1482567e5ac1a7ae47d0486c5fcf87ca66b4f829
[platform/kernel/linux-starfive.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <traceevent/event-parse.h>
62 #endif
63
64 /*
65  * magic2 = "PERFILE2"
66  * must be a numerical value to let the endianness
67  * determine the memory layout. That way we are able
68  * to detect endianness when reading the perf.data file
69  * back.
70  *
71  * we check for legacy (PERFFILE) format.
72  */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76
77 #define PERF_MAGIC      __perf_magic2
78
79 const char perf_version_string[] = PERF_VERSION;
80
81 struct perf_file_attr {
82         struct perf_event_attr  attr;
83         struct perf_file_section        ids;
84 };
85
86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88         __set_bit(feat, header->adds_features);
89 }
90
91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93         __clear_bit(feat, header->adds_features);
94 }
95
96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98         return test_bit(feat, header->adds_features);
99 }
100
101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103         ssize_t ret = writen(ff->fd, buf, size);
104
105         if (ret != (ssize_t)size)
106                 return ret < 0 ? (int)ret : -1;
107         return 0;
108 }
109
110 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111 {
112         /* struct perf_event_header::size is u16 */
113         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114         size_t new_size = ff->size;
115         void *addr;
116
117         if (size + ff->offset > max_size)
118                 return -E2BIG;
119
120         while (size > (new_size - ff->offset))
121                 new_size <<= 1;
122         new_size = min(max_size, new_size);
123
124         if (ff->size < new_size) {
125                 addr = realloc(ff->buf, new_size);
126                 if (!addr)
127                         return -ENOMEM;
128                 ff->buf = addr;
129                 ff->size = new_size;
130         }
131
132         memcpy(ff->buf + ff->offset, buf, size);
133         ff->offset += size;
134
135         return 0;
136 }
137
138 /* Return: 0 if succeeded, -ERR if failed. */
139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141         if (!ff->buf)
142                 return __do_write_fd(ff, buf, size);
143         return __do_write_buf(ff, buf, size);
144 }
145
146 /* Return: 0 if succeeded, -ERR if failed. */
147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149         u64 *p = (u64 *) set;
150         int i, ret;
151
152         ret = do_write(ff, &size, sizeof(size));
153         if (ret < 0)
154                 return ret;
155
156         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157                 ret = do_write(ff, p + i, sizeof(*p));
158                 if (ret < 0)
159                         return ret;
160         }
161
162         return 0;
163 }
164
165 /* Return: 0 if succeeded, -ERR if failed. */
166 int write_padded(struct feat_fd *ff, const void *bf,
167                  size_t count, size_t count_aligned)
168 {
169         static const char zero_buf[NAME_ALIGN];
170         int err = do_write(ff, bf, count);
171
172         if (!err)
173                 err = do_write(ff, zero_buf, count_aligned - count);
174
175         return err;
176 }
177
178 #define string_size(str)                                                \
179         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180
181 /* Return: 0 if succeeded, -ERR if failed. */
182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184         u32 len, olen;
185         int ret;
186
187         olen = strlen(str) + 1;
188         len = PERF_ALIGN(olen, NAME_ALIGN);
189
190         /* write len, incl. \0 */
191         ret = do_write(ff, &len, sizeof(len));
192         if (ret < 0)
193                 return ret;
194
195         return write_padded(ff, str, olen, len);
196 }
197
198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200         ssize_t ret = readn(ff->fd, addr, size);
201
202         if (ret != size)
203                 return ret < 0 ? (int)ret : -1;
204         return 0;
205 }
206
207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209         if (size > (ssize_t)ff->size - ff->offset)
210                 return -1;
211
212         memcpy(addr, ff->buf + ff->offset, size);
213         ff->offset += size;
214
215         return 0;
216
217 }
218
219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221         if (!ff->buf)
222                 return __do_read_fd(ff, addr, size);
223         return __do_read_buf(ff, addr, size);
224 }
225
226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228         int ret;
229
230         ret = __do_read(ff, addr, sizeof(*addr));
231         if (ret)
232                 return ret;
233
234         if (ff->ph->needs_swap)
235                 *addr = bswap_32(*addr);
236         return 0;
237 }
238
239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241         int ret;
242
243         ret = __do_read(ff, addr, sizeof(*addr));
244         if (ret)
245                 return ret;
246
247         if (ff->ph->needs_swap)
248                 *addr = bswap_64(*addr);
249         return 0;
250 }
251
252 static char *do_read_string(struct feat_fd *ff)
253 {
254         u32 len;
255         char *buf;
256
257         if (do_read_u32(ff, &len))
258                 return NULL;
259
260         buf = malloc(len);
261         if (!buf)
262                 return NULL;
263
264         if (!__do_read(ff, buf, len)) {
265                 /*
266                  * strings are padded by zeroes
267                  * thus the actual strlen of buf
268                  * may be less than len
269                  */
270                 return buf;
271         }
272
273         free(buf);
274         return NULL;
275 }
276
277 /* Return: 0 if succeeded, -ERR if failed. */
278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280         unsigned long *set;
281         u64 size, *p;
282         int i, ret;
283
284         ret = do_read_u64(ff, &size);
285         if (ret)
286                 return ret;
287
288         set = bitmap_zalloc(size);
289         if (!set)
290                 return -ENOMEM;
291
292         p = (u64 *) set;
293
294         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295                 ret = do_read_u64(ff, p + i);
296                 if (ret < 0) {
297                         free(set);
298                         return ret;
299                 }
300         }
301
302         *pset  = set;
303         *psize = size;
304         return 0;
305 }
306
307 #ifdef HAVE_LIBTRACEEVENT
308 static int write_tracing_data(struct feat_fd *ff,
309                               struct evlist *evlist)
310 {
311         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312                 return -1;
313
314         return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317
318 static int write_build_id(struct feat_fd *ff,
319                           struct evlist *evlist __maybe_unused)
320 {
321         struct perf_session *session;
322         int err;
323
324         session = container_of(ff->ph, struct perf_session, header);
325
326         if (!perf_session__read_build_ids(session, true))
327                 return -1;
328
329         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330                 return -1;
331
332         err = perf_session__write_buildid_table(session, ff);
333         if (err < 0) {
334                 pr_debug("failed to write buildid table\n");
335                 return err;
336         }
337         perf_session__cache_build_ids(session);
338
339         return 0;
340 }
341
342 static int write_hostname(struct feat_fd *ff,
343                           struct evlist *evlist __maybe_unused)
344 {
345         struct utsname uts;
346         int ret;
347
348         ret = uname(&uts);
349         if (ret < 0)
350                 return -1;
351
352         return do_write_string(ff, uts.nodename);
353 }
354
355 static int write_osrelease(struct feat_fd *ff,
356                            struct evlist *evlist __maybe_unused)
357 {
358         struct utsname uts;
359         int ret;
360
361         ret = uname(&uts);
362         if (ret < 0)
363                 return -1;
364
365         return do_write_string(ff, uts.release);
366 }
367
368 static int write_arch(struct feat_fd *ff,
369                       struct evlist *evlist __maybe_unused)
370 {
371         struct utsname uts;
372         int ret;
373
374         ret = uname(&uts);
375         if (ret < 0)
376                 return -1;
377
378         return do_write_string(ff, uts.machine);
379 }
380
381 static int write_version(struct feat_fd *ff,
382                          struct evlist *evlist __maybe_unused)
383 {
384         return do_write_string(ff, perf_version_string);
385 }
386
387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389         FILE *file;
390         char *buf = NULL;
391         char *s, *p;
392         const char *search = cpuinfo_proc;
393         size_t len = 0;
394         int ret = -1;
395
396         if (!search)
397                 return -1;
398
399         file = fopen("/proc/cpuinfo", "r");
400         if (!file)
401                 return -1;
402
403         while (getline(&buf, &len, file) > 0) {
404                 ret = strncmp(buf, search, strlen(search));
405                 if (!ret)
406                         break;
407         }
408
409         if (ret) {
410                 ret = -1;
411                 goto done;
412         }
413
414         s = buf;
415
416         p = strchr(buf, ':');
417         if (p && *(p+1) == ' ' && *(p+2))
418                 s = p + 2;
419         p = strchr(s, '\n');
420         if (p)
421                 *p = '\0';
422
423         /* squash extra space characters (branding string) */
424         p = s;
425         while (*p) {
426                 if (isspace(*p)) {
427                         char *r = p + 1;
428                         char *q = skip_spaces(r);
429                         *p = ' ';
430                         if (q != (p+1))
431                                 while ((*r++ = *q++));
432                 }
433                 p++;
434         }
435         ret = do_write_string(ff, s);
436 done:
437         free(buf);
438         fclose(file);
439         return ret;
440 }
441
442 static int write_cpudesc(struct feat_fd *ff,
443                        struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC    { "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC    { "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC    { "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC    { "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC    { "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC    { "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC    { "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC    { "Model Name", }
461 #else
462 #define CPUINFO_PROC    { "model name", }
463 #endif
464         const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466         unsigned int i;
467
468         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469                 int ret;
470                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471                 if (ret >= 0)
472                         return ret;
473         }
474         return -1;
475 }
476
477
478 static int write_nrcpus(struct feat_fd *ff,
479                         struct evlist *evlist __maybe_unused)
480 {
481         long nr;
482         u32 nrc, nra;
483         int ret;
484
485         nrc = cpu__max_present_cpu().cpu;
486
487         nr = sysconf(_SC_NPROCESSORS_ONLN);
488         if (nr < 0)
489                 return -1;
490
491         nra = (u32)(nr & UINT_MAX);
492
493         ret = do_write(ff, &nrc, sizeof(nrc));
494         if (ret < 0)
495                 return ret;
496
497         return do_write(ff, &nra, sizeof(nra));
498 }
499
500 static int write_event_desc(struct feat_fd *ff,
501                             struct evlist *evlist)
502 {
503         struct evsel *evsel;
504         u32 nre, nri, sz;
505         int ret;
506
507         nre = evlist->core.nr_entries;
508
509         /*
510          * write number of events
511          */
512         ret = do_write(ff, &nre, sizeof(nre));
513         if (ret < 0)
514                 return ret;
515
516         /*
517          * size of perf_event_attr struct
518          */
519         sz = (u32)sizeof(evsel->core.attr);
520         ret = do_write(ff, &sz, sizeof(sz));
521         if (ret < 0)
522                 return ret;
523
524         evlist__for_each_entry(evlist, evsel) {
525                 ret = do_write(ff, &evsel->core.attr, sz);
526                 if (ret < 0)
527                         return ret;
528                 /*
529                  * write number of unique id per event
530                  * there is one id per instance of an event
531                  *
532                  * copy into an nri to be independent of the
533                  * type of ids,
534                  */
535                 nri = evsel->core.ids;
536                 ret = do_write(ff, &nri, sizeof(nri));
537                 if (ret < 0)
538                         return ret;
539
540                 /*
541                  * write event string as passed on cmdline
542                  */
543                 ret = do_write_string(ff, evsel__name(evsel));
544                 if (ret < 0)
545                         return ret;
546                 /*
547                  * write unique ids for this event
548                  */
549                 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550                 if (ret < 0)
551                         return ret;
552         }
553         return 0;
554 }
555
556 static int write_cmdline(struct feat_fd *ff,
557                          struct evlist *evlist __maybe_unused)
558 {
559         char pbuf[MAXPATHLEN], *buf;
560         int i, ret, n;
561
562         /* actual path to perf binary */
563         buf = perf_exe(pbuf, MAXPATHLEN);
564
565         /* account for binary path */
566         n = perf_env.nr_cmdline + 1;
567
568         ret = do_write(ff, &n, sizeof(n));
569         if (ret < 0)
570                 return ret;
571
572         ret = do_write_string(ff, buf);
573         if (ret < 0)
574                 return ret;
575
576         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578                 if (ret < 0)
579                         return ret;
580         }
581         return 0;
582 }
583
584
585 static int write_cpu_topology(struct feat_fd *ff,
586                               struct evlist *evlist __maybe_unused)
587 {
588         struct cpu_topology *tp;
589         u32 i;
590         int ret, j;
591
592         tp = cpu_topology__new();
593         if (!tp)
594                 return -1;
595
596         ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597         if (ret < 0)
598                 goto done;
599
600         for (i = 0; i < tp->package_cpus_lists; i++) {
601                 ret = do_write_string(ff, tp->package_cpus_list[i]);
602                 if (ret < 0)
603                         goto done;
604         }
605         ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606         if (ret < 0)
607                 goto done;
608
609         for (i = 0; i < tp->core_cpus_lists; i++) {
610                 ret = do_write_string(ff, tp->core_cpus_list[i]);
611                 if (ret < 0)
612                         break;
613         }
614
615         ret = perf_env__read_cpu_topology_map(&perf_env);
616         if (ret < 0)
617                 goto done;
618
619         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620                 ret = do_write(ff, &perf_env.cpu[j].core_id,
621                                sizeof(perf_env.cpu[j].core_id));
622                 if (ret < 0)
623                         return ret;
624                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
625                                sizeof(perf_env.cpu[j].socket_id));
626                 if (ret < 0)
627                         return ret;
628         }
629
630         if (!tp->die_cpus_lists)
631                 goto done;
632
633         ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634         if (ret < 0)
635                 goto done;
636
637         for (i = 0; i < tp->die_cpus_lists; i++) {
638                 ret = do_write_string(ff, tp->die_cpus_list[i]);
639                 if (ret < 0)
640                         goto done;
641         }
642
643         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644                 ret = do_write(ff, &perf_env.cpu[j].die_id,
645                                sizeof(perf_env.cpu[j].die_id));
646                 if (ret < 0)
647                         return ret;
648         }
649
650 done:
651         cpu_topology__delete(tp);
652         return ret;
653 }
654
655
656
657 static int write_total_mem(struct feat_fd *ff,
658                            struct evlist *evlist __maybe_unused)
659 {
660         char *buf = NULL;
661         FILE *fp;
662         size_t len = 0;
663         int ret = -1, n;
664         uint64_t mem;
665
666         fp = fopen("/proc/meminfo", "r");
667         if (!fp)
668                 return -1;
669
670         while (getline(&buf, &len, fp) > 0) {
671                 ret = strncmp(buf, "MemTotal:", 9);
672                 if (!ret)
673                         break;
674         }
675         if (!ret) {
676                 n = sscanf(buf, "%*s %"PRIu64, &mem);
677                 if (n == 1)
678                         ret = do_write(ff, &mem, sizeof(mem));
679         } else
680                 ret = -1;
681         free(buf);
682         fclose(fp);
683         return ret;
684 }
685
686 static int write_numa_topology(struct feat_fd *ff,
687                                struct evlist *evlist __maybe_unused)
688 {
689         struct numa_topology *tp;
690         int ret = -1;
691         u32 i;
692
693         tp = numa_topology__new();
694         if (!tp)
695                 return -ENOMEM;
696
697         ret = do_write(ff, &tp->nr, sizeof(u32));
698         if (ret < 0)
699                 goto err;
700
701         for (i = 0; i < tp->nr; i++) {
702                 struct numa_topology_node *n = &tp->nodes[i];
703
704                 ret = do_write(ff, &n->node, sizeof(u32));
705                 if (ret < 0)
706                         goto err;
707
708                 ret = do_write(ff, &n->mem_total, sizeof(u64));
709                 if (ret)
710                         goto err;
711
712                 ret = do_write(ff, &n->mem_free, sizeof(u64));
713                 if (ret)
714                         goto err;
715
716                 ret = do_write_string(ff, n->cpus);
717                 if (ret < 0)
718                         goto err;
719         }
720
721         ret = 0;
722
723 err:
724         numa_topology__delete(tp);
725         return ret;
726 }
727
728 /*
729  * File format:
730  *
731  * struct pmu_mappings {
732  *      u32     pmu_num;
733  *      struct pmu_map {
734  *              u32     type;
735  *              char    name[];
736  *      }[pmu_num];
737  * };
738  */
739
740 static int write_pmu_mappings(struct feat_fd *ff,
741                               struct evlist *evlist __maybe_unused)
742 {
743         struct perf_pmu *pmu = NULL;
744         u32 pmu_num = 0;
745         int ret;
746
747         /*
748          * Do a first pass to count number of pmu to avoid lseek so this
749          * works in pipe mode as well.
