1 // SPDX-License-Identifier: GPL-2.0
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
22 #ifdef HAVE_LIBBPF_SUPPORT
23 #include <bpf/libbpf.h>
25 #include <perf/cpumap.h>
30 #include "util/evsel_fprintf.h"
33 #include "trace-event.h"
43 #include <api/fs/fs.h>
46 #include "time-utils.h"
48 #include "util/util.h" // perf_exe()
50 #include "bpf-event.h"
51 #include "bpf-utils.h"
53 #include "pmu-hybrid.h"
55 #include <linux/ctype.h>
56 #include <internal/lib.h>
60 * must be a numerical value to let the endianness
61 * determine the memory layout. That way we are able
62 * to detect endianness when reading the perf.data file
65 * we check for legacy (PERFFILE) format.
67 static const char *__perf_magic1 = "PERFFILE";
68 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
69 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
71 #define PERF_MAGIC __perf_magic2
73 const char perf_version_string[] = PERF_VERSION;
75 struct perf_file_attr {
76 struct perf_event_attr attr;
77 struct perf_file_section ids;
80 void perf_header__set_feat(struct perf_header *header, int feat)
82 set_bit(feat, header->adds_features);
85 void perf_header__clear_feat(struct perf_header *header, int feat)
87 clear_bit(feat, header->adds_features);
90 bool perf_header__has_feat(const struct perf_header *header, int feat)
92 return test_bit(feat, header->adds_features);
95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
97 ssize_t ret = writen(ff->fd, buf, size);
99 if (ret != (ssize_t)size)
100 return ret < 0 ? (int)ret : -1;
104 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
106 /* struct perf_event_header::size is u16 */
107 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
108 size_t new_size = ff->size;
111 if (size + ff->offset > max_size)
114 while (size > (new_size - ff->offset))
116 new_size = min(max_size, new_size);
118 if (ff->size < new_size) {
119 addr = realloc(ff->buf, new_size);
126 memcpy(ff->buf + ff->offset, buf, size);
132 /* Return: 0 if succeeded, -ERR if failed. */
133 int do_write(struct feat_fd *ff, const void *buf, size_t size)
136 return __do_write_fd(ff, buf, size);
137 return __do_write_buf(ff, buf, size);
140 /* Return: 0 if succeeded, -ERR if failed. */
141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
143 u64 *p = (u64 *) set;
146 ret = do_write(ff, &size, sizeof(size));
150 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
151 ret = do_write(ff, p + i, sizeof(*p));
159 /* Return: 0 if succeeded, -ERR if failed. */
160 int write_padded(struct feat_fd *ff, const void *bf,
161 size_t count, size_t count_aligned)
163 static const char zero_buf[NAME_ALIGN];
164 int err = do_write(ff, bf, count);
167 err = do_write(ff, zero_buf, count_aligned - count);
172 #define string_size(str) \
173 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
175 /* Return: 0 if succeeded, -ERR if failed. */
176 static int do_write_string(struct feat_fd *ff, const char *str)
181 olen = strlen(str) + 1;
182 len = PERF_ALIGN(olen, NAME_ALIGN);
184 /* write len, incl. \0 */
185 ret = do_write(ff, &len, sizeof(len));
189 return write_padded(ff, str, olen, len);
192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
194 ssize_t ret = readn(ff->fd, addr, size);
197 return ret < 0 ? (int)ret : -1;
201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
203 if (size > (ssize_t)ff->size - ff->offset)
206 memcpy(addr, ff->buf + ff->offset, size);
213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
216 return __do_read_fd(ff, addr, size);
217 return __do_read_buf(ff, addr, size);
220 static int do_read_u32(struct feat_fd *ff, u32 *addr)
224 ret = __do_read(ff, addr, sizeof(*addr));
228 if (ff->ph->needs_swap)
229 *addr = bswap_32(*addr);
233 static int do_read_u64(struct feat_fd *ff, u64 *addr)
237 ret = __do_read(ff, addr, sizeof(*addr));
241 if (ff->ph->needs_swap)
242 *addr = bswap_64(*addr);
246 static char *do_read_string(struct feat_fd *ff)
251 if (do_read_u32(ff, &len))
258 if (!__do_read(ff, buf, len)) {
260 * strings are padded by zeroes
261 * thus the actual strlen of buf
262 * may be less than len
271 /* Return: 0 if succeeded, -ERR if failed. */
272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
278 ret = do_read_u64(ff, &size);
282 set = bitmap_zalloc(size);
288 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
289 ret = do_read_u64(ff, p + i);
301 static int write_tracing_data(struct feat_fd *ff,
302 struct evlist *evlist)
304 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
307 return read_tracing_data(ff->fd, &evlist->core.entries);
310 static int write_build_id(struct feat_fd *ff,
311 struct evlist *evlist __maybe_unused)
313 struct perf_session *session;
316 session = container_of(ff->ph, struct perf_session, header);
318 if (!perf_session__read_build_ids(session, true))
321 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
324 err = perf_session__write_buildid_table(session, ff);
326 pr_debug("failed to write buildid table\n");
329 perf_session__cache_build_ids(session);
334 static int write_hostname(struct feat_fd *ff,
335 struct evlist *evlist __maybe_unused)
344 return do_write_string(ff, uts.nodename);
347 static int write_osrelease(struct feat_fd *ff,
348 struct evlist *evlist __maybe_unused)
357 return do_write_string(ff, uts.release);
360 static int write_arch(struct feat_fd *ff,
361 struct evlist *evlist __maybe_unused)
370 return do_write_string(ff, uts.machine);
373 static int write_version(struct feat_fd *ff,
374 struct evlist *evlist __maybe_unused)
376 return do_write_string(ff, perf_version_string);
379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
384 const char *search = cpuinfo_proc;
391 file = fopen("/proc/cpuinfo", "r");
395 while (getline(&buf, &len, file) > 0) {
396 ret = strncmp(buf, search, strlen(search));
408 p = strchr(buf, ':');
409 if (p && *(p+1) == ' ' && *(p+2))
415 /* squash extra space characters (branding string) */
420 char *q = skip_spaces(r);
423 while ((*r++ = *q++));
427 ret = do_write_string(ff, s);
434 static int write_cpudesc(struct feat_fd *ff,
435 struct evlist *evlist __maybe_unused)
437 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
438 #define CPUINFO_PROC { "cpu", }
439 #elif defined(__s390__)
440 #define CPUINFO_PROC { "vendor_id", }
441 #elif defined(__sh__)
442 #define CPUINFO_PROC { "cpu type", }
443 #elif defined(__alpha__) || defined(__mips__)
444 #define CPUINFO_PROC { "cpu model", }
445 #elif defined(__arm__)
446 #define CPUINFO_PROC { "model name", "Processor", }
447 #elif defined(__arc__)
448 #define CPUINFO_PROC { "Processor", }
449 #elif defined(__xtensa__)
450 #define CPUINFO_PROC { "core ID", }
452 #define CPUINFO_PROC { "model name", }
454 const char *cpuinfo_procs[] = CPUINFO_PROC;
458 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
460 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
468 static int write_nrcpus(struct feat_fd *ff,
469 struct evlist *evlist __maybe_unused)
475 nrc = cpu__max_present_cpu().cpu;
477 nr = sysconf(_SC_NPROCESSORS_ONLN);
481 nra = (u32)(nr & UINT_MAX);
483 ret = do_write(ff, &nrc, sizeof(nrc));
487 return do_write(ff, &nra, sizeof(nra));
490 static int write_event_desc(struct feat_fd *ff,
491 struct evlist *evlist)
497 nre = evlist->core.nr_entries;
500 * write number of events
502 ret = do_write(ff, &nre, sizeof(nre));
507 * size of perf_event_attr struct
509 sz = (u32)sizeof(evsel->core.attr);
510 ret = do_write(ff, &sz, sizeof(sz));
514 evlist__for_each_entry(evlist, evsel) {
515 ret = do_write(ff, &evsel->core.attr, sz);
519 * write number of unique id per event
520 * there is one id per instance of an event
522 * copy into an nri to be independent of the
525 nri = evsel->core.ids;
526 ret = do_write(ff, &nri, sizeof(nri));
531 * write event string as passed on cmdline
533 ret = do_write_string(ff, evsel__name(evsel));
537 * write unique ids for this event
539 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
546 static int write_cmdline(struct feat_fd *ff,
547 struct evlist *evlist __maybe_unused)
549 char pbuf[MAXPATHLEN], *buf;
552 /* actual path to perf binary */
553 buf = perf_exe(pbuf, MAXPATHLEN);
555 /* account for binary path */
556 n = perf_env.nr_cmdline + 1;
558 ret = do_write(ff, &n, sizeof(n));
562 ret = do_write_string(ff, buf);
566 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
567 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
575 static int write_cpu_topology(struct feat_fd *ff,
576 struct evlist *evlist __maybe_unused)
578 struct cpu_topology *tp;
582 tp = cpu_topology__new();
586 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
590 for (i = 0; i < tp->package_cpus_lists; i++) {
591 ret = do_write_string(ff, tp->package_cpus_list[i]);
595 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
599 for (i = 0; i < tp->core_cpus_lists; i++) {
600 ret = do_write_string(ff, tp->core_cpus_list[i]);
605 ret = perf_env__read_cpu_topology_map(&perf_env);
609 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
610 ret = do_write(ff, &perf_env.cpu[j].core_id,
611 sizeof(perf_env.cpu[j].core_id));
614 ret = do_write(ff, &perf_env.cpu[j].socket_id,
615 sizeof(perf_env.cpu[j].socket_id));
620 if (!tp->die_cpus_lists)
623 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
627 for (i = 0; i < tp->die_cpus_lists; i++) {
628 ret = do_write_string(ff, tp->die_cpus_list[i]);
633 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
634 ret = do_write(ff, &perf_env.cpu[j].die_id,
635 sizeof(perf_env.cpu[j].die_id));
641 cpu_topology__delete(tp);
647 static int write_total_mem(struct feat_fd *ff,
648 struct evlist *evlist __maybe_unused)
656 fp = fopen("/proc/meminfo", "r");
660 while (getline(&buf, &len, fp) > 0) {
661 ret = strncmp(buf, "MemTotal:", 9);
666 n = sscanf(buf, "%*s %"PRIu64, &mem);
668 ret = do_write(ff, &mem, sizeof(mem));
676 static int write_numa_topology(struct feat_fd *ff,
677 struct evlist *evlist __maybe_unused)
679 struct numa_topology *tp;
683 tp = numa_topology__new();
687 ret = do_write(ff, &tp->nr, sizeof(u32));
691 for (i = 0; i < tp->nr; i++) {
692 struct numa_topology_node *n = &tp->nodes[i];
694 ret = do_write(ff, &n->node, sizeof(u32));
698 ret = do_write(ff, &n->mem_total, sizeof(u64));
702 ret = do_write(ff, &n->mem_free, sizeof(u64));
706 ret = do_write_string(ff, n->cpus);
714 numa_topology__delete(tp);
721 * struct pmu_mappings {
730 static int write_pmu_mappings(struct feat_fd *ff,
731 struct evlist *evlist __maybe_unused)
733 struct perf_pmu *pmu = NULL;
738 * Do a first pass to count number of pmu to avoid lseek so this
739 * works in pipe mode as well.
