Merge tag 'block-5.13-2021-06-12' of git://git.kernel.dk/linux-block
[platform/kernel/linux-rpi.git] / tools / perf / util / cs-etm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40
41 #define MAX_TIMESTAMP (~0ULL)
42
43 struct cs_etm_auxtrace {
44         struct auxtrace auxtrace;
45         struct auxtrace_queues queues;
46         struct auxtrace_heap heap;
47         struct itrace_synth_opts synth_opts;
48         struct perf_session *session;
49         struct machine *machine;
50         struct thread *unknown_thread;
51
52         u8 timeless_decoding;
53         u8 snapshot_mode;
54         u8 data_queued;
55         u8 sample_branches;
56         u8 sample_instructions;
57
58         int num_cpu;
59         u32 auxtrace_type;
60         u64 branches_sample_type;
61         u64 branches_id;
62         u64 instructions_sample_type;
63         u64 instructions_sample_period;
64         u64 instructions_id;
65         u64 **metadata;
66         u64 kernel_start;
67         unsigned int pmu_type;
68 };
69
70 struct cs_etm_traceid_queue {
71         u8 trace_chan_id;
72         pid_t pid, tid;
73         u64 period_instructions;
74         size_t last_branch_pos;
75         union perf_event *event_buf;
76         struct thread *thread;
77         struct branch_stack *last_branch;
78         struct branch_stack *last_branch_rb;
79         struct cs_etm_packet *prev_packet;
80         struct cs_etm_packet *packet;
81         struct cs_etm_packet_queue packet_queue;
82 };
83
84 struct cs_etm_queue {
85         struct cs_etm_auxtrace *etm;
86         struct cs_etm_decoder *decoder;
87         struct auxtrace_buffer *buffer;
88         unsigned int queue_nr;
89         u8 pending_timestamp;
90         u64 offset;
91         const unsigned char *buf;
92         size_t buf_len, buf_used;
93         /* Conversion between traceID and index in traceid_queues array */
94         struct intlist *traceid_queues_list;
95         struct cs_etm_traceid_queue **traceid_queues;
96 };
97
98 /* RB tree for quick conversion between traceID and metadata pointers */
99 static struct intlist *traceid_list;
100
101 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
102 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
103 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
104                                            pid_t tid);
105 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
106 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
107
108 /* PTMs ETMIDR [11:8] set to b0011 */
109 #define ETMIDR_PTM_VERSION 0x00000300
110
111 /*
112  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
113  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
114  * encode the etm queue number as the upper 16 bit and the channel as
115  * the lower 16 bit.
116  */
117 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
118                       (queue_nr << 16 | trace_chan_id)
119 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
120 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
121
122 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
123 {
124         etmidr &= ETMIDR_PTM_VERSION;
125
126         if (etmidr == ETMIDR_PTM_VERSION)
127                 return CS_ETM_PROTO_PTM;
128
129         return CS_ETM_PROTO_ETMV3;
130 }
131
132 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
133 {
134         struct int_node *inode;
135         u64 *metadata;
136
137         inode = intlist__find(traceid_list, trace_chan_id);
138         if (!inode)
139                 return -EINVAL;
140
141         metadata = inode->priv;
142         *magic = metadata[CS_ETM_MAGIC];
143         return 0;
144 }
145
146 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
147 {
148         struct int_node *inode;
149         u64 *metadata;
150
151         inode = intlist__find(traceid_list, trace_chan_id);
152         if (!inode)
153                 return -EINVAL;
154
155         metadata = inode->priv;
156         *cpu = (int)metadata[CS_ETM_CPU];
157         return 0;
158 }
159
160 /*
161  * The returned PID format is presented by two bits:
162  *
163  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
164  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
165  *
166  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
167  * are enabled at the same time when the session runs on an EL2 kernel.
168  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
169  * recorded in the trace data, the tool will selectively use
170  * CONTEXTIDR_EL2 as PID.
171  */
172 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
173 {
174         struct int_node *inode;
175         u64 *metadata, val;
176
177         inode = intlist__find(traceid_list, trace_chan_id);
178         if (!inode)
179                 return -EINVAL;
180
181         metadata = inode->priv;
182
183         if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
184                 val = metadata[CS_ETM_ETMCR];
185                 /* CONTEXTIDR is traced */
186                 if (val & BIT(ETM_OPT_CTXTID))
187                         *pid_fmt = BIT(ETM_OPT_CTXTID);
188         } else {
189                 val = metadata[CS_ETMV4_TRCCONFIGR];
190                 /* CONTEXTIDR_EL2 is traced */
191                 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
192                         *pid_fmt = BIT(ETM_OPT_CTXTID2);
193                 /* CONTEXTIDR_EL1 is traced */
194                 else if (val & BIT(ETM4_CFG_BIT_CTXTID))
195                         *pid_fmt = BIT(ETM_OPT_CTXTID);
196         }
197
198         return 0;
199 }
200
201 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
202                                               u8 trace_chan_id)
203 {
204         /*
205          * When a timestamp packet is encountered the backend code
206          * is stopped so that the front end has time to process packets
207          * that were accumulated in the traceID queue.  Since there can
208          * be more than one channel per cs_etm_queue, we need to specify
209          * what traceID queue needs servicing.
