831 /* Return zero when the cpuid from the mapfile.csv matches the
832  * cpuid string generated on this platform.
833  * Otherwise return non-zero.
834  */
835 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
836 {
837         regex_t re;
838         regmatch_t pmatch[1];
839         int match;
840
841         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
842                 /* Warn unable to generate match particular string. */
843                 pr_info("Invalid regular expression %s\n", mapcpuid);
844                 return 1;
845         }
846
847         match = !regexec(&re, cpuid, 1, pmatch, 0);
848         regfree(&re);
849         if (match) {
850                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
851
852                 /* Verify the entire string matched. */
853                 if (match_len == strlen(cpuid))
854                         return 0;
855         }
856         return 1;
857 }
858
859 /*
860  * default get_cpuid(): nothing gets recorded
861  * actual implementation must be in arch/$(SRCARCH)/util/header.c
862  */
863 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
864 {
865         return ENOSYS; /* Not implemented */
866 }
867
868 static int write_cpuid(struct feat_fd *ff,
869                        struct evlist *evlist __maybe_unused)
870 {
871         char buffer[64];
872         int ret;
873
874         ret = get_cpuid(buffer, sizeof(buffer));
875         if (ret)
876                 return -1;
877
878         return do_write_string(ff, buffer);
879 }
880
881 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
882                               struct evlist *evlist __maybe_unused)
883 {
884         return 0;
885 }
886
887 static int write_auxtrace(struct feat_fd *ff,
888                           struct evlist *evlist __maybe_unused)
889 {
890         struct perf_session *session;
891         int err;
892
893         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
894                 return -1;
895
896         session = container_of(ff->ph, struct perf_session, header);
897
898         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
899         if (err < 0)
900                 pr_err("Failed to write auxtrace index\n");
901         return err;
902 }
903
904 static int write_clockid(struct feat_fd *ff,
905                          struct evlist *evlist __maybe_unused)
906 {
907         return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
908                         sizeof(ff->ph->env.clock.clockid_res_ns));
909 }
910
911 static int write_clock_data(struct feat_fd *ff,
912                             struct evlist *evlist __maybe_unused)
913 {
914         u64 *data64;
915         u32 data32;
916         int ret;
917
918         /* version */
919         data32 = 1;
920
921         ret = do_write(ff, &data32, sizeof(data32));
922         if (ret < 0)
923                 return ret;
924
925         /* clockid */
926         data32 = ff->ph->env.clock.clockid;
927
928         ret = do_write(ff, &data32, sizeof(data32));
929         if (ret < 0)
930                 return ret;
931
932         /* TOD ref time */
933         data64 = &ff->ph->env.clock.tod_ns;
934
935         ret = do_write(ff, data64, sizeof(*data64));
936         if (ret < 0)
937                 return ret;
938
939         /* clockid ref time */
940         data64 = &ff->ph->env.clock.clockid_ns;
941
942         return do_write(ff, data64, sizeof(*data64));
943 }
944
945 static int write_hybrid_topology(struct feat_fd *ff,
946                                  struct evlist *evlist __maybe_unused)
947 {
948         struct hybrid_topology *tp;
949         int ret;
950         u32 i;
951
952         tp = hybrid_topology__new();
953         if (!tp)
954                 return -ENOENT;
955
956         ret = do_write(ff, &tp->nr, sizeof(u32));
957         if (ret < 0)
958                 goto err;
959
960         for (i = 0; i < tp->nr; i++) {
961                 struct hybrid_topology_node *n = &tp->nodes[i];
962
963                 ret = do_write_string(ff, n->pmu_name);
964                 if (ret < 0)
965                         goto err;
966
967                 ret = do_write_string(ff, n->cpus);
968                 if (ret < 0)
969                         goto err;
970         }
971
972         ret = 0;
973
974 err:
975         hybrid_topology__delete(tp);
976         return ret;
977 }
978
979 static int write_dir_format(struct feat_fd *ff,
980                             struct evlist *evlist __maybe_unused)
981 {
982         struct perf_session *session;
983         struct perf_data *data;
984
985         session = container_of(ff->ph, struct perf_session, header);
986         data = session->data;
987
988         if (WARN_ON(!perf_data__is_dir(data)))
989                 return -1;
990
991         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
992 }
993
994 /*
995  * Check whether a CPU is online
996  *
997  * Returns:
998  *     1 -> if CPU is online
999  *     0 -> if CPU is offline
1000  *    -1 -> error case
1001  */
1002 int is_cpu_online(unsigned int cpu)
1003 {
1004         char *str;
1005         size_t strlen;
1006         char buf[256];
1007         int status = -1;
1008         struct stat statbuf;
1009
1010         snprintf(buf, sizeof(buf),
1011                 "/sys/devices/system/cpu/cpu%d", cpu);
1012         if (stat(buf, &statbuf) != 0)
1013                 return 0;
1014
1015         /*
1016          * Check if /sys/devices/system/cpu/cpux/online file
1017          * exists. Some cases cpu0 won't have online file since
1018          * it is not expected to be turned off generally.
1019          * In kernels without CONFIG_HOTPLUG_CPU, this
1020          * file won't exist
1021          */
1022         snprintf(buf, sizeof(buf),
1023                 "/sys/devices/system/cpu/cpu%d/online", cpu);
1024         if (stat(buf, &statbuf) != 0)
1025                 return 1;
1026
1027         /*
1028          * Read online file using sysfs__read_str.
1029          * If read or open fails, return -1.
1030          * If read succeeds, return value from file
1031          * which gets stored in "str"
1032          */
1033         snprintf(buf, sizeof(buf),
1034                 "devices/system/cpu/cpu%d/online", cpu);
1035
1036         if (sysfs__read_str(buf, &str, &strlen) < 0)
1037                 return status;
1038
1039         status = atoi(str);
1040
1041         free(str);
1042         return status;
1043 }
1044
1045 #ifdef HAVE_LIBBPF_SUPPORT
1046 static int write_bpf_prog_info(struct feat_fd *ff,
1047                                struct evlist *evlist __maybe_unused)
1048 {
1049         struct perf_env *env = &ff->ph->env;
1050         struct rb_root *root;
1051         struct rb_node *next;
1052         int ret;
1053
1054         down_read(&env->bpf_progs.lock);
1055
1056         ret = do_write(ff, &env->bpf_progs.infos_cnt,
1057                        sizeof(env->bpf_progs.infos_cnt));
1058         if (ret < 0)
1059                 goto out;
1060
1061         root = &env->bpf_progs.infos;
1062         next = rb_first(root);
1063         while (next) {
1064                 struct bpf_prog_info_node *node;
1065                 size_t len;
1066
1067                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1068                 next = rb_next(&node->rb_node);
1069                 len = sizeof(struct perf_bpil) +
1070                         node->info_linear->data_len;
1071
1072                 /* before writing to file, translate address to offset */
1073                 bpil_addr_to_offs(node->info_linear);
1074                 ret = do_write(ff, node->info_linear, len);
1075                 /*
1076                  * translate back to address even when do_write() fails,
1077                  * so that this function never changes the data.
1078                  */
1079                 bpil_offs_to_addr(node->info_linear);
1080                 if (ret < 0)
1081                         goto out;
1082         }
1083 out:
1084         up_read(&env->bpf_progs.lock);
1085         return ret;
1086 }
1087
1088 static int write_bpf_btf(struct feat_fd *ff,
1089                          struct evlist *evlist __maybe_unused)
1090 {
1091         struct perf_env *env = &ff->ph->env;
1092         struct rb_root *root;
1093         struct rb_node *next;
1094         int ret;
1095
1096         down_read(&env->bpf_progs.lock);
1097
1098         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1099                        sizeof(env->bpf_progs.btfs_cnt));
1100
1101         if (ret < 0)
1102                 goto out;
1103
1104         root = &env->bpf_progs.btfs;
1105         next = rb_first(root);
1106         while (next) {
1107                 struct btf_node *node;
1108
1109                 node = rb_entry(next, struct btf_node, rb_node);
1110                 next = rb_next(&node->rb_node);
1111                 ret = do_write(ff, &node->id,
1112                                sizeof(u32) * 2 + node->data_size);
1113                 if (ret < 0)
1114                         goto out;
1115         }
1116 out:
1117         up_read(&env->bpf_progs.lock);
1118         return ret;
1119 }
1120 #endif // HAVE_LIBBPF_SUPPORT
1121
1122 static int cpu_cache_level__sort(const void *a, const void *b)
1123 {
1124         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1125         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1126
1127         return cache_a->level - cache_b->level;
1128 }
1129
1130 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1131 {
1132         if (a->level != b->level)
1133                 return false;
1134
1135         if (a->line_size != b->line_size)
1136                 return false;
1137
1138         if (a->sets != b->sets)
1139                 return false;
1140
1141         if (a->ways != b->ways)
1142                 return false;
1143
1144         if (strcmp(a->type, b->type))
1145                 return false;
1146
1147         if (strcmp(a->size, b->size))
1148                 return false;
1149
1150         if (strcmp(a->map, b->map))
1151                 return false;
1152
1153         return true;
1154 }
1155
1156 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1157 {
1158         char path[PATH_MAX], file[PATH_MAX];
1159         struct stat st;
1160         size_t len;
1161
1162         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1163         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1164
1165         if (stat(file, &st))
1166                 return 1;
1167
1168         scnprintf(file, PATH_MAX, "%s/level", path);
1169         if (sysfs__read_int(file, (int *) &cache->level))
1170                 return -1;
1171
1172         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1173         if (sysfs__read_int(file, (int *) &cache->line_size))
1174                 return -1;
1175
1176         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1177         if (sysfs__read_int(file, (int *) &cache->sets))
1178                 return -1;
1179
1180         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1181         if (sysfs__read_int(file, (int *) &cache->ways))
1182                 return -1;
1183
1184         scnprintf(file, PATH_MAX, "%s/type", path);
1185         if (sysfs__read_str(file, &cache->type, &len))
1186                 return -1;
1187
1188         cache->type[len] = 0;
1189         cache->type = strim(cache->type);
1190
1191         scnprintf(file, PATH_MAX, "%s/size", path);
1192         if (sysfs__read_str(file, &cache->size, &len)) {
1193                 zfree(&cache->type);
1194                 return -1;
1195         }
1196
1197         cache->size[len] = 0;
1198         cache->size = strim(cache->size);
1199
1200         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1201         if (sysfs__read_str(file, &cache->map, &len)) {
1202                 zfree(&cache->size);
1203                 zfree(&cache->type);
1204                 return -1;
1205         }
1206
1207         cache->map[len] = 0;
1208         cache->map = strim(cache->map);
1209         return 0;
1210 }
1211
1212 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1213 {
1214         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1215 }
1216
1217 /*
1218  * Build caches levels for a particular CPU from the data in
1219  * /sys/devices/system/cpu/cpu<cpu>/cache/
1220  * The cache level data is stored in caches[] from index at
1221  * *cntp.