750          */
751         while ((pmu = perf_pmus__scan(pmu)))
752                 pmu_num++;
753
754         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755         if (ret < 0)
756                 return ret;
757
758         while ((pmu = perf_pmus__scan(pmu))) {
759                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760                 if (ret < 0)
761                         return ret;
762
763                 ret = do_write_string(ff, pmu->name);
764                 if (ret < 0)
765                         return ret;
766         }
767
768         return 0;
769 }
770
771 /*
772  * File format:
773  *
774  * struct group_descs {
775  *      u32     nr_groups;
776  *      struct group_desc {
777  *              char    name[];
778  *              u32     leader_idx;
779  *              u32     nr_members;
780  *      }[nr_groups];
781  * };
782  */
783 static int write_group_desc(struct feat_fd *ff,
784                             struct evlist *evlist)
785 {
786         u32 nr_groups = evlist__nr_groups(evlist);
787         struct evsel *evsel;
788         int ret;
789
790         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791         if (ret < 0)
792                 return ret;
793
794         evlist__for_each_entry(evlist, evsel) {
795                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796                         const char *name = evsel->group_name ?: "{anon_group}";
797                         u32 leader_idx = evsel->core.idx;
798                         u32 nr_members = evsel->core.nr_members;
799
800                         ret = do_write_string(ff, name);
801                         if (ret < 0)
802                                 return ret;
803
804                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805                         if (ret < 0)
806                                 return ret;
807
808                         ret = do_write(ff, &nr_members, sizeof(nr_members));
809                         if (ret < 0)
810                                 return ret;
811                 }
812         }
813         return 0;
814 }
815
816 /*
817  * Return the CPU id as a raw string.
818  *
819  * Each architecture should provide a more precise id string that
820  * can be use to match the architecture's "mapfile".
821  */
822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823 {
824         return NULL;
825 }
826
827 /* Return zero when the cpuid from the mapfile.csv matches the
828  * cpuid string generated on this platform.
829  * Otherwise return non-zero.
830  */
831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832 {
833         regex_t re;
834         regmatch_t pmatch[1];
835         int match;
836
837         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838                 /* Warn unable to generate match particular string. */
839                 pr_info("Invalid regular expression %s\n", mapcpuid);
840                 return 1;
841         }
842
843         match = !regexec(&re, cpuid, 1, pmatch, 0);
844         regfree(&re);
845         if (match) {
846                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847
848                 /* Verify the entire string matched. */
849                 if (match_len == strlen(cpuid))
850                         return 0;
851         }
852         return 1;
853 }
854
855 /*
856  * default get_cpuid(): nothing gets recorded
857  * actual implementation must be in arch/$(SRCARCH)/util/header.c
858  */
859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860 {
861         return ENOSYS; /* Not implemented */
862 }
863
864 static int write_cpuid(struct feat_fd *ff,
865                        struct evlist *evlist __maybe_unused)
866 {
867         char buffer[64];
868         int ret;
869
870         ret = get_cpuid(buffer, sizeof(buffer));
871         if (ret)
872                 return -1;
873
874         return do_write_string(ff, buffer);
875 }
876
877 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878                               struct evlist *evlist __maybe_unused)
879 {
880         return 0;
881 }
882
883 static int write_auxtrace(struct feat_fd *ff,
884                           struct evlist *evlist __maybe_unused)
885 {
886         struct perf_session *session;
887         int err;
888
889         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890                 return -1;
891
892         session = container_of(ff->ph, struct perf_session, header);
893
894         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895         if (err < 0)
896                 pr_err("Failed to write auxtrace index\n");
897         return err;
898 }
899
900 static int write_clockid(struct feat_fd *ff,
901                          struct evlist *evlist __maybe_unused)
902 {
903         return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
904                         sizeof(ff->ph->env.clock.clockid_res_ns));
905 }
906
907 static int write_clock_data(struct feat_fd *ff,
908                             struct evlist *evlist __maybe_unused)
909 {
910         u64 *data64;
911         u32 data32;
912         int ret;
913
914         /* version */
915         data32 = 1;
916
917         ret = do_write(ff, &data32, sizeof(data32));
918         if (ret < 0)
919                 return ret;
920
921         /* clockid */
922         data32 = ff->ph->env.clock.clockid;
923
924         ret = do_write(ff, &data32, sizeof(data32));
925         if (ret < 0)
926                 return ret;
927
928         /* TOD ref time */
929         data64 = &ff->ph->env.clock.tod_ns;
930
931         ret = do_write(ff, data64, sizeof(*data64));
932         if (ret < 0)
933                 return ret;
934
935         /* clockid ref time */
936         data64 = &ff->ph->env.clock.clockid_ns;
937
938         return do_write(ff, data64, sizeof(*data64));
939 }
940
941 static int write_hybrid_topology(struct feat_fd *ff,
942                                  struct evlist *evlist __maybe_unused)
943 {
944         struct hybrid_topology *tp;
945         int ret;
946         u32 i;
947
948         tp = hybrid_topology__new();
949         if (!tp)
950                 return -ENOENT;
951
952         ret = do_write(ff, &tp->nr, sizeof(u32));
953         if (ret < 0)
954                 goto err;
955
956         for (i = 0; i < tp->nr; i++) {
957                 struct hybrid_topology_node *n = &tp->nodes[i];
958
959                 ret = do_write_string(ff, n->pmu_name);
960                 if (ret < 0)
961                         goto err;
962
963                 ret = do_write_string(ff, n->cpus);
964                 if (ret < 0)
965                         goto err;
966         }
967
968         ret = 0;
969
970 err:
971         hybrid_topology__delete(tp);
972         return ret;
973 }
974
975 static int write_dir_format(struct feat_fd *ff,
976                             struct evlist *evlist __maybe_unused)
977 {
978         struct perf_session *session;
979         struct perf_data *data;
980
981         session = container_of(ff->ph, struct perf_session, header);
982         data = session->data;
983
984         if (WARN_ON(!perf_data__is_dir(data)))
985                 return -1;
986
987         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
988 }
989
990 /*
991  * Check whether a CPU is online
992  *
993  * Returns:
994  *     1 -> if CPU is online
995  *     0 -> if CPU is offline
996  *    -1 -> error case
997  */
998 int is_cpu_online(unsigned int cpu)
999 {
1000         char *str;
1001         size_t strlen;
1002         char buf[256];
1003         int status = -1;
1004         struct stat statbuf;
1005
1006         snprintf(buf, sizeof(buf),
1007                 "/sys/devices/system/cpu/cpu%d", cpu);
1008         if (stat(buf, &statbuf) != 0)
1009                 return 0;
1010
1011         /*
1012          * Check if /sys/devices/system/cpu/cpux/online file
1013          * exists. Some cases cpu0 won't have online file since
1014          * it is not expected to be turned off generally.
1015          * In kernels without CONFIG_HOTPLUG_CPU, this
1016          * file won't exist
1017          */
1018         snprintf(buf, sizeof(buf),
1019                 "/sys/devices/system/cpu/cpu%d/online", cpu);
1020         if (stat(buf, &statbuf) != 0)
1021                 return 1;
1022
1023         /*
1024          * Read online file using sysfs__read_str.
1025          * If read or open fails, return -1.
1026          * If read succeeds, return value from file
1027          * which gets stored in "str"
1028          */
1029         snprintf(buf, sizeof(buf),
1030                 "devices/system/cpu/cpu%d/online", cpu);
1031
1032         if (sysfs__read_str(buf, &str, &strlen) < 0)
1033                 return status;
1034
1035         status = atoi(str);
1036
1037         free(str);
1038         return status;
1039 }
1040
1041 #ifdef HAVE_LIBBPF_SUPPORT
1042 static int write_bpf_prog_info(struct feat_fd *ff,
1043                                struct evlist *evlist __maybe_unused)
1044 {
1045         struct perf_env *env = &ff->ph->env;
1046         struct rb_root *root;
1047         struct rb_node *next;
1048         int ret;
1049
1050         down_read(&env->bpf_progs.lock);
1051
1052         ret = do_write(ff, &env->bpf_progs.infos_cnt,
1053                        sizeof(env->bpf_progs.infos_cnt));
1054         if (ret < 0)
1055                 goto out;
1056
1057         root = &env->bpf_progs.infos;
1058         next = rb_first(root);
1059         while (next) {
1060                 struct bpf_prog_info_node *node;
1061                 size_t len;
1062
1063                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1064                 next = rb_next(&node->rb_node);
1065                 len = sizeof(struct perf_bpil) +
1066                         node->info_linear->data_len;
1067
1068                 /* before writing to file, translate address to offset */
1069                 bpil_addr_to_offs(node->info_linear);
1070                 ret = do_write(ff, node->info_linear, len);
1071                 /*
1072                  * translate back to address even when do_write() fails,
1073                  * so that this function never changes the data.
1074                  */
1075                 bpil_offs_to_addr(node->info_linear);
1076                 if (ret < 0)
1077                         goto out;
1078         }
1079 out:
1080         up_read(&env->bpf_progs.lock);
1081         return ret;
1082 }
1083
1084 static int write_bpf_btf(struct feat_fd *ff,
1085                          struct evlist *evlist __maybe_unused)
1086 {
1087         struct perf_env *env = &ff->ph->env;
1088         struct rb_root *root;
1089         struct rb_node *next;
1090         int ret;
1091
1092         down_read(&env->bpf_progs.lock);
1093
1094         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1095                        sizeof(env->bpf_progs.btfs_cnt));
1096
1097         if (ret < 0)
1098                 goto out;
1099
1100         root = &env->bpf_progs.btfs;
1101         next = rb_first(root);
1102         while (next) {
1103                 struct btf_node *node;
1104
1105                 node = rb_entry(next, struct btf_node, rb_node);
1106                 next = rb_next(&node->rb_node);
1107                 ret = do_write(ff, &node->id,
1108                                sizeof(u32) * 2 + node->data_size);
1109                 if (ret < 0)
1110                         goto out;
1111         }
1112 out:
1113         up_read(&env->bpf_progs.lock);
1114         return ret;
1115 }
1116 #endif // HAVE_LIBBPF_SUPPORT
1117
1118 static int cpu_cache_level__sort(const void *a, const void *b)
1119 {
1120         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1121         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1122
1123         return cache_a->level - cache_b->level;
1124 }
1125
1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1127 {
1128         if (a->level != b->level)
1129                 return false;
1130
1131         if (a->line_size != b->line_size)
1132                 return false;
1133
1134         if (a->sets != b->sets)
1135                 return false;
1136
1137         if (a->ways != b->ways)
1138                 return false;
1139
1140         if (strcmp(a->type, b->type))
1141                 return false;
1142
1143         if (strcmp(a->size, b->size))
1144                 return false;
1145
1146         if (strcmp(a->map, b->map))
1147                 return false;
1148
1149         return true;
1150 }
1151
1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1153 {
1154         char path[PATH_MAX], file[PATH_MAX];
1155         struct stat st;
1156         size_t len;
1157
1158         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1159         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1160
1161         if (stat(file, &st))
1162                 return 1;
1163
1164         scnprintf(file, PATH_MAX, "%s/level", path);
1165         if (sysfs__read_int(file, (int *) &cache->level))
1166                 return -1;
1167
1168         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1169         if (sysfs__read_int(file, (int *) &cache->line_size))
1170                 return -1;
1171
1172         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1173         if (sysfs__read_int(file, (int *) &cache->sets))
1174                 return -1;
1175
1176         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1177         if (sysfs__read_int(file, (int *) &cache->ways))
1178                 return -1;
1179
1180         scnprintf(file, PATH_MAX, "%s/type", path);
1181         if (sysfs__read_str(file, &cache->type, &len))
1182                 return -1;
1183
1184         cache->type[len] = 0;
1185         cache->type = strim(cache->type);
1186
1187         scnprintf(file, PATH_MAX, "%s/size", path);
1188         if (sysfs__read_str(file, &cache->size, &len)) {
1189                 zfree(&cache->type);
1190                 return -1;
1191         }
1192
1193         cache->size[len] = 0;
1194         cache->size = strim(cache->size);
1195
1196         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1197         if (sysfs__read_str(file, &cache->map, &len)) {
1198                 zfree(&cache->size);
1199                 zfree(&cache->type);
1200                 return -1;
1201         }
1202
1203         cache->map[len] = 0;
1204         cache->map = strim(cache->map);
1205         return 0;
1206 }
1207
1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1209 {
1210         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1211 }
1212
1213 /*
1214  * Build caches levels for a particular CPU from the data in
1215  * /sys/devices/system/cpu/cpu<cpu>/cache/
1216  * The cache level data is stored in caches[] from index at
1217  * *cntp.