741 while ((pmu = perf_pmu__scan(pmu))) {
747 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
751 while ((pmu = perf_pmu__scan(pmu))) {
755 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
759 ret = do_write_string(ff, pmu->name);
770 * struct group_descs {
772 * struct group_desc {
779 static int write_group_desc(struct feat_fd *ff,
780 struct evlist *evlist)
782 u32 nr_groups = evlist->core.nr_groups;
786 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
790 evlist__for_each_entry(evlist, evsel) {
791 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
792 const char *name = evsel->group_name ?: "{anon_group}";
793 u32 leader_idx = evsel->core.idx;
794 u32 nr_members = evsel->core.nr_members;
796 ret = do_write_string(ff, name);
800 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
804 ret = do_write(ff, &nr_members, sizeof(nr_members));
813 * Return the CPU id as a raw string.
815 * Each architecture should provide a more precise id string that
816 * can be use to match the architecture's "mapfile".
818 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823 /* Return zero when the cpuid from the mapfile.csv matches the
824 * cpuid string generated on this platform.
825 * Otherwise return non-zero.
827 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
830 regmatch_t pmatch[1];
833 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
834 /* Warn unable to generate match particular string. */
835 pr_info("Invalid regular expression %s\n", mapcpuid);
839 match = !regexec(&re, cpuid, 1, pmatch, 0);
842 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
844 /* Verify the entire string matched. */
845 if (match_len == strlen(cpuid))
852 * default get_cpuid(): nothing gets recorded
853 * actual implementation must be in arch/$(SRCARCH)/util/header.c
855 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
857 return ENOSYS; /* Not implemented */
860 static int write_cpuid(struct feat_fd *ff,
861 struct evlist *evlist __maybe_unused)
866 ret = get_cpuid(buffer, sizeof(buffer));
870 return do_write_string(ff, buffer);
873 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
874 struct evlist *evlist __maybe_unused)
879 static int write_auxtrace(struct feat_fd *ff,
880 struct evlist *evlist __maybe_unused)
882 struct perf_session *session;
885 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
888 session = container_of(ff->ph, struct perf_session, header);
890 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
892 pr_err("Failed to write auxtrace index\n");
896 static int write_clockid(struct feat_fd *ff,
897 struct evlist *evlist __maybe_unused)
899 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
900 sizeof(ff->ph->env.clock.clockid_res_ns));
903 static int write_clock_data(struct feat_fd *ff,
904 struct evlist *evlist __maybe_unused)
913 ret = do_write(ff, &data32, sizeof(data32));
918 data32 = ff->ph->env.clock.clockid;
920 ret = do_write(ff, &data32, sizeof(data32));
925 data64 = &ff->ph->env.clock.tod_ns;
927 ret = do_write(ff, data64, sizeof(*data64));
931 /* clockid ref time */
932 data64 = &ff->ph->env.clock.clockid_ns;
934 return do_write(ff, data64, sizeof(*data64));
937 static int write_hybrid_topology(struct feat_fd *ff,
938 struct evlist *evlist __maybe_unused)
940 struct hybrid_topology *tp;
944 tp = hybrid_topology__new();
948 ret = do_write(ff, &tp->nr, sizeof(u32));
952 for (i = 0; i < tp->nr; i++) {
953 struct hybrid_topology_node *n = &tp->nodes[i];
955 ret = do_write_string(ff, n->pmu_name);
959 ret = do_write_string(ff, n->cpus);
967 hybrid_topology__delete(tp);
971 static int write_dir_format(struct feat_fd *ff,
972 struct evlist *evlist __maybe_unused)
974 struct perf_session *session;
975 struct perf_data *data;
977 session = container_of(ff->ph, struct perf_session, header);
978 data = session->data;
980 if (WARN_ON(!perf_data__is_dir(data)))
983 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
987 * Check whether a CPU is online
990 * 1 -> if CPU is online
991 * 0 -> if CPU is offline
994 int is_cpu_online(unsigned int cpu)
1000 struct stat statbuf;
1002 snprintf(buf, sizeof(buf),
1003 "/sys/devices/system/cpu/cpu%d", cpu);
1004 if (stat(buf, &statbuf) != 0)
1008 * Check if /sys/devices/system/cpu/cpux/online file
1009 * exists. Some cases cpu0 won't have online file since
1010 * it is not expected to be turned off generally.
1011 * In kernels without CONFIG_HOTPLUG_CPU, this
1014 snprintf(buf, sizeof(buf),
1015 "/sys/devices/system/cpu/cpu%d/online", cpu);
1016 if (stat(buf, &statbuf) != 0)
1020 * Read online file using sysfs__read_str.
1021 * If read or open fails, return -1.
1022 * If read succeeds, return value from file
1023 * which gets stored in "str"
1025 snprintf(buf, sizeof(buf),
1026 "devices/system/cpu/cpu%d/online", cpu);
1028 if (sysfs__read_str(buf, &str, &strlen) < 0)
1037 #ifdef HAVE_LIBBPF_SUPPORT
1038 static int write_bpf_prog_info(struct feat_fd *ff,
1039 struct evlist *evlist __maybe_unused)
1041 struct perf_env *env = &ff->ph->env;
1042 struct rb_root *root;
1043 struct rb_node *next;
1046 down_read(&env->bpf_progs.lock);
1048 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1049 sizeof(env->bpf_progs.infos_cnt));
1053 root = &env->bpf_progs.infos;
1054 next = rb_first(root);
1056 struct bpf_prog_info_node *node;
1059 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1060 next = rb_next(&node->rb_node);
1061 len = sizeof(struct perf_bpil) +
1062 node->info_linear->data_len;
1064 /* before writing to file, translate address to offset */
1065 bpil_addr_to_offs(node->info_linear);
1066 ret = do_write(ff, node->info_linear, len);
1068 * translate back to address even when do_write() fails,
1069 * so that this function never changes the data.
1071 bpil_offs_to_addr(node->info_linear);
1076 up_read(&env->bpf_progs.lock);
1080 static int write_bpf_btf(struct feat_fd *ff,
1081 struct evlist *evlist __maybe_unused)
1083 struct perf_env *env = &ff->ph->env;
1084 struct rb_root *root;
1085 struct rb_node *next;
1088 down_read(&env->bpf_progs.lock);
1090 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1091 sizeof(env->bpf_progs.btfs_cnt));
1096 root = &env->bpf_progs.btfs;
1097 next = rb_first(root);
1099 struct btf_node *node;
1101 node = rb_entry(next, struct btf_node, rb_node);
1102 next = rb_next(&node->rb_node);
1103 ret = do_write(ff, &node->id,
1104 sizeof(u32) * 2 + node->data_size);
1109 up_read(&env->bpf_progs.lock);
1112 #endif // HAVE_LIBBPF_SUPPORT
1114 static int cpu_cache_level__sort(const void *a, const void *b)
1116 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1117 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1119 return cache_a->level - cache_b->level;
1122 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1124 if (a->level != b->level)
1127 if (a->line_size != b->line_size)
1130 if (a->sets != b->sets)
1133 if (a->ways != b->ways)
1136 if (strcmp(a->type, b->type))
1139 if (strcmp(a->size, b->size))
1142 if (strcmp(a->map, b->map))
1148 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1150 char path[PATH_MAX], file[PATH_MAX];
1154 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1155 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1157 if (stat(file, &st))
1160 scnprintf(file, PATH_MAX, "%s/level", path);
1161 if (sysfs__read_int(file, (int *) &cache->level))
1164 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1165 if (sysfs__read_int(file, (int *) &cache->line_size))
1168 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1169 if (sysfs__read_int(file, (int *) &cache->sets))
1172 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1173 if (sysfs__read_int(file, (int *) &cache->ways))
1176 scnprintf(file, PATH_MAX, "%s/type", path);
1177 if (sysfs__read_str(file, &cache->type, &len))
1180 cache->type[len] = 0;
1181 cache->type = strim(cache->type);
1183 scnprintf(file, PATH_MAX, "%s/size", path);
1184 if (sysfs__read_str(file, &cache->size, &len)) {
1185 zfree(&cache->type);
1189 cache->size[len] = 0;
1190 cache->size = strim(cache->size);
1192 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1193 if (sysfs__read_str(file, &cache->map, &len)) {
1194 zfree(&cache->size);
1195 zfree(&cache->type);
1199 cache->map[len] = 0;
1200 cache->map = strim(cache->map);
1204 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1206 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1209 #define MAX_CACHE_LVL 4
1211 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1217 nr = cpu__max_cpu().cpu;
1219 for (cpu = 0; cpu < nr; cpu++) {
1220 for (level = 0; level < MAX_CACHE_LVL; level++) {
1221 struct cpu_cache_level c;
1224 err = cpu_cache_level__read(&c, cpu, level);
1231 for (i = 0; i < cnt; i++) {
1232 if (cpu_cache_level__cmp(&c, &caches[i]))
1239 cpu_cache_level__free(&c);
1246 static int write_cache(struct feat_fd *ff,
1247 struct evlist *evlist __maybe_unused)
1249 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1250 struct cpu_cache_level caches[max_caches];
1251 u32 cnt = 0, i, version = 1;
1254 ret = build_caches(caches, &cnt);
1258 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1260 ret = do_write(ff, &version, sizeof(u32));
1264 ret = do_write(ff, &cnt, sizeof(u32));
1268 for (i = 0; i < cnt; i++) {
1269 struct cpu_cache_level *c = &caches[i];
1272 ret = do_write(ff, &c->v, sizeof(u32)); \
1283 ret = do_write_string(ff, (const char *) c->v); \
1294 for (i = 0; i < cnt; i++)
1295 cpu_cache_level__free(&caches[i]);
1299 static int write_stat(struct feat_fd *ff __maybe_unused,
1300 struct evlist *evlist __maybe_unused)
1305 static int write_sample_time(struct feat_fd *ff,
1306 struct evlist *evlist)
1310 ret = do_write(ff, &evlist->first_sample_time,
1311 sizeof(evlist->first_sample_time));
1315 return do_write(ff, &evlist->last_sample_time,
1316 sizeof(evlist->last_sample_time));
1320 static int memory_node__read(struct memory_node *n, unsigned long idx)
1322 unsigned int phys, size = 0;
1323 char path[PATH_MAX];
1327 #define for_each_memory(mem, dir) \
1328 while ((ent = readdir(dir))) \
1329 if (strcmp(ent->d_name, ".") && \
1330 strcmp(ent->d_name, "..") && \
1331 sscanf(ent->d_name, "memory%u", &mem) == 1)
1333 scnprintf(path, PATH_MAX,
1334 "%s/devices/system/node/node%lu",
1335 sysfs__mountpoint(), idx);
1337 dir = opendir(path);
1339 pr_warning("failed: can't open memory sysfs data\n");
1343 for_each_memory(phys, dir) {
1344 size = max(phys, size);
1349 n->set = bitmap_zalloc(size);
1360 for_each_memory(phys, dir) {
1361 set_bit(phys, n->set);
1368 static int memory_node__sort(const void *a, const void *b)
1370 const struct memory_node *na = a;
1371 const struct memory_node *nb = b;
1373 return na->node - nb->node;
1376 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1378 char path[PATH_MAX];
1384 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1385 sysfs__mountpoint());
1387 dir = opendir(path);
1389 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1394 while (!ret && (ent = readdir(dir))) {
1398 if (!strcmp(ent->d_name, ".") ||
1399 !strcmp(ent->d_name, ".."))