1222  */
1223 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1224 {
1225         u16 level;
1226
1227         for (level = 0; level < MAX_CACHE_LVL; level++) {
1228                 struct cpu_cache_level c;
1229                 int err;
1230                 u32 i;
1231
1232                 err = cpu_cache_level__read(&c, cpu, level);
1233                 if (err < 0)
1234                         return err;
1235
1236                 if (err == 1)
1237                         break;
1238
1239                 for (i = 0; i < *cntp; i++) {
1240                         if (cpu_cache_level__cmp(&c, &caches[i]))
1241                                 break;
1242                 }
1243
1244                 if (i == *cntp) {
1245                         caches[*cntp] = c;
1246                         *cntp = *cntp + 1;
1247                 } else
1248                         cpu_cache_level__free(&c);
1249         }
1250
1251         return 0;
1252 }
1253
1254 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1255 {
1256         u32 nr, cpu, cnt = 0;
1257
1258         nr = cpu__max_cpu().cpu;
1259
1260         for (cpu = 0; cpu < nr; cpu++) {
1261                 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1262
1263                 if (ret)
1264                         return ret;
1265         }
1266         *cntp = cnt;
1267         return 0;
1268 }
1269
1270 static int write_cache(struct feat_fd *ff,
1271                        struct evlist *evlist __maybe_unused)
1272 {
1273         u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1274         struct cpu_cache_level caches[max_caches];
1275         u32 cnt = 0, i, version = 1;
1276         int ret;
1277
1278         ret = build_caches(caches, &cnt);
1279         if (ret)
1280                 goto out;
1281
1282         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1283
1284         ret = do_write(ff, &version, sizeof(u32));
1285         if (ret < 0)
1286                 goto out;
1287
1288         ret = do_write(ff, &cnt, sizeof(u32));
1289         if (ret < 0)
1290                 goto out;
1291
1292         for (i = 0; i < cnt; i++) {
1293                 struct cpu_cache_level *c = &caches[i];
1294
1295                 #define _W(v)                                   \
1296                         ret = do_write(ff, &c->v, sizeof(u32)); \
1297                         if (ret < 0)                            \
1298                                 goto out;
1299
1300                 _W(level)
1301                 _W(line_size)
1302                 _W(sets)
1303                 _W(ways)
1304                 #undef _W
1305
1306                 #define _W(v)                                           \
1307                         ret = do_write_string(ff, (const char *) c->v); \
1308                         if (ret < 0)                                    \
1309                                 goto out;
1310
1311                 _W(type)
1312                 _W(size)
1313                 _W(map)
1314                 #undef _W
1315         }
1316
1317 out:
1318         for (i = 0; i < cnt; i++)
1319                 cpu_cache_level__free(&caches[i]);
1320         return ret;
1321 }
1322
1323 static int write_stat(struct feat_fd *ff __maybe_unused,
1324                       struct evlist *evlist __maybe_unused)
1325 {
1326         return 0;
1327 }
1328
1329 static int write_sample_time(struct feat_fd *ff,
1330                              struct evlist *evlist)
1331 {
1332         int ret;
1333
1334         ret = do_write(ff, &evlist->first_sample_time,
1335                        sizeof(evlist->first_sample_time));
1336         if (ret < 0)
1337                 return ret;
1338
1339         return do_write(ff, &evlist->last_sample_time,
1340                         sizeof(evlist->last_sample_time));
1341 }
1342
1343
1344 static int memory_node__read(struct memory_node *n, unsigned long idx)
1345 {
1346         unsigned int phys, size = 0;
1347         char path[PATH_MAX];
1348         struct dirent *ent;
1349         DIR *dir;
1350
1351 #define for_each_memory(mem, dir)                                       \
1352         while ((ent = readdir(dir)))                                    \
1353                 if (strcmp(ent->d_name, ".") &&                         \
1354                     strcmp(ent->d_name, "..") &&                        \
1355                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1356
1357         scnprintf(path, PATH_MAX,
1358                   "%s/devices/system/node/node%lu",
1359                   sysfs__mountpoint(), idx);
1360
1361         dir = opendir(path);
1362         if (!dir) {
1363                 pr_warning("failed: can't open memory sysfs data\n");
1364                 return -1;
1365         }
1366
1367         for_each_memory(phys, dir) {
1368                 size = max(phys, size);
1369         }
1370
1371         size++;
1372
1373         n->set = bitmap_zalloc(size);
1374         if (!n->set) {
1375                 closedir(dir);
1376                 return -ENOMEM;
1377         }
1378
1379         n->node = idx;
1380         n->size = size;
1381
1382         rewinddir(dir);
1383
1384         for_each_memory(phys, dir) {
1385                 __set_bit(phys, n->set);
1386         }
1387
1388         closedir(dir);
1389         return 0;
1390 }
1391
1392 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1393 {
1394         for (u64 i = 0; i < cnt; i++)
1395                 bitmap_free(nodesp[i].set);
1396
1397         free(nodesp);
1398 }
1399
1400 static int memory_node__sort(const void *a, const void *b)
1401 {
1402         const struct memory_node *na = a;
1403         const struct memory_node *nb = b;
1404
1405         return na->node - nb->node;
1406 }
1407
1408 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1409 {
1410         char path[PATH_MAX];
1411         struct dirent *ent;
1412         DIR *dir;
1413         int ret = 0;
1414         size_t cnt = 0, size = 0;
1415         struct memory_node *nodes = NULL;
1416
1417         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1418                   sysfs__mountpoint());
1419
1420         dir = opendir(path);
1421         if (!dir) {
1422                 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1423                           __func__, path);
1424                 return -1;
1425         }
1426
1427         while (!ret && (ent = readdir(dir))) {
1428                 unsigned int idx;
1429                 int r;
1430
1431                 if (!strcmp(ent->d_name, ".") ||
1432                     !strcmp(ent->d_name, ".."))
1433                         continue;
1434
1435                 r = sscanf(ent->d_name, "node%u", &idx);
1436                 if (r != 1)
1437                         continue;
1438
1439                 if (cnt >= size) {
1440                         struct memory_node *new_nodes =
1441                                 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1442
1443                         if (!new_nodes) {
1444                                 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1445                                 ret = -ENOMEM;
1446                                 goto out;
1447                         }
1448                         nodes = new_nodes;
1449                         size += 4;
1450                 }
1451                 ret = memory_node__read(&nodes[cnt++], idx);
1452         }
1453 out:
1454         closedir(dir);
1455         if (!ret) {
1456                 *cntp = cnt;
1457                 *nodesp = nodes;
1458                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1459         } else
1460                 memory_node__delete_nodes(nodes, cnt);
1461
1462         return ret;
1463 }
1464
1465 /*
1466  * The MEM_TOPOLOGY holds physical memory map for every
1467  * node in system. The format of data is as follows:
1468  *
1469  *  0 - version          | for future changes
1470  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1471  * 16 - count            | number of nodes
1472  *
1473  * For each node we store map of physical indexes for
1474  * each node:
1475  *
1476  * 32 - node id          | node index
1477  * 40 - size             | size of bitmap
1478  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1479  */
1480 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1481                               struct evlist *evlist __maybe_unused)
1482 {
1483         struct memory_node *nodes = NULL;
1484         u64 bsize, version = 1, i, nr = 0;
1485         int ret;
1486
1487         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1488                               (unsigned long long *) &bsize);
1489         if (ret)
1490                 return ret;
1491
1492         ret = build_mem_topology(&nodes, &nr);
1493         if (ret)
1494                 return ret;
1495
1496         ret = do_write(ff, &version, sizeof(version));
1497         if (ret < 0)
1498                 goto out;
1499
1500         ret = do_write(ff, &bsize, sizeof(bsize));
1501         if (ret < 0)
1502                 goto out;
1503
1504         ret = do_write(ff, &nr, sizeof(nr));
1505         if (ret < 0)
1506                 goto out;
1507
1508         for (i = 0; i < nr; i++) {
1509                 struct memory_node *n = &nodes[i];
1510
1511                 #define _W(v)                                           \
1512                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1513                         if (ret < 0)                                    \
1514                                 goto out;
1515
1516                 _W(node)
1517                 _W(size)
1518
1519                 #undef _W
1520
1521                 ret = do_write_bitmap(ff, n->set, n->size);
1522                 if (ret < 0)
1523                         goto out;
1524         }
1525
1526 out:
1527         memory_node__delete_nodes(nodes, nr);
1528         return ret;
1529 }
1530
1531 static int write_compressed(struct feat_fd *ff __maybe_unused,
1532                             struct evlist *evlist __maybe_unused)
1533 {
1534         int ret;
1535
1536         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1537         if (ret)
1538                 return ret;
1539
1540         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1541         if (ret)
1542                 return ret;
1543
1544         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1545         if (ret)
1546                 return ret;
1547
1548         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1549         if (ret)
1550                 return ret;
1551
1552         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1553 }
1554
1555 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1556                             bool write_pmu)
1557 {
1558         struct perf_pmu_caps *caps = NULL;
1559         int ret;
1560
1561         ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1562         if (ret < 0)
1563                 return ret;
1564
1565         list_for_each_entry(caps, &pmu->caps, list) {
1566                 ret = do_write_string(ff, caps->name);
1567                 if (ret < 0)
1568                         return ret;
1569
1570                 ret = do_write_string(ff, caps->value);
1571                 if (ret < 0)
1572                         return ret;
1573         }
1574
1575         if (write_pmu) {
1576                 ret = do_write_string(ff, pmu->name);
1577                 if (ret < 0)
1578                         return ret;
1579         }
1580
1581         return ret;
1582 }
1583
1584 static int write_cpu_pmu_caps(struct feat_fd *ff,
1585                               struct evlist *evlist __maybe_unused)
1586 {
1587         struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1588         int ret;
1589
1590         if (!cpu_pmu)
1591                 return -ENOENT;
1592
1593         ret = perf_pmu__caps_parse(cpu_pmu);
1594         if (ret < 0)
1595                 return ret;
1596
1597         return __write_pmu_caps(ff, cpu_pmu, false);
1598 }
1599
1600 static int write_pmu_caps(struct feat_fd *ff,
1601                           struct evlist *evlist __maybe_unused)
1602 {
1603         struct perf_pmu *pmu = NULL;
1604         int nr_pmu = 0;
1605         int ret;
1606
1607         while ((pmu = perf_pmus__scan(pmu))) {
1608                 if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1609                     perf_pmu__caps_parse(pmu) <= 0)
1610                         continue;
1611                 nr_pmu++;
1612         }
1613
1614         ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1615         if (ret < 0)
1616                 return ret;
1617
1618         if (!nr_pmu)
1619                 return 0;
1620
1621         /*
1622          * Write hybrid pmu caps first to maintain compatibility with
1623          * older perf tool.
1624          */
1625         if (perf_pmus__num_core_pmus() > 1) {
1626                 pmu = NULL;
1627                 while ((pmu = perf_pmus__scan_core(pmu))) {
1628                         ret = __write_pmu_caps(ff, pmu, true);
1629                         if (ret < 0)
1630                                 return ret;
1631                 }
1632         }
1633
1634         pmu = NULL;
1635         while ((pmu = perf_pmus__scan(pmu))) {
1636                 if (pmu->is_core || !pmu->nr_caps)
1637                         continue;
1638
1639                 ret = __write_pmu_caps(ff, pmu, true);
1640                 if (ret < 0)
1641                         return ret;
1642         }
1643         return 0;
1644 }
1645
1646 static void print_hostname(struct feat_fd *ff, FILE *fp)
1647 {
1648         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1649 }
1650
1651 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1652 {
1653         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1654 }
1655
1656 static void print_arch(struct feat_fd *ff, FILE *fp)
1657 {
1658         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1659 }
1660
1661 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1662 {
1663         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1664 }
1665
1666 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1667 {
1668         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1669         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1670 }
1671
1672 static void print_version(struct feat_fd *ff, FILE *fp)
1673 {
1674         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1675 }
1676
1677 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1678 {
1679         int nr, i;
1680
1681         nr = ff->ph->env.nr_cmdline;
1682
1683         fprintf(fp, "# cmdline : ");
1684
1685         for (i = 0; i < nr; i++) {
1686                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1687                 if (!argv_i) {
1688                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1689                 } else {
1690                         char *mem = argv_i;
1691                         do {
1692                                 char *quote = strchr(argv_i, '\'');
1693                                 if (!quote)
1694                                         break;
1695                                 *quote++ = '\0';
1696                                 fprintf(fp, "%s\\\'", argv_i);
1697                                 argv_i = quote;
1698                         } while (1);
1699                         fprintf(fp, "%s ", argv_i);
1700                         free(mem);
1701                 }
1702         }
1703         fputc('\n', fp);
1704 }
1705
1706 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1707 {
1708         struct perf_header *ph = ff->ph;
1709         int cpu_nr = ph->env.nr_cpus_avail;
1710         int nr, i;
1711         char *str;
1712
1713         nr = ph->env.nr_sibling_cores;
1714         str = ph->env.sibling_cores;
1715
1716         for (i = 0; i < nr; i++) {
1717                 fprintf(fp, "# sibling sockets : %s\n", str);
1718                 str += strlen(str) + 1;
1719         }
1720
1721         if (ph->env.nr_sibling_dies) {
1722                 nr = ph->env.nr_sibling_dies;
1723                 str = ph->env.sibling_dies;
1724
1725                 for (i = 0; i < nr; i++) {
1726                         fprintf(fp, "# sibling dies    : %s\n", str);
1727                         str += strlen(str) + 1;
1728                 }
1729         }
1730
1731         nr = ph->env.nr_sibling_threads;
1732         str = ph->env.sibling_threads;
1733
1734         for (i = 0; i < nr; i++) {
1735                 fprintf(fp, "# sibling threads : %s\n", str);
1736                 str += strlen(str) + 1;
1737         }
1738
1739         if (ph->env.nr_sibling_dies) {
1740                 if (ph->env.cpu != NULL) {
1741                         for (i = 0; i < cpu_nr; i++)
1742                                 fprintf(fp, "# CPU %d: Core ID %d, "
1743                                             "Die ID %d, Socket ID %d\n",
1744                                             i, ph->env.cpu[i].core_id,
1745                                             ph->env.cpu[i].die_id,
1746                                             ph->env.cpu[i].socket_id);
1747                 } else
1748                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1749                                     "information is not available\n");
1750         } else {
1751                 if (ph->env.cpu != NULL) {
1752                         for (i = 0; i < cpu_nr; i++)
1753                                 fprintf(fp, "# CPU %d: Core ID %d, "
1754                                             "Socket ID %d\n",
1755                                             i, ph->env.cpu[i].core_id,
1756                                             ph->env.cpu[i].socket_id);
1757                 } else
1758                         fprintf(fp, "# Core ID and Socket ID "
1759                                     "information is not available\n");
1760         }
1761 }
1762
1763 static void print_clockid(struct feat_fd *ff, FILE *fp)
1764 {
1765         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1766                 ff->ph->env.clock.clockid_res_ns * 1000);
1767 }
1768
1769 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1770 {
1771         struct timespec clockid_ns;
1772         char tstr[64], date[64];
1773         struct timeval tod_ns;
1774         clockid_t clockid;
1775         struct tm ltime;
1776         u64 ref;
1777
1778         if (!ff->ph->env.clock.enabled) {
1779                 fprintf(fp, "# reference time disabled\n");
1780                 return;
1781         }
1782
1783         /* Compute TOD time. */
1784         ref = ff->ph->env.clock.tod_ns;
1785         tod_ns.tv_sec = ref / NSEC_PER_SEC;
1786         ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1787         tod_ns.tv_usec = ref / NSEC_PER_USEC;
1788
1789         /* Compute clockid time. */
1790         ref = ff->ph->env.clock.clockid_ns;
1791         clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1792         ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1793         clockid_ns.tv_nsec = ref;
1794
1795         clockid = ff->ph->env.clock.clockid;