210          */
211         etmq->pending_timestamp = trace_chan_id;
212 }
213
214 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
215                                       u8 *trace_chan_id)
216 {
217         struct cs_etm_packet_queue *packet_queue;
218
219         if (!etmq->pending_timestamp)
220                 return 0;
221
222         if (trace_chan_id)
223                 *trace_chan_id = etmq->pending_timestamp;
224
225         packet_queue = cs_etm__etmq_get_packet_queue(etmq,
226                                                      etmq->pending_timestamp);
227         if (!packet_queue)
228                 return 0;
229
230         /* Acknowledge pending status */
231         etmq->pending_timestamp = 0;
232
233         /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
234         return packet_queue->timestamp;
235 }
236
237 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
238 {
239         int i;
240
241         queue->head = 0;
242         queue->tail = 0;
243         queue->packet_count = 0;
244         for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
245                 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
246                 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
247                 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
248                 queue->packet_buffer[i].instr_count = 0;
249                 queue->packet_buffer[i].last_instr_taken_branch = false;
250                 queue->packet_buffer[i].last_instr_size = 0;
251                 queue->packet_buffer[i].last_instr_type = 0;
252                 queue->packet_buffer[i].last_instr_subtype = 0;
253                 queue->packet_buffer[i].last_instr_cond = 0;
254                 queue->packet_buffer[i].flags = 0;
255                 queue->packet_buffer[i].exception_number = UINT32_MAX;
256                 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
257                 queue->packet_buffer[i].cpu = INT_MIN;
258         }
259 }
260
261 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
262 {
263         int idx;
264         struct int_node *inode;
265         struct cs_etm_traceid_queue *tidq;
266         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
267
268         intlist__for_each_entry(inode, traceid_queues_list) {
269                 idx = (int)(intptr_t)inode->priv;
270                 tidq = etmq->traceid_queues[idx];
271                 cs_etm__clear_packet_queue(&tidq->packet_queue);
272         }
273 }
274
275 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
276                                       struct cs_etm_traceid_queue *tidq,
277                                       u8 trace_chan_id)
278 {
279         int rc = -ENOMEM;
280         struct auxtrace_queue *queue;
281         struct cs_etm_auxtrace *etm = etmq->etm;
282
283         cs_etm__clear_packet_queue(&tidq->packet_queue);
284
285         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
286         tidq->tid = queue->tid;
287         tidq->pid = -1;
288         tidq->trace_chan_id = trace_chan_id;
289
290         tidq->packet = zalloc(sizeof(struct cs_etm_packet));
291         if (!tidq->packet)
292                 goto out;
293
294         tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
295         if (!tidq->prev_packet)
296                 goto out_free;
297
298         if (etm->synth_opts.last_branch) {
299                 size_t sz = sizeof(struct branch_stack);
300
301                 sz += etm->synth_opts.last_branch_sz *
302                       sizeof(struct branch_entry);
303                 tidq->last_branch = zalloc(sz);
304                 if (!tidq->last_branch)
305                         goto out_free;
306                 tidq->last_branch_rb = zalloc(sz);
307                 if (!tidq->last_branch_rb)
308                         goto out_free;
309         }
310
311         tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
312         if (!tidq->event_buf)
313                 goto out_free;
314
315         return 0;
316
317 out_free:
318         zfree(&tidq->last_branch_rb);
319         zfree(&tidq->last_branch);
320         zfree(&tidq->prev_packet);
321         zfree(&tidq->packet);
322 out:
323         return rc;
324 }
325
326 static struct cs_etm_traceid_queue
327 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
328 {
329         int idx;
330         struct int_node *inode;
331         struct intlist *traceid_queues_list;
332         struct cs_etm_traceid_queue *tidq, **traceid_queues;
333         struct cs_etm_auxtrace *etm = etmq->etm;
334
335         if (etm->timeless_decoding)
336                 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
337
338         traceid_queues_list = etmq->traceid_queues_list;
339
340         /*
341          * Check if the traceid_queue exist for this traceID by looking
342          * in the queue list.