1402 r = sscanf(ent->d_name, "node%u", &idx);
1406 if (WARN_ONCE(cnt >= size,
1407 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1412 ret = memory_node__read(&nodes[cnt++], idx);
1419 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1424 #define MAX_MEMORY_NODES 2000
1427 * The MEM_TOPOLOGY holds physical memory map for every
1428 * node in system. The format of data is as follows:
1430 * 0 - version | for future changes
1431 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1432 * 16 - count | number of nodes
1434 * For each node we store map of physical indexes for
1437 * 32 - node id | node index
1438 * 40 - size | size of bitmap
1439 * 48 - bitmap | bitmap of memory indexes that belongs to node
1441 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1442 struct evlist *evlist __maybe_unused)
1444 static struct memory_node nodes[MAX_MEMORY_NODES];
1445 u64 bsize, version = 1, i, nr;
1448 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1449 (unsigned long long *) &bsize);
1453 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1457 ret = do_write(ff, &version, sizeof(version));
1461 ret = do_write(ff, &bsize, sizeof(bsize));
1465 ret = do_write(ff, &nr, sizeof(nr));
1469 for (i = 0; i < nr; i++) {
1470 struct memory_node *n = &nodes[i];
1473 ret = do_write(ff, &n->v, sizeof(n->v)); \
1482 ret = do_write_bitmap(ff, n->set, n->size);
1491 static int write_compressed(struct feat_fd *ff __maybe_unused,
1492 struct evlist *evlist __maybe_unused)
1496 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1500 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1504 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1508 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1512 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1515 static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1518 struct perf_pmu_caps *caps = NULL;
1522 nr_caps = perf_pmu__caps_parse(pmu);
1526 ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1530 list_for_each_entry(caps, &pmu->caps, list) {
1531 ret = do_write_string(ff, caps->name);
1535 ret = do_write_string(ff, caps->value);
1541 ret = do_write_string(ff, pmu->name);
1549 static int write_cpu_pmu_caps(struct feat_fd *ff,
1550 struct evlist *evlist __maybe_unused)
1552 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1557 return write_per_cpu_pmu_caps(ff, cpu_pmu, false);
1560 static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff,
1561 struct evlist *evlist __maybe_unused)
1563 struct perf_pmu *pmu;
1564 u32 nr_pmu = perf_pmu__hybrid_pmu_num();
1570 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1574 perf_pmu__for_each_hybrid_pmu(pmu) {
1575 ret = write_per_cpu_pmu_caps(ff, pmu, true);
1583 static void print_hostname(struct feat_fd *ff, FILE *fp)
1585 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1588 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1590 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1593 static void print_arch(struct feat_fd *ff, FILE *fp)
1595 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1598 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1600 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1603 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1605 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1606 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1609 static void print_version(struct feat_fd *ff, FILE *fp)
1611 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1614 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1618 nr = ff->ph->env.nr_cmdline;
1620 fprintf(fp, "# cmdline : ");
1622 for (i = 0; i < nr; i++) {
1623 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1625 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1629 char *quote = strchr(argv_i, '\'');
1633 fprintf(fp, "%s\\\'", argv_i);
1636 fprintf(fp, "%s ", argv_i);
1643 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1645 struct perf_header *ph = ff->ph;
1646 int cpu_nr = ph->env.nr_cpus_avail;
1650 nr = ph->env.nr_sibling_cores;
1651 str = ph->env.sibling_cores;
1653 for (i = 0; i < nr; i++) {
1654 fprintf(fp, "# sibling sockets : %s\n", str);
1655 str += strlen(str) + 1;
1658 if (ph->env.nr_sibling_dies) {
1659 nr = ph->env.nr_sibling_dies;
1660 str = ph->env.sibling_dies;
1662 for (i = 0; i < nr; i++) {
1663 fprintf(fp, "# sibling dies : %s\n", str);
1664 str += strlen(str) + 1;
1668 nr = ph->env.nr_sibling_threads;
1669 str = ph->env.sibling_threads;
1671 for (i = 0; i < nr; i++) {
1672 fprintf(fp, "# sibling threads : %s\n", str);
1673 str += strlen(str) + 1;
1676 if (ph->env.nr_sibling_dies) {
1677 if (ph->env.cpu != NULL) {
1678 for (i = 0; i < cpu_nr; i++)
1679 fprintf(fp, "# CPU %d: Core ID %d, "
1680 "Die ID %d, Socket ID %d\n",
1681 i, ph->env.cpu[i].core_id,
1682 ph->env.cpu[i].die_id,
1683 ph->env.cpu[i].socket_id);
1685 fprintf(fp, "# Core ID, Die ID and Socket ID "
1686 "information is not available\n");
1688 if (ph->env.cpu != NULL) {
1689 for (i = 0; i < cpu_nr; i++)
1690 fprintf(fp, "# CPU %d: Core ID %d, "
1692 i, ph->env.cpu[i].core_id,
1693 ph->env.cpu[i].socket_id);
1695 fprintf(fp, "# Core ID and Socket ID "
1696 "information is not available\n");
1700 static void print_clockid(struct feat_fd *ff, FILE *fp)
1702 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1703 ff->ph->env.clock.clockid_res_ns * 1000);
1706 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1708 struct timespec clockid_ns;
1709 char tstr[64], date[64];
1710 struct timeval tod_ns;
1715 if (!ff->ph->env.clock.enabled) {
1716 fprintf(fp, "# reference time disabled\n");
1720 /* Compute TOD time. */
1721 ref = ff->ph->env.clock.tod_ns;
1722 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1723 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1724 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1726 /* Compute clockid time. */
1727 ref = ff->ph->env.clock.clockid_ns;
1728 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1729 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1730 clockid_ns.tv_nsec = ref;
1732 clockid = ff->ph->env.clock.clockid;
1734 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1735 snprintf(tstr, sizeof(tstr), "<error>");
1737 strftime(date, sizeof(date), "%F %T", <ime);
1738 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1739 date, (int) tod_ns.tv_usec);
1742 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1743 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1744 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1745 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1746 clockid_name(clockid));
1749 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1752 struct hybrid_node *n;
1754 fprintf(fp, "# hybrid cpu system:\n");
1755 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1756 n = &ff->ph->env.hybrid_nodes[i];
1757 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1761 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1763 struct perf_session *session;
1764 struct perf_data *data;
1766 session = container_of(ff->ph, struct perf_session, header);
1767 data = session->data;
1769 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1772 #ifdef HAVE_LIBBPF_SUPPORT
1773 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1775 struct perf_env *env = &ff->ph->env;
1776 struct rb_root *root;
1777 struct rb_node *next;
1779 down_read(&env->bpf_progs.lock);
1781 root = &env->bpf_progs.infos;
1782 next = rb_first(root);
1785 struct bpf_prog_info_node *node;
1787 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1788 next = rb_next(&node->rb_node);
1790 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1794 up_read(&env->bpf_progs.lock);
1797 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1799 struct perf_env *env = &ff->ph->env;
1800 struct rb_root *root;
1801 struct rb_node *next;
1803 down_read(&env->bpf_progs.lock);
1805 root = &env->bpf_progs.btfs;
1806 next = rb_first(root);
1809 struct btf_node *node;
1811 node = rb_entry(next, struct btf_node, rb_node);
1812 next = rb_next(&node->rb_node);
1813 fprintf(fp, "# btf info of id %u\n", node->id);
1816 up_read(&env->bpf_progs.lock);
1818 #endif // HAVE_LIBBPF_SUPPORT
1820 static void free_event_desc(struct evsel *events)
1822 struct evsel *evsel;
1827 for (evsel = events; evsel->core.attr.size; evsel++) {
1828 zfree(&evsel->name);
1829 zfree(&evsel->core.id);
1835 static bool perf_attr_check(struct perf_event_attr *attr)
1837 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1838 pr_warning("Reserved bits are set unexpectedly. "
1839 "Please update perf tool.\n");
1843 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1844 pr_warning("Unknown sample type (0x%llx) is detected. "
1845 "Please update perf tool.\n",
1850 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1851 pr_warning("Unknown read format (0x%llx) is detected. "
1852 "Please update perf tool.\n",
1857 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1858 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1859 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1860 "Please update perf tool.\n",
1861 attr->branch_sample_type);
1869 static struct evsel *read_event_desc(struct feat_fd *ff)
1871 struct evsel *evsel, *events = NULL;
1874 u32 nre, sz, nr, i, j;
1877 /* number of events */
1878 if (do_read_u32(ff, &nre))
1881 if (do_read_u32(ff, &sz))
1884 /* buffer to hold on file attr struct */
1889 /* the last event terminates with evsel->core.attr.size == 0: */
1890 events = calloc(nre + 1, sizeof(*events));
1894 msz = sizeof(evsel->core.attr);
1898 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1899 evsel->core.idx = i;
1902 * must read entire on-file attr struct to
1903 * sync up with layout.