1796
1797         if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1798                 snprintf(tstr, sizeof(tstr), "<error>");
1799         else {
1800                 strftime(date, sizeof(date), "%F %T", &ltime);
1801                 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1802                           date, (int) tod_ns.tv_usec);
1803         }
1804
1805         fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1806         fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1807                     tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1808                     (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1809                     clockid_name(clockid));
1810 }
1811
1812 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1813 {
1814         int i;
1815         struct hybrid_node *n;
1816
1817         fprintf(fp, "# hybrid cpu system:\n");
1818         for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1819                 n = &ff->ph->env.hybrid_nodes[i];
1820                 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1821         }
1822 }
1823
1824 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1825 {
1826         struct perf_session *session;
1827         struct perf_data *data;
1828
1829         session = container_of(ff->ph, struct perf_session, header);
1830         data = session->data;
1831
1832         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1833 }
1834
1835 #ifdef HAVE_LIBBPF_SUPPORT
1836 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1837 {
1838         struct perf_env *env = &ff->ph->env;
1839         struct rb_root *root;
1840         struct rb_node *next;
1841
1842         down_read(&env->bpf_progs.lock);
1843
1844         root = &env->bpf_progs.infos;
1845         next = rb_first(root);
1846
1847         while (next) {
1848                 struct bpf_prog_info_node *node;
1849
1850                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1851                 next = rb_next(&node->rb_node);
1852
1853                 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1854                                                env, fp);
1855         }
1856
1857         up_read(&env->bpf_progs.lock);
1858 }
1859
1860 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1861 {
1862         struct perf_env *env = &ff->ph->env;
1863         struct rb_root *root;
1864         struct rb_node *next;
1865
1866         down_read(&env->bpf_progs.lock);
1867
1868         root = &env->bpf_progs.btfs;
1869         next = rb_first(root);
1870
1871         while (next) {
1872                 struct btf_node *node;
1873
1874                 node = rb_entry(next, struct btf_node, rb_node);
1875                 next = rb_next(&node->rb_node);
1876                 fprintf(fp, "# btf info of id %u\n", node->id);
1877         }
1878
1879         up_read(&env->bpf_progs.lock);
1880 }
1881 #endif // HAVE_LIBBPF_SUPPORT
1882
1883 static void free_event_desc(struct evsel *events)
1884 {
1885         struct evsel *evsel;
1886
1887         if (!events)
1888                 return;
1889
1890         for (evsel = events; evsel->core.attr.size; evsel++) {
1891                 zfree(&evsel->name);
1892                 zfree(&evsel->core.id);
1893         }
1894
1895         free(events);
1896 }
1897
1898 static bool perf_attr_check(struct perf_event_attr *attr)
1899 {
1900         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1901                 pr_warning("Reserved bits are set unexpectedly. "
1902                            "Please update perf tool.\n");
1903                 return false;
1904         }
1905
1906         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1907                 pr_warning("Unknown sample type (0x%llx) is detected. "
1908                            "Please update perf tool.\n",
1909                            attr->sample_type);
1910                 return false;
1911         }
1912
1913         if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1914                 pr_warning("Unknown read format (0x%llx) is detected. "
1915                            "Please update perf tool.\n",
1916                            attr->read_format);
1917                 return false;
1918         }
1919
1920         if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1921             (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1922                 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1923                            "Please update perf tool.\n",
1924                            attr->branch_sample_type);
1925
1926                 return false;
1927         }
1928
1929         return true;
1930 }
1931
1932 static struct evsel *read_event_desc(struct feat_fd *ff)
1933 {
1934         struct evsel *evsel, *events = NULL;
1935         u64 *id;
1936         void *buf = NULL;
1937         u32 nre, sz, nr, i, j;
1938         size_t msz;
1939
1940         /* number of events */
1941         if (do_read_u32(ff, &nre))
1942                 goto error;
1943
1944         if (do_read_u32(ff, &sz))
1945                 goto error;
1946
1947         /* buffer to hold on file attr struct */
1948         buf = malloc(sz);
1949         if (!buf)
1950                 goto error;
1951
1952         /* the last event terminates with evsel->core.attr.size == 0: */
1953         events = calloc(nre + 1, sizeof(*events));
1954         if (!events)
1955                 goto error;
1956
1957         msz = sizeof(evsel->core.attr);
1958         if (sz < msz)
1959                 msz = sz;
1960
1961         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1962                 evsel->core.idx = i;
1963
1964                 /*
1965                  * must read entire on-file attr struct to
1966                  * sync up with layout.
1967                  */
1968                 if (__do_read(ff, buf, sz))
1969                         goto error;
1970
1971                 if (ff->ph->needs_swap)
1972                         perf_event__attr_swap(buf);
1973
1974                 memcpy(&evsel->core.attr, buf, msz);
1975
1976                 if (!perf_attr_check(&evsel->core.attr))
1977                         goto error;
1978
1979                 if (do_read_u32(ff, &nr))
1980                         goto error;
1981
1982                 if (ff->ph->needs_swap)
1983                         evsel->needs_swap = true;
1984
1985                 evsel->name = do_read_string(ff);
1986                 if (!evsel->name)
1987                         goto error;
1988
1989                 if (!nr)
1990                         continue;
1991
1992                 id = calloc(nr, sizeof(*id));
1993                 if (!id)
1994                         goto error;
1995                 evsel->core.ids = nr;
1996                 evsel->core.id = id;
1997
1998                 for (j = 0 ; j < nr; j++) {
1999                         if (do_read_u64(ff, id))
2000                                 goto error;
2001                         id++;
2002                 }
2003         }
2004 out:
2005         free(buf);
2006         return events;
2007 error:
2008         free_event_desc(events);
2009         events = NULL;
2010         goto out;
2011 }
2012
2013 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2014                                 void *priv __maybe_unused)
2015 {
2016         return fprintf(fp, ", %s = %s", name, val);
2017 }
2018
2019 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2020 {
2021         struct evsel *evsel, *events;
2022         u32 j;
2023         u64 *id;
2024
2025         if (ff->events)
2026                 events = ff->events;
2027         else
2028                 events = read_event_desc(ff);
2029
2030         if (!events) {
2031                 fprintf(fp, "# event desc: not available or unable to read\n");
2032                 return;
2033         }
2034
2035         for (evsel = events; evsel->core.attr.size; evsel++) {
2036                 fprintf(fp, "# event : name = %s, ", evsel->name);
2037
2038                 if (evsel->core.ids) {
2039                         fprintf(fp, ", id = {");
2040                         for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2041                                 if (j)
2042                                         fputc(',', fp);
2043                                 fprintf(fp, " %"PRIu64, *id);
2044                         }
2045                         fprintf(fp, " }");
2046                 }
2047
2048                 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2049
2050                 fputc('\n', fp);
2051         }
2052
2053         free_event_desc(events);
2054         ff->events = NULL;
2055 }
2056
2057 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2058 {
2059         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2060 }
2061
2062 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2063 {
2064         int i;
2065         struct numa_node *n;
2066
2067         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2068                 n = &ff->ph->env.numa_nodes[i];
2069
2070                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2071                             " free = %"PRIu64" kB\n",
2072                         n->node, n->mem_total, n->mem_free);
2073
2074                 fprintf(fp, "# node%u cpu list : ", n->node);
2075                 cpu_map__fprintf(n->map, fp);
2076         }
2077 }
2078
2079 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2080 {
2081         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2082 }
2083
2084 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2085 {
2086         fprintf(fp, "# contains samples with branch stack\n");
2087 }
2088
2089 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2090 {
2091         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2092 }
2093
2094 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2095 {
2096         fprintf(fp, "# contains stat data\n");
2097 }
2098
2099 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2100 {
2101         int i;
2102
2103         fprintf(fp, "# CPU cache info:\n");
2104         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2105                 fprintf(fp, "#  ");
2106                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2107         }
2108 }
2109
2110 static void print_compressed(struct feat_fd *ff, FILE *fp)
2111 {
2112         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2113                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2114                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2115 }
2116
2117 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2118 {
2119         const char *delimiter = "";
2120         int i;
2121
2122         if (!nr_caps) {
2123                 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2124                 return;
2125         }
2126
2127         fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2128         for (i = 0; i < nr_caps; i++) {
2129                 fprintf(fp, "%s%s", delimiter, caps[i]);
2130                 delimiter = ", ";
2131         }
2132
2133         fprintf(fp, "\n");
2134 }
2135
2136 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2137 {
2138         __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2139                          ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2140 }
2141
2142 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2143 {
2144         struct pmu_caps *pmu_caps;
2145
2146         for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2147                 pmu_caps = &ff->ph->env.pmu_caps[i];
2148                 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2149                                  pmu_caps->pmu_name);
2150         }
2151 }
2152
2153 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2154 {
2155         const char *delimiter = "# pmu mappings: ";
2156         char *str, *tmp;
2157         u32 pmu_num;
2158         u32 type;
2159
2160         pmu_num = ff->ph->env.nr_pmu_mappings;
2161         if (!pmu_num) {
2162                 fprintf(fp, "# pmu mappings: not available\n");
2163                 return;
2164         }
2165
2166         str = ff->ph->env.pmu_mappings;
2167
2168         while (pmu_num) {
2169                 type = strtoul(str, &tmp, 0);
2170                 if (*tmp != ':')
2171                         goto error;
2172
2173                 str = tmp + 1;
2174                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2175
2176                 delimiter = ", ";
2177                 str += strlen(str) + 1;
2178                 pmu_num--;
2179         }
2180
2181         fprintf(fp, "\n");
2182
2183         if (!pmu_num)
2184                 return;
2185 error:
2186         fprintf(fp, "# pmu mappings: unable to read\n");
2187 }
2188
2189 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2190 {
2191         struct perf_session *session;
2192         struct evsel *evsel;
2193         u32 nr = 0;
2194
2195         session = container_of(ff->ph, struct perf_session, header);
2196
2197         evlist__for_each_entry(session->evlist, evsel) {
2198                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2199                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2200
2201                         nr = evsel->core.nr_members - 1;
2202                 } else if (nr) {
2203                         fprintf(fp, ",%s", evsel__name(evsel));
2204
2205                         if (--nr == 0)
2206                                 fprintf(fp, "}\n");
2207                 }
2208         }
2209 }
2210
2211 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2212 {
2213         struct perf_session *session;
2214         char time_buf[32];
2215         double d;
2216
2217         session = container_of(ff->ph, struct perf_session, header);
2218
2219         timestamp__scnprintf_usec(session->evlist->first_sample_time,
2220                                   time_buf, sizeof(time_buf));
2221         fprintf(fp, "# time of first sample : %s\n", time_buf);
2222
2223         timestamp__scnprintf_usec(session->evlist->last_sample_time,
2224                                   time_buf, sizeof(time_buf));
2225         fprintf(fp, "# time of last sample : %s\n", time_buf);
2226
2227         d = (double)(session->evlist->last_sample_time -
2228                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2229
2230         fprintf(fp, "# sample duration : %10.3f ms\n", d);
2231 }
2232
2233 static void memory_node__fprintf(struct memory_node *n,
2234                                  unsigned long long bsize, FILE *fp)
2235 {
2236         char buf_map[100], buf_size[50];
2237         unsigned long long size;
2238
2239         size = bsize * bitmap_weight(n->set, n->size);
2240         unit_number__scnprintf(buf_size, 50, size);
2241
2242         bitmap_scnprintf(n->set, n->size, buf_map, 100);
2243         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2244 }
2245
2246 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2247 {
2248         struct memory_node *nodes;
2249         int i, nr;
2250
2251         nodes = ff->ph->env.memory_nodes;
2252         nr    = ff->ph->env.nr_memory_nodes;
2253
2254         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2255                 nr, ff->ph->env.memory_bsize);
2256
2257         for (i = 0; i < nr; i++) {
2258                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2259         }
2260 }
2261
2262 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2263                                     char *filename,
2264                                     struct perf_session *session)
2265 {
2266         int err = -1;
2267         struct machine *machine;
2268         u16 cpumode;
2269         struct dso *dso;
2270         enum dso_space_type dso_space;
2271
2272         machine = perf_session__findnew_machine(session, bev->pid);
2273         if (!machine)
2274                 goto out;
2275
2276         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2277
2278         switch (cpumode) {
2279         case PERF_RECORD_MISC_KERNEL:
2280                 dso_space = DSO_SPACE__KERNEL;
2281                 break;
2282         case PERF_RECORD_MISC_GUEST_KERNEL:
2283                 dso_space = DSO_SPACE__KERNEL_GUEST;
2284                 break;
2285         case PERF_RECORD_MISC_USER:
2286         case PERF_RECORD_MISC_GUEST_USER:
2287                 dso_space = DSO_SPACE__USER;
2288                 break;
2289         default:
2290                 goto out;
2291         }
2292
2293         dso = machine__findnew_dso(machine, filename);
2294         if (dso != NULL) {
2295                 char sbuild_id[SBUILD_ID_SIZE];
2296                 struct build_id bid;
2297                 size_t size = BUILD_ID_SIZE;
2298
2299                 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2300                         size = bev->size;
2301
2302                 build_id__init(&bid, bev->data, size);
2303                 dso__set_build_id(dso, &bid);
2304                 dso->header_build_id = 1;
2305
2306                 if (dso_space != DSO_SPACE__USER) {
2307                         struct kmod_path m = { .name = NULL, };
2308
2309                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
2310                                 dso__set_module_info(dso, &m, machine);
2311
2312                         dso->kernel = dso_space;
2313                         free(m.name);
2314                 }
2315
2316                 build_id__sprintf(&dso->bid, sbuild_id);
2317                 pr_debug("build id event received for %s: %s [%zu]\n",
2318                          dso->long_name, sbuild_id, size);
2319                 dso__put(dso);
2320         }
2321
2322         err = 0;
2323 out:
2324         return err;
2325 }
2326
2327 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2328                                                  int input, u64 offset, u64 size)
2329 {
2330         struct perf_session *session = container_of(header, struct perf_session, header);
2331         struct {
2332                 struct perf_event_header   header;
2333                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2334                 char                       filename[0];
2335         } old_bev;
2336         struct perf_record_header_build_id bev;
2337         char filename[PATH_MAX];
2338         u64 limit = offset + size;
2339
2340         while (offset < limit) {
2341                 ssize_t len;
2342
2343                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2344                         return -1;
2345
2346                 if (header->needs_swap)
2347                         perf_event_header__bswap(&old_bev.header);
2348
2349                 len = old_bev.header.size - sizeof(old_bev);
2350                 if (readn(input, filename, len) != len)
2351                         return -1;
2352
2353                 bev.header = old_bev.header;
2354
2355                 /*
2356                  * As the pid is the missing value, we need to fill
2357                  * it properly. The header.misc value give us nice hint.