1218  */
1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1220 {
1221         u16 level;
1222
1223         for (level = 0; level < MAX_CACHE_LVL; level++) {
1224                 struct cpu_cache_level c;
1225                 int err;
1226                 u32 i;
1227
1228                 err = cpu_cache_level__read(&c, cpu, level);
1229                 if (err < 0)
1230                         return err;
1231
1232                 if (err == 1)
1233                         break;
1234
1235                 for (i = 0; i < *cntp; i++) {
1236                         if (cpu_cache_level__cmp(&c, &caches[i]))
1237                                 break;
1238                 }
1239
1240                 if (i == *cntp) {
1241                         caches[*cntp] = c;
1242                         *cntp = *cntp + 1;
1243                 } else
1244                         cpu_cache_level__free(&c);
1245         }
1246
1247         return 0;
1248 }
1249
1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1251 {
1252         u32 nr, cpu, cnt = 0;
1253
1254         nr = cpu__max_cpu().cpu;
1255
1256         for (cpu = 0; cpu < nr; cpu++) {
1257                 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1258
1259                 if (ret)
1260                         return ret;
1261         }
1262         *cntp = cnt;
1263         return 0;
1264 }
1265
1266 static int write_cache(struct feat_fd *ff,
1267                        struct evlist *evlist __maybe_unused)
1268 {
1269         u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1270         struct cpu_cache_level caches[max_caches];
1271         u32 cnt = 0, i, version = 1;
1272         int ret;
1273
1274         ret = build_caches(caches, &cnt);
1275         if (ret)
1276                 goto out;
1277
1278         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1279
1280         ret = do_write(ff, &version, sizeof(u32));
1281         if (ret < 0)
1282                 goto out;
1283
1284         ret = do_write(ff, &cnt, sizeof(u32));
1285         if (ret < 0)
1286                 goto out;
1287
1288         for (i = 0; i < cnt; i++) {
1289                 struct cpu_cache_level *c = &caches[i];
1290
1291                 #define _W(v)                                   \
1292                         ret = do_write(ff, &c->v, sizeof(u32)); \
1293                         if (ret < 0)                            \
1294                                 goto out;
1295
1296                 _W(level)
1297                 _W(line_size)
1298                 _W(sets)
1299                 _W(ways)
1300                 #undef _W
1301
1302                 #define _W(v)                                           \
1303                         ret = do_write_string(ff, (const char *) c->v); \
1304                         if (ret < 0)                                    \
1305                                 goto out;
1306
1307                 _W(type)
1308                 _W(size)
1309                 _W(map)
1310                 #undef _W
1311         }
1312
1313 out:
1314         for (i = 0; i < cnt; i++)
1315                 cpu_cache_level__free(&caches[i]);
1316         return ret;
1317 }
1318
1319 static int write_stat(struct feat_fd *ff __maybe_unused,
1320                       struct evlist *evlist __maybe_unused)
1321 {
1322         return 0;
1323 }
1324
1325 static int write_sample_time(struct feat_fd *ff,
1326                              struct evlist *evlist)
1327 {
1328         int ret;
1329
1330         ret = do_write(ff, &evlist->first_sample_time,
1331                        sizeof(evlist->first_sample_time));
1332         if (ret < 0)
1333                 return ret;
1334
1335         return do_write(ff, &evlist->last_sample_time,
1336                         sizeof(evlist->last_sample_time));
1337 }
1338
1339
1340 static int memory_node__read(struct memory_node *n, unsigned long idx)
1341 {
1342         unsigned int phys, size = 0;
1343         char path[PATH_MAX];
1344         struct dirent *ent;
1345         DIR *dir;
1346
1347 #define for_each_memory(mem, dir)                                       \
1348         while ((ent = readdir(dir)))                                    \
1349                 if (strcmp(ent->d_name, ".") &&                         \
1350                     strcmp(ent->d_name, "..") &&                        \
1351                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1352
1353         scnprintf(path, PATH_MAX,
1354                   "%s/devices/system/node/node%lu",
1355                   sysfs__mountpoint(), idx);
1356
1357         dir = opendir(path);
1358         if (!dir) {
1359                 pr_warning("failed: can't open memory sysfs data\n");
1360                 return -1;
1361         }
1362
1363         for_each_memory(phys, dir) {
1364                 size = max(phys, size);
1365         }
1366
1367         size++;
1368
1369         n->set = bitmap_zalloc(size);
1370         if (!n->set) {
1371                 closedir(dir);
1372                 return -ENOMEM;
1373         }
1374
1375         n->node = idx;
1376         n->size = size;
1377
1378         rewinddir(dir);
1379
1380         for_each_memory(phys, dir) {
1381                 __set_bit(phys, n->set);
1382         }
1383
1384         closedir(dir);
1385         return 0;
1386 }
1387
1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1389 {
1390         for (u64 i = 0; i < cnt; i++)
1391                 bitmap_free(nodesp[i].set);
1392
1393         free(nodesp);
1394 }
1395
1396 static int memory_node__sort(const void *a, const void *b)
1397 {
1398         const struct memory_node *na = a;
1399         const struct memory_node *nb = b;
1400
1401         return na->node - nb->node;
1402 }
1403
1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1405 {
1406         char path[PATH_MAX];
1407         struct dirent *ent;
1408         DIR *dir;
1409         int ret = 0;
1410         size_t cnt = 0, size = 0;
1411         struct memory_node *nodes = NULL;
1412
1413         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1414                   sysfs__mountpoint());
1415
1416         dir = opendir(path);
1417         if (!dir) {
1418                 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1419                           __func__, path);
1420                 return -1;
1421         }
1422
1423         while (!ret && (ent = readdir(dir))) {
1424                 unsigned int idx;
1425                 int r;
1426
1427                 if (!strcmp(ent->d_name, ".") ||
1428                     !strcmp(ent->d_name, ".."))
1429                         continue;
1430
1431                 r = sscanf(ent->d_name, "node%u", &idx);
1432                 if (r != 1)
1433                         continue;
1434
1435                 if (cnt >= size) {
1436                         struct memory_node *new_nodes =
1437                                 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1438
1439                         if (!new_nodes) {
1440                                 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1441                                 ret = -ENOMEM;
1442                                 goto out;
1443                         }
1444                         nodes = new_nodes;
1445                         size += 4;
1446                 }
1447                 ret = memory_node__read(&nodes[cnt], idx);
1448                 if (!ret)
1449                         cnt += 1;
1450         }
1451 out:
1452         closedir(dir);
1453         if (!ret) {
1454                 *cntp = cnt;
1455                 *nodesp = nodes;
1456                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1457         } else
1458                 memory_node__delete_nodes(nodes, cnt);
1459
1460         return ret;
1461 }
1462
1463 /*
1464  * The MEM_TOPOLOGY holds physical memory map for every
1465  * node in system. The format of data is as follows:
1466  *
1467  *  0 - version          | for future changes
1468  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1469  * 16 - count            | number of nodes
1470  *
1471  * For each node we store map of physical indexes for
1472  * each node:
1473  *
1474  * 32 - node id          | node index
1475  * 40 - size             | size of bitmap
1476  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1477  */
1478 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1479                               struct evlist *evlist __maybe_unused)
1480 {
1481         struct memory_node *nodes = NULL;
1482         u64 bsize, version = 1, i, nr = 0;
1483         int ret;
1484
1485         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1486                               (unsigned long long *) &bsize);
1487         if (ret)
1488                 return ret;
1489
1490         ret = build_mem_topology(&nodes, &nr);
1491         if (ret)
1492                 return ret;
1493
1494         ret = do_write(ff, &version, sizeof(version));
1495         if (ret < 0)
1496                 goto out;
1497
1498         ret = do_write(ff, &bsize, sizeof(bsize));
1499         if (ret < 0)
1500                 goto out;
1501
1502         ret = do_write(ff, &nr, sizeof(nr));
1503         if (ret < 0)
1504                 goto out;
1505
1506         for (i = 0; i < nr; i++) {
1507                 struct memory_node *n = &nodes[i];
1508
1509                 #define _W(v)                                           \
1510                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1511                         if (ret < 0)                                    \
1512                                 goto out;
1513
1514                 _W(node)
1515                 _W(size)
1516
1517                 #undef _W
1518
1519                 ret = do_write_bitmap(ff, n->set, n->size);
1520                 if (ret < 0)
1521                         goto out;
1522         }
1523
1524 out:
1525         memory_node__delete_nodes(nodes, nr);
1526         return ret;
1527 }
1528
1529 static int write_compressed(struct feat_fd *ff __maybe_unused,
1530                             struct evlist *evlist __maybe_unused)
1531 {
1532         int ret;
1533
1534         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1535         if (ret)
1536                 return ret;
1537
1538         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1539         if (ret)
1540                 return ret;
1541
1542         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1543         if (ret)
1544                 return ret;
1545
1546         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1547         if (ret)
1548                 return ret;
1549
1550         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1551 }
1552
1553 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1554                             bool write_pmu)
1555 {
1556         struct perf_pmu_caps *caps = NULL;
1557         int ret;
1558
1559         ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1560         if (ret < 0)
1561                 return ret;
1562
1563         list_for_each_entry(caps, &pmu->caps, list) {
1564                 ret = do_write_string(ff, caps->name);
1565                 if (ret < 0)
1566                         return ret;
1567
1568                 ret = do_write_string(ff, caps->value);
1569                 if (ret < 0)
1570                         return ret;
1571         }
1572
1573         if (write_pmu) {
1574                 ret = do_write_string(ff, pmu->name);
1575                 if (ret < 0)
1576                         return ret;
1577         }
1578
1579         return ret;
1580 }
1581
1582 static int write_cpu_pmu_caps(struct feat_fd *ff,
1583                               struct evlist *evlist __maybe_unused)
1584 {
1585         struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1586         int ret;
1587
1588         if (!cpu_pmu)
1589                 return -ENOENT;
1590
1591         ret = perf_pmu__caps_parse(cpu_pmu);
1592         if (ret < 0)
1593                 return ret;
1594
1595         return __write_pmu_caps(ff, cpu_pmu, false);
1596 }
1597
1598 static int write_pmu_caps(struct feat_fd *ff,
1599                           struct evlist *evlist __maybe_unused)
1600 {
1601         struct perf_pmu *pmu = NULL;
1602         int nr_pmu = 0;
1603         int ret;
1604
1605         while ((pmu = perf_pmus__scan(pmu))) {
1606                 if (!strcmp(pmu->name, "cpu")) {
1607                         /*
1608                          * The "cpu" PMU is special and covered by
1609                          * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1610                          * counted/written here for ARM, s390 and Intel hybrid.
1611                          */
1612                         continue;
1613                 }
1614                 if (perf_pmu__caps_parse(pmu) <= 0)
1615                         continue;
1616                 nr_pmu++;
1617         }
1618
1619         ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1620         if (ret < 0)
1621                 return ret;
1622
1623         if (!nr_pmu)
1624                 return 0;
1625
1626         /*
1627          * Note older perf tools assume core PMUs come first, this is a property
1628          * of perf_pmus__scan.
1629          */
1630         pmu = NULL;
1631         while ((pmu = perf_pmus__scan(pmu))) {
1632                 if (!strcmp(pmu->name, "cpu")) {
1633                         /* Skip as above. */
1634                         continue;
1635                 }
1636                 if (perf_pmu__caps_parse(pmu) <= 0)
1637                         continue;
1638                 ret = __write_pmu_caps(ff, pmu, true);
1639                 if (ret < 0)
1640                         return ret;
1641         }
1642         return 0;
1643 }
1644
1645 static void print_hostname(struct feat_fd *ff, FILE *fp)
1646 {
1647         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1648 }
1649
1650 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1651 {
1652         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1653 }
1654
1655 static void print_arch(struct feat_fd *ff, FILE *fp)
1656 {
1657         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1658 }
1659
1660 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1661 {
1662         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1663 }
1664
1665 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1666 {
1667         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1668         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1669 }
1670
1671 static void print_version(struct feat_fd *ff, FILE *fp)
1672 {
1673         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1674 }
1675
1676 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1677 {
1678         int nr, i;
1679
1680         nr = ff->ph->env.nr_cmdline;
1681
1682         fprintf(fp, "# cmdline : ");
1683
1684         for (i = 0; i < nr; i++) {
1685                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1686                 if (!argv_i) {
1687                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1688                 } else {
1689                         char *mem = argv_i;
1690                         do {
1691                                 char *quote = strchr(argv_i, '\'');
1692                                 if (!quote)
1693                                         break;
1694                                 *quote++ = '\0';
1695                                 fprintf(fp, "%s\\\'", argv_i);
1696                                 argv_i = quote;
1697                         } while (1);
1698                         fprintf(fp, "%s ", argv_i);
1699                         free(mem);
1700                 }
1701         }
1702         fputc('\n', fp);
1703 }
1704
1705 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1706 {
1707         struct perf_header *ph = ff->ph;
1708         int cpu_nr = ph->env.nr_cpus_avail;
1709         int nr, i;
1710         char *str;
1711
1712         nr = ph->env.nr_sibling_cores;
1713         str = ph->env.sibling_cores;
1714
1715         for (i = 0; i < nr; i++) {
1716                 fprintf(fp, "# sibling sockets : %s\n", str);
1717                 str += strlen(str) + 1;
1718         }
1719
1720         if (ph->env.nr_sibling_dies) {
1721                 nr = ph->env.nr_sibling_dies;
1722                 str = ph->env.sibling_dies;
1723
1724                 for (i = 0; i < nr; i++) {
1725                         fprintf(fp, "# sibling dies    : %s\n", str);
1726                         str += strlen(str) + 1;
1727                 }
1728         }
1729
1730         nr = ph->env.nr_sibling_threads;
1731         str = ph->env.sibling_threads;
1732
1733         for (i = 0; i < nr; i++) {
1734                 fprintf(fp, "# sibling threads : %s\n", str);
1735                 str += strlen(str) + 1;
1736         }
1737
1738         if (ph->env.nr_sibling_dies) {
1739                 if (ph->env.cpu != NULL) {
1740                         for (i = 0; i < cpu_nr; i++)
1741                                 fprintf(fp, "# CPU %d: Core ID %d, "
1742                                             "Die ID %d, Socket ID %d\n",
1743                                             i, ph->env.cpu[i].core_id,
1744                                             ph->env.cpu[i].die_id,
1745                                             ph->env.cpu[i].socket_id);
1746                 } else
1747                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1748                                     "information is not available\n");
1749         } else {
1750                 if (ph->env.cpu != NULL) {
1751                         for (i = 0; i < cpu_nr; i++)
1752                                 fprintf(fp, "# CPU %d: Core ID %d, "
1753                                             "Socket ID %d\n",
1754                                             i, ph->env.cpu[i].core_id,
1755                                             ph->env.cpu[i].socket_id);
1756                 } else
1757                         fprintf(fp, "# Core ID and Socket ID "
1758                                     "information is not available\n");
1759         }
1760 }
1761
1762 static void print_clockid(struct feat_fd *ff, FILE *fp)
1763 {
1764         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1765                 ff->ph->env.clock.clockid_res_ns * 1000);
1766 }
1767
1768 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1769 {
1770         struct timespec clockid_ns;
1771         char tstr[64], date[64];
1772         struct timeval tod_ns;
1773         clockid_t clockid;
1774         struct tm ltime;
1775         u64 ref;
1776
1777         if (!ff->ph->env.clock.enabled) {
1778                 fprintf(fp, "# reference time disabled\n");
1779                 return;
1780         }
1781
1782         /* Compute TOD time. */
1783         ref = ff->ph->env.clock.tod_ns;
1784         tod_ns.tv_sec = ref / NSEC_PER_SEC;
1785         ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1786         tod_ns.tv_usec = ref / NSEC_PER_USEC;
1787
1788         /* Compute clockid time. */
1789         ref = ff->ph->env.clock.clockid_ns;
1790         clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1791         ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1792         clockid_ns.tv_nsec = ref;
1793
1794         clockid = ff->ph->env.clock.clockid;
1795
1796         if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1797                 snprintf(tstr, sizeof(tstr), "<error>");
1798         else {
1799                 strftime(date, sizeof(date), "%F %T", &ltime);
1800                 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1801                           date, (int) tod_ns.tv_usec);
1802         }
1803
1804         fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1805         fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1806                     tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1807                     (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1808                     clockid_name(clockid));
1809 }
1810
1811 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1812 {
1813         int i;
1814         struct hybrid_node *n;
1815
1816         fprintf(fp, "# hybrid cpu system:\n");
1817         for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1818                 n = &ff->ph->env.hybrid_nodes[i];
1819                 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1820         }
1821 }
1822
1823 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1824 {
1825         struct perf_session *session;
1826         struct perf_data *data;
1827
1828         session = container_of(ff->ph, struct perf_session, header);
1829         data = session->data;
1830
1831         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1832 }
1833
1834 #ifdef HAVE_LIBBPF_SUPPORT
1835 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1836 {
1837         struct perf_env *env = &ff->ph->env;
1838         struct rb_root *root;
1839         struct rb_node *next;
1840
1841         down_read(&env->bpf_progs.lock);
1842
1843         root = &env->bpf_progs.infos;
1844         next = rb_first(root);
1845
1846         while (next) {
1847                 struct bpf_prog_info_node *node;
1848
1849                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1850                 next = rb_next(&node->rb_node);
1851
1852                 __bpf_event__print_bpf_prog_info(&node->info_linear->info,
1853                                                  env, fp);
1854         }
1855
1856         up_read(&env->bpf_progs.lock);
1857 }
1858
1859 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1860 {
1861         struct perf_env *env = &ff->ph->env;
1862         struct rb_root *root;
1863         struct rb_node *next;
1864
1865         down_read(&env->bpf_progs.lock);
1866
1867         root = &env->bpf_progs.btfs;
1868         next = rb_first(root);
1869
1870         while (next) {
1871                 struct btf_node *node;
1872
1873                 node = rb_entry(next, struct btf_node, rb_node);
1874                 next = rb_next(&node->rb_node);
1875                 fprintf(fp, "# btf info of id %u\n", node->id);
1876         }
1877
1878         up_read(&env->bpf_progs.lock);
1879 }
1880 #endif // HAVE_LIBBPF_SUPPORT
1881
1882 static void free_event_desc(struct evsel *events)
1883 {
1884         struct evsel *evsel;
1885
1886         if (!events)
1887                 return;
1888
1889         for (evsel = events; evsel->core.attr.size; evsel++) {
1890                 zfree(&evsel->name);
1891                 zfree(&evsel->core.id);
1892         }
1893
1894         free(events);
1895 }
1896
1897 static bool perf_attr_check(struct perf_event_attr *attr)
1898 {
1899         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1900                 pr_warning("Reserved bits are set unexpectedly. "
1901                            "Please update perf tool.\n");
1902                 return false;
1903         }
1904
1905         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1906                 pr_warning("Unknown sample type (0x%llx) is detected. "
1907                            "Please update perf tool.\n",
1908                            attr->sample_type);
1909                 return false;
1910         }
1911
1912         if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1913                 pr_warning("Unknown read format (0x%llx) is detected. "
1914                            "Please update perf tool.\n",
1915                            attr->read_format);
1916                 return false;
1917         }
1918
1919         if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1920             (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1921                 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1922                            "Please update perf tool.\n",
1923                            attr->branch_sample_type);
1924
1925                 return false;
1926         }
1927
1928         return true;
1929 }
1930
1931 static struct evsel *read_event_desc(struct feat_fd *ff)
1932 {
1933         struct evsel *evsel, *events = NULL;
1934         u64 *id;
1935         void *buf = NULL;
1936         u32 nre, sz, nr, i, j;
1937         size_t msz;
1938
1939         /* number of events */
1940         if (do_read_u32(ff, &nre))
1941                 goto error;
1942
1943         if (do_read_u32(ff, &sz))
1944                 goto error;
1945
1946         /* buffer to hold on file attr struct */
1947         buf = malloc(sz);
1948         if (!buf)
1949                 goto error;
1950
1951         /* the last event terminates with evsel->core.attr.size == 0: */
1952         events = calloc(nre + 1, sizeof(*events));
1953         if (!events)
1954                 goto error;
1955
1956         msz = sizeof(evsel->core.attr);
1957         if (sz < msz)
1958                 msz = sz;
1959
1960         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1961                 evsel->core.idx = i;
1962
1963                 /*
1964                  * must read entire on-file attr struct to
1965                  * sync up with layout.