343          */
344         inode = intlist__find(traceid_queues_list, trace_chan_id);
345         if (inode) {
346                 idx = (int)(intptr_t)inode->priv;
347                 return etmq->traceid_queues[idx];
348         }
349
350         /* We couldn't find a traceid_queue for this traceID, allocate one */
351         tidq = malloc(sizeof(*tidq));
352         if (!tidq)
353                 return NULL;
354
355         memset(tidq, 0, sizeof(*tidq));
356
357         /* Get a valid index for the new traceid_queue */
358         idx = intlist__nr_entries(traceid_queues_list);
359         /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
360         inode = intlist__findnew(traceid_queues_list, trace_chan_id);
361         if (!inode)
362                 goto out_free;
363
364         /* Associate this traceID with this index */
365         inode->priv = (void *)(intptr_t)idx;
366
367         if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
368                 goto out_free;
369
370         /* Grow the traceid_queues array by one unit */
371         traceid_queues = etmq->traceid_queues;
372         traceid_queues = reallocarray(traceid_queues,
373                                       idx + 1,
374                                       sizeof(*traceid_queues));
375
376         /*
377          * On failure reallocarray() returns NULL and the original block of
378          * memory is left untouched.
379          */
380         if (!traceid_queues)
381                 goto out_free;
382
383         traceid_queues[idx] = tidq;
384         etmq->traceid_queues = traceid_queues;
385
386         return etmq->traceid_queues[idx];
387
388 out_free:
389         /*
390          * Function intlist__remove() removes the inode from the list
391          * and delete the memory associated to it.
392          */
393         intlist__remove(traceid_queues_list, inode);
394         free(tidq);
395
396         return NULL;
397 }
398
399 struct cs_etm_packet_queue
400 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
401 {
402         struct cs_etm_traceid_queue *tidq;
403
404         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
405         if (tidq)
406                 return &tidq->packet_queue;
407
408         return NULL;
409 }
410
411 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
412                                 struct cs_etm_traceid_queue *tidq)
413 {
414         struct cs_etm_packet *tmp;
415
416         if (etm->sample_branches || etm->synth_opts.last_branch ||
417             etm->sample_instructions) {
418                 /*
419                  * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
420                  * the next incoming packet.
421                  */
422                 tmp = tidq->packet;
423                 tidq->packet = tidq->prev_packet;
424                 tidq->prev_packet = tmp;
425         }
426 }
427
428 static void cs_etm__packet_dump(const char *pkt_string)
429 {
430         const char *color = PERF_COLOR_BLUE;
431         int len = strlen(pkt_string);
432
433         if (len && (pkt_string[len-1] == '\n'))
434                 color_fprintf(stdout, color, "  %s", pkt_string);
435         else
436                 color_fprintf(stdout, color, "  %s\n", pkt_string);
437
438         fflush(stdout);
439 }
440
441 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
442                                           struct cs_etm_auxtrace *etm, int idx,
443                                           u32 etmidr)
444 {
445         u64 **metadata = etm->metadata;
446
447         t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
448         t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
449         t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
450 }
451
452 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
453                                           struct cs_etm_auxtrace *etm, int idx)
454 {
455         u64 **metadata = etm->metadata;
456
457         t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
458         t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
459         t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
460         t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
461         t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
462         t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
463         t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
464 }
465
466 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
467                                      struct cs_etm_auxtrace *etm)
468 {
469         int i;
470         u32 etmidr;
471         u64 architecture;
472
473         for (i = 0; i < etm->num_cpu; i++) {
474                 architecture = etm->metadata[i][CS_ETM_MAGIC];
475
476                 switch (architecture) {
477                 case __perf_cs_etmv3_magic:
478                         etmidr = etm->metadata[i][CS_ETM_ETMIDR];
479                         cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
480                         break;
481                 case __perf_cs_etmv4_magic:
482                         cs_etm__set_trace_param_etmv4(t_params, etm, i);
483                         break;
484                 default:
485                         return -EINVAL;
486                 }
487         }
488
489         return 0;
490 }
491
492 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
493                                        struct cs_etm_queue *etmq,
494                                        enum cs_etm_decoder_operation mode)
495 {
496         int ret = -EINVAL;
497
498         if (!(mode < CS_ETM_OPERATION_MAX))
499                 goto out;
500
501         d_params->packet_printer = cs_etm__packet_dump;
502         d_params->operation = mode;
503         d_params->data = etmq;
504         d_params->formatted = true;
505         d_params->fsyncs = false;
506         d_params->hsyncs = false;
507         d_params->frame_aligned = true;
508
509         ret = 0;
510 out:
511         return ret;
512 }
513
514 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
515                                struct auxtrace_buffer *buffer)
516 {
517         int ret;
518         const char *color = PERF_COLOR_BLUE;
519         struct cs_etm_decoder_params d_params;
520         struct cs_etm_trace_params *t_params;
521         struct cs_etm_decoder *decoder;
522         size_t buffer_used = 0;
523
524         fprintf(stdout, "\n");
525         color_fprintf(stdout, color,
526                      ". ... CoreSight ETM Trace data: size %zu bytes\n",
527                      buffer->size);
528
529         /* Use metadata to fill in trace parameters for trace decoder */
530         t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
531
532         if (!t_params)
533                 return;
534
535         if (cs_etm__init_trace_params(t_params, etm))
536                 goto out_free;
537
538         /* Set decoder parameters to simply print the