2358                  */
2359                 bev.pid = HOST_KERNEL_ID;
2360                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2361                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2362                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
2363
2364                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2365                 __event_process_build_id(&bev, filename, session);
2366
2367                 offset += bev.header.size;
2368         }
2369
2370         return 0;
2371 }
2372
2373 static int perf_header__read_build_ids(struct perf_header *header,
2374                                        int input, u64 offset, u64 size)
2375 {
2376         struct perf_session *session = container_of(header, struct perf_session, header);
2377         struct perf_record_header_build_id bev;
2378         char filename[PATH_MAX];
2379         u64 limit = offset + size, orig_offset = offset;
2380         int err = -1;
2381
2382         while (offset < limit) {
2383                 ssize_t len;
2384
2385                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2386                         goto out;
2387
2388                 if (header->needs_swap)
2389                         perf_event_header__bswap(&bev.header);
2390
2391                 len = bev.header.size - sizeof(bev);
2392                 if (readn(input, filename, len) != len)
2393                         goto out;
2394                 /*
2395                  * The a1645ce1 changeset:
2396                  *
2397                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2398                  *
2399                  * Added a field to struct perf_record_header_build_id that broke the file
2400                  * format.
2401                  *
2402                  * Since the kernel build-id is the first entry, process the
2403                  * table using the old format if the well known
2404                  * '[kernel.kallsyms]' string for the kernel build-id has the
2405                  * first 4 characters chopped off (where the pid_t sits).
2406                  */
2407                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2408                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2409                                 return -1;
2410                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2411                 }
2412
2413                 __event_process_build_id(&bev, filename, session);
2414
2415                 offset += bev.header.size;
2416         }
2417         err = 0;
2418 out:
2419         return err;
2420 }
2421
2422 /* Macro for features that simply need to read and store a string. */
2423 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2424 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2425 {\
2426         free(ff->ph->env.__feat_env);                \
2427         ff->ph->env.__feat_env = do_read_string(ff); \
2428         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2429 }
2430
2431 FEAT_PROCESS_STR_FUN(hostname, hostname);
2432 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2433 FEAT_PROCESS_STR_FUN(version, version);
2434 FEAT_PROCESS_STR_FUN(arch, arch);
2435 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2436 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2437
2438 #ifdef HAVE_LIBTRACEEVENT
2439 static int process_tracing_data(struct feat_fd *ff, void *data)
2440 {
2441         ssize_t ret = trace_report(ff->fd, data, false);
2442
2443         return ret < 0 ? -1 : 0;
2444 }
2445 #endif
2446
2447 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2448 {
2449         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2450                 pr_debug("Failed to read buildids, continuing...\n");
2451         return 0;
2452 }
2453
2454 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2455 {
2456         int ret;
2457         u32 nr_cpus_avail, nr_cpus_online;
2458
2459         ret = do_read_u32(ff, &nr_cpus_avail);
2460         if (ret)
2461                 return ret;
2462
2463         ret = do_read_u32(ff, &nr_cpus_online);
2464         if (ret)
2465                 return ret;
2466         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2467         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2468         return 0;
2469 }
2470
2471 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2472 {
2473         u64 total_mem;
2474         int ret;
2475
2476         ret = do_read_u64(ff, &total_mem);
2477         if (ret)
2478                 return -1;
2479         ff->ph->env.total_mem = (unsigned long long)total_mem;
2480         return 0;
2481 }
2482
2483 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2484 {
2485         struct evsel *evsel;
2486
2487         evlist__for_each_entry(evlist, evsel) {
2488                 if (evsel->core.idx == idx)
2489                         return evsel;
2490         }
2491
2492         return NULL;
2493 }
2494
2495 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2496 {
2497         struct evsel *evsel;
2498
2499         if (!event->name)
2500                 return;
2501
2502         evsel = evlist__find_by_index(evlist, event->core.idx);
2503         if (!evsel)
2504                 return;
2505
2506         if (evsel->name)
2507                 return;
2508
2509         evsel->name = strdup(event->name);
2510 }
2511
2512 static int
2513 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2514 {
2515         struct perf_session *session;
2516         struct evsel *evsel, *events = read_event_desc(ff);
2517
2518         if (!events)
2519                 return 0;
2520
2521         session = container_of(ff->ph, struct perf_session, header);
2522
2523         if (session->data->is_pipe) {
2524                 /* Save events for reading later by print_event_desc,
2525                  * since they can't be read again in pipe mode. */
2526                 ff->events = events;
2527         }
2528
2529         for (evsel = events; evsel->core.attr.size; evsel++)
2530                 evlist__set_event_name(session->evlist, evsel);
2531
2532         if (!session->data->is_pipe)
2533                 free_event_desc(events);
2534
2535         return 0;
2536 }
2537
2538 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2539 {
2540         char *str, *cmdline = NULL, **argv = NULL;
2541         u32 nr, i, len = 0;
2542
2543         if (do_read_u32(ff, &nr))
2544                 return -1;
2545
2546         ff->ph->env.nr_cmdline = nr;
2547
2548         cmdline = zalloc(ff->size + nr + 1);
2549         if (!cmdline)
2550                 return -1;
2551
2552         argv = zalloc(sizeof(char *) * (nr + 1));
2553         if (!argv)
2554                 goto error;
2555
2556         for (i = 0; i < nr; i++) {
2557                 str = do_read_string(ff);
2558                 if (!str)
2559                         goto error;
2560
2561                 argv[i] = cmdline + len;
2562                 memcpy(argv[i], str, strlen(str) + 1);
2563                 len += strlen(str) + 1;
2564                 free(str);
2565         }
2566         ff->ph->env.cmdline = cmdline;
2567         ff->ph->env.cmdline_argv = (const char **) argv;
2568         return 0;
2569
2570 error:
2571         free(argv);
2572         free(cmdline);
2573         return -1;
2574 }
2575
2576 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2577 {
2578         u32 nr, i;
2579         char *str;
2580         struct strbuf sb;
2581         int cpu_nr = ff->ph->env.nr_cpus_avail;
2582         u64 size = 0;
2583         struct perf_header *ph = ff->ph;
2584         bool do_core_id_test = true;
2585
2586         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2587         if (!ph->env.cpu)
2588                 return -1;
2589
2590         if (do_read_u32(ff, &nr))
2591                 goto free_cpu;
2592
2593         ph->env.nr_sibling_cores = nr;
2594         size += sizeof(u32);
2595         if (strbuf_init(&sb, 128) < 0)
2596                 goto free_cpu;
2597
2598         for (i = 0; i < nr; i++) {
2599                 str = do_read_string(ff);
2600                 if (!str)
2601                         goto error;
2602
2603                 /* include a NULL character at the end */
2604                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2605                         goto error;
2606                 size += string_size(str);
2607                 free(str);
2608         }
2609         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2610
2611         if (do_read_u32(ff, &nr))
2612                 return -1;
2613
2614         ph->env.nr_sibling_threads = nr;
2615         size += sizeof(u32);
2616
2617         for (i = 0; i < nr; i++) {
2618                 str = do_read_string(ff);
2619                 if (!str)
2620                         goto error;
2621
2622                 /* include a NULL character at the end */
2623                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2624                         goto error;
2625                 size += string_size(str);
2626                 free(str);
2627         }
2628         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2629
2630         /*
2631          * The header may be from old perf,
2632          * which doesn't include core id and socket id information.
2633          */
2634         if (ff->size <= size) {
2635                 zfree(&ph->env.cpu);
2636                 return 0;
2637         }
2638
2639         /* On s390 the socket_id number is not related to the numbers of cpus.
2640          * The socket_id number might be higher than the numbers of cpus.
2641          * This depends on the configuration.
2642          * AArch64 is the same.
2643          */
2644         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2645                           || !strncmp(ph->env.arch, "aarch64", 7)))
2646                 do_core_id_test = false;
2647
2648         for (i = 0; i < (u32)cpu_nr; i++) {
2649                 if (do_read_u32(ff, &nr))
2650                         goto free_cpu;
2651
2652                 ph->env.cpu[i].core_id = nr;
2653                 size += sizeof(u32);
2654
2655                 if (do_read_u32(ff, &nr))
2656                         goto free_cpu;
2657
2658                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2659                         pr_debug("socket_id number is too big."
2660                                  "You may need to upgrade the perf tool.\n");
2661                         goto free_cpu;
2662                 }
2663
2664                 ph->env.cpu[i].socket_id = nr;
2665                 size += sizeof(u32);
2666         }
2667
2668         /*
2669          * The header may be from old perf,
2670          * which doesn't include die information.