1966                  */
1967                 if (__do_read(ff, buf, sz))
1968                         goto error;
1969
1970                 if (ff->ph->needs_swap)
1971                         perf_event__attr_swap(buf);
1972
1973                 memcpy(&evsel->core.attr, buf, msz);
1974
1975                 if (!perf_attr_check(&evsel->core.attr))
1976                         goto error;
1977
1978                 if (do_read_u32(ff, &nr))
1979                         goto error;
1980
1981                 if (ff->ph->needs_swap)
1982                         evsel->needs_swap = true;
1983
1984                 evsel->name = do_read_string(ff);
1985                 if (!evsel->name)
1986                         goto error;
1987
1988                 if (!nr)
1989                         continue;
1990
1991                 id = calloc(nr, sizeof(*id));
1992                 if (!id)
1993                         goto error;
1994                 evsel->core.ids = nr;
1995                 evsel->core.id = id;
1996
1997                 for (j = 0 ; j < nr; j++) {
1998                         if (do_read_u64(ff, id))
1999                                 goto error;
2000                         id++;
2001                 }
2002         }
2003 out:
2004         free(buf);
2005         return events;
2006 error:
2007         free_event_desc(events);
2008         events = NULL;
2009         goto out;
2010 }
2011
2012 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2013                                 void *priv __maybe_unused)
2014 {
2015         return fprintf(fp, ", %s = %s", name, val);
2016 }
2017
2018 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2019 {
2020         struct evsel *evsel, *events;
2021         u32 j;
2022         u64 *id;
2023
2024         if (ff->events)
2025                 events = ff->events;
2026         else
2027                 events = read_event_desc(ff);
2028
2029         if (!events) {
2030                 fprintf(fp, "# event desc: not available or unable to read\n");
2031                 return;
2032         }
2033
2034         for (evsel = events; evsel->core.attr.size; evsel++) {
2035                 fprintf(fp, "# event : name = %s, ", evsel->name);
2036
2037                 if (evsel->core.ids) {
2038                         fprintf(fp, ", id = {");
2039                         for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2040                                 if (j)
2041                                         fputc(',', fp);
2042                                 fprintf(fp, " %"PRIu64, *id);
2043                         }
2044                         fprintf(fp, " }");
2045                 }
2046
2047                 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2048
2049                 fputc('\n', fp);
2050         }
2051
2052         free_event_desc(events);
2053         ff->events = NULL;
2054 }
2055
2056 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2057 {
2058         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2059 }
2060
2061 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2062 {
2063         int i;
2064         struct numa_node *n;
2065
2066         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2067                 n = &ff->ph->env.numa_nodes[i];
2068
2069                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2070                             " free = %"PRIu64" kB\n",
2071                         n->node, n->mem_total, n->mem_free);
2072
2073                 fprintf(fp, "# node%u cpu list : ", n->node);
2074                 cpu_map__fprintf(n->map, fp);
2075         }
2076 }
2077
2078 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2079 {
2080         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2081 }
2082
2083 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2084 {
2085         fprintf(fp, "# contains samples with branch stack\n");
2086 }
2087
2088 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2089 {
2090         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2091 }
2092
2093 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2094 {
2095         fprintf(fp, "# contains stat data\n");
2096 }
2097
2098 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2099 {
2100         int i;
2101
2102         fprintf(fp, "# CPU cache info:\n");
2103         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2104                 fprintf(fp, "#  ");
2105                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2106         }
2107 }
2108
2109 static void print_compressed(struct feat_fd *ff, FILE *fp)
2110 {
2111         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2112                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2113                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2114 }
2115
2116 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2117 {
2118         const char *delimiter = "";
2119         int i;
2120
2121         if (!nr_caps) {
2122                 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2123                 return;
2124         }
2125
2126         fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2127         for (i = 0; i < nr_caps; i++) {
2128                 fprintf(fp, "%s%s", delimiter, caps[i]);
2129                 delimiter = ", ";
2130         }
2131
2132         fprintf(fp, "\n");
2133 }
2134
2135 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2136 {
2137         __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2138                          ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2139 }
2140
2141 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2142 {
2143         struct pmu_caps *pmu_caps;
2144
2145         for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2146                 pmu_caps = &ff->ph->env.pmu_caps[i];
2147                 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2148                                  pmu_caps->pmu_name);
2149         }
2150 }
2151
2152 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2153 {
2154         const char *delimiter = "# pmu mappings: ";
2155         char *str, *tmp;
2156         u32 pmu_num;
2157         u32 type;
2158
2159         pmu_num = ff->ph->env.nr_pmu_mappings;
2160         if (!pmu_num) {
2161                 fprintf(fp, "# pmu mappings: not available\n");
2162                 return;
2163         }
2164
2165         str = ff->ph->env.pmu_mappings;
2166
2167         while (pmu_num) {
2168                 type = strtoul(str, &tmp, 0);
2169                 if (*tmp != ':')
2170                         goto error;
2171
2172                 str = tmp + 1;
2173                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2174
2175                 delimiter = ", ";
2176                 str += strlen(str) + 1;
2177                 pmu_num--;
2178         }
2179
2180         fprintf(fp, "\n");
2181
2182         if (!pmu_num)
2183                 return;
2184 error:
2185         fprintf(fp, "# pmu mappings: unable to read\n");
2186 }
2187
2188 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2189 {
2190         struct perf_session *session;
2191         struct evsel *evsel;
2192         u32 nr = 0;
2193
2194         session = container_of(ff->ph, struct perf_session, header);
2195
2196         evlist__for_each_entry(session->evlist, evsel) {
2197                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2198                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2199
2200                         nr = evsel->core.nr_members - 1;
2201                 } else if (nr) {
2202                         fprintf(fp, ",%s", evsel__name(evsel));
2203
2204                         if (--nr == 0)
2205                                 fprintf(fp, "}\n");
2206                 }
2207         }
2208 }
2209
2210 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2211 {
2212         struct perf_session *session;
2213         char time_buf[32];
2214         double d;
2215
2216         session = container_of(ff->ph, struct perf_session, header);
2217
2218         timestamp__scnprintf_usec(session->evlist->first_sample_time,
2219                                   time_buf, sizeof(time_buf));
2220         fprintf(fp, "# time of first sample : %s\n", time_buf);
2221
2222         timestamp__scnprintf_usec(session->evlist->last_sample_time,
2223                                   time_buf, sizeof(time_buf));
2224         fprintf(fp, "# time of last sample : %s\n", time_buf);
2225
2226         d = (double)(session->evlist->last_sample_time -
2227                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2228
2229         fprintf(fp, "# sample duration : %10.3f ms\n", d);
2230 }
2231
2232 static void memory_node__fprintf(struct memory_node *n,
2233                                  unsigned long long bsize, FILE *fp)
2234 {
2235         char buf_map[100], buf_size[50];
2236         unsigned long long size;
2237
2238         size = bsize * bitmap_weight(n->set, n->size);
2239         unit_number__scnprintf(buf_size, 50, size);
2240
2241         bitmap_scnprintf(n->set, n->size, buf_map, 100);
2242         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2243 }
2244
2245 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2246 {
2247         struct memory_node *nodes;
2248         int i, nr;
2249
2250         nodes = ff->ph->env.memory_nodes;
2251         nr    = ff->ph->env.nr_memory_nodes;
2252
2253         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2254                 nr, ff->ph->env.memory_bsize);
2255
2256         for (i = 0; i < nr; i++) {
2257                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2258         }
2259 }
2260
2261 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2262                                     char *filename,
2263                                     struct perf_session *session)
2264 {
2265         int err = -1;
2266         struct machine *machine;
2267         u16 cpumode;
2268         struct dso *dso;
2269         enum dso_space_type dso_space;
2270
2271         machine = perf_session__findnew_machine(session, bev->pid);
2272         if (!machine)
2273                 goto out;
2274
2275         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2276
2277         switch (cpumode) {
2278         case PERF_RECORD_MISC_KERNEL:
2279                 dso_space = DSO_SPACE__KERNEL;
2280                 break;
2281         case PERF_RECORD_MISC_GUEST_KERNEL:
2282                 dso_space = DSO_SPACE__KERNEL_GUEST;
2283                 break;
2284         case PERF_RECORD_MISC_USER:
2285         case PERF_RECORD_MISC_GUEST_USER:
2286                 dso_space = DSO_SPACE__USER;
2287                 break;
2288         default:
2289                 goto out;
2290         }
2291
2292         dso = machine__findnew_dso(machine, filename);
2293         if (dso != NULL) {
2294                 char sbuild_id[SBUILD_ID_SIZE];
2295                 struct build_id bid;
2296                 size_t size = BUILD_ID_SIZE;
2297
2298                 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2299                         size = bev->size;
2300
2301                 build_id__init(&bid, bev->data, size);
2302                 dso__set_build_id(dso, &bid);
2303                 dso->header_build_id = 1;
2304
2305                 if (dso_space != DSO_SPACE__USER) {
2306                         struct kmod_path m = { .name = NULL, };
2307
2308                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
2309                                 dso__set_module_info(dso, &m, machine);
2310
2311                         dso->kernel = dso_space;
2312                         free(m.name);
2313                 }
2314
2315                 build_id__sprintf(&dso->bid, sbuild_id);
2316                 pr_debug("build id event received for %s: %s [%zu]\n",
2317                          dso->long_name, sbuild_id, size);
2318                 dso__put(dso);
2319         }
2320
2321         err = 0;
2322 out:
2323         return err;
2324 }
2325
2326 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2327                                                  int input, u64 offset, u64 size)
2328 {
2329         struct perf_session *session = container_of(header, struct perf_session, header);
2330         struct {
2331                 struct perf_event_header   header;
2332                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2333                 char                       filename[0];
2334         } old_bev;
2335         struct perf_record_header_build_id bev;
2336         char filename[PATH_MAX];
2337         u64 limit = offset + size;
2338
2339         while (offset < limit) {
2340                 ssize_t len;
2341
2342                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2343                         return -1;
2344
2345                 if (header->needs_swap)
2346                         perf_event_header__bswap(&old_bev.header);
2347
2348                 len = old_bev.header.size - sizeof(old_bev);
2349                 if (readn(input, filename, len) != len)
2350                         return -1;
2351
2352                 bev.header = old_bev.header;
2353
2354                 /*
2355                  * As the pid is the missing value, we need to fill
2356                  * it properly. The header.misc value give us nice hint.
2357                  */
2358                 bev.pid = HOST_KERNEL_ID;
2359                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2360                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2361                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
2362
2363                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2364                 __event_process_build_id(&bev, filename, session);
2365
2366                 offset += bev.header.size;
2367         }
2368
2369         return 0;
2370 }
2371
2372 static int perf_header__read_build_ids(struct perf_header *header,
2373                                        int input, u64 offset, u64 size)
2374 {
2375         struct perf_session *session = container_of(header, struct perf_session, header);
2376         struct perf_record_header_build_id bev;
2377         char filename[PATH_MAX];
2378         u64 limit = offset + size, orig_offset = offset;
2379         int err = -1;
2380
2381         while (offset < limit) {
2382                 ssize_t len;
2383
2384                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2385                         goto out;
2386
2387                 if (header->needs_swap)
2388                         perf_event_header__bswap(&bev.header);
2389
2390                 len = bev.header.size - sizeof(bev);
2391                 if (readn(input, filename, len) != len)
2392                         goto out;
2393                 /*
2394                  * The a1645ce1 changeset:
2395                  *
2396                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2397                  *
2398                  * Added a field to struct perf_record_header_build_id that broke the file
2399                  * format.
2400                  *
2401                  * Since the kernel build-id is the first entry, process the
2402                  * table using the old format if the well known
2403                  * '[kernel.kallsyms]' string for the kernel build-id has the
2404                  * first 4 characters chopped off (where the pid_t sits).