1905 if (__do_read(ff, buf, sz))
1908 if (ff->ph->needs_swap)
1909 perf_event__attr_swap(buf);
1911 memcpy(&evsel->core.attr, buf, msz);
1913 if (!perf_attr_check(&evsel->core.attr))
1916 if (do_read_u32(ff, &nr))
1919 if (ff->ph->needs_swap)
1920 evsel->needs_swap = true;
1922 evsel->name = do_read_string(ff);
1929 id = calloc(nr, sizeof(*id));
1932 evsel->core.ids = nr;
1933 evsel->core.id = id;
1935 for (j = 0 ; j < nr; j++) {
1936 if (do_read_u64(ff, id))
1945 free_event_desc(events);
1950 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1951 void *priv __maybe_unused)
1953 return fprintf(fp, ", %s = %s", name, val);
1956 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1958 struct evsel *evsel, *events;
1963 events = ff->events;
1965 events = read_event_desc(ff);
1968 fprintf(fp, "# event desc: not available or unable to read\n");
1972 for (evsel = events; evsel->core.attr.size; evsel++) {
1973 fprintf(fp, "# event : name = %s, ", evsel->name);
1975 if (evsel->core.ids) {
1976 fprintf(fp, ", id = {");
1977 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1980 fprintf(fp, " %"PRIu64, *id);
1985 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1990 free_event_desc(events);
1994 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1996 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1999 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2002 struct numa_node *n;
2004 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2005 n = &ff->ph->env.numa_nodes[i];
2007 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2008 " free = %"PRIu64" kB\n",
2009 n->node, n->mem_total, n->mem_free);
2011 fprintf(fp, "# node%u cpu list : ", n->node);
2012 cpu_map__fprintf(n->map, fp);
2016 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2018 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2021 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2023 fprintf(fp, "# contains samples with branch stack\n");
2026 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2028 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2031 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2033 fprintf(fp, "# contains stat data\n");
2036 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2040 fprintf(fp, "# CPU cache info:\n");
2041 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2043 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2047 static void print_compressed(struct feat_fd *ff, FILE *fp)
2049 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2050 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2051 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2054 static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps,
2057 const char *delimiter;
2058 char *str, buf[128];
2062 fprintf(fp, "# cpu pmu capabilities: not available\n");
2064 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2069 scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: ");
2071 scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name);
2077 fprintf(fp, "%s%s", delimiter, str);
2079 str += strlen(str) + 1;
2085 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2087 print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2088 ff->ph->env.cpu_pmu_caps, NULL);
2091 static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2093 struct hybrid_cpc_node *n;
2095 for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) {
2096 n = &ff->ph->env.hybrid_cpc_nodes[i];
2097 print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps,
2103 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2105 const char *delimiter = "# pmu mappings: ";
2110 pmu_num = ff->ph->env.nr_pmu_mappings;
2112 fprintf(fp, "# pmu mappings: not available\n");
2116 str = ff->ph->env.pmu_mappings;
2119 type = strtoul(str, &tmp, 0);
2124 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2127 str += strlen(str) + 1;
2136 fprintf(fp, "# pmu mappings: unable to read\n");
2139 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2141 struct perf_session *session;
2142 struct evsel *evsel;
2145 session = container_of(ff->ph, struct perf_session, header);
2147 evlist__for_each_entry(session->evlist, evsel) {
2148 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2149 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2151 nr = evsel->core.nr_members - 1;
2153 fprintf(fp, ",%s", evsel__name(evsel));
2161 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2163 struct perf_session *session;
2167 session = container_of(ff->ph, struct perf_session, header);
2169 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2170 time_buf, sizeof(time_buf));
2171 fprintf(fp, "# time of first sample : %s\n", time_buf);
2173 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2174 time_buf, sizeof(time_buf));
2175 fprintf(fp, "# time of last sample : %s\n", time_buf);
2177 d = (double)(session->evlist->last_sample_time -
2178 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2180 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2183 static void memory_node__fprintf(struct memory_node *n,
2184 unsigned long long bsize, FILE *fp)
2186 char buf_map[100], buf_size[50];
2187 unsigned long long size;
2189 size = bsize * bitmap_weight(n->set, n->size);
2190 unit_number__scnprintf(buf_size, 50, size);
2192 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2193 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2196 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2198 struct memory_node *nodes;
2201 nodes = ff->ph->env.memory_nodes;
2202 nr = ff->ph->env.nr_memory_nodes;
2204 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2205 nr, ff->ph->env.memory_bsize);
2207 for (i = 0; i < nr; i++) {
2208 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2212 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2214 struct perf_session *session)
2217 struct machine *machine;
2220 enum dso_space_type dso_space;
2222 machine = perf_session__findnew_machine(session, bev->pid);
2226 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2229 case PERF_RECORD_MISC_KERNEL:
2230 dso_space = DSO_SPACE__KERNEL;
2232 case PERF_RECORD_MISC_GUEST_KERNEL:
2233 dso_space = DSO_SPACE__KERNEL_GUEST;
2235 case PERF_RECORD_MISC_USER:
2236 case PERF_RECORD_MISC_GUEST_USER:
2237 dso_space = DSO_SPACE__USER;
2243 dso = machine__findnew_dso(machine, filename);
2245 char sbuild_id[SBUILD_ID_SIZE];
2246 struct build_id bid;
2247 size_t size = BUILD_ID_SIZE;
2249 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2252 build_id__init(&bid, bev->data, size);
2253 dso__set_build_id(dso, &bid);
2254 dso->header_build_id = 1;
2256 if (dso_space != DSO_SPACE__USER) {
2257 struct kmod_path m = { .name = NULL, };
2259 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2260 dso__set_module_info(dso, &m, machine);
2262 dso->kernel = dso_space;
2266 build_id__sprintf(&dso->bid, sbuild_id);
2267 pr_debug("build id event received for %s: %s [%zu]\n",
2268 dso->long_name, sbuild_id, size);
2277 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2278 int input, u64 offset, u64 size)
2280 struct perf_session *session = container_of(header, struct perf_session, header);
2282 struct perf_event_header header;
2283 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2286 struct perf_record_header_build_id bev;
2287 char filename[PATH_MAX];
2288 u64 limit = offset + size;
2290 while (offset < limit) {
2293 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2296 if (header->needs_swap)
2297 perf_event_header__bswap(&old_bev.header);
2299 len = old_bev.header.size - sizeof(old_bev);
2300 if (readn(input, filename, len) != len)
2303 bev.header = old_bev.header;
2306 * As the pid is the missing value, we need to fill
2307 * it properly. The header.misc value give us nice hint.
2309 bev.pid = HOST_KERNEL_ID;
2310 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2311 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2312 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2314 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2315 __event_process_build_id(&bev, filename, session);
2317 offset += bev.header.size;
2323 static int perf_header__read_build_ids(struct perf_header *header,
2324 int input, u64 offset, u64 size)
2326 struct perf_session *session = container_of(header, struct perf_session, header);
2327 struct perf_record_header_build_id bev;
2328 char filename[PATH_MAX];
2329 u64 limit = offset + size, orig_offset = offset;
2332 while (offset < limit) {
2335 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2338 if (header->needs_swap)
2339 perf_event_header__bswap(&bev.header);
2341 len = bev.header.size - sizeof(bev);
2342 if (readn(input, filename, len) != len)
2345 * The a1645ce1 changeset:
2347 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2349 * Added a field to struct perf_record_header_build_id that broke the file
2352 * Since the kernel build-id is the first entry, process the
2353 * table using the old format if the well known
2354 * '[kernel.kallsyms]' string for the kernel build-id has the
2355 * first 4 characters chopped off (where the pid_t sits).