2671          */
2672         if (ff->size <= size)
2673                 return 0;
2674
2675         if (do_read_u32(ff, &nr))
2676                 return -1;
2677
2678         ph->env.nr_sibling_dies = nr;
2679         size += sizeof(u32);
2680
2681         for (i = 0; i < nr; i++) {
2682                 str = do_read_string(ff);
2683                 if (!str)
2684                         goto error;
2685
2686                 /* include a NULL character at the end */
2687                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2688                         goto error;
2689                 size += string_size(str);
2690                 free(str);
2691         }
2692         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2693
2694         for (i = 0; i < (u32)cpu_nr; i++) {
2695                 if (do_read_u32(ff, &nr))
2696                         goto free_cpu;
2697
2698                 ph->env.cpu[i].die_id = nr;
2699         }
2700
2701         return 0;
2702
2703 error:
2704         strbuf_release(&sb);
2705 free_cpu:
2706         zfree(&ph->env.cpu);
2707         return -1;
2708 }
2709
2710 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2711 {
2712         struct numa_node *nodes, *n;
2713         u32 nr, i;
2714         char *str;
2715
2716         /* nr nodes */
2717         if (do_read_u32(ff, &nr))
2718                 return -1;
2719
2720         nodes = zalloc(sizeof(*nodes) * nr);
2721         if (!nodes)
2722                 return -ENOMEM;
2723
2724         for (i = 0; i < nr; i++) {
2725                 n = &nodes[i];
2726
2727                 /* node number */
2728                 if (do_read_u32(ff, &n->node))
2729                         goto error;
2730
2731                 if (do_read_u64(ff, &n->mem_total))
2732                         goto error;
2733
2734                 if (do_read_u64(ff, &n->mem_free))
2735                         goto error;
2736
2737                 str = do_read_string(ff);
2738                 if (!str)
2739                         goto error;
2740
2741                 n->map = perf_cpu_map__new(str);
2742                 if (!n->map)
2743                         goto error;
2744
2745                 free(str);
2746         }
2747         ff->ph->env.nr_numa_nodes = nr;
2748         ff->ph->env.numa_nodes = nodes;
2749         return 0;
2750
2751 error:
2752         free(nodes);
2753         return -1;
2754 }
2755
2756 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2757 {
2758         char *name;
2759         u32 pmu_num;
2760         u32 type;
2761         struct strbuf sb;
2762
2763         if (do_read_u32(ff, &pmu_num))
2764                 return -1;
2765
2766         if (!pmu_num) {
2767                 pr_debug("pmu mappings not available\n");
2768                 return 0;
2769         }
2770
2771         ff->ph->env.nr_pmu_mappings = pmu_num;
2772         if (strbuf_init(&sb, 128) < 0)
2773                 return -1;
2774
2775         while (pmu_num) {
2776                 if (do_read_u32(ff, &type))
2777                         goto error;
2778
2779                 name = do_read_string(ff);
2780                 if (!name)
2781                         goto error;
2782
2783                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2784                         goto error;
2785                 /* include a NULL character at the end */
2786                 if (strbuf_add(&sb, "", 1) < 0)
2787                         goto error;
2788
2789                 if (!strcmp(name, "msr"))
2790                         ff->ph->env.msr_pmu_type = type;
2791
2792                 free(name);
2793                 pmu_num--;
2794         }
2795         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2796         return 0;
2797
2798 error:
2799         strbuf_release(&sb);
2800         return -1;
2801 }
2802
2803 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2804 {
2805         size_t ret = -1;
2806         u32 i, nr, nr_groups;
2807         struct perf_session *session;
2808         struct evsel *evsel, *leader = NULL;
2809         struct group_desc {
2810                 char *name;
2811                 u32 leader_idx;
2812                 u32 nr_members;
2813         } *desc;
2814
2815         if (do_read_u32(ff, &nr_groups))
2816                 return -1;
2817
2818         ff->ph->env.nr_groups = nr_groups;
2819         if (!nr_groups) {
2820                 pr_debug("group desc not available\n");
2821                 return 0;
2822         }
2823
2824         desc = calloc(nr_groups, sizeof(*desc));
2825         if (!desc)
2826                 return -1;
2827
2828         for (i = 0; i < nr_groups; i++) {
2829                 desc[i].name = do_read_string(ff);
2830                 if (!desc[i].name)
2831                         goto out_free;
2832
2833                 if (do_read_u32(ff, &desc[i].leader_idx))
2834                         goto out_free;
2835
2836                 if (do_read_u32(ff, &desc[i].nr_members))
2837                         goto out_free;
2838         }
2839
2840         /*
2841          * Rebuild group relationship based on the group_desc
2842          */
2843         session = container_of(ff->ph, struct perf_session, header);
2844
2845         i = nr = 0;
2846         evlist__for_each_entry(session->evlist, evsel) {
2847                 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2848                         evsel__set_leader(evsel, evsel);
2849                         /* {anon_group} is a dummy name */
2850                         if (strcmp(desc[i].name, "{anon_group}")) {
2851                                 evsel->group_name = desc[i].name;
2852                                 desc[i].name = NULL;
2853                         }
2854                         evsel->core.nr_members = desc[i].nr_members;
2855
2856                         if (i >= nr_groups || nr > 0) {
2857                                 pr_debug("invalid group desc\n");
2858                                 goto out_free;
2859                         }
2860
2861                         leader = evsel;
2862                         nr = evsel->core.nr_members - 1;
2863                         i++;
2864                 } else if (nr) {
2865                         /* This is a group member */
2866                         evsel__set_leader(evsel, leader);
2867
2868                         nr--;
2869                 }
2870         }
2871
2872         if (i != nr_groups || nr != 0) {
2873                 pr_debug("invalid group desc\n");
2874                 goto out_free;
2875         }
2876
2877         ret = 0;
2878 out_free:
2879         for (i = 0; i < nr_groups; i++)
2880                 zfree(&desc[i].name);
2881         free(desc);
2882
2883         return ret;
2884 }
2885
2886 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2887 {
2888         struct perf_session *session;
2889         int err;
2890
2891         session = container_of(ff->ph, struct perf_session, header);
2892
2893         err = auxtrace_index__process(ff->fd, ff->size, session,
2894                                       ff->ph->needs_swap);
2895         if (err < 0)
2896                 pr_err("Failed to process auxtrace index\n");
2897         return err;
2898 }
2899
2900 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2901 {
2902         struct cpu_cache_level *caches;
2903         u32 cnt, i, version;
2904
2905         if (do_read_u32(ff, &version))
2906                 return -1;
2907
2908         if (version != 1)
2909                 return -1;
2910
2911         if (do_read_u32(ff, &cnt))
2912                 return -1;
2913
2914         caches = zalloc(sizeof(*caches) * cnt);
2915         if (!caches)
2916                 return -1;
2917
2918         for (i = 0; i < cnt; i++) {
2919                 struct cpu_cache_level c;
2920
2921                 #define _R(v)                                           \
2922                         if (do_read_u32(ff, &c.v))\
2923                                 goto out_free_caches;                   \
2924
2925                 _R(level)
2926                 _R(line_size)
2927                 _R(sets)
2928                 _R(ways)
2929                 #undef _R
2930
2931                 #define _R(v)                                   \
2932                         c.v = do_read_string(ff);               \
2933                         if (!c.v)                               \
2934                                 goto out_free_caches;
2935
2936                 _R(type)
2937                 _R(size)
2938                 _R(map)
2939                 #undef _R
2940
2941                 caches[i] = c;
2942         }
2943
2944         ff->ph->env.caches = caches;
2945         ff->ph->env.caches_cnt = cnt;
2946         return 0;
2947 out_free_caches:
2948         free(caches);
2949         return -1;
2950 }
2951
2952 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2953 {
2954         struct perf_session *session;
2955         u64 first_sample_time, last_sample_time;
2956         int ret;
2957
2958         session = container_of(ff->ph, struct perf_session, header);
2959
2960         ret = do_read_u64(ff, &first_sample_time);
2961         if (ret)
2962                 return -1;
2963
2964         ret = do_read_u64(ff, &last_sample_time);
2965         if (ret)
2966                 return -1;
2967
2968         session->evlist->first_sample_time = first_sample_time;
2969         session->evlist->last_sample_time = last_sample_time;
2970         return 0;
2971 }
2972
2973 static int process_mem_topology(struct feat_fd *ff,
2974                                 void *data __maybe_unused)
2975 {
2976         struct memory_node *nodes;
2977         u64 version, i, nr, bsize;
2978         int ret = -1;
2979
2980         if (do_read_u64(ff, &version))
2981                 return -1;
2982
2983         if (version != 1)
2984                 return -1;
2985
2986         if (do_read_u64(ff, &bsize))
2987                 return -1;
2988
2989         if (do_read_u64(ff, &nr))
2990                 return -1;
2991
2992         nodes = zalloc(sizeof(*nodes) * nr);
2993         if (!nodes)
2994                 return -1;
2995
2996         for (i = 0; i < nr; i++) {
2997                 struct memory_node n;
2998
2999                 #define _R(v)                           \
3000                         if (do_read_u64(ff, &n.v))      \
3001                                 goto out;               \
3002
3003                 _R(node)
3004                 _R(size)
3005
3006                 #undef _R
3007
3008                 if (do_read_bitmap(ff, &n.set, &n.size))
3009                         goto out;
3010
3011                 nodes[i] = n;
3012         }
3013
3014         ff->ph->env.memory_bsize    = bsize;
3015         ff->ph->env.memory_nodes    = nodes;
3016         ff->ph->env.nr_memory_nodes = nr;
3017         ret = 0;
3018
3019 out:
3020         if (ret)
3021                 free(nodes);
3022         return ret;
3023 }
3024
3025 static int process_clockid(struct feat_fd *ff,
3026                            void *data __maybe_unused)
3027 {
3028         if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3029                 return -1;
3030
3031         return 0;
3032 }
3033
3034 static int process_clock_data(struct feat_fd *ff,
3035                               void *_data __maybe_unused)
3036 {
3037         u32 data32;
3038         u64 data64;
3039
3040         /* version */
3041         if (do_read_u32(ff, &data32))
3042                 return -1;
3043
3044         if (data32 != 1)
3045                 return -1;
3046
3047         /* clockid */
3048         if (do_read_u32(ff, &data32))
3049                 return -1;
3050
3051         ff->ph->env.clock.clockid = data32;
3052
3053         /* TOD ref time */
3054         if (do_read_u64(ff, &data64))
3055                 return -1;
3056
3057         ff->ph->env.clock.tod_ns = data64;
3058
3059         /* clockid ref time */
3060         if (do_read_u64(ff, &data64))
3061                 return -1;
3062
3063         ff->ph->env.clock.clockid_ns = data64;
3064         ff->ph->env.clock.enabled = true;
3065         return 0;
3066 }
3067
3068 static int process_hybrid_topology(struct feat_fd *ff,
3069                                    void *data __maybe_unused)
3070 {
3071         struct hybrid_node *nodes, *n;
3072         u32 nr, i;
3073
3074         /* nr nodes */
3075         if (do_read_u32(ff, &nr))
3076                 return -1;
3077
3078         nodes = zalloc(sizeof(*nodes) * nr);
3079         if (!nodes)
3080                 return -ENOMEM;
3081
3082         for (i = 0; i < nr; i++) {
3083                 n = &nodes[i];
3084
3085                 n->pmu_name = do_read_string(ff);
3086                 if (!n->pmu_name)
3087                         goto error;
3088
3089                 n->cpus = do_read_string(ff);
3090                 if (!n->cpus)
3091                         goto error;
3092         }
3093
3094         ff->ph->env.nr_hybrid_nodes = nr;
3095         ff->ph->env.hybrid_nodes = nodes;
3096         return 0;
3097
3098 error:
3099         for (i = 0; i < nr; i++) {
3100                 free(nodes[i].pmu_name);
3101                 free(nodes[i].cpus);
3102         }
3103
3104         free(nodes);
3105         return -1;
3106 }
3107
3108 static int process_dir_format(struct feat_fd *ff,
3109                               void *_data __maybe_unused)
3110 {
3111         struct perf_session *session;
3112         struct perf_data *data;
3113
3114         session = container_of(ff->ph, struct perf_session, header);
3115         data = session->data;
3116
3117         if (WARN_ON(!perf_data__is_dir(data)))
3118                 return -1;
3119
3120         return do_read_u64(ff, &data->dir.version);
3121 }
3122
3123 #ifdef HAVE_LIBBPF_SUPPORT
3124 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3125 {
3126         struct bpf_prog_info_node *info_node;
3127         struct perf_env *env = &ff->ph->env;
3128         struct perf_bpil *info_linear;
3129         u32 count, i;
3130         int err = -1;
3131
3132         if (ff->ph->needs_swap) {
3133                 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3134                 return 0;
3135         }
3136
3137         if (do_read_u32(ff, &count))
3138                 return -1;
3139
3140         down_write(&env->bpf_progs.lock);
3141
3142         for (i = 0; i < count; ++i) {
3143                 u32 info_len, data_len;
3144
3145                 info_linear = NULL;
3146                 info_node = NULL;
3147                 if (do_read_u32(ff, &info_len))
3148                         goto out;
3149                 if (do_read_u32(ff, &data_len))
3150                         goto out;
3151
3152                 if (info_len > sizeof(struct bpf_prog_info)) {
3153                         pr_warning("detected invalid bpf_prog_info\n");
3154                         goto out;
3155                 }
3156
3157                 info_linear = malloc(sizeof(struct perf_bpil) +
3158                                      data_len);
3159                 if (!info_linear)
3160                         goto out;
3161                 info_linear->info_len = sizeof(struct bpf_prog_info);
3162                 info_linear->data_len = data_len;
3163                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3164                         goto out;
3165                 if (__do_read(ff, &info_linear->info, info_len))
3166                         goto out;
3167                 if (info_len < sizeof(struct bpf_prog_info))
3168                         memset(((void *)(&info_linear->info)) + info_len, 0,
3169                                sizeof(struct bpf_prog_info) - info_len);
3170
3171                 if (__do_read(ff, info_linear->data, data_len))
3172                         goto out;
3173
3174                 info_node = malloc(sizeof(struct bpf_prog_info_node));
3175                 if (!info_node)
3176                         goto out;
3177
3178                 /* after reading from file, translate offset to address */
3179                 bpil_offs_to_addr(info_linear);
3180                 info_node->info_linear = info_linear;
3181                 perf_env__insert_bpf_prog_info(env, info_node);
3182         }
3183
3184         up_write(&env->bpf_progs.lock);
3185         return 0;
3186 out:
3187         free(info_linear);
3188         free(info_node);
3189         up_write(&env->bpf_progs.lock);
3190         return err;
3191 }
3192
3193 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3194 {
3195         struct perf_env *env = &ff->ph->env;
3196         struct btf_node *node = NULL;
3197         u32 count, i;
3198         int err = -1;
3199
3200         if (ff->ph->needs_swap) {
3201                 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3202                 return 0;
3203         }
3204
3205         if (do_read_u32(ff, &count))
3206                 return -1;
3207
3208         down_write(&env->bpf_progs.lock);
3209
3210         for (i = 0; i < count; ++i) {
3211                 u32 id, data_size;
3212
3213                 if (do_read_u32(ff, &id))
3214                         goto out;
3215                 if (do_read_u32(ff, &data_size))
3216                         goto out;
3217