2405                  */
2406                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2407                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2408                                 return -1;
2409                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2410                 }
2411
2412                 __event_process_build_id(&bev, filename, session);
2413
2414                 offset += bev.header.size;
2415         }
2416         err = 0;
2417 out:
2418         return err;
2419 }
2420
2421 /* Macro for features that simply need to read and store a string. */
2422 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2423 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2424 {\
2425         free(ff->ph->env.__feat_env);                \
2426         ff->ph->env.__feat_env = do_read_string(ff); \
2427         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2428 }
2429
2430 FEAT_PROCESS_STR_FUN(hostname, hostname);
2431 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2432 FEAT_PROCESS_STR_FUN(version, version);
2433 FEAT_PROCESS_STR_FUN(arch, arch);
2434 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2435 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2436
2437 #ifdef HAVE_LIBTRACEEVENT
2438 static int process_tracing_data(struct feat_fd *ff, void *data)
2439 {
2440         ssize_t ret = trace_report(ff->fd, data, false);
2441
2442         return ret < 0 ? -1 : 0;
2443 }
2444 #endif
2445
2446 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2447 {
2448         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2449                 pr_debug("Failed to read buildids, continuing...\n");
2450         return 0;
2451 }
2452
2453 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2454 {
2455         int ret;
2456         u32 nr_cpus_avail, nr_cpus_online;
2457
2458         ret = do_read_u32(ff, &nr_cpus_avail);
2459         if (ret)
2460                 return ret;
2461
2462         ret = do_read_u32(ff, &nr_cpus_online);
2463         if (ret)
2464                 return ret;
2465         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2466         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2467         return 0;
2468 }
2469
2470 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2471 {
2472         u64 total_mem;
2473         int ret;
2474
2475         ret = do_read_u64(ff, &total_mem);
2476         if (ret)
2477                 return -1;
2478         ff->ph->env.total_mem = (unsigned long long)total_mem;
2479         return 0;
2480 }
2481
2482 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2483 {
2484         struct evsel *evsel;
2485
2486         evlist__for_each_entry(evlist, evsel) {
2487                 if (evsel->core.idx == idx)
2488                         return evsel;
2489         }
2490
2491         return NULL;
2492 }
2493
2494 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2495 {
2496         struct evsel *evsel;
2497
2498         if (!event->name)
2499                 return;
2500
2501         evsel = evlist__find_by_index(evlist, event->core.idx);
2502         if (!evsel)
2503                 return;
2504
2505         if (evsel->name)
2506                 return;
2507
2508         evsel->name = strdup(event->name);
2509 }
2510
2511 static int
2512 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2513 {
2514         struct perf_session *session;
2515         struct evsel *evsel, *events = read_event_desc(ff);
2516
2517         if (!events)
2518                 return 0;
2519
2520         session = container_of(ff->ph, struct perf_session, header);
2521
2522         if (session->data->is_pipe) {
2523                 /* Save events for reading later by print_event_desc,
2524                  * since they can't be read again in pipe mode. */
2525                 ff->events = events;
2526         }
2527
2528         for (evsel = events; evsel->core.attr.size; evsel++)
2529                 evlist__set_event_name(session->evlist, evsel);
2530
2531         if (!session->data->is_pipe)
2532                 free_event_desc(events);
2533
2534         return 0;
2535 }
2536
2537 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2538 {
2539         char *str, *cmdline = NULL, **argv = NULL;
2540         u32 nr, i, len = 0;
2541
2542         if (do_read_u32(ff, &nr))
2543                 return -1;
2544
2545         ff->ph->env.nr_cmdline = nr;
2546
2547         cmdline = zalloc(ff->size + nr + 1);
2548         if (!cmdline)
2549                 return -1;
2550
2551         argv = zalloc(sizeof(char *) * (nr + 1));
2552         if (!argv)
2553                 goto error;
2554
2555         for (i = 0; i < nr; i++) {
2556                 str = do_read_string(ff);
2557                 if (!str)
2558                         goto error;
2559
2560                 argv[i] = cmdline + len;
2561                 memcpy(argv[i], str, strlen(str) + 1);
2562                 len += strlen(str) + 1;
2563                 free(str);
2564         }
2565         ff->ph->env.cmdline = cmdline;
2566         ff->ph->env.cmdline_argv = (const char **) argv;
2567         return 0;
2568
2569 error:
2570         free(argv);
2571         free(cmdline);
2572         return -1;
2573 }
2574
2575 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2576 {
2577         u32 nr, i;
2578         char *str;
2579         struct strbuf sb;
2580         int cpu_nr = ff->ph->env.nr_cpus_avail;
2581         u64 size = 0;
2582         struct perf_header *ph = ff->ph;
2583         bool do_core_id_test = true;
2584
2585         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2586         if (!ph->env.cpu)
2587                 return -1;
2588
2589         if (do_read_u32(ff, &nr))
2590                 goto free_cpu;
2591
2592         ph->env.nr_sibling_cores = nr;
2593         size += sizeof(u32);
2594         if (strbuf_init(&sb, 128) < 0)
2595                 goto free_cpu;
2596
2597         for (i = 0; i < nr; i++) {
2598                 str = do_read_string(ff);
2599                 if (!str)
2600                         goto error;
2601
2602                 /* include a NULL character at the end */
2603                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2604                         goto error;
2605                 size += string_size(str);
2606                 free(str);
2607         }
2608         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2609
2610         if (do_read_u32(ff, &nr))
2611                 return -1;
2612
2613         ph->env.nr_sibling_threads = nr;
2614         size += sizeof(u32);
2615
2616         for (i = 0; i < nr; i++) {
2617                 str = do_read_string(ff);
2618                 if (!str)
2619                         goto error;
2620
2621                 /* include a NULL character at the end */
2622                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2623                         goto error;
2624                 size += string_size(str);
2625                 free(str);
2626         }
2627         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2628
2629         /*
2630          * The header may be from old perf,
2631          * which doesn't include core id and socket id information.
2632          */
2633         if (ff->size <= size) {
2634                 zfree(&ph->env.cpu);
2635                 return 0;
2636         }
2637
2638         /* On s390 the socket_id number is not related to the numbers of cpus.
2639          * The socket_id number might be higher than the numbers of cpus.
2640          * This depends on the configuration.
2641          * AArch64 is the same.
2642          */
2643         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2644                           || !strncmp(ph->env.arch, "aarch64", 7)))
2645                 do_core_id_test = false;
2646
2647         for (i = 0; i < (u32)cpu_nr; i++) {
2648                 if (do_read_u32(ff, &nr))
2649                         goto free_cpu;
2650
2651                 ph->env.cpu[i].core_id = nr;
2652                 size += sizeof(u32);
2653
2654                 if (do_read_u32(ff, &nr))
2655                         goto free_cpu;
2656
2657                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2658                         pr_debug("socket_id number is too big."
2659                                  "You may need to upgrade the perf tool.\n");
2660                         goto free_cpu;
2661                 }
2662
2663                 ph->env.cpu[i].socket_id = nr;
2664                 size += sizeof(u32);
2665         }
2666
2667         /*
2668          * The header may be from old perf,
2669          * which doesn't include die information.
2670          */
2671         if (ff->size <= size)
2672                 return 0;
2673
2674         if (do_read_u32(ff, &nr))
2675                 return -1;
2676
2677         ph->env.nr_sibling_dies = nr;
2678         size += sizeof(u32);
2679
2680         for (i = 0; i < nr; i++) {
2681                 str = do_read_string(ff);
2682                 if (!str)
2683                         goto error;
2684
2685                 /* include a NULL character at the end */
2686                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2687                         goto error;
2688                 size += string_size(str);
2689                 free(str);
2690         }
2691         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2692
2693         for (i = 0; i < (u32)cpu_nr; i++) {
2694                 if (do_read_u32(ff, &nr))
2695                         goto free_cpu;
2696
2697                 ph->env.cpu[i].die_id = nr;
2698         }
2699
2700         return 0;
2701
2702 error:
2703         strbuf_release(&sb);
2704 free_cpu:
2705         zfree(&ph->env.cpu);
2706         return -1;
2707 }
2708
2709 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2710 {
2711         struct numa_node *nodes, *n;
2712         u32 nr, i;
2713         char *str;
2714
2715         /* nr nodes */
2716         if (do_read_u32(ff, &nr))
2717                 return -1;
2718
2719         nodes = zalloc(sizeof(*nodes) * nr);
2720         if (!nodes)
2721                 return -ENOMEM;
2722
2723         for (i = 0; i < nr; i++) {
2724                 n = &nodes[i];
2725
2726                 /* node number */
2727                 if (do_read_u32(ff, &n->node))
2728                         goto error;
2729
2730                 if (do_read_u64(ff, &n->mem_total))
2731                         goto error;
2732
2733                 if (do_read_u64(ff, &n->mem_free))
2734                         goto error;
2735
2736                 str = do_read_string(ff);
2737                 if (!str)
2738                         goto error;
2739
2740                 n->map = perf_cpu_map__new(str);
2741                 if (!n->map)
2742                         goto error;
2743
2744                 free(str);
2745         }
2746         ff->ph->env.nr_numa_nodes = nr;
2747         ff->ph->env.numa_nodes = nodes;
2748         return 0;
2749
2750 error:
2751         free(nodes);
2752         return -1;
2753 }
2754
2755 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2756 {
2757         char *name;
2758         u32 pmu_num;
2759         u32 type;
2760         struct strbuf sb;
2761
2762         if (do_read_u32(ff, &pmu_num))
2763                 return -1;
2764
2765         if (!pmu_num) {
2766                 pr_debug("pmu mappings not available\n");
2767                 return 0;
2768         }
2769
2770         ff->ph->env.nr_pmu_mappings = pmu_num;
2771         if (strbuf_init(&sb, 128) < 0)
2772                 return -1;
2773
2774         while (pmu_num) {
2775                 if (do_read_u32(ff, &type))
2776                         goto error;
2777
2778                 name = do_read_string(ff);
2779                 if (!name)
2780                         goto error;
2781
2782                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2783                         goto error;
2784                 /* include a NULL character at the end */
2785                 if (strbuf_add(&sb, "", 1) < 0)
2786                         goto error;
2787
2788                 if (!strcmp(name, "msr"))
2789                         ff->ph->env.msr_pmu_type = type;
2790
2791                 free(name);
2792                 pmu_num--;
2793         }
2794         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2795         return 0;
2796
2797 error:
2798         strbuf_release(&sb);
2799         return -1;
2800 }
2801
2802 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2803 {
2804         size_t ret = -1;
2805         u32 i, nr, nr_groups;
2806         struct perf_session *session;
2807         struct evsel *evsel, *leader = NULL;
2808         struct group_desc {
2809                 char *name;
2810                 u32 leader_idx;
2811                 u32 nr_members;
2812         } *desc;
2813
2814         if (do_read_u32(ff, &nr_groups))
2815                 return -1;
2816
2817         ff->ph->env.nr_groups = nr_groups;
2818         if (!nr_groups) {
2819                 pr_debug("group desc not available\n");
2820                 return 0;
2821         }
2822
2823         desc = calloc(nr_groups, sizeof(*desc));
2824         if (!desc)
2825                 return -1;
2826
2827         for (i = 0; i < nr_groups; i++) {
2828                 desc[i].name = do_read_string(ff);
2829                 if (!desc[i].name)
2830                         goto out_free;
2831
2832                 if (do_read_u32(ff, &desc[i].leader_idx))
2833                         goto out_free;
2834
2835                 if (do_read_u32(ff, &desc[i].nr_members))
2836                         goto out_free;
2837         }
2838
2839         /*
2840          * Rebuild group relationship based on the group_desc
2841          */
2842         session = container_of(ff->ph, struct perf_session, header);
2843
2844         i = nr = 0;
2845         evlist__for_each_entry(session->evlist, evsel) {
2846                 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2847                         evsel__set_leader(evsel, evsel);
2848                         /* {anon_group} is a dummy name */
2849                         if (strcmp(desc[i].name, "{anon_group}")) {
2850                                 evsel->group_name = desc[i].name;
2851                                 desc[i].name = NULL;
2852                         }
2853                         evsel->core.nr_members = desc[i].nr_members;
2854
2855                         if (i >= nr_groups || nr > 0) {
2856                                 pr_debug("invalid group desc\n");
2857                                 goto out_free;
2858                         }
2859
2860                         leader = evsel;
2861                         nr = evsel->core.nr_members - 1;
2862                         i++;
2863                 } else if (nr) {
2864                         /* This is a group member */
2865                         evsel__set_leader(evsel, leader);
2866
2867                         nr--;
2868                 }
2869         }
2870
2871         if (i != nr_groups || nr != 0) {
2872                 pr_debug("invalid group desc\n");
2873                 goto out_free;
2874         }
2875
2876         ret = 0;
2877 out_free:
2878         for (i = 0; i < nr_groups; i++)
2879                 zfree(&desc[i].name);
2880         free(desc);
2881
2882         return ret;
2883 }
2884
2885 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2886 {
2887         struct perf_session *session;
2888         int err;
2889
2890         session = container_of(ff->ph, struct perf_session, header);
2891
2892         err = auxtrace_index__process(ff->fd, ff->size, session,
2893                                       ff->ph->needs_swap);
2894         if (err < 0)
2895                 pr_err("Failed to process auxtrace index\n");
2896         return err;
2897 }
2898
2899 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2900 {
2901         struct cpu_cache_level *caches;
2902         u32 cnt, i, version;
2903
2904         if (do_read_u32(ff, &version))
2905                 return -1;
2906
2907         if (version != 1)
2908                 return -1;
2909
2910         if (do_read_u32(ff, &cnt))
2911                 return -1;
2912
2913         caches = zalloc(sizeof(*caches) * cnt);
2914         if (!caches)
2915                 return -1;
2916
2917         for (i = 0; i < cnt; i++) {
2918                 struct cpu_cache_level c;
2919
2920                 #define _R(v)                                           \
2921                         if (do_read_u32(ff, &c.v))\
2922                                 goto out_free_caches;                   \
2923
2924                 _R(level)
2925                 _R(line_size)
2926                 _R(sets)
2927                 _R(ways)
2928                 #undef _R
2929
2930                 #define _R(v)                                   \
2931                         c.v = do_read_string(ff);               \
2932                         if (!c.v)                               \
2933                                 goto out_free_caches;
2934
2935                 _R(type)
2936                 _R(size)
2937                 _R(map)
2938                 #undef _R
2939
2940                 caches[i] = c;
2941         }
2942
2943         ff->ph->env.caches = caches;
2944         ff->ph->env.caches_cnt = cnt;
2945         return 0;
2946 out_free_caches:
2947         free(caches);
2948         return -1;
2949 }
2950
2951 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2952 {
2953         struct perf_session *session;
2954         u64 first_sample_time, last_sample_time;
2955         int ret;
2956
2957         session = container_of(ff->ph, struct perf_session, header);
2958
2959         ret = do_read_u64(ff, &first_sample_time);
2960         if (ret)
2961                 return -1;
2962
2963         ret = do_read_u64(ff, &last_sample_time);
2964         if (ret)
2965                 return -1;
2966
2967         session->evlist->first_sample_time = first_sample_time;
2968         session->evlist->last_sample_time = last_sample_time;
2969         return 0;
2970 }
2971
2972 static int process_mem_topology(struct feat_fd *ff,
2973                                 void *data __maybe_unused)
2974 {
2975         struct memory_node *nodes;
2976         u64 version, i, nr, bsize;
2977         int ret = -1;
2978
2979         if (do_read_u64(ff, &version))
2980                 return -1;
2981
2982         if (version != 1)
2983                 return -1;
2984
2985         if (do_read_u64(ff, &bsize))
2986                 return -1;
2987
2988         if (do_read_u64(ff, &nr))
2989                 return -1;
2990
2991         nodes = zalloc(sizeof(*nodes) * nr);
2992         if (!nodes)
2993                 return -1;
2994
2995         for (i = 0; i < nr; i++) {
2996                 struct memory_node n;
2997
2998                 #define _R(v)                           \
2999                         if (do_read_u64(ff, &n.v))      \
3000                                 goto out;               \
3001
3002                 _R(node)
3003                 _R(size)
3004