2357 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2358 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2360 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2363 __event_process_build_id(&bev, filename, session);
2365 offset += bev.header.size;
2372 /* Macro for features that simply need to read and store a string. */
2373 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2374 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2376 free(ff->ph->env.__feat_env); \
2377 ff->ph->env.__feat_env = do_read_string(ff); \
2378 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2381 FEAT_PROCESS_STR_FUN(hostname, hostname);
2382 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2383 FEAT_PROCESS_STR_FUN(version, version);
2384 FEAT_PROCESS_STR_FUN(arch, arch);
2385 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2386 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2388 static int process_tracing_data(struct feat_fd *ff, void *data)
2390 ssize_t ret = trace_report(ff->fd, data, false);
2392 return ret < 0 ? -1 : 0;
2395 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2397 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2398 pr_debug("Failed to read buildids, continuing...\n");
2402 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2405 u32 nr_cpus_avail, nr_cpus_online;
2407 ret = do_read_u32(ff, &nr_cpus_avail);
2411 ret = do_read_u32(ff, &nr_cpus_online);
2414 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2415 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2419 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2424 ret = do_read_u64(ff, &total_mem);
2427 ff->ph->env.total_mem = (unsigned long long)total_mem;
2431 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2433 struct evsel *evsel;
2435 evlist__for_each_entry(evlist, evsel) {
2436 if (evsel->core.idx == idx)
2443 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2445 struct evsel *evsel;
2450 evsel = evlist__find_by_index(evlist, event->core.idx);
2457 evsel->name = strdup(event->name);
2461 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2463 struct perf_session *session;
2464 struct evsel *evsel, *events = read_event_desc(ff);
2469 session = container_of(ff->ph, struct perf_session, header);
2471 if (session->data->is_pipe) {
2472 /* Save events for reading later by print_event_desc,
2473 * since they can't be read again in pipe mode. */
2474 ff->events = events;
2477 for (evsel = events; evsel->core.attr.size; evsel++)
2478 evlist__set_event_name(session->evlist, evsel);
2480 if (!session->data->is_pipe)
2481 free_event_desc(events);
2486 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2488 char *str, *cmdline = NULL, **argv = NULL;
2491 if (do_read_u32(ff, &nr))
2494 ff->ph->env.nr_cmdline = nr;
2496 cmdline = zalloc(ff->size + nr + 1);
2500 argv = zalloc(sizeof(char *) * (nr + 1));
2504 for (i = 0; i < nr; i++) {
2505 str = do_read_string(ff);
2509 argv[i] = cmdline + len;
2510 memcpy(argv[i], str, strlen(str) + 1);
2511 len += strlen(str) + 1;
2514 ff->ph->env.cmdline = cmdline;
2515 ff->ph->env.cmdline_argv = (const char **) argv;
2524 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2529 int cpu_nr = ff->ph->env.nr_cpus_avail;
2531 struct perf_header *ph = ff->ph;
2532 bool do_core_id_test = true;
2534 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2538 if (do_read_u32(ff, &nr))
2541 ph->env.nr_sibling_cores = nr;
2542 size += sizeof(u32);
2543 if (strbuf_init(&sb, 128) < 0)
2546 for (i = 0; i < nr; i++) {
2547 str = do_read_string(ff);
2551 /* include a NULL character at the end */
2552 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2554 size += string_size(str);
2557 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2559 if (do_read_u32(ff, &nr))
2562 ph->env.nr_sibling_threads = nr;
2563 size += sizeof(u32);
2565 for (i = 0; i < nr; i++) {
2566 str = do_read_string(ff);
2570 /* include a NULL character at the end */
2571 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2573 size += string_size(str);
2576 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2579 * The header may be from old perf,
2580 * which doesn't include core id and socket id information.
2582 if (ff->size <= size) {
2583 zfree(&ph->env.cpu);
2587 /* On s390 the socket_id number is not related to the numbers of cpus.
2588 * The socket_id number might be higher than the numbers of cpus.
2589 * This depends on the configuration.
2590 * AArch64 is the same.
2592 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2593 || !strncmp(ph->env.arch, "aarch64", 7)))
2594 do_core_id_test = false;
2596 for (i = 0; i < (u32)cpu_nr; i++) {
2597 if (do_read_u32(ff, &nr))
2600 ph->env.cpu[i].core_id = nr;
2601 size += sizeof(u32);
2603 if (do_read_u32(ff, &nr))
2606 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2607 pr_debug("socket_id number is too big."
2608 "You may need to upgrade the perf tool.\n");
2612 ph->env.cpu[i].socket_id = nr;
2613 size += sizeof(u32);
2617 * The header may be from old perf,
2618 * which doesn't include die information.
2620 if (ff->size <= size)
2623 if (do_read_u32(ff, &nr))
2626 ph->env.nr_sibling_dies = nr;
2627 size += sizeof(u32);
2629 for (i = 0; i < nr; i++) {
2630 str = do_read_string(ff);
2634 /* include a NULL character at the end */
2635 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2637 size += string_size(str);
2640 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2642 for (i = 0; i < (u32)cpu_nr; i++) {
2643 if (do_read_u32(ff, &nr))
2646 ph->env.cpu[i].die_id = nr;
2652 strbuf_release(&sb);
2654 zfree(&ph->env.cpu);
2658 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2660 struct numa_node *nodes, *n;
2665 if (do_read_u32(ff, &nr))
2668 nodes = zalloc(sizeof(*nodes) * nr);
2672 for (i = 0; i < nr; i++) {
2676 if (do_read_u32(ff, &n->node))
2679 if (do_read_u64(ff, &n->mem_total))
2682 if (do_read_u64(ff, &n->mem_free))
2685 str = do_read_string(ff);
2689 n->map = perf_cpu_map__new(str);
2695 ff->ph->env.nr_numa_nodes = nr;
2696 ff->ph->env.numa_nodes = nodes;
2704 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2711 if (do_read_u32(ff, &pmu_num))
2715 pr_debug("pmu mappings not available\n");
2719 ff->ph->env.nr_pmu_mappings = pmu_num;
2720 if (strbuf_init(&sb, 128) < 0)
2724 if (do_read_u32(ff, &type))
2727 name = do_read_string(ff);
2731 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2733 /* include a NULL character at the end */
2734 if (strbuf_add(&sb, "", 1) < 0)
2737 if (!strcmp(name, "msr"))
2738 ff->ph->env.msr_pmu_type = type;
2743 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2747 strbuf_release(&sb);
2751 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2754 u32 i, nr, nr_groups;
2755 struct perf_session *session;
2756 struct evsel *evsel, *leader = NULL;
2763 if (do_read_u32(ff, &nr_groups))
2766 ff->ph->env.nr_groups = nr_groups;
2768 pr_debug("group desc not available\n");
2772 desc = calloc(nr_groups, sizeof(*desc));
2776 for (i = 0; i < nr_groups; i++) {
2777 desc[i].name = do_read_string(ff);
2781 if (do_read_u32(ff, &desc[i].leader_idx))
2784 if (do_read_u32(ff, &desc[i].nr_members))
2789 * Rebuild group relationship based on the group_desc
2791 session = container_of(ff->ph, struct perf_session, header);
2792 session->evlist->core.nr_groups = nr_groups;
2795 evlist__for_each_entry(session->evlist, evsel) {
2796 if (evsel->core.idx == (int) desc[i].leader_idx) {
2797 evsel__set_leader(evsel, evsel);
2798 /* {anon_group} is a dummy name */
2799 if (strcmp(desc[i].name, "{anon_group}")) {
2800 evsel->group_name = desc[i].name;
2801 desc[i].name = NULL;
2803 evsel->core.nr_members = desc[i].nr_members;
2805 if (i >= nr_groups || nr > 0) {
2806 pr_debug("invalid group desc\n");
2811 nr = evsel->core.nr_members - 1;
2814 /* This is a group member */
2815 evsel__set_leader(evsel, leader);
2821 if (i != nr_groups || nr != 0) {
2822 pr_debug("invalid group desc\n");
2828 for (i = 0; i < nr_groups; i++)
2829 zfree(&desc[i].name);
2835 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2837 struct perf_session *session;
2840 session = container_of(ff->ph, struct perf_session, header);
2842 err = auxtrace_index__process(ff->fd, ff->size, session,
2843 ff->ph->needs_swap);
2845 pr_err("Failed to process auxtrace index\n");
2849 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2851 struct cpu_cache_level *caches;
2852 u32 cnt, i, version;
2854 if (do_read_u32(ff, &version))
2860 if (do_read_u32(ff, &cnt))
2863 caches = zalloc(sizeof(*caches) * cnt);
2867 for (i = 0; i < cnt; i++) {
2868 struct cpu_cache_level c;
2871 if (do_read_u32(ff, &c.v))\
2872 goto out_free_caches; \
2881 c.v = do_read_string(ff); \
2883 goto out_free_caches;
2893 ff->ph->env.caches = caches;
2894 ff->ph->env.caches_cnt = cnt;
2901 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2903 struct perf_session *session;
2904 u64 first_sample_time, last_sample_time;
2907 session = container_of(ff->ph, struct perf_session, header);
2909 ret = do_read_u64(ff, &first_sample_time);
2913 ret = do_read_u64(ff, &last_sample_time);
2917 session->evlist->first_sample_time = first_sample_time;
2918 session->evlist->last_sample_time = last_sample_time;
2922 static int process_mem_topology(struct feat_fd *ff,
2923 void *data __maybe_unused)
2925 struct memory_node *nodes;
2926 u64 version, i, nr, bsize;
2929 if (do_read_u64(ff, &version))
2935 if (do_read_u64(ff, &bsize))
2938 if (do_read_u64(ff, &nr))
2941 nodes = zalloc(sizeof(*nodes) * nr);
2945 for (i = 0; i < nr; i++) {
2946 struct memory_node n;
2949 if (do_read_u64(ff, &n.v)) \
2957 if (do_read_bitmap(ff, &n.set, &n.size))
2963 ff->ph->env.memory_bsize = bsize;
2964 ff->ph->env.memory_nodes = nodes;
2965 ff->ph->env.nr_memory_nodes = nr;
2974 static int process_clockid(struct feat_fd *ff,
2975 void *data __maybe_unused)
2977 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2983 static int process_clock_data(struct feat_fd *ff,
2984 void *_data __maybe_unused)
2990 if (do_read_u32(ff, &data32))
2997 if (do_read_u32(ff, &data32))
3000 ff->ph->env.clock.clockid = data32;
3003 if (do_read_u64(ff, &data64))
3006 ff->ph->env.clock.tod_ns = data64;
3008 /* clockid ref time */
3009 if (do_read_u64(ff, &data64))
3012 ff->ph->env.clock.clockid_ns = data64;
3013 ff->ph->env.clock.enabled = true;
3017 static int process_hybrid_topology(struct feat_fd *ff,
3018 void *data __maybe_unused)
3020 struct hybrid_node *nodes, *n;
3024 if (do_read_u32(ff, &nr))
3027 nodes = zalloc(sizeof(*nodes) * nr);
3031 for (i = 0; i < nr; i++) {
3034 n->pmu_name = do_read_string(ff);
3038 n->cpus = do_read_string(ff);
3043 ff->ph->env.nr_hybrid_nodes = nr;
3044 ff->ph->env.hybrid_nodes = nodes;
3048 for (i = 0; i < nr; i++) {
3049 free(nodes[i].pmu_name);
3050 free(nodes[i].cpus);
3057 static int process_dir_format(struct feat_fd *ff,
3058 void *_data __maybe_unused)
3060 struct perf_session *session;
3061 struct perf_data *data;
3063 session = container_of(ff->ph, struct perf_session, header);
3064 data = session->data;