3218                 node = malloc(sizeof(struct btf_node) + data_size);
3219                 if (!node)
3220                         goto out;
3221
3222                 node->id = id;
3223                 node->data_size = data_size;
3224
3225                 if (__do_read(ff, node->data, data_size))
3226                         goto out;
3227
3228                 perf_env__insert_btf(env, node);
3229                 node = NULL;
3230         }
3231
3232         err = 0;
3233 out:
3234         up_write(&env->bpf_progs.lock);
3235         free(node);
3236         return err;
3237 }
3238 #endif // HAVE_LIBBPF_SUPPORT
3239
3240 static int process_compressed(struct feat_fd *ff,
3241                               void *data __maybe_unused)
3242 {
3243         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3244                 return -1;
3245
3246         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3247                 return -1;
3248
3249         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3250                 return -1;
3251
3252         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3253                 return -1;
3254
3255         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3256                 return -1;
3257
3258         return 0;
3259 }
3260
3261 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3262                               char ***caps, unsigned int *max_branches)
3263 {
3264         char *name, *value, *ptr;
3265         u32 nr_pmu_caps, i;
3266
3267         *nr_caps = 0;
3268         *caps = NULL;
3269
3270         if (do_read_u32(ff, &nr_pmu_caps))
3271                 return -1;
3272
3273         if (!nr_pmu_caps)
3274                 return 0;
3275
3276         *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3277         if (!*caps)
3278                 return -1;
3279
3280         for (i = 0; i < nr_pmu_caps; i++) {
3281                 name = do_read_string(ff);
3282                 if (!name)
3283                         goto error;
3284
3285                 value = do_read_string(ff);
3286                 if (!value)
3287                         goto free_name;
3288
3289                 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3290                         goto free_value;
3291
3292                 (*caps)[i] = ptr;
3293
3294                 if (!strcmp(name, "branches"))
3295                         *max_branches = atoi(value);
3296
3297                 free(value);
3298                 free(name);
3299         }
3300         *nr_caps = nr_pmu_caps;
3301         return 0;
3302
3303 free_value:
3304         free(value);
3305 free_name:
3306         free(name);
3307 error:
3308         for (; i > 0; i--)
3309                 free((*caps)[i - 1]);
3310         free(*caps);
3311         *caps = NULL;
3312         *nr_caps = 0;
3313         return -1;
3314 }
3315
3316 static int process_cpu_pmu_caps(struct feat_fd *ff,
3317                                 void *data __maybe_unused)
3318 {
3319         int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3320                                      &ff->ph->env.cpu_pmu_caps,
3321                                      &ff->ph->env.max_branches);
3322
3323         if (!ret && !ff->ph->env.cpu_pmu_caps)
3324                 pr_debug("cpu pmu capabilities not available\n");
3325         return ret;
3326 }
3327
3328 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3329 {
3330         struct pmu_caps *pmu_caps;
3331         u32 nr_pmu, i;
3332         int ret;
3333         int j;
3334
3335         if (do_read_u32(ff, &nr_pmu))
3336                 return -1;
3337
3338         if (!nr_pmu) {
3339                 pr_debug("pmu capabilities not available\n");
3340                 return 0;
3341         }
3342
3343         pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3344         if (!pmu_caps)
3345                 return -ENOMEM;
3346
3347         for (i = 0; i < nr_pmu; i++) {
3348                 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3349                                          &pmu_caps[i].caps,
3350                                          &pmu_caps[i].max_branches);
3351                 if (ret)
3352                         goto err;
3353
3354                 pmu_caps[i].pmu_name = do_read_string(ff);
3355                 if (!pmu_caps[i].pmu_name) {
3356                         ret = -1;
3357                         goto err;
3358                 }
3359                 if (!pmu_caps[i].nr_caps) {
3360                         pr_debug("%s pmu capabilities not available\n",
3361                                  pmu_caps[i].pmu_name);
3362                 }
3363         }
3364
3365         ff->ph->env.nr_pmus_with_caps = nr_pmu;
3366         ff->ph->env.pmu_caps = pmu_caps;
3367         return 0;
3368
3369 err:
3370         for (i = 0; i < nr_pmu; i++) {
3371                 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3372                         free(pmu_caps[i].caps[j]);
3373                 free(pmu_caps[i].caps);
3374                 free(pmu_caps[i].pmu_name);
3375         }
3376
3377         free(pmu_caps);
3378         return ret;
3379 }
3380
3381 #define FEAT_OPR(n, func, __full_only) \
3382         [HEADER_##n] = {                                        \
3383                 .name       = __stringify(n),                   \
3384                 .write      = write_##func,                     \
3385                 .print      = print_##func,                     \
3386                 .full_only  = __full_only,                      \
3387                 .process    = process_##func,                   \
3388                 .synthesize = true                              \
3389         }
3390
3391 #define FEAT_OPN(n, func, __full_only) \
3392         [HEADER_##n] = {                                        \
3393                 .name       = __stringify(n),                   \
3394                 .write      = write_##func,                     \
3395                 .print      = print_##func,                     \
3396                 .full_only  = __full_only,                      \
3397                 .process    = process_##func                    \
3398         }
3399
3400 /* feature_ops not implemented: */
3401 #define print_tracing_data      NULL
3402 #define print_build_id          NULL
3403
3404 #define process_branch_stack    NULL
3405 #define process_stat            NULL
3406
3407 // Only used in util/synthetic-events.c
3408 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3409
3410 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3411 #ifdef HAVE_LIBTRACEEVENT
3412         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3413 #endif
3414         FEAT_OPN(BUILD_ID,      build_id,       false),
3415         FEAT_OPR(HOSTNAME,      hostname,       false),
3416         FEAT_OPR(OSRELEASE,     osrelease,      false),
3417         FEAT_OPR(VERSION,       version,        false),
3418         FEAT_OPR(ARCH,          arch,           false),
3419         FEAT_OPR(NRCPUS,        nrcpus,         false),
3420         FEAT_OPR(CPUDESC,       cpudesc,        false),
3421         FEAT_OPR(CPUID,         cpuid,          false),
3422         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
3423         FEAT_OPR(EVENT_DESC,    event_desc,     false),
3424         FEAT_OPR(CMDLINE,       cmdline,        false),
3425         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3426         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3427         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3428         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3429         FEAT_OPR(GROUP_DESC,    group_desc,     false),
3430         FEAT_OPN(AUXTRACE,      auxtrace,       false),
3431         FEAT_OPN(STAT,          stat,           false),
3432         FEAT_OPN(CACHE,         cache,          true),
3433         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3434         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3435         FEAT_OPR(CLOCKID,       clockid,        false),
3436         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
3437 #ifdef HAVE_LIBBPF_SUPPORT
3438         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3439         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3440 #endif
3441         FEAT_OPR(COMPRESSED,    compressed,     false),
3442         FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3443         FEAT_OPR(CLOCK_DATA,    clock_data,     false),
3444         FEAT_OPN(HYBRID_TOPOLOGY,       hybrid_topology,        true),
3445         FEAT_OPR(PMU_CAPS,      pmu_caps,       false),
3446 };
3447
3448 struct header_print_data {
3449         FILE *fp;
3450         bool full; /* extended list of headers */
3451 };
3452
3453 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3454                                            struct perf_header *ph,
3455                                            int feat, int fd, void *data)
3456 {
3457         struct header_print_data *hd = data;
3458         struct feat_fd ff;
3459
3460         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3461                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3462                                 "%d, continuing...\n", section->offset, feat);
3463                 return 0;
3464         }
3465         if (feat >= HEADER_LAST_FEATURE) {
3466                 pr_warning("unknown feature %d\n", feat);
3467                 return 0;
3468         }
3469         if (!feat_ops[feat].print)
3470                 return 0;
3471
3472         ff = (struct  feat_fd) {
3473                 .fd = fd,
3474                 .ph = ph,
3475         };
3476
3477         if (!feat_ops[feat].full_only || hd->full)
3478                 feat_ops[feat].print(&ff, hd->fp);
3479         else
3480                 fprintf(hd->fp, "# %s info available, use -I to display\n",
3481                         feat_ops[feat].name);
3482
3483         return 0;
3484 }
3485
3486 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3487 {
3488         struct header_print_data hd;
3489         struct perf_header *header = &session->header;
3490         int fd = perf_data__fd(session->data);
3491         struct stat st;
3492         time_t stctime;
3493         int ret, bit;
3494
3495         hd.fp = fp;
3496         hd.full = full;
3497
3498         ret = fstat(fd, &st);
3499         if (ret == -1)
3500                 return -1;
3501
3502         stctime = st.st_mtime;
3503         fprintf(fp, "# captured on    : %s", ctime(&stctime));
3504
3505         fprintf(fp, "# header version : %u\n", header->version);
3506         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3507         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3508         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3509
3510         perf_header__process_sections(header, fd, &hd,
3511                                       perf_file_section__fprintf_info);
3512
3513         if (session->data->is_pipe)
3514                 return 0;
3515
3516         fprintf(fp, "# missing features: ");
3517         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3518                 if (bit)
3519                         fprintf(fp, "%s ", feat_ops[bit].name);
3520         }
3521
3522         fprintf(fp, "\n");
3523         return 0;
3524 }
3525
3526 struct header_fw {
3527         struct feat_writer      fw;
3528         struct feat_fd          *ff;
3529 };
3530
3531 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3532 {
3533         struct header_fw *h = container_of(fw, struct header_fw, fw);
3534
3535         return do_write(h->ff, buf, sz);
3536 }
3537
3538 static int do_write_feat(struct feat_fd *ff, int type,
3539                          struct perf_file_section **p,
3540                          struct evlist *evlist,
3541                          struct feat_copier *fc)
3542 {
3543         int err;
3544         int ret = 0;
3545
3546         if (perf_header__has_feat(ff->ph, type)) {
3547                 if (!feat_ops[type].write)
3548                         return -1;
3549
3550                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3551                         return -1;
3552
3553                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3554
3555                 /*
3556                  * Hook to let perf inject copy features sections from the input
3557                  * file.
3558                  */
3559                 if (fc && fc->copy) {
3560                         struct header_fw h = {
3561                                 .fw.write = feat_writer_cb,
3562                                 .ff = ff,
3563                         };
3564
3565                         /* ->copy() returns 0 if the feature was not copied */
3566                         err = fc->copy(fc, type, &h.fw);
3567                 } else {
3568                         err = 0;
3569                 }
3570                 if (!err)
3571                         err = feat_ops[type].write(ff, evlist);
3572                 if (err < 0) {
3573                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
3574
3575                         /* undo anything written */
3576                         lseek(ff->fd, (*p)->offset, SEEK_SET);
3577
3578                         return -1;
3579                 }
3580                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3581                 (*p)++;
3582         }
3583         return ret;
3584 }
3585
3586 static int perf_header__adds_write(struct perf_header *header,
3587                                    struct evlist *evlist, int fd,
3588                                    struct feat_copier *fc)
3589 {
3590         int nr_sections;
3591         struct feat_fd ff;
3592         struct perf_file_section *feat_sec, *p;
3593         int sec_size;
3594         u64 sec_start;
3595         int feat;
3596         int err;
3597
3598         ff = (struct feat_fd){
3599                 .fd  = fd,
3600                 .ph = header,
3601         };
3602
3603         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3604         if (!nr_sections)
3605                 return 0;
3606
3607         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3608         if (feat_sec == NULL)
3609                 return -ENOMEM;
3610
3611         sec_size = sizeof(*feat_sec) * nr_sections;
3612
3613         sec_start = header->feat_offset;
3614         lseek(fd, sec_start + sec_size, SEEK_SET);
3615
3616         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3617                 if (do_write_feat(&ff, feat, &p, evlist, fc))
3618                         perf_header__clear_feat(header, feat);
3619         }
3620
3621         lseek(fd, sec_start, SEEK_SET);
3622         /*
3623          * may write more than needed due to dropped feature, but
3624          * this is okay, reader will skip the missing entries
3625          */
3626         err = do_write(&ff, feat_sec, sec_size);
3627         if (err < 0)
3628                 pr_debug("failed to write feature section\n");
3629         free(feat_sec);
3630         return err;
3631 }
3632
3633 int perf_header__write_pipe(int fd)
3634 {
3635         struct perf_pipe_file_header f_header;
3636         struct feat_fd ff;
3637         int err;
3638
3639         ff = (struct feat_fd){ .fd = fd };
3640
3641         f_header = (struct perf_pipe_file_header){
3642                 .magic     = PERF_MAGIC,
3643                 .size      = sizeof(f_header),
3644         };
3645
3646         err = do_write(&ff, &f_header, sizeof(f_header));
3647         if (err < 0) {
3648                 pr_debug("failed to write perf pipe header\n");
3649                 return err;
3650         }
3651
3652         return 0;
3653 }
3654
3655 static int perf_session__do_write_header(struct perf_session *session,
3656                                          struct evlist *evlist,
3657                                          int fd, bool at_exit,
3658                                          struct feat_copier *fc)
3659 {
3660         struct perf_file_header f_header;
3661         struct perf_file_attr   f_attr;
3662         struct perf_header *header = &session->header;
3663         struct evsel *evsel;
3664         struct feat_fd ff;
3665         u64 attr_offset;
3666         int err;
3667
3668         ff = (struct feat_fd){ .fd = fd};
3669         lseek(fd, sizeof(f_header), SEEK_SET);
3670
3671         evlist__for_each_entry(session->evlist, evsel) {
3672                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3673                 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3674                 if (err < 0) {
3675                         pr_debug("failed to write perf header\n");
3676                         return err;
3677                 }
3678         }
3679
3680         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3681
3682         evlist__for_each_entry(evlist, evsel) {
3683                 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3684                         /*
3685                          * We are likely in "perf inject" and have read
3686                          * from an older file. Update attr size so that
3687                          * reader gets the right offset to the ids.