3005                 #undef _R
3006
3007                 if (do_read_bitmap(ff, &n.set, &n.size))
3008                         goto out;
3009
3010                 nodes[i] = n;
3011         }
3012
3013         ff->ph->env.memory_bsize    = bsize;
3014         ff->ph->env.memory_nodes    = nodes;
3015         ff->ph->env.nr_memory_nodes = nr;
3016         ret = 0;
3017
3018 out:
3019         if (ret)
3020                 free(nodes);
3021         return ret;
3022 }
3023
3024 static int process_clockid(struct feat_fd *ff,
3025                            void *data __maybe_unused)
3026 {
3027         if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3028                 return -1;
3029
3030         return 0;
3031 }
3032
3033 static int process_clock_data(struct feat_fd *ff,
3034                               void *_data __maybe_unused)
3035 {
3036         u32 data32;
3037         u64 data64;
3038
3039         /* version */
3040         if (do_read_u32(ff, &data32))
3041                 return -1;
3042
3043         if (data32 != 1)
3044                 return -1;
3045
3046         /* clockid */
3047         if (do_read_u32(ff, &data32))
3048                 return -1;
3049
3050         ff->ph->env.clock.clockid = data32;
3051
3052         /* TOD ref time */
3053         if (do_read_u64(ff, &data64))
3054                 return -1;
3055
3056         ff->ph->env.clock.tod_ns = data64;
3057
3058         /* clockid ref time */
3059         if (do_read_u64(ff, &data64))
3060                 return -1;
3061
3062         ff->ph->env.clock.clockid_ns = data64;
3063         ff->ph->env.clock.enabled = true;
3064         return 0;
3065 }
3066
3067 static int process_hybrid_topology(struct feat_fd *ff,
3068                                    void *data __maybe_unused)
3069 {
3070         struct hybrid_node *nodes, *n;
3071         u32 nr, i;
3072
3073         /* nr nodes */
3074         if (do_read_u32(ff, &nr))
3075                 return -1;
3076
3077         nodes = zalloc(sizeof(*nodes) * nr);
3078         if (!nodes)
3079                 return -ENOMEM;
3080
3081         for (i = 0; i < nr; i++) {
3082                 n = &nodes[i];
3083
3084                 n->pmu_name = do_read_string(ff);
3085                 if (!n->pmu_name)
3086                         goto error;
3087
3088                 n->cpus = do_read_string(ff);
3089                 if (!n->cpus)
3090                         goto error;
3091         }
3092
3093         ff->ph->env.nr_hybrid_nodes = nr;
3094         ff->ph->env.hybrid_nodes = nodes;
3095         return 0;
3096
3097 error:
3098         for (i = 0; i < nr; i++) {
3099                 free(nodes[i].pmu_name);
3100                 free(nodes[i].cpus);
3101         }
3102
3103         free(nodes);
3104         return -1;
3105 }
3106
3107 static int process_dir_format(struct feat_fd *ff,
3108                               void *_data __maybe_unused)
3109 {
3110         struct perf_session *session;
3111         struct perf_data *data;
3112
3113         session = container_of(ff->ph, struct perf_session, header);
3114         data = session->data;
3115
3116         if (WARN_ON(!perf_data__is_dir(data)))
3117                 return -1;
3118
3119         return do_read_u64(ff, &data->dir.version);
3120 }
3121
3122 #ifdef HAVE_LIBBPF_SUPPORT
3123 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3124 {
3125         struct bpf_prog_info_node *info_node;
3126         struct perf_env *env = &ff->ph->env;
3127         struct perf_bpil *info_linear;
3128         u32 count, i;
3129         int err = -1;
3130
3131         if (ff->ph->needs_swap) {
3132                 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3133                 return 0;
3134         }
3135
3136         if (do_read_u32(ff, &count))
3137                 return -1;
3138
3139         down_write(&env->bpf_progs.lock);
3140
3141         for (i = 0; i < count; ++i) {
3142                 u32 info_len, data_len;
3143
3144                 info_linear = NULL;
3145                 info_node = NULL;
3146                 if (do_read_u32(ff, &info_len))
3147                         goto out;
3148                 if (do_read_u32(ff, &data_len))
3149                         goto out;
3150
3151                 if (info_len > sizeof(struct bpf_prog_info)) {
3152                         pr_warning("detected invalid bpf_prog_info\n");
3153                         goto out;
3154                 }
3155
3156                 info_linear = malloc(sizeof(struct perf_bpil) +
3157                                      data_len);
3158                 if (!info_linear)
3159                         goto out;
3160                 info_linear->info_len = sizeof(struct bpf_prog_info);
3161                 info_linear->data_len = data_len;
3162                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3163                         goto out;
3164                 if (__do_read(ff, &info_linear->info, info_len))
3165                         goto out;
3166                 if (info_len < sizeof(struct bpf_prog_info))
3167                         memset(((void *)(&info_linear->info)) + info_len, 0,
3168                                sizeof(struct bpf_prog_info) - info_len);
3169
3170                 if (__do_read(ff, info_linear->data, data_len))
3171                         goto out;
3172
3173                 info_node = malloc(sizeof(struct bpf_prog_info_node));
3174                 if (!info_node)
3175                         goto out;
3176
3177                 /* after reading from file, translate offset to address */
3178                 bpil_offs_to_addr(info_linear);
3179                 info_node->info_linear = info_linear;
3180                 __perf_env__insert_bpf_prog_info(env, info_node);
3181         }
3182
3183         up_write(&env->bpf_progs.lock);
3184         return 0;
3185 out:
3186         free(info_linear);
3187         free(info_node);
3188         up_write(&env->bpf_progs.lock);
3189         return err;
3190 }
3191
3192 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3193 {
3194         struct perf_env *env = &ff->ph->env;
3195         struct btf_node *node = NULL;
3196         u32 count, i;
3197         int err = -1;
3198
3199         if (ff->ph->needs_swap) {
3200                 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3201                 return 0;
3202         }
3203
3204         if (do_read_u32(ff, &count))
3205                 return -1;
3206
3207         down_write(&env->bpf_progs.lock);
3208
3209         for (i = 0; i < count; ++i) {
3210                 u32 id, data_size;
3211
3212                 if (do_read_u32(ff, &id))
3213                         goto out;
3214                 if (do_read_u32(ff, &data_size))
3215                         goto out;
3216
3217                 node = malloc(sizeof(struct btf_node) + data_size);
3218                 if (!node)
3219                         goto out;
3220
3221                 node->id = id;
3222                 node->data_size = data_size;
3223
3224                 if (__do_read(ff, node->data, data_size))
3225                         goto out;
3226
3227                 __perf_env__insert_btf(env, node);
3228                 node = NULL;
3229         }
3230
3231         err = 0;
3232 out:
3233         up_write(&env->bpf_progs.lock);
3234         free(node);
3235         return err;
3236 }
3237 #endif // HAVE_LIBBPF_SUPPORT
3238
3239 static int process_compressed(struct feat_fd *ff,
3240                               void *data __maybe_unused)
3241 {
3242         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3243                 return -1;
3244
3245         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3246                 return -1;
3247
3248         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3249                 return -1;
3250
3251         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3252                 return -1;
3253
3254         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3255                 return -1;
3256
3257         return 0;
3258 }
3259
3260 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3261                               char ***caps, unsigned int *max_branches)
3262 {
3263         char *name, *value, *ptr;
3264         u32 nr_pmu_caps, i;
3265
3266         *nr_caps = 0;
3267         *caps = NULL;
3268
3269         if (do_read_u32(ff, &nr_pmu_caps))
3270                 return -1;
3271
3272         if (!nr_pmu_caps)
3273                 return 0;
3274
3275         *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3276         if (!*caps)
3277                 return -1;
3278
3279         for (i = 0; i < nr_pmu_caps; i++) {
3280                 name = do_read_string(ff);
3281                 if (!name)
3282                         goto error;
3283
3284                 value = do_read_string(ff);
3285                 if (!value)
3286                         goto free_name;
3287
3288                 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3289                         goto free_value;
3290
3291                 (*caps)[i] = ptr;
3292
3293                 if (!strcmp(name, "branches"))
3294                         *max_branches = atoi(value);
3295
3296                 free(value);
3297                 free(name);
3298         }
3299         *nr_caps = nr_pmu_caps;
3300         return 0;
3301
3302 free_value:
3303         free(value);
3304 free_name:
3305         free(name);
3306 error:
3307         for (; i > 0; i--)
3308                 free((*caps)[i - 1]);
3309         free(*caps);
3310         *caps = NULL;
3311         *nr_caps = 0;
3312         return -1;
3313 }
3314
3315 static int process_cpu_pmu_caps(struct feat_fd *ff,
3316                                 void *data __maybe_unused)
3317 {
3318         int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3319                                      &ff->ph->env.cpu_pmu_caps,
3320                                      &ff->ph->env.max_branches);
3321
3322         if (!ret && !ff->ph->env.cpu_pmu_caps)
3323                 pr_debug("cpu pmu capabilities not available\n");
3324         return ret;
3325 }
3326
3327 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3328 {
3329         struct pmu_caps *pmu_caps;
3330         u32 nr_pmu, i;
3331         int ret;
3332         int j;
3333
3334         if (do_read_u32(ff, &nr_pmu))
3335                 return -1;
3336
3337         if (!nr_pmu) {
3338                 pr_debug("pmu capabilities not available\n");
3339                 return 0;
3340         }
3341
3342         pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3343         if (!pmu_caps)
3344                 return -ENOMEM;
3345
3346         for (i = 0; i < nr_pmu; i++) {
3347                 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3348                                          &pmu_caps[i].caps,
3349                                          &pmu_caps[i].max_branches);
3350                 if (ret)
3351                         goto err;
3352
3353                 pmu_caps[i].pmu_name = do_read_string(ff);
3354                 if (!pmu_caps[i].pmu_name) {
3355                         ret = -1;
3356                         goto err;
3357                 }
3358                 if (!pmu_caps[i].nr_caps) {
3359                         pr_debug("%s pmu capabilities not available\n",
3360                                  pmu_caps[i].pmu_name);
3361                 }
3362         }
3363
3364         ff->ph->env.nr_pmus_with_caps = nr_pmu;
3365         ff->ph->env.pmu_caps = pmu_caps;
3366         return 0;
3367
3368 err:
3369         for (i = 0; i < nr_pmu; i++) {
3370                 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3371                         free(pmu_caps[i].caps[j]);
3372                 free(pmu_caps[i].caps);
3373                 free(pmu_caps[i].pmu_name);
3374         }
3375
3376         free(pmu_caps);
3377         return ret;
3378 }
3379
3380 #define FEAT_OPR(n, func, __full_only) \
3381         [HEADER_##n] = {                                        \
3382                 .name       = __stringify(n),                   \
3383                 .write      = write_##func,                     \
3384                 .print      = print_##func,                     \
3385                 .full_only  = __full_only,                      \
3386                 .process    = process_##func,                   \
3387                 .synthesize = true                              \
3388         }
3389
3390 #define FEAT_OPN(n, func, __full_only) \
3391         [HEADER_##n] = {                                        \
3392                 .name       = __stringify(n),                   \
3393                 .write      = write_##func,                     \
3394                 .print      = print_##func,                     \
3395                 .full_only  = __full_only,                      \
3396                 .process    = process_##func                    \
3397         }
3398
3399 /* feature_ops not implemented: */
3400 #define print_tracing_data      NULL
3401 #define print_build_id          NULL
3402
3403 #define process_branch_stack    NULL
3404 #define process_stat            NULL
3405
3406 // Only used in util/synthetic-events.c
3407 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3408
3409 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3410 #ifdef HAVE_LIBTRACEEVENT
3411         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3412 #endif
3413         FEAT_OPN(BUILD_ID,      build_id,       false),
3414         FEAT_OPR(HOSTNAME,      hostname,       false),
3415         FEAT_OPR(OSRELEASE,     osrelease,      false),
3416         FEAT_OPR(VERSION,       version,        false),
3417         FEAT_OPR(ARCH,          arch,           false),
3418         FEAT_OPR(NRCPUS,        nrcpus,         false),
3419         FEAT_OPR(CPUDESC,       cpudesc,        false),
3420         FEAT_OPR(CPUID,         cpuid,          false),
3421         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
3422         FEAT_OPR(EVENT_DESC,    event_desc,     false),
3423         FEAT_OPR(CMDLINE,       cmdline,        false),
3424         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3425         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3426         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3427         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3428         FEAT_OPR(GROUP_DESC,    group_desc,     false),
3429         FEAT_OPN(AUXTRACE,      auxtrace,       false),
3430         FEAT_OPN(STAT,          stat,           false),
3431         FEAT_OPN(CACHE,         cache,          true),
3432         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3433         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3434         FEAT_OPR(CLOCKID,       clockid,        false),
3435         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
3436 #ifdef HAVE_LIBBPF_SUPPORT
3437         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3438         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3439 #endif
3440         FEAT_OPR(COMPRESSED,    compressed,     false),
3441         FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3442         FEAT_OPR(CLOCK_DATA,    clock_data,     false),
3443         FEAT_OPN(HYBRID_TOPOLOGY,       hybrid_topology,        true),
3444         FEAT_OPR(PMU_CAPS,      pmu_caps,       false),
3445 };
3446
3447 struct header_print_data {
3448         FILE *fp;
3449         bool full; /* extended list of headers */
3450 };
3451
3452 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3453                                            struct perf_header *ph,
3454                                            int feat, int fd, void *data)
3455 {
3456         struct header_print_data *hd = data;
3457         struct feat_fd ff;
3458
3459         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3460                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3461                                 "%d, continuing...\n", section->offset, feat);
3462                 return 0;
3463         }
3464         if (feat >= HEADER_LAST_FEATURE) {
3465                 pr_warning("unknown feature %d\n", feat);
3466                 return 0;
3467         }
3468         if (!feat_ops[feat].print)
3469                 return 0;
3470
3471         ff = (struct  feat_fd) {
3472                 .fd = fd,
3473                 .ph = ph,
3474         };
3475
3476         if (!feat_ops[feat].full_only || hd->full)
3477                 feat_ops[feat].print(&ff, hd->fp);
3478         else
3479                 fprintf(hd->fp, "# %s info available, use -I to display\n",
3480                         feat_ops[feat].name);
3481
3482         return 0;
3483 }
3484
3485 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3486 {
3487         struct header_print_data hd;
3488         struct perf_header *header = &session->header;
3489         int fd = perf_data__fd(session->data);
3490         struct stat st;
3491         time_t stctime;
3492         int ret, bit;
3493
3494         hd.fp = fp;
3495         hd.full = full;
3496
3497         ret = fstat(fd, &st);
3498         if (ret == -1)
3499                 return -1;
3500
3501         stctime = st.st_mtime;
3502         fprintf(fp, "# captured on    : %s", ctime(&stctime));
3503
3504         fprintf(fp, "# header version : %u\n", header->version);
3505         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3506         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3507         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3508
3509         perf_header__process_sections(header, fd, &hd,
3510                                       perf_file_section__fprintf_info);
3511
3512         if (session->data->is_pipe)
3513                 return 0;
3514
3515         fprintf(fp, "# missing features: ");
3516         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3517                 if (bit)
3518                         fprintf(fp, "%s ", feat_ops[bit].name);
3519         }
3520
3521         fprintf(fp, "\n");
3522         return 0;
3523 }
3524
3525 struct header_fw {
3526         struct feat_writer      fw;
3527         struct feat_fd          *ff;
3528 };
3529
3530 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3531 {
3532         struct header_fw *h = container_of(fw, struct header_fw, fw);
3533
3534         return do_write(h->ff, buf, sz);
3535 }
3536
3537 static int do_write_feat(struct feat_fd *ff, int type,
3538                          struct perf_file_section **p,
3539                          struct evlist *evlist,
3540                          struct feat_copier *fc)
3541 {
3542         int err;
3543         int ret = 0;
3544
3545         if (perf_header__has_feat(ff->ph, type)) {
3546                 if (!feat_ops[type].write)
3547                         return -1;
3548
3549                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3550                         return -1;
3551
3552                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3553
3554                 /*
3555                  * Hook to let perf inject copy features sections from the input
3556                  * file.