3066 if (WARN_ON(!perf_data__is_dir(data)))
3069 return do_read_u64(ff, &data->dir.version);
3072 #ifdef HAVE_LIBBPF_SUPPORT
3073 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3075 struct bpf_prog_info_node *info_node;
3076 struct perf_env *env = &ff->ph->env;
3077 struct perf_bpil *info_linear;
3081 if (ff->ph->needs_swap) {
3082 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3086 if (do_read_u32(ff, &count))
3089 down_write(&env->bpf_progs.lock);
3091 for (i = 0; i < count; ++i) {
3092 u32 info_len, data_len;
3096 if (do_read_u32(ff, &info_len))
3098 if (do_read_u32(ff, &data_len))
3101 if (info_len > sizeof(struct bpf_prog_info)) {
3102 pr_warning("detected invalid bpf_prog_info\n");
3106 info_linear = malloc(sizeof(struct perf_bpil) +
3110 info_linear->info_len = sizeof(struct bpf_prog_info);
3111 info_linear->data_len = data_len;
3112 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3114 if (__do_read(ff, &info_linear->info, info_len))
3116 if (info_len < sizeof(struct bpf_prog_info))
3117 memset(((void *)(&info_linear->info)) + info_len, 0,
3118 sizeof(struct bpf_prog_info) - info_len);
3120 if (__do_read(ff, info_linear->data, data_len))
3123 info_node = malloc(sizeof(struct bpf_prog_info_node));
3127 /* after reading from file, translate offset to address */
3128 bpil_offs_to_addr(info_linear);
3129 info_node->info_linear = info_linear;
3130 perf_env__insert_bpf_prog_info(env, info_node);
3133 up_write(&env->bpf_progs.lock);
3138 up_write(&env->bpf_progs.lock);
3142 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3144 struct perf_env *env = &ff->ph->env;
3145 struct btf_node *node = NULL;
3149 if (ff->ph->needs_swap) {
3150 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3154 if (do_read_u32(ff, &count))
3157 down_write(&env->bpf_progs.lock);
3159 for (i = 0; i < count; ++i) {
3162 if (do_read_u32(ff, &id))
3164 if (do_read_u32(ff, &data_size))
3167 node = malloc(sizeof(struct btf_node) + data_size);
3172 node->data_size = data_size;
3174 if (__do_read(ff, node->data, data_size))
3177 perf_env__insert_btf(env, node);
3183 up_write(&env->bpf_progs.lock);
3187 #endif // HAVE_LIBBPF_SUPPORT
3189 static int process_compressed(struct feat_fd *ff,
3190 void *data __maybe_unused)
3192 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3195 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3198 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3201 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3204 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3210 static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps,
3211 char **cpu_pmu_caps,
3212 unsigned int *max_branches)
3218 if (do_read_u32(ff, &nr_caps))
3222 pr_debug("cpu pmu capabilities not available\n");
3226 *nr_cpu_pmu_caps = nr_caps;
3228 if (strbuf_init(&sb, 128) < 0)
3232 name = do_read_string(ff);
3236 value = do_read_string(ff);
3240 if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3243 /* include a NULL character at the end */
3244 if (strbuf_add(&sb, "", 1) < 0)
3247 if (!strcmp(name, "branches"))
3248 *max_branches = atoi(value);
3253 *cpu_pmu_caps = strbuf_detach(&sb, NULL);
3261 strbuf_release(&sb);
3265 static int process_cpu_pmu_caps(struct feat_fd *ff,
3266 void *data __maybe_unused)
3268 return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3269 &ff->ph->env.cpu_pmu_caps,
3270 &ff->ph->env.max_branches);
3273 static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff,
3274 void *data __maybe_unused)
3276 struct hybrid_cpc_node *nodes;
3280 if (do_read_u32(ff, &nr_pmu))
3284 pr_debug("hybrid cpu pmu capabilities not available\n");
3288 nodes = zalloc(sizeof(*nodes) * nr_pmu);
3292 for (i = 0; i < nr_pmu; i++) {
3293 struct hybrid_cpc_node *n = &nodes[i];
3295 ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps,
3301 n->pmu_name = do_read_string(ff);
3308 ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu;
3309 ff->ph->env.hybrid_cpc_nodes = nodes;
3313 for (i = 0; i < nr_pmu; i++) {
3314 free(nodes[i].cpu_pmu_caps);
3315 free(nodes[i].pmu_name);
3322 #define FEAT_OPR(n, func, __full_only) \
3324 .name = __stringify(n), \
3325 .write = write_##func, \
3326 .print = print_##func, \
3327 .full_only = __full_only, \
3328 .process = process_##func, \
3329 .synthesize = true \
3332 #define FEAT_OPN(n, func, __full_only) \
3334 .name = __stringify(n), \
3335 .write = write_##func, \
3336 .print = print_##func, \
3337 .full_only = __full_only, \
3338 .process = process_##func \
3341 /* feature_ops not implemented: */
3342 #define print_tracing_data NULL
3343 #define print_build_id NULL
3345 #define process_branch_stack NULL
3346 #define process_stat NULL
3348 // Only used in util/synthetic-events.c
3349 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3351 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3352 FEAT_OPN(TRACING_DATA, tracing_data, false),
3353 FEAT_OPN(BUILD_ID, build_id, false),
3354 FEAT_OPR(HOSTNAME, hostname, false),
3355 FEAT_OPR(OSRELEASE, osrelease, false),
3356 FEAT_OPR(VERSION, version, false),
3357 FEAT_OPR(ARCH, arch, false),
3358 FEAT_OPR(NRCPUS, nrcpus, false),
3359 FEAT_OPR(CPUDESC, cpudesc, false),
3360 FEAT_OPR(CPUID, cpuid, false),
3361 FEAT_OPR(TOTAL_MEM, total_mem, false),
3362 FEAT_OPR(EVENT_DESC, event_desc, false),
3363 FEAT_OPR(CMDLINE, cmdline, false),
3364 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3365 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3366 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3367 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3368 FEAT_OPR(GROUP_DESC, group_desc, false),
3369 FEAT_OPN(AUXTRACE, auxtrace, false),
3370 FEAT_OPN(STAT, stat, false),
3371 FEAT_OPN(CACHE, cache, true),
3372 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3373 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3374 FEAT_OPR(CLOCKID, clockid, false),
3375 FEAT_OPN(DIR_FORMAT, dir_format, false),
3376 #ifdef HAVE_LIBBPF_SUPPORT
3377 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3378 FEAT_OPR(BPF_BTF, bpf_btf, false),
3380 FEAT_OPR(COMPRESSED, compressed, false),
3381 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3382 FEAT_OPR(CLOCK_DATA, clock_data, false),
3383 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3384 FEAT_OPR(HYBRID_CPU_PMU_CAPS, hybrid_cpu_pmu_caps, false),
3387 struct header_print_data {
3389 bool full; /* extended list of headers */
3392 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3393 struct perf_header *ph,
3394 int feat, int fd, void *data)
3396 struct header_print_data *hd = data;
3399 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3400 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3401 "%d, continuing...\n", section->offset, feat);
3404 if (feat >= HEADER_LAST_FEATURE) {
3405 pr_warning("unknown feature %d\n", feat);
3408 if (!feat_ops[feat].print)
3411 ff = (struct feat_fd) {
3416 if (!feat_ops[feat].full_only || hd->full)
3417 feat_ops[feat].print(&ff, hd->fp);
3419 fprintf(hd->fp, "# %s info available, use -I to display\n",
3420 feat_ops[feat].name);
3425 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3427 struct header_print_data hd;
3428 struct perf_header *header = &session->header;
3429 int fd = perf_data__fd(session->data);
3437 ret = fstat(fd, &st);
3441 stctime = st.st_mtime;
3442 fprintf(fp, "# captured on : %s", ctime(&stctime));
3444 fprintf(fp, "# header version : %u\n", header->version);
3445 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3446 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3447 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3449 perf_header__process_sections(header, fd, &hd,
3450 perf_file_section__fprintf_info);
3452 if (session->data->is_pipe)
3455 fprintf(fp, "# missing features: ");
3456 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3458 fprintf(fp, "%s ", feat_ops[bit].name);
3466 struct feat_writer fw;
3470 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3472 struct header_fw *h = container_of(fw, struct header_fw, fw);
3474 return do_write(h->ff, buf, sz);
3477 static int do_write_feat(struct feat_fd *ff, int type,
3478 struct perf_file_section **p,
3479 struct evlist *evlist,
3480 struct feat_copier *fc)
3485 if (perf_header__has_feat(ff->ph, type)) {
3486 if (!feat_ops[type].write)
3489 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3492 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3495 * Hook to let perf inject copy features sections from the input
3498 if (fc && fc->copy) {
3499 struct header_fw h = {
3500 .fw.write = feat_writer_cb,
3504 /* ->copy() returns 0 if the feature was not copied */
3505 err = fc->copy(fc, type, &h.fw);
3510 err = feat_ops[type].write(ff, evlist);
3512 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3514 /* undo anything written */
3515 lseek(ff->fd, (*p)->offset, SEEK_SET);
3519 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3525 static int perf_header__adds_write(struct perf_header *header,
3526 struct evlist *evlist, int fd,
3527 struct feat_copier *fc)
3531 struct perf_file_section *feat_sec, *p;
3537 ff = (struct feat_fd){
3542 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3546 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3547 if (feat_sec == NULL)
3550 sec_size = sizeof(*feat_sec) * nr_sections;
3552 sec_start = header->feat_offset;
3553 lseek(fd, sec_start + sec_size, SEEK_SET);
3555 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3556 if (do_write_feat(&ff, feat, &p, evlist, fc))
3557 perf_header__clear_feat(header, feat);
3560 lseek(fd, sec_start, SEEK_SET);
3562 * may write more than needed due to dropped feature, but
3563 * this is okay, reader will skip the missing entries
3565 err = do_write(&ff, feat_sec, sec_size);
3567 pr_debug("failed to write feature section\n");
3572 int perf_header__write_pipe(int fd)
3574 struct perf_pipe_file_header f_header;
3578 ff = (struct feat_fd){ .fd = fd };
3580 f_header = (struct perf_pipe_file_header){
3581 .magic = PERF_MAGIC,
3582 .size = sizeof(f_header),
3585 err = do_write(&ff, &f_header, sizeof(f_header));
3587 pr_debug("failed to write perf pipe header\n");
3594 static int perf_session__do_write_header(struct perf_session *session,
3595 struct evlist *evlist,
3596 int fd, bool at_exit,
3597 struct feat_copier *fc)
3599 struct perf_file_header f_header;
3600 struct perf_file_attr f_attr;
3601 struct perf_header *header = &session->header;
3602 struct evsel *evsel;
3607 ff = (struct feat_fd){ .fd = fd};
3608 lseek(fd, sizeof(f_header), SEEK_SET);
3610 evlist__for_each_entry(session->evlist, evsel) {
3611 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3612 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3614 pr_debug("failed to write perf header\n");
3619 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3621 evlist__for_each_entry(evlist, evsel) {
3622 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3624 * We are likely in "perf inject" and have read
3625 * from an older file. Update attr size so that
3626 * reader gets the right offset to the ids.