3688                          */
3689                         evsel->core.attr.size = sizeof(evsel->core.attr);
3690                 }
3691                 f_attr = (struct perf_file_attr){
3692                         .attr = evsel->core.attr,
3693                         .ids  = {
3694                                 .offset = evsel->id_offset,
3695                                 .size   = evsel->core.ids * sizeof(u64),
3696                         }
3697                 };
3698                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3699                 if (err < 0) {
3700                         pr_debug("failed to write perf header attribute\n");
3701                         return err;
3702                 }
3703         }
3704
3705         if (!header->data_offset)
3706                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3707         header->feat_offset = header->data_offset + header->data_size;
3708
3709         if (at_exit) {
3710                 err = perf_header__adds_write(header, evlist, fd, fc);
3711                 if (err < 0)
3712                         return err;
3713         }
3714
3715         f_header = (struct perf_file_header){
3716                 .magic     = PERF_MAGIC,
3717                 .size      = sizeof(f_header),
3718                 .attr_size = sizeof(f_attr),
3719                 .attrs = {
3720                         .offset = attr_offset,
3721                         .size   = evlist->core.nr_entries * sizeof(f_attr),
3722                 },
3723                 .data = {
3724                         .offset = header->data_offset,
3725                         .size   = header->data_size,
3726                 },
3727                 /* event_types is ignored, store zeros */
3728         };
3729
3730         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3731
3732         lseek(fd, 0, SEEK_SET);
3733         err = do_write(&ff, &f_header, sizeof(f_header));
3734         if (err < 0) {
3735                 pr_debug("failed to write perf header\n");
3736                 return err;
3737         }
3738         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3739
3740         return 0;
3741 }
3742
3743 int perf_session__write_header(struct perf_session *session,
3744                                struct evlist *evlist,
3745                                int fd, bool at_exit)
3746 {
3747         return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3748 }
3749
3750 size_t perf_session__data_offset(const struct evlist *evlist)
3751 {
3752         struct evsel *evsel;
3753         size_t data_offset;
3754
3755         data_offset = sizeof(struct perf_file_header);
3756         evlist__for_each_entry(evlist, evsel) {
3757                 data_offset += evsel->core.ids * sizeof(u64);
3758         }
3759         data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3760
3761         return data_offset;
3762 }
3763
3764 int perf_session__inject_header(struct perf_session *session,
3765                                 struct evlist *evlist,
3766                                 int fd,
3767                                 struct feat_copier *fc)
3768 {
3769         return perf_session__do_write_header(session, evlist, fd, true, fc);
3770 }
3771
3772 static int perf_header__getbuffer64(struct perf_header *header,
3773                                     int fd, void *buf, size_t size)
3774 {
3775         if (readn(fd, buf, size) <= 0)
3776                 return -1;
3777
3778         if (header->needs_swap)
3779                 mem_bswap_64(buf, size);
3780
3781         return 0;
3782 }
3783
3784 int perf_header__process_sections(struct perf_header *header, int fd,
3785                                   void *data,
3786                                   int (*process)(struct perf_file_section *section,
3787                                                  struct perf_header *ph,
3788                                                  int feat, int fd, void *data))
3789 {
3790         struct perf_file_section *feat_sec, *sec;
3791         int nr_sections;
3792         int sec_size;
3793         int feat;
3794         int err;
3795
3796         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3797         if (!nr_sections)
3798                 return 0;
3799
3800         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3801         if (!feat_sec)
3802                 return -1;
3803
3804         sec_size = sizeof(*feat_sec) * nr_sections;
3805
3806         lseek(fd, header->feat_offset, SEEK_SET);
3807
3808         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3809         if (err < 0)
3810                 goto out_free;
3811
3812         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3813                 err = process(sec++, header, feat, fd, data);
3814                 if (err < 0)
3815                         goto out_free;
3816         }
3817         err = 0;
3818 out_free:
3819         free(feat_sec);
3820         return err;
3821 }
3822
3823 static const int attr_file_abi_sizes[] = {
3824         [0] = PERF_ATTR_SIZE_VER0,
3825         [1] = PERF_ATTR_SIZE_VER1,
3826         [2] = PERF_ATTR_SIZE_VER2,
3827         [3] = PERF_ATTR_SIZE_VER3,
3828         [4] = PERF_ATTR_SIZE_VER4,
3829         0,
3830 };
3831
3832 /*
3833  * In the legacy file format, the magic number is not used to encode endianness.
3834  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3835  * on ABI revisions, we need to try all combinations for all endianness to
3836  * detect the endianness.
3837  */
3838 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3839 {
3840         uint64_t ref_size, attr_size;
3841         int i;
3842
3843         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3844                 ref_size = attr_file_abi_sizes[i]
3845                          + sizeof(struct perf_file_section);
3846                 if (hdr_sz != ref_size) {
3847                         attr_size = bswap_64(hdr_sz);
3848                         if (attr_size != ref_size)
3849                                 continue;
3850
3851                         ph->needs_swap = true;
3852                 }
3853                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3854                          i,
3855                          ph->needs_swap);
3856                 return 0;
3857         }
3858         /* could not determine endianness */
3859         return -1;
3860 }
3861
3862 #define PERF_PIPE_HDR_VER0      16
3863
3864 static const size_t attr_pipe_abi_sizes[] = {
3865         [0] = PERF_PIPE_HDR_VER0,
3866         0,
3867 };
3868
3869 /*
3870  * In the legacy pipe format, there is an implicit assumption that endianness
3871  * between host recording the samples, and host parsing the samples is the
3872  * same. This is not always the case given that the pipe output may always be
3873  * redirected into a file and analyzed on a different machine with possibly a
3874  * different endianness and perf_event ABI revisions in the perf tool itself.
3875  */
3876 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3877 {
3878         u64 attr_size;
3879         int i;
3880
3881         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3882                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3883                         attr_size = bswap_64(hdr_sz);
3884                         if (attr_size != hdr_sz)
3885                                 continue;
3886
3887                         ph->needs_swap = true;
3888                 }
3889                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3890                 return 0;
3891         }
3892         return -1;
3893 }
3894
3895 bool is_perf_magic(u64 magic)
3896 {
3897         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3898                 || magic == __perf_magic2
3899                 || magic == __perf_magic2_sw)
3900                 return true;
3901
3902         return false;
3903 }
3904
3905 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3906                               bool is_pipe, struct perf_header *ph)
3907 {
3908         int ret;
3909
3910         /* check for legacy format */
3911         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3912         if (ret == 0) {
3913                 ph->version = PERF_HEADER_VERSION_1;
3914                 pr_debug("legacy perf.data format\n");
3915                 if (is_pipe)
3916                         return try_all_pipe_abis(hdr_sz, ph);
3917
3918                 return try_all_file_abis(hdr_sz, ph);
3919         }
3920         /*
3921          * the new magic number serves two purposes:
3922          * - unique number to identify actual perf.data files
3923          * - encode endianness of file
3924          */
3925         ph->version = PERF_HEADER_VERSION_2;
3926
3927         /* check magic number with one endianness */
3928         if (magic == __perf_magic2)
3929                 return 0;
3930
3931         /* check magic number with opposite endianness */
3932         if (magic != __perf_magic2_sw)
3933                 return -1;
3934
3935         ph->needs_swap = true;
3936
3937         return 0;
3938 }
3939
3940 int perf_file_header__read(struct perf_file_header *header,
3941                            struct perf_header *ph, int fd)
3942 {
3943         ssize_t ret;
3944
3945         lseek(fd, 0, SEEK_SET);
3946
3947         ret = readn(fd, header, sizeof(*header));
3948         if (ret <= 0)
3949                 return -1;
3950
3951         if (check_magic_endian(header->magic,
3952                                header->attr_size, false, ph) < 0) {
3953                 pr_debug("magic/endian check failed\n");
3954                 return -1;
3955         }
3956
3957         if (ph->needs_swap) {
3958                 mem_bswap_64(header, offsetof(struct perf_file_header,
3959                              adds_features));
3960         }
3961
3962         if (header->size != sizeof(*header)) {
3963                 /* Support the previous format */
3964                 if (header->size == offsetof(typeof(*header), adds_features))
3965                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3966                 else
3967                         return -1;
3968         } else if (ph->needs_swap) {
3969                 /*
3970                  * feature bitmap is declared as an array of unsigned longs --
3971                  * not good since its size can differ between the host that
3972                  * generated the data file and the host analyzing the file.
3973                  *
3974                  * We need to handle endianness, but we don't know the size of
3975                  * the unsigned long where the file was generated. Take a best
3976                  * guess at determining it: try 64-bit swap first (ie., file
3977                  * created on a 64-bit host), and check if the hostname feature
3978                  * bit is set (this feature bit is forced on as of fbe96f2).
3979                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3980                  * swap. If the hostname bit is still not set (e.g., older data
3981                  * file), punt and fallback to the original behavior --
3982                  * clearing all feature bits and setting buildid.
3983                  */
3984                 mem_bswap_64(&header->adds_features,
3985                             BITS_TO_U64(HEADER_FEAT_BITS));
3986
3987                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3988                         /* unswap as u64 */
3989                         mem_bswap_64(&header->adds_features,
3990                                     BITS_TO_U64(HEADER_FEAT_BITS));
3991
3992                         /* unswap as u32 */
3993                         mem_bswap_32(&header->adds_features,
3994                                     BITS_TO_U32(HEADER_FEAT_BITS));
3995                 }
3996
3997                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3998                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3999                         __set_bit(HEADER_BUILD_ID, header->adds_features);
4000                 }
4001         }
4002
4003         memcpy(&ph->adds_features, &header->adds_features,
4004                sizeof(ph->adds_features));
4005
4006         ph->data_offset  = header->data.offset;
4007         ph->data_size    = header->data.size;
4008         ph->feat_offset  = header->data.offset + header->data.size;
4009         return 0;
4010 }
4011
4012 static int perf_file_section__process(struct perf_file_section *section,
4013                                       struct perf_header *ph,
4014                                       int feat, int fd, void *data)
4015 {
4016         struct feat_fd fdd = {
4017                 .fd     = fd,
4018                 .ph     = ph,
4019                 .size   = section->size,
4020                 .offset = section->offset,
4021         };
4022
4023         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4024                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4025                           "%d, continuing...\n", section->offset, feat);
4026                 return 0;
4027         }
4028
4029         if (feat >= HEADER_LAST_FEATURE) {
4030                 pr_debug("unknown feature %d, continuing...\n", feat);
4031                 return 0;
4032         }
4033
4034         if (!feat_ops[feat].process)
4035                 return 0;
4036
4037         return feat_ops[feat].process(&fdd, data);
4038 }
4039
4040 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4041                                        struct perf_header *ph,
4042                                        struct perf_data* data,
4043                                        bool repipe, int repipe_fd)
4044 {
4045         struct feat_fd ff = {
4046                 .fd = repipe_fd,
4047                 .ph = ph,
4048         };
4049         ssize_t ret;
4050
4051         ret = perf_data__read(data, header, sizeof(*header));
4052         if (ret <= 0)
4053                 return -1;
4054
4055         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4056                 pr_debug("endian/magic failed\n");
4057                 return -1;
4058         }
4059
4060         if (ph->needs_swap)
4061                 header->size = bswap_64(header->size);
4062
4063         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4064                 return -1;
4065
4066         return 0;
4067 }
4068
4069 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4070 {
4071         struct perf_header *header = &session->header;
4072         struct perf_pipe_file_header f_header;
4073
4074         if (perf_file_header__read_pipe(&f_header, header, session->data,
4075                                         session->repipe, repipe_fd) < 0) {
4076                 pr_debug("incompatible file format\n");
4077                 return -EINVAL;
4078         }
4079
4080         return f_header.size == sizeof(f_header) ? 0 : -1;
4081 }
4082
4083 static int read_attr(int fd, struct perf_header *ph,
4084                      struct perf_file_attr *f_attr)
4085 {
4086         struct perf_event_attr *attr = &f_attr->attr;
4087         size_t sz, left;
4088         size_t our_sz = sizeof(f_attr->attr);
4089         ssize_t ret;
4090
4091         memset(f_attr, 0, sizeof(*f_attr));
4092
4093         /* read minimal guaranteed structure */
4094         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4095         if (ret <= 0) {
4096                 pr_debug("cannot read %d bytes of header attr\n",
4097                          PERF_ATTR_SIZE_VER0);
4098                 return -1;
4099         }
4100
4101         /* on file perf_event_attr size */
4102         sz = attr->size;
4103
4104         if (ph->needs_swap)
4105                 sz = bswap_32(sz);
4106
4107         if (sz == 0) {
4108                 /* assume ABI0 */
4109                 sz =  PERF_ATTR_SIZE_VER0;
4110         } else if (sz > our_sz) {
4111                 pr_debug("file uses a more recent and unsupported ABI"
4112                          " (%zu bytes extra)\n", sz - our_sz);
4113                 return -1;
4114         }
4115         /* what we have not yet read and that we know about */
4116         left = sz - PERF_ATTR_SIZE_VER0;
4117         if (left) {
4118                 void *ptr = attr;
4119                 ptr += PERF_ATTR_SIZE_VER0;
4120
4121                 ret = readn(fd, ptr, left);
4122         }
4123         /* read perf_file_section, ids are read in caller */
4124         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4125
4126         return ret <= 0 ? -1 : 0;
4127 }
4128
4129 #ifdef HAVE_LIBTRACEEVENT
4130 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4131 {
4132         struct tep_event *event;
4133         char bf[128];
4134
4135         /* already prepared */
4136         if (evsel->tp_format)
4137                 return 0;
4138
4139         if (pevent == NULL) {
4140                 pr_debug("broken or missing trace data\n");
4141                 return -1;
4142         }
4143
4144         event = tep_find_event(pevent, evsel->core.attr.config);
4145         if (event == NULL) {
4146                 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4147                 return -1;
4148         }
4149
4150         if (!evsel->name) {
4151                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4152                 evsel->name = strdup(bf);
4153                 if (evsel->name == NULL)
4154                         return -1;
4155         }
4156
4157         evsel->tp_format = event;
4158         return 0;
4159 }
4160
4161 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4162 {
4163         struct evsel *pos;
4164
4165         evlist__for_each_entry(evlist, pos) {
4166                 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4167                     evsel__prepare_tracepoint_event(pos, pevent))
4168                         return -1;
4169         }
4170
4171         return 0;
4172 }
4173 #endif
4174
4175 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4176 {
4177         struct perf_data *data = session->data;
4178         struct perf_header *header = &session->header;
4179         struct perf_file_header f_header;
4180         struct perf_file_attr   f_attr;
4181         u64                     f_id;
4182         int nr_attrs, nr_ids, i, j, err;
4183         int fd = perf_data__fd(data);
4184
4185         session->evlist = evlist__new();
4186         if (session->evlist == NULL)
4187                 return -ENOMEM;
4188
4189         session->evlist->env = &header->env;
4190         session->machines.host.env = &header->env;
4191
4192         /*
4193          * We can read 'pipe' data event from regular file,
4194          * check for the pipe header regardless of source.