3557                  */
3558                 if (fc && fc->copy) {
3559                         struct header_fw h = {
3560                                 .fw.write = feat_writer_cb,
3561                                 .ff = ff,
3562                         };
3563
3564                         /* ->copy() returns 0 if the feature was not copied */
3565                         err = fc->copy(fc, type, &h.fw);
3566                 } else {
3567                         err = 0;
3568                 }
3569                 if (!err)
3570                         err = feat_ops[type].write(ff, evlist);
3571                 if (err < 0) {
3572                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
3573
3574                         /* undo anything written */
3575                         lseek(ff->fd, (*p)->offset, SEEK_SET);
3576
3577                         return -1;
3578                 }
3579                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3580                 (*p)++;
3581         }
3582         return ret;
3583 }
3584
3585 static int perf_header__adds_write(struct perf_header *header,
3586                                    struct evlist *evlist, int fd,
3587                                    struct feat_copier *fc)
3588 {
3589         int nr_sections;
3590         struct feat_fd ff;
3591         struct perf_file_section *feat_sec, *p;
3592         int sec_size;
3593         u64 sec_start;
3594         int feat;
3595         int err;
3596
3597         ff = (struct feat_fd){
3598                 .fd  = fd,
3599                 .ph = header,
3600         };
3601
3602         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3603         if (!nr_sections)
3604                 return 0;
3605
3606         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3607         if (feat_sec == NULL)
3608                 return -ENOMEM;
3609
3610         sec_size = sizeof(*feat_sec) * nr_sections;
3611
3612         sec_start = header->feat_offset;
3613         lseek(fd, sec_start + sec_size, SEEK_SET);
3614
3615         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3616                 if (do_write_feat(&ff, feat, &p, evlist, fc))
3617                         perf_header__clear_feat(header, feat);
3618         }
3619
3620         lseek(fd, sec_start, SEEK_SET);
3621         /*
3622          * may write more than needed due to dropped feature, but
3623          * this is okay, reader will skip the missing entries
3624          */
3625         err = do_write(&ff, feat_sec, sec_size);
3626         if (err < 0)
3627                 pr_debug("failed to write feature section\n");
3628         free(feat_sec);
3629         return err;
3630 }
3631
3632 int perf_header__write_pipe(int fd)
3633 {
3634         struct perf_pipe_file_header f_header;
3635         struct feat_fd ff;
3636         int err;
3637
3638         ff = (struct feat_fd){ .fd = fd };
3639
3640         f_header = (struct perf_pipe_file_header){
3641                 .magic     = PERF_MAGIC,
3642                 .size      = sizeof(f_header),
3643         };
3644
3645         err = do_write(&ff, &f_header, sizeof(f_header));
3646         if (err < 0) {
3647                 pr_debug("failed to write perf pipe header\n");
3648                 return err;
3649         }
3650
3651         return 0;
3652 }
3653
3654 static int perf_session__do_write_header(struct perf_session *session,
3655                                          struct evlist *evlist,
3656                                          int fd, bool at_exit,
3657                                          struct feat_copier *fc)
3658 {
3659         struct perf_file_header f_header;
3660         struct perf_file_attr   f_attr;
3661         struct perf_header *header = &session->header;
3662         struct evsel *evsel;
3663         struct feat_fd ff;
3664         u64 attr_offset;
3665         int err;
3666
3667         ff = (struct feat_fd){ .fd = fd};
3668         lseek(fd, sizeof(f_header), SEEK_SET);
3669
3670         evlist__for_each_entry(session->evlist, evsel) {
3671                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3672                 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3673                 if (err < 0) {
3674                         pr_debug("failed to write perf header\n");
3675                         return err;
3676                 }
3677         }
3678
3679         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3680
3681         evlist__for_each_entry(evlist, evsel) {
3682                 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3683                         /*
3684                          * We are likely in "perf inject" and have read
3685                          * from an older file. Update attr size so that
3686                          * reader gets the right offset to the ids.
3687                          */
3688                         evsel->core.attr.size = sizeof(evsel->core.attr);
3689                 }
3690                 f_attr = (struct perf_file_attr){
3691                         .attr = evsel->core.attr,
3692                         .ids  = {
3693                                 .offset = evsel->id_offset,
3694                                 .size   = evsel->core.ids * sizeof(u64),
3695                         }
3696                 };
3697                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3698                 if (err < 0) {
3699                         pr_debug("failed to write perf header attribute\n");
3700                         return err;
3701                 }
3702         }
3703
3704         if (!header->data_offset)
3705                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3706         header->feat_offset = header->data_offset + header->data_size;
3707
3708         if (at_exit) {
3709                 err = perf_header__adds_write(header, evlist, fd, fc);
3710                 if (err < 0)
3711                         return err;
3712         }
3713
3714         f_header = (struct perf_file_header){
3715                 .magic     = PERF_MAGIC,
3716                 .size      = sizeof(f_header),
3717                 .attr_size = sizeof(f_attr),
3718                 .attrs = {
3719                         .offset = attr_offset,
3720                         .size   = evlist->core.nr_entries * sizeof(f_attr),
3721                 },
3722                 .data = {
3723                         .offset = header->data_offset,
3724                         .size   = header->data_size,
3725                 },
3726                 /* event_types is ignored, store zeros */
3727         };
3728
3729         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3730
3731         lseek(fd, 0, SEEK_SET);
3732         err = do_write(&ff, &f_header, sizeof(f_header));
3733         if (err < 0) {
3734                 pr_debug("failed to write perf header\n");
3735                 return err;
3736         }
3737         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3738
3739         return 0;
3740 }
3741
3742 int perf_session__write_header(struct perf_session *session,
3743                                struct evlist *evlist,
3744                                int fd, bool at_exit)
3745 {
3746         return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3747 }
3748
3749 size_t perf_session__data_offset(const struct evlist *evlist)
3750 {
3751         struct evsel *evsel;
3752         size_t data_offset;
3753
3754         data_offset = sizeof(struct perf_file_header);
3755         evlist__for_each_entry(evlist, evsel) {
3756                 data_offset += evsel->core.ids * sizeof(u64);
3757         }
3758         data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3759
3760         return data_offset;
3761 }
3762
3763 int perf_session__inject_header(struct perf_session *session,
3764                                 struct evlist *evlist,
3765                                 int fd,
3766                                 struct feat_copier *fc)
3767 {
3768         return perf_session__do_write_header(session, evlist, fd, true, fc);
3769 }
3770
3771 static int perf_header__getbuffer64(struct perf_header *header,
3772                                     int fd, void *buf, size_t size)
3773 {
3774         if (readn(fd, buf, size) <= 0)
3775                 return -1;
3776
3777         if (header->needs_swap)
3778                 mem_bswap_64(buf, size);
3779
3780         return 0;
3781 }
3782
3783 int perf_header__process_sections(struct perf_header *header, int fd,
3784                                   void *data,
3785                                   int (*process)(struct perf_file_section *section,
3786                                                  struct perf_header *ph,
3787                                                  int feat, int fd, void *data))
3788 {
3789         struct perf_file_section *feat_sec, *sec;
3790         int nr_sections;
3791         int sec_size;
3792         int feat;
3793         int err;
3794
3795         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3796         if (!nr_sections)
3797                 return 0;
3798
3799         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3800         if (!feat_sec)
3801                 return -1;
3802
3803         sec_size = sizeof(*feat_sec) * nr_sections;
3804
3805         lseek(fd, header->feat_offset, SEEK_SET);
3806
3807         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3808         if (err < 0)
3809                 goto out_free;
3810
3811         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3812                 err = process(sec++, header, feat, fd, data);
3813                 if (err < 0)
3814                         goto out_free;
3815         }
3816         err = 0;
3817 out_free:
3818         free(feat_sec);
3819         return err;
3820 }
3821
3822 static const int attr_file_abi_sizes[] = {
3823         [0] = PERF_ATTR_SIZE_VER0,
3824         [1] = PERF_ATTR_SIZE_VER1,
3825         [2] = PERF_ATTR_SIZE_VER2,
3826         [3] = PERF_ATTR_SIZE_VER3,
3827         [4] = PERF_ATTR_SIZE_VER4,
3828         0,
3829 };
3830
3831 /*
3832  * In the legacy file format, the magic number is not used to encode endianness.
3833  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3834  * on ABI revisions, we need to try all combinations for all endianness to
3835  * detect the endianness.
3836  */
3837 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3838 {
3839         uint64_t ref_size, attr_size;
3840         int i;
3841
3842         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3843                 ref_size = attr_file_abi_sizes[i]
3844                          + sizeof(struct perf_file_section);
3845                 if (hdr_sz != ref_size) {
3846                         attr_size = bswap_64(hdr_sz);
3847                         if (attr_size != ref_size)
3848                                 continue;
3849
3850                         ph->needs_swap = true;
3851                 }
3852                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3853                          i,
3854                          ph->needs_swap);
3855                 return 0;
3856         }
3857         /* could not determine endianness */
3858         return -1;
3859 }
3860
3861 #define PERF_PIPE_HDR_VER0      16
3862
3863 static const size_t attr_pipe_abi_sizes[] = {
3864         [0] = PERF_PIPE_HDR_VER0,
3865         0,
3866 };
3867
3868 /*
3869  * In the legacy pipe format, there is an implicit assumption that endianness
3870  * between host recording the samples, and host parsing the samples is the
3871  * same. This is not always the case given that the pipe output may always be
3872  * redirected into a file and analyzed on a different machine with possibly a
3873  * different endianness and perf_event ABI revisions in the perf tool itself.
3874  */
3875 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3876 {
3877         u64 attr_size;
3878         int i;
3879
3880         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3881                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3882                         attr_size = bswap_64(hdr_sz);
3883                         if (attr_size != hdr_sz)
3884                                 continue;
3885
3886                         ph->needs_swap = true;
3887                 }
3888                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3889                 return 0;
3890         }
3891         return -1;
3892 }
3893
3894 bool is_perf_magic(u64 magic)
3895 {
3896         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3897                 || magic == __perf_magic2
3898                 || magic == __perf_magic2_sw)
3899                 return true;
3900
3901         return false;
3902 }
3903
3904 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3905                               bool is_pipe, struct perf_header *ph)
3906 {
3907         int ret;
3908
3909         /* check for legacy format */
3910         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3911         if (ret == 0) {
3912                 ph->version = PERF_HEADER_VERSION_1;
3913                 pr_debug("legacy perf.data format\n");
3914                 if (is_pipe)
3915                         return try_all_pipe_abis(hdr_sz, ph);
3916
3917                 return try_all_file_abis(hdr_sz, ph);
3918         }
3919         /*
3920          * the new magic number serves two purposes:
3921          * - unique number to identify actual perf.data files
3922          * - encode endianness of file
3923          */
3924         ph->version = PERF_HEADER_VERSION_2;
3925
3926         /* check magic number with one endianness */
3927         if (magic == __perf_magic2)
3928                 return 0;
3929
3930         /* check magic number with opposite endianness */
3931         if (magic != __perf_magic2_sw)
3932                 return -1;
3933
3934         ph->needs_swap = true;
3935
3936         return 0;
3937 }
3938
3939 int perf_file_header__read(struct perf_file_header *header,
3940                            struct perf_header *ph, int fd)
3941 {
3942         ssize_t ret;
3943
3944         lseek(fd, 0, SEEK_SET);
3945
3946         ret = readn(fd, header, sizeof(*header));
3947         if (ret <= 0)
3948                 return -1;
3949
3950         if (check_magic_endian(header->magic,
3951                                header->attr_size, false, ph) < 0) {
3952                 pr_debug("magic/endian check failed\n");
3953                 return -1;
3954         }
3955
3956         if (ph->needs_swap) {
3957                 mem_bswap_64(header, offsetof(struct perf_file_header,
3958                              adds_features));
3959         }
3960
3961         if (header->size != sizeof(*header)) {
3962                 /* Support the previous format */
3963                 if (header->size == offsetof(typeof(*header), adds_features))
3964                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3965                 else
3966                         return -1;
3967         } else if (ph->needs_swap) {
3968                 /*
3969                  * feature bitmap is declared as an array of unsigned longs --
3970                  * not good since its size can differ between the host that
3971                  * generated the data file and the host analyzing the file.
3972                  *
3973                  * We need to handle endianness, but we don't know the size of
3974                  * the unsigned long where the file was generated. Take a best
3975                  * guess at determining it: try 64-bit swap first (ie., file
3976                  * created on a 64-bit host), and check if the hostname feature
3977                  * bit is set (this feature bit is forced on as of fbe96f2).
3978                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3979                  * swap. If the hostname bit is still not set (e.g., older data
3980                  * file), punt and fallback to the original behavior --
3981                  * clearing all feature bits and setting buildid.