3628 evsel->core.attr.size = sizeof(evsel->core.attr);
3630 f_attr = (struct perf_file_attr){
3631 .attr = evsel->core.attr,
3633 .offset = evsel->id_offset,
3634 .size = evsel->core.ids * sizeof(u64),
3637 err = do_write(&ff, &f_attr, sizeof(f_attr));
3639 pr_debug("failed to write perf header attribute\n");
3644 if (!header->data_offset)
3645 header->data_offset = lseek(fd, 0, SEEK_CUR);
3646 header->feat_offset = header->data_offset + header->data_size;
3649 err = perf_header__adds_write(header, evlist, fd, fc);
3654 f_header = (struct perf_file_header){
3655 .magic = PERF_MAGIC,
3656 .size = sizeof(f_header),
3657 .attr_size = sizeof(f_attr),
3659 .offset = attr_offset,
3660 .size = evlist->core.nr_entries * sizeof(f_attr),
3663 .offset = header->data_offset,
3664 .size = header->data_size,
3666 /* event_types is ignored, store zeros */
3669 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3671 lseek(fd, 0, SEEK_SET);
3672 err = do_write(&ff, &f_header, sizeof(f_header));
3674 pr_debug("failed to write perf header\n");
3677 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3682 int perf_session__write_header(struct perf_session *session,
3683 struct evlist *evlist,
3684 int fd, bool at_exit)
3686 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3689 size_t perf_session__data_offset(const struct evlist *evlist)
3691 struct evsel *evsel;
3694 data_offset = sizeof(struct perf_file_header);
3695 evlist__for_each_entry(evlist, evsel) {
3696 data_offset += evsel->core.ids * sizeof(u64);
3698 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3703 int perf_session__inject_header(struct perf_session *session,
3704 struct evlist *evlist,
3706 struct feat_copier *fc)
3708 return perf_session__do_write_header(session, evlist, fd, true, fc);
3711 static int perf_header__getbuffer64(struct perf_header *header,
3712 int fd, void *buf, size_t size)
3714 if (readn(fd, buf, size) <= 0)
3717 if (header->needs_swap)
3718 mem_bswap_64(buf, size);
3723 int perf_header__process_sections(struct perf_header *header, int fd,
3725 int (*process)(struct perf_file_section *section,
3726 struct perf_header *ph,
3727 int feat, int fd, void *data))
3729 struct perf_file_section *feat_sec, *sec;
3735 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3739 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3743 sec_size = sizeof(*feat_sec) * nr_sections;
3745 lseek(fd, header->feat_offset, SEEK_SET);
3747 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3751 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3752 err = process(sec++, header, feat, fd, data);
3762 static const int attr_file_abi_sizes[] = {
3763 [0] = PERF_ATTR_SIZE_VER0,
3764 [1] = PERF_ATTR_SIZE_VER1,
3765 [2] = PERF_ATTR_SIZE_VER2,
3766 [3] = PERF_ATTR_SIZE_VER3,
3767 [4] = PERF_ATTR_SIZE_VER4,
3772 * In the legacy file format, the magic number is not used to encode endianness.
3773 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3774 * on ABI revisions, we need to try all combinations for all endianness to
3775 * detect the endianness.
3777 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3779 uint64_t ref_size, attr_size;
3782 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3783 ref_size = attr_file_abi_sizes[i]
3784 + sizeof(struct perf_file_section);
3785 if (hdr_sz != ref_size) {
3786 attr_size = bswap_64(hdr_sz);
3787 if (attr_size != ref_size)
3790 ph->needs_swap = true;
3792 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3797 /* could not determine endianness */
3801 #define PERF_PIPE_HDR_VER0 16
3803 static const size_t attr_pipe_abi_sizes[] = {
3804 [0] = PERF_PIPE_HDR_VER0,
3809 * In the legacy pipe format, there is an implicit assumption that endianness
3810 * between host recording the samples, and host parsing the samples is the
3811 * same. This is not always the case given that the pipe output may always be
3812 * redirected into a file and analyzed on a different machine with possibly a
3813 * different endianness and perf_event ABI revisions in the perf tool itself.
3815 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3820 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3821 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3822 attr_size = bswap_64(hdr_sz);
3823 if (attr_size != hdr_sz)
3826 ph->needs_swap = true;
3828 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3834 bool is_perf_magic(u64 magic)
3836 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3837 || magic == __perf_magic2
3838 || magic == __perf_magic2_sw)
3844 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3845 bool is_pipe, struct perf_header *ph)
3849 /* check for legacy format */
3850 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3852 ph->version = PERF_HEADER_VERSION_1;
3853 pr_debug("legacy perf.data format\n");
3855 return try_all_pipe_abis(hdr_sz, ph);
3857 return try_all_file_abis(hdr_sz, ph);
3860 * the new magic number serves two purposes:
3861 * - unique number to identify actual perf.data files
3862 * - encode endianness of file
3864 ph->version = PERF_HEADER_VERSION_2;
3866 /* check magic number with one endianness */
3867 if (magic == __perf_magic2)
3870 /* check magic number with opposite endianness */
3871 if (magic != __perf_magic2_sw)
3874 ph->needs_swap = true;
3879 int perf_file_header__read(struct perf_file_header *header,
3880 struct perf_header *ph, int fd)
3884 lseek(fd, 0, SEEK_SET);
3886 ret = readn(fd, header, sizeof(*header));
3890 if (check_magic_endian(header->magic,
3891 header->attr_size, false, ph) < 0) {
3892 pr_debug("magic/endian check failed\n");
3896 if (ph->needs_swap) {
3897 mem_bswap_64(header, offsetof(struct perf_file_header,
3901 if (header->size != sizeof(*header)) {
3902 /* Support the previous format */
3903 if (header->size == offsetof(typeof(*header), adds_features))
3904 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3907 } else if (ph->needs_swap) {
3909 * feature bitmap is declared as an array of unsigned longs --
3910 * not good since its size can differ between the host that
3911 * generated the data file and the host analyzing the file.
3913 * We need to handle endianness, but we don't know the size of
3914 * the unsigned long where the file was generated. Take a best
3915 * guess at determining it: try 64-bit swap first (ie., file
3916 * created on a 64-bit host), and check if the hostname feature
3917 * bit is set (this feature bit is forced on as of fbe96f2).
3918 * If the bit is not, undo the 64-bit swap and try a 32-bit
3919 * swap. If the hostname bit is still not set (e.g., older data
3920 * file), punt and fallback to the original behavior --
3921 * clearing all feature bits and setting buildid.