4195          */
4196         err = perf_header__read_pipe(session, repipe_fd);
4197         if (!err || perf_data__is_pipe(data)) {
4198                 data->is_pipe = true;
4199                 return err;
4200         }
4201
4202         if (perf_file_header__read(&f_header, header, fd) < 0)
4203                 return -EINVAL;
4204
4205         if (header->needs_swap && data->in_place_update) {
4206                 pr_err("In-place update not supported when byte-swapping is required\n");
4207                 return -EINVAL;
4208         }
4209
4210         /*
4211          * Sanity check that perf.data was written cleanly; data size is
4212          * initialized to 0 and updated only if the on_exit function is run.
4213          * If data size is still 0 then the file contains only partial
4214          * information.  Just warn user and process it as much as it can.
4215          */
4216         if (f_header.data.size == 0) {
4217                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4218                            "Was the 'perf record' command properly terminated?\n",
4219                            data->file.path);
4220         }
4221
4222         if (f_header.attr_size == 0) {
4223                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4224                        "Was the 'perf record' command properly terminated?\n",
4225                        data->file.path);
4226                 return -EINVAL;
4227         }
4228
4229         nr_attrs = f_header.attrs.size / f_header.attr_size;
4230         lseek(fd, f_header.attrs.offset, SEEK_SET);
4231
4232         for (i = 0; i < nr_attrs; i++) {
4233                 struct evsel *evsel;
4234                 off_t tmp;
4235
4236                 if (read_attr(fd, header, &f_attr) < 0)
4237                         goto out_errno;
4238
4239                 if (header->needs_swap) {
4240                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
4241                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4242                         perf_event__attr_swap(&f_attr.attr);
4243                 }
4244
4245                 tmp = lseek(fd, 0, SEEK_CUR);
4246                 evsel = evsel__new(&f_attr.attr);
4247
4248                 if (evsel == NULL)
4249                         goto out_delete_evlist;
4250
4251                 evsel->needs_swap = header->needs_swap;
4252                 /*
4253                  * Do it before so that if perf_evsel__alloc_id fails, this
4254                  * entry gets purged too at evlist__delete().
4255                  */
4256                 evlist__add(session->evlist, evsel);
4257
4258                 nr_ids = f_attr.ids.size / sizeof(u64);
4259                 /*
4260                  * We don't have the cpu and thread maps on the header, so
4261                  * for allocating the perf_sample_id table we fake 1 cpu and
4262                  * hattr->ids threads.
4263                  */
4264                 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4265                         goto out_delete_evlist;
4266
4267                 lseek(fd, f_attr.ids.offset, SEEK_SET);
4268
4269                 for (j = 0; j < nr_ids; j++) {
4270                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4271                                 goto out_errno;
4272
4273                         perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4274                 }
4275
4276                 lseek(fd, tmp, SEEK_SET);
4277         }
4278
4279 #ifdef HAVE_LIBTRACEEVENT
4280         perf_header__process_sections(header, fd, &session->tevent,
4281                                       perf_file_section__process);
4282
4283         if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4284                 goto out_delete_evlist;
4285 #else
4286         perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4287 #endif
4288
4289         return 0;
4290 out_errno:
4291         return -errno;
4292
4293 out_delete_evlist:
4294         evlist__delete(session->evlist);
4295         session->evlist = NULL;
4296         return -ENOMEM;
4297 }
4298
4299 int perf_event__process_feature(struct perf_session *session,
4300                                 union perf_event *event)
4301 {
4302         struct perf_tool *tool = session->tool;
4303         struct feat_fd ff = { .fd = 0 };
4304         struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4305         int type = fe->header.type;
4306         u64 feat = fe->feat_id;
4307         int ret = 0;
4308
4309         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4310                 pr_warning("invalid record type %d in pipe-mode\n", type);
4311                 return 0;
4312         }
4313         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4314                 pr_warning("invalid record type %d in pipe-mode\n", type);
4315                 return -1;
4316         }
4317
4318         if (!feat_ops[feat].process)
4319                 return 0;
4320
4321         ff.buf  = (void *)fe->data;
4322         ff.size = event->header.size - sizeof(*fe);
4323         ff.ph = &session->header;
4324
4325         if (feat_ops[feat].process(&ff, NULL)) {
4326                 ret = -1;
4327                 goto out;
4328         }
4329
4330         if (!feat_ops[feat].print || !tool->show_feat_hdr)
4331                 goto out;
4332
4333         if (!feat_ops[feat].full_only ||
4334             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4335                 feat_ops[feat].print(&ff, stdout);
4336         } else {
4337                 fprintf(stdout, "# %s info available, use -I to display\n",
4338                         feat_ops[feat].name);
4339         }
4340 out:
4341         free_event_desc(ff.events);
4342         return ret;
4343 }
4344
4345 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4346 {
4347         struct perf_record_event_update *ev = &event->event_update;
4348         struct perf_cpu_map *map;
4349         size_t ret;
4350
4351         ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4352
4353         switch (ev->type) {
4354         case PERF_EVENT_UPDATE__SCALE:
4355                 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4356                 break;
4357         case PERF_EVENT_UPDATE__UNIT:
4358                 ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4359                 break;
4360         case PERF_EVENT_UPDATE__NAME:
4361                 ret += fprintf(fp, "... name:  %s\n", ev->name);
4362                 break;
4363         case PERF_EVENT_UPDATE__CPUS:
4364                 ret += fprintf(fp, "... ");
4365
4366                 map = cpu_map__new_data(&ev->cpus.cpus);
4367                 if (map)
4368                         ret += cpu_map__fprintf(map, fp);
4369                 else
4370                         ret += fprintf(fp, "failed to get cpus\n");
4371                 break;
4372         default:
4373                 ret += fprintf(fp, "... unknown type\n");
4374                 break;
4375         }
4376
4377         return ret;
4378 }
4379
4380 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4381                              union perf_event *event,
4382                              struct evlist **pevlist)
4383 {
4384         u32 i, ids, n_ids;
4385         struct evsel *evsel;
4386         struct evlist *evlist = *pevlist;
4387
4388         if (evlist == NULL) {
4389                 *pevlist = evlist = evlist__new();
4390                 if (evlist == NULL)
4391                         return -ENOMEM;
4392         }
4393
4394         evsel = evsel__new(&event->attr.attr);
4395         if (evsel == NULL)
4396                 return -ENOMEM;
4397
4398         evlist__add(evlist, evsel);
4399
4400         ids = event->header.size;
4401         ids -= (void *)&event->attr.id - (void *)event;
4402         n_ids = ids / sizeof(u64);
4403         /*
4404          * We don't have the cpu and thread maps on the header, so
4405          * for allocating the perf_sample_id table we fake 1 cpu and
4406          * hattr->ids threads.
4407          */
4408         if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4409                 return -ENOMEM;
4410
4411         for (i = 0; i < n_ids; i++) {
4412                 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4413         }
4414
4415         return 0;
4416 }
4417
4418 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4419                                      union perf_event *event,
4420                                      struct evlist **pevlist)
4421 {
4422         struct perf_record_event_update *ev = &event->event_update;
4423         struct evlist *evlist;
4424         struct evsel *evsel;
4425         struct perf_cpu_map *map;
4426
4427         if (dump_trace)
4428                 perf_event__fprintf_event_update(event, stdout);
4429
4430         if (!pevlist || *pevlist == NULL)
4431                 return -EINVAL;
4432
4433         evlist = *pevlist;
4434
4435         evsel = evlist__id2evsel(evlist, ev->id);
4436         if (evsel == NULL)
4437                 return -EINVAL;
4438
4439         switch (ev->type) {
4440         case PERF_EVENT_UPDATE__UNIT:
4441                 free((char *)evsel->unit);
4442                 evsel->unit = strdup(ev->unit);
4443                 break;
4444         case PERF_EVENT_UPDATE__NAME:
4445                 free(evsel->name);
4446                 evsel->name = strdup(ev->name);
4447                 break;
4448         case PERF_EVENT_UPDATE__SCALE:
4449                 evsel->scale = ev->scale.scale;
4450                 break;
4451         case PERF_EVENT_UPDATE__CPUS:
4452                 map = cpu_map__new_data(&ev->cpus.cpus);
4453                 if (map) {
4454                         perf_cpu_map__put(evsel->core.own_cpus);
4455                         evsel->core.own_cpus = map;
4456                 } else
4457                         pr_err("failed to get event_update cpus\n");
4458         default:
4459                 break;
4460         }
4461
4462         return 0;
4463 }
4464
4465 #ifdef HAVE_LIBTRACEEVENT
4466 int perf_event__process_tracing_data(struct perf_session *session,
4467                                      union perf_event *event)
4468 {
4469         ssize_t size_read, padding, size = event->tracing_data.size;
4470         int fd = perf_data__fd(session->data);
4471         char buf[BUFSIZ];
4472
4473         /*
4474          * The pipe fd is already in proper place and in any case
4475          * we can't move it, and we'd screw the case where we read
4476          * 'pipe' data from regular file. The trace_report reads
4477          * data from 'fd' so we need to set it directly behind the
4478          * event, where the tracing data starts.
4479          */
4480         if (!perf_data__is_pipe(session->data)) {
4481                 off_t offset = lseek(fd, 0, SEEK_CUR);
4482
4483                 /* setup for reading amidst mmap */
4484                 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4485                       SEEK_SET);
4486         }
4487
4488         size_read = trace_report(fd, &session->tevent,
4489                                  session->repipe);
4490         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4491
4492         if (readn(fd, buf, padding) < 0) {
4493                 pr_err("%s: reading input file", __func__);
4494                 return -1;
4495         }
4496         if (session->repipe) {
4497                 int retw = write(STDOUT_FILENO, buf, padding);
4498                 if (retw <= 0 || retw != padding) {
4499                         pr_err("%s: repiping tracing data padding", __func__);
4500                         return -1;
4501                 }
4502         }
4503
4504         if (size_read + padding != size) {
4505                 pr_err("%s: tracing data size mismatch", __func__);
4506                 return -1;
4507         }
4508
4509         evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4510
4511         return size_read + padding;
4512 }
4513 #endif
4514
4515 int perf_event__process_build_id(struct perf_session *session,
4516                                  union perf_event *event)
4517 {
4518         __event_process_build_id(&event->build_id,
4519                                  event->build_id.filename,
4520                                  session);
4521         return 0;
4522 }