3982                  */
3983                 mem_bswap_64(&header->adds_features,
3984                             BITS_TO_U64(HEADER_FEAT_BITS));
3985
3986                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3987                         /* unswap as u64 */
3988                         mem_bswap_64(&header->adds_features,
3989                                     BITS_TO_U64(HEADER_FEAT_BITS));
3990
3991                         /* unswap as u32 */
3992                         mem_bswap_32(&header->adds_features,
3993                                     BITS_TO_U32(HEADER_FEAT_BITS));
3994                 }
3995
3996                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3997                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3998                         __set_bit(HEADER_BUILD_ID, header->adds_features);
3999                 }
4000         }
4001
4002         memcpy(&ph->adds_features, &header->adds_features,
4003                sizeof(ph->adds_features));
4004
4005         ph->data_offset  = header->data.offset;
4006         ph->data_size    = header->data.size;
4007         ph->feat_offset  = header->data.offset + header->data.size;
4008         return 0;
4009 }
4010
4011 static int perf_file_section__process(struct perf_file_section *section,
4012                                       struct perf_header *ph,
4013                                       int feat, int fd, void *data)
4014 {
4015         struct feat_fd fdd = {
4016                 .fd     = fd,
4017                 .ph     = ph,
4018                 .size   = section->size,
4019                 .offset = section->offset,
4020         };
4021
4022         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4023                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4024                           "%d, continuing...\n", section->offset, feat);
4025                 return 0;
4026         }
4027
4028         if (feat >= HEADER_LAST_FEATURE) {
4029                 pr_debug("unknown feature %d, continuing...\n", feat);
4030                 return 0;
4031         }
4032
4033         if (!feat_ops[feat].process)
4034                 return 0;
4035
4036         return feat_ops[feat].process(&fdd, data);
4037 }
4038
4039 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4040                                        struct perf_header *ph,
4041                                        struct perf_data* data,
4042                                        bool repipe, int repipe_fd)
4043 {
4044         struct feat_fd ff = {
4045                 .fd = repipe_fd,
4046                 .ph = ph,
4047         };
4048         ssize_t ret;
4049
4050         ret = perf_data__read(data, header, sizeof(*header));
4051         if (ret <= 0)
4052                 return -1;
4053
4054         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4055                 pr_debug("endian/magic failed\n");
4056                 return -1;
4057         }
4058
4059         if (ph->needs_swap)
4060                 header->size = bswap_64(header->size);
4061
4062         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4063                 return -1;
4064
4065         return 0;
4066 }
4067
4068 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4069 {
4070         struct perf_header *header = &session->header;
4071         struct perf_pipe_file_header f_header;
4072
4073         if (perf_file_header__read_pipe(&f_header, header, session->data,
4074                                         session->repipe, repipe_fd) < 0) {
4075                 pr_debug("incompatible file format\n");
4076                 return -EINVAL;
4077         }
4078
4079         return f_header.size == sizeof(f_header) ? 0 : -1;
4080 }
4081
4082 static int read_attr(int fd, struct perf_header *ph,
4083                      struct perf_file_attr *f_attr)
4084 {
4085         struct perf_event_attr *attr = &f_attr->attr;
4086         size_t sz, left;
4087         size_t our_sz = sizeof(f_attr->attr);
4088         ssize_t ret;
4089
4090         memset(f_attr, 0, sizeof(*f_attr));
4091
4092         /* read minimal guaranteed structure */
4093         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4094         if (ret <= 0) {
4095                 pr_debug("cannot read %d bytes of header attr\n",
4096                          PERF_ATTR_SIZE_VER0);
4097                 return -1;
4098         }
4099
4100         /* on file perf_event_attr size */
4101         sz = attr->size;
4102
4103         if (ph->needs_swap)
4104                 sz = bswap_32(sz);
4105
4106         if (sz == 0) {
4107                 /* assume ABI0 */
4108                 sz =  PERF_ATTR_SIZE_VER0;
4109         } else if (sz > our_sz) {
4110                 pr_debug("file uses a more recent and unsupported ABI"
4111                          " (%zu bytes extra)\n", sz - our_sz);
4112                 return -1;
4113         }
4114         /* what we have not yet read and that we know about */
4115         left = sz - PERF_ATTR_SIZE_VER0;
4116         if (left) {
4117                 void *ptr = attr;
4118                 ptr += PERF_ATTR_SIZE_VER0;
4119
4120                 ret = readn(fd, ptr, left);
4121         }
4122         /* read perf_file_section, ids are read in caller */
4123         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4124
4125         return ret <= 0 ? -1 : 0;
4126 }
4127
4128 #ifdef HAVE_LIBTRACEEVENT
4129 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4130 {
4131         struct tep_event *event;
4132         char bf[128];
4133
4134         /* already prepared */
4135         if (evsel->tp_format)
4136                 return 0;
4137
4138         if (pevent == NULL) {
4139                 pr_debug("broken or missing trace data\n");
4140                 return -1;
4141         }
4142
4143         event = tep_find_event(pevent, evsel->core.attr.config);
4144         if (event == NULL) {
4145                 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4146                 return -1;
4147         }
4148
4149         if (!evsel->name) {
4150                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4151                 evsel->name = strdup(bf);
4152                 if (evsel->name == NULL)
4153                         return -1;
4154         }
4155
4156         evsel->tp_format = event;
4157         return 0;
4158 }
4159
4160 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4161 {
4162         struct evsel *pos;
4163
4164         evlist__for_each_entry(evlist, pos) {
4165                 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4166                     evsel__prepare_tracepoint_event(pos, pevent))
4167                         return -1;
4168         }
4169
4170         return 0;
4171 }
4172 #endif
4173
4174 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4175 {
4176         struct perf_data *data = session->data;
4177         struct perf_header *header = &session->header;
4178         struct perf_file_header f_header;
4179         struct perf_file_attr   f_attr;
4180         u64                     f_id;
4181         int nr_attrs, nr_ids, i, j, err;
4182         int fd = perf_data__fd(data);
4183
4184         session->evlist = evlist__new();
4185         if (session->evlist == NULL)
4186                 return -ENOMEM;
4187
4188         session->evlist->env = &header->env;
4189         session->machines.host.env = &header->env;
4190
4191         /*
4192          * We can read 'pipe' data event from regular file,
4193          * check for the pipe header regardless of source.
4194          */
4195         err = perf_header__read_pipe(session, repipe_fd);
4196         if (!err || perf_data__is_pipe(data)) {
4197                 data->is_pipe = true;
4198                 return err;
4199         }
4200
4201         if (perf_file_header__read(&f_header, header, fd) < 0)
4202                 return -EINVAL;
4203
4204         if (header->needs_swap && data->in_place_update) {
4205                 pr_err("In-place update not supported when byte-swapping is required\n");
4206                 return -EINVAL;
4207         }
4208
4209         /*
4210          * Sanity check that perf.data was written cleanly; data size is
4211          * initialized to 0 and updated only if the on_exit function is run.
4212          * If data size is still 0 then the file contains only partial
4213          * information.  Just warn user and process it as much as it can.
4214          */
4215         if (f_header.data.size == 0) {
4216                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4217                            "Was the 'perf record' command properly terminated?\n",
4218                            data->file.path);
4219         }
4220
4221         if (f_header.attr_size == 0) {
4222                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4223                        "Was the 'perf record' command properly terminated?\n",
4224                        data->file.path);
4225                 return -EINVAL;
4226         }
4227
4228         nr_attrs = f_header.attrs.size / f_header.attr_size;
4229         lseek(fd, f_header.attrs.offset, SEEK_SET);
4230
4231         for (i = 0; i < nr_attrs; i++) {
4232                 struct evsel *evsel;
4233                 off_t tmp;
4234
4235                 if (read_attr(fd, header, &f_attr) < 0)
4236                         goto out_errno;
4237
4238                 if (header->needs_swap) {
4239                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
4240                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4241                         perf_event__attr_swap(&f_attr.attr);
4242                 }
4243
4244                 tmp = lseek(fd, 0, SEEK_CUR);
4245                 evsel = evsel__new(&f_attr.attr);
4246
4247                 if (evsel == NULL)
4248                         goto out_delete_evlist;
4249
4250                 evsel->needs_swap = header->needs_swap;
4251                 /*
4252                  * Do it before so that if perf_evsel__alloc_id fails, this
4253                  * entry gets purged too at evlist__delete().
4254                  */
4255                 evlist__add(session->evlist, evsel);
4256
4257                 nr_ids = f_attr.ids.size / sizeof(u64);
4258                 /*
4259                  * We don't have the cpu and thread maps on the header, so
4260                  * for allocating the perf_sample_id table we fake 1 cpu and
4261                  * hattr->ids threads.
4262                  */
4263                 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4264                         goto out_delete_evlist;
4265
4266                 lseek(fd, f_attr.ids.offset, SEEK_SET);
4267
4268                 for (j = 0; j < nr_ids; j++) {
4269                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4270                                 goto out_errno;
4271
4272                         perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4273                 }
4274
4275                 lseek(fd, tmp, SEEK_SET);
4276         }
4277
4278 #ifdef HAVE_LIBTRACEEVENT
4279         perf_header__process_sections(header, fd, &session->tevent,
4280                                       perf_file_section__process);
4281
4282         if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4283                 goto out_delete_evlist;
4284 #else
4285         perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4286 #endif
4287
4288         return 0;
4289 out_errno:
4290         return -errno;
4291
4292 out_delete_evlist:
4293         evlist__delete(session->evlist);
4294         session->evlist = NULL;
4295         return -ENOMEM;
4296 }
4297
4298 int perf_event__process_feature(struct perf_session *session,
4299                                 union perf_event *event)
4300 {
4301         struct perf_tool *tool = session->tool;
4302         struct feat_fd ff = { .fd = 0 };
4303         struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4304         int type = fe->header.type;
4305         u64 feat = fe->feat_id;
4306         int ret = 0;
4307
4308         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4309                 pr_warning("invalid record type %d in pipe-mode\n", type);
4310                 return 0;
4311         }
4312         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4313                 pr_warning("invalid record type %d in pipe-mode\n", type);
4314                 return -1;
4315         }
4316
4317         if (!feat_ops[feat].process)
4318                 return 0;
4319
4320         ff.buf  = (void *)fe->data;
4321         ff.size = event->header.size - sizeof(*fe);
4322         ff.ph = &session->header;
4323
4324         if (feat_ops[feat].process(&ff, NULL)) {
4325                 ret = -1;
4326                 goto out;
4327         }
4328
4329         if (!feat_ops[feat].print || !tool->show_feat_hdr)
4330                 goto out;
4331
4332         if (!feat_ops[feat].full_only ||
4333             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4334                 feat_ops[feat].print(&ff, stdout);
4335         } else {
4336                 fprintf(stdout, "# %s info available, use -I to display\n",
4337                         feat_ops[feat].name);
4338         }
4339 out:
4340         free_event_desc(ff.events);
4341         return ret;
4342 }
4343
4344 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4345 {
4346         struct perf_record_event_update *ev = &event->event_update;
4347         struct perf_cpu_map *map;
4348         size_t ret;
4349
4350         ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4351
4352         switch (ev->type) {
4353         case PERF_EVENT_UPDATE__SCALE:
4354                 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4355                 break;
4356         case PERF_EVENT_UPDATE__UNIT:
4357                 ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4358                 break;
4359         case PERF_EVENT_UPDATE__NAME:
4360                 ret += fprintf(fp, "... name:  %s\n", ev->name);
4361                 break;
4362         case PERF_EVENT_UPDATE__CPUS:
4363                 ret += fprintf(fp, "... ");
4364
4365                 map = cpu_map__new_data(&ev->cpus.cpus);
4366                 if (map) {
4367                         ret += cpu_map__fprintf(map, fp);
4368                         perf_cpu_map__put(map);
4369                 } else
4370                         ret += fprintf(fp, "failed to get cpus\n");
4371                 break;
4372         default:
4373                 ret += fprintf(fp, "... unknown type\n");
4374                 break;
4375         }
4376
4377         return ret;
4378 }
4379
4380 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4381                              union perf_event *event,
4382                              struct evlist **pevlist)
4383 {
4384         u32 i, n_ids;
4385         u64 *ids;
4386         struct evsel *evsel;
4387         struct evlist *evlist = *pevlist;
4388
4389         if (evlist == NULL) {
4390                 *pevlist = evlist = evlist__new();
4391                 if (evlist == NULL)
4392                         return -ENOMEM;
4393         }
4394
4395         evsel = evsel__new(&event->attr.attr);
4396         if (evsel == NULL)
4397                 return -ENOMEM;
4398
4399         evlist__add(evlist, evsel);
4400
4401         n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4402         n_ids = n_ids / sizeof(u64);
4403         /*
4404          * We don't have the cpu and thread maps on the header, so
4405          * for allocating the perf_sample_id table we fake 1 cpu and
4406          * hattr->ids threads.
4407          */
4408         if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4409                 return -ENOMEM;
4410
4411         ids = perf_record_header_attr_id(event);
4412         for (i = 0; i < n_ids; i++) {
4413                 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4414         }
4415
4416         return 0;
4417 }
4418
4419 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4420                                      union perf_event *event,
4421                                      struct evlist **pevlist)
4422 {
4423         struct perf_record_event_update *ev = &event->event_update;
4424         struct evlist *evlist;
4425         struct evsel *evsel;
4426         struct perf_cpu_map *map;
4427
4428         if (dump_trace)
4429                 perf_event__fprintf_event_update(event, stdout);
4430
4431         if (!pevlist || *pevlist == NULL)
4432                 return -EINVAL;
4433
4434         evlist = *pevlist;
4435
4436         evsel = evlist__id2evsel(evlist, ev->id);
4437         if (evsel == NULL)
4438                 return -EINVAL;
4439
4440         switch (ev->type) {
4441         case PERF_EVENT_UPDATE__UNIT:
4442                 free((char *)evsel->unit);
4443                 evsel->unit = strdup(ev->unit);
4444                 break;
4445         case PERF_EVENT_UPDATE__NAME:
4446                 free(evsel->name);
4447                 evsel->name = strdup(ev->name);
4448                 break;
4449         case PERF_EVENT_UPDATE__SCALE:
4450                 evsel->scale = ev->scale.scale;
4451                 break;
4452         case PERF_EVENT_UPDATE__CPUS:
4453                 map = cpu_map__new_data(&ev->cpus.cpus);
4454                 if (map) {
4455                         perf_cpu_map__put(evsel->core.own_cpus);
4456                         evsel->core.own_cpus = map;
4457                 } else
4458                         pr_err("failed to get event_update cpus\n");
4459         default:
4460                 break;
4461         }
4462
4463         return 0;
4464 }
4465
4466 #ifdef HAVE_LIBTRACEEVENT
4467 int perf_event__process_tracing_data(struct perf_session *session,
4468                                      union perf_event *event)
4469 {
4470         ssize_t size_read, padding, size = event->tracing_data.size;
4471         int fd = perf_data__fd(session->data);
4472         char buf[BUFSIZ];
4473
4474         /*
4475          * The pipe fd is already in proper place and in any case
4476          * we can't move it, and we'd screw the case where we read
4477          * 'pipe' data from regular file. The trace_report reads
4478          * data from 'fd' so we need to set it directly behind the
4479          * event, where the tracing data starts.
4480          */
4481         if (!perf_data__is_pipe(session->data)) {
4482                 off_t offset = lseek(fd, 0, SEEK_CUR);
4483
4484                 /* setup for reading amidst mmap */
4485                 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4486                       SEEK_SET);
4487         }
4488
4489         size_read = trace_report(fd, &session->tevent,
4490                                  session->repipe);
4491         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4492
4493         if (readn(fd, buf, padding) < 0) {
4494                 pr_err("%s: reading input file", __func__);
4495                 return -1;
4496         }
4497         if (session->repipe) {
4498                 int retw = write(STDOUT_FILENO, buf, padding);
4499                 if (retw <= 0 || retw != padding) {
4500                         pr_err("%s: repiping tracing data padding", __func__);
4501                         return -1;
4502                 }
4503         }
4504
4505         if (size_read + padding != size) {
4506                 pr_err("%s: tracing data size mismatch", __func__);
4507                 return -1;
4508         }
4509
4510         evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4511
4512         return size_read + padding;
4513 }
4514 #endif
4515
4516 int perf_event__process_build_id(struct perf_session *session,
4517                                  union perf_event *event)
4518 {
4519         __event_process_build_id(&event->build_id,
4520                                  event->build_id.filename,
4521                                  session);
4522         return 0;
4523 }