3923 mem_bswap_64(&header->adds_features,
3924 BITS_TO_U64(HEADER_FEAT_BITS));
3926 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3928 mem_bswap_64(&header->adds_features,
3929 BITS_TO_U64(HEADER_FEAT_BITS));
3932 mem_bswap_32(&header->adds_features,
3933 BITS_TO_U32(HEADER_FEAT_BITS));
3936 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3937 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3938 set_bit(HEADER_BUILD_ID, header->adds_features);
3942 memcpy(&ph->adds_features, &header->adds_features,
3943 sizeof(ph->adds_features));
3945 ph->data_offset = header->data.offset;
3946 ph->data_size = header->data.size;
3947 ph->feat_offset = header->data.offset + header->data.size;
3951 static int perf_file_section__process(struct perf_file_section *section,
3952 struct perf_header *ph,
3953 int feat, int fd, void *data)
3955 struct feat_fd fdd = {
3958 .size = section->size,
3959 .offset = section->offset,
3962 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3963 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3964 "%d, continuing...\n", section->offset, feat);
3968 if (feat >= HEADER_LAST_FEATURE) {
3969 pr_debug("unknown feature %d, continuing...\n", feat);
3973 if (!feat_ops[feat].process)
3976 return feat_ops[feat].process(&fdd, data);
3979 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3980 struct perf_header *ph,
3981 struct perf_data* data,
3982 bool repipe, int repipe_fd)
3984 struct feat_fd ff = {
3990 ret = perf_data__read(data, header, sizeof(*header));
3994 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3995 pr_debug("endian/magic failed\n");
4000 header->size = bswap_64(header->size);
4002 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4008 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4010 struct perf_header *header = &session->header;
4011 struct perf_pipe_file_header f_header;
4013 if (perf_file_header__read_pipe(&f_header, header, session->data,
4014 session->repipe, repipe_fd) < 0) {
4015 pr_debug("incompatible file format\n");
4019 return f_header.size == sizeof(f_header) ? 0 : -1;
4022 static int read_attr(int fd, struct perf_header *ph,
4023 struct perf_file_attr *f_attr)
4025 struct perf_event_attr *attr = &f_attr->attr;
4027 size_t our_sz = sizeof(f_attr->attr);
4030 memset(f_attr, 0, sizeof(*f_attr));
4032 /* read minimal guaranteed structure */
4033 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4035 pr_debug("cannot read %d bytes of header attr\n",
4036 PERF_ATTR_SIZE_VER0);
4040 /* on file perf_event_attr size */
4048 sz = PERF_ATTR_SIZE_VER0;
4049 } else if (sz > our_sz) {
4050 pr_debug("file uses a more recent and unsupported ABI"
4051 " (%zu bytes extra)\n", sz - our_sz);
4054 /* what we have not yet read and that we know about */
4055 left = sz - PERF_ATTR_SIZE_VER0;
4058 ptr += PERF_ATTR_SIZE_VER0;
4060 ret = readn(fd, ptr, left);
4062 /* read perf_file_section, ids are read in caller */
4063 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4065 return ret <= 0 ? -1 : 0;
4068 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4070 struct tep_event *event;
4073 /* already prepared */
4074 if (evsel->tp_format)
4077 if (pevent == NULL) {
4078 pr_debug("broken or missing trace data\n");
4082 event = tep_find_event(pevent, evsel->core.attr.config);
4083 if (event == NULL) {
4084 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4089 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4090 evsel->name = strdup(bf);
4091 if (evsel->name == NULL)
4095 evsel->tp_format = event;
4099 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4103 evlist__for_each_entry(evlist, pos) {
4104 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4105 evsel__prepare_tracepoint_event(pos, pevent))
4112 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4114 struct perf_data *data = session->data;
4115 struct perf_header *header = &session->header;
4116 struct perf_file_header f_header;
4117 struct perf_file_attr f_attr;
4119 int nr_attrs, nr_ids, i, j, err;
4120 int fd = perf_data__fd(data);
4122 session->evlist = evlist__new();
4123 if (session->evlist == NULL)
4126 session->evlist->env = &header->env;
4127 session->machines.host.env = &header->env;
4130 * We can read 'pipe' data event from regular file,
4131 * check for the pipe header regardless of source.
4133 err = perf_header__read_pipe(session, repipe_fd);
4134 if (!err || perf_data__is_pipe(data)) {
4135 data->is_pipe = true;
4139 if (perf_file_header__read(&f_header, header, fd) < 0)
4142 if (header->needs_swap && data->in_place_update) {
4143 pr_err("In-place update not supported when byte-swapping is required\n");
4148 * Sanity check that perf.data was written cleanly; data size is
4149 * initialized to 0 and updated only if the on_exit function is run.
4150 * If data size is still 0 then the file contains only partial
4151 * information. Just warn user and process it as much as it can.
4153 if (f_header.data.size == 0) {
4154 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4155 "Was the 'perf record' command properly terminated?\n",
4159 if (f_header.attr_size == 0) {
4160 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4161 "Was the 'perf record' command properly terminated?\n",
4166 nr_attrs = f_header.attrs.size / f_header.attr_size;
4167 lseek(fd, f_header.attrs.offset, SEEK_SET);
4169 for (i = 0; i < nr_attrs; i++) {
4170 struct evsel *evsel;
4173 if (read_attr(fd, header, &f_attr) < 0)
4176 if (header->needs_swap) {
4177 f_attr.ids.size = bswap_64(f_attr.ids.size);
4178 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4179 perf_event__attr_swap(&f_attr.attr);
4182 tmp = lseek(fd, 0, SEEK_CUR);
4183 evsel = evsel__new(&f_attr.attr);
4186 goto out_delete_evlist;
4188 evsel->needs_swap = header->needs_swap;
4190 * Do it before so that if perf_evsel__alloc_id fails, this
4191 * entry gets purged too at evlist__delete().
4193 evlist__add(session->evlist, evsel);
4195 nr_ids = f_attr.ids.size / sizeof(u64);
4197 * We don't have the cpu and thread maps on the header, so
4198 * for allocating the perf_sample_id table we fake 1 cpu and
4199 * hattr->ids threads.
4201 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4202 goto out_delete_evlist;
4204 lseek(fd, f_attr.ids.offset, SEEK_SET);
4206 for (j = 0; j < nr_ids; j++) {
4207 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4210 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4213 lseek(fd, tmp, SEEK_SET);
4216 perf_header__process_sections(header, fd, &session->tevent,
4217 perf_file_section__process);
4219 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4220 goto out_delete_evlist;
4227 evlist__delete(session->evlist);
4228 session->evlist = NULL;
4232 int perf_event__process_feature(struct perf_session *session,
4233 union perf_event *event)
4235 struct perf_tool *tool = session->tool;
4236 struct feat_fd ff = { .fd = 0 };
4237 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4238 int type = fe->header.type;
4239 u64 feat = fe->feat_id;
4242 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4243 pr_warning("invalid record type %d in pipe-mode\n", type);
4246 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4247 pr_warning("invalid record type %d in pipe-mode\n", type);
4251 if (!feat_ops[feat].process)
4254 ff.buf = (void *)fe->data;
4255 ff.size = event->header.size - sizeof(*fe);
4256 ff.ph = &session->header;
4258 if (feat_ops[feat].process(&ff, NULL)) {
4263 if (!feat_ops[feat].print || !tool->show_feat_hdr)
4266 if (!feat_ops[feat].full_only ||
4267 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4268 feat_ops[feat].print(&ff, stdout);
4270 fprintf(stdout, "# %s info available, use -I to display\n",
4271 feat_ops[feat].name);
4274 free_event_desc(ff.events);
4278 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4280 struct perf_record_event_update *ev = &event->event_update;
4281 struct perf_record_event_update_scale *ev_scale;
4282 struct perf_record_event_update_cpus *ev_cpus;
4283 struct perf_cpu_map *map;
4286 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4289 case PERF_EVENT_UPDATE__SCALE:
4290 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4291 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4293 case PERF_EVENT_UPDATE__UNIT:
4294 ret += fprintf(fp, "... unit: %s\n", ev->data);
4296 case PERF_EVENT_UPDATE__NAME:
4297 ret += fprintf(fp, "... name: %s\n", ev->data);
4299 case PERF_EVENT_UPDATE__CPUS:
4300 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4301 ret += fprintf(fp, "... ");
4303 map = cpu_map__new_data(&ev_cpus->cpus);
4305 ret += cpu_map__fprintf(map, fp);
4307 ret += fprintf(fp, "failed to get cpus\n");
4310 ret += fprintf(fp, "... unknown type\n");
4317 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4318 union perf_event *event,
4319 struct evlist **pevlist)
4322 struct evsel *evsel;
4323 struct evlist *evlist = *pevlist;
4325 if (evlist == NULL) {
4326 *pevlist = evlist = evlist__new();
4331 evsel = evsel__new(&event->attr.attr);
4335 evlist__add(evlist, evsel);
4337 ids = event->header.size;
4338 ids -= (void *)&event->attr.id - (void *)event;
4339 n_ids = ids / sizeof(u64);
4341 * We don't have the cpu and thread maps on the header, so
4342 * for allocating the perf_sample_id table we fake 1 cpu and
4343 * hattr->ids threads.
4345 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4348 for (i = 0; i < n_ids; i++) {
4349 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4355 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4356 union perf_event *event,
4357 struct evlist **pevlist)
4359 struct perf_record_event_update *ev = &event->event_update;
4360 struct perf_record_event_update_scale *ev_scale;
4361 struct perf_record_event_update_cpus *ev_cpus;
4362 struct evlist *evlist;
4363 struct evsel *evsel;
4364 struct perf_cpu_map *map;
4366 if (!pevlist || *pevlist == NULL)
4371 evsel = evlist__id2evsel(evlist, ev->id);
4376 case PERF_EVENT_UPDATE__UNIT:
4377 free((char *)evsel->unit);
4378 evsel->unit = strdup(ev->data);
4380 case PERF_EVENT_UPDATE__NAME:
4382 evsel->name = strdup(ev->data);
4384 case PERF_EVENT_UPDATE__SCALE:
4385 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4386 evsel->scale = ev_scale->scale;
4388 case PERF_EVENT_UPDATE__CPUS:
4389 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4390 map = cpu_map__new_data(&ev_cpus->cpus);
4392 perf_cpu_map__put(evsel->core.own_cpus);
4393 evsel->core.own_cpus = map;
4395 pr_err("failed to get event_update cpus\n");
4403 int perf_event__process_tracing_data(struct perf_session *session,
4404 union perf_event *event)
4406 ssize_t size_read, padding, size = event->tracing_data.size;
4407 int fd = perf_data__fd(session->data);
4411 * The pipe fd is already in proper place and in any case
4412 * we can't move it, and we'd screw the case where we read
4413 * 'pipe' data from regular file. The trace_report reads
4414 * data from 'fd' so we need to set it directly behind the
4415 * event, where the tracing data starts.
4417 if (!perf_data__is_pipe(session->data)) {
4418 off_t offset = lseek(fd, 0, SEEK_CUR);
4420 /* setup for reading amidst mmap */
4421 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4425 size_read = trace_report(fd, &session->tevent,
4427 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4429 if (readn(fd, buf, padding) < 0) {
4430 pr_err("%s: reading input file", __func__);
4433 if (session->repipe) {
4434 int retw = write(STDOUT_FILENO, buf, padding);
4435 if (retw <= 0 || retw != padding) {
4436 pr_err("%s: repiping tracing data padding", __func__);
4441 if (size_read + padding != size) {
4442 pr_err("%s: tracing data size mismatch", __func__);
4446 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4448 return size_read + padding;
4451 int perf_event__process_build_id(struct perf_session *session,
4452 union perf_event *event)
4454 __event_process_build_id(&event->build_id,
4455 event->build_id.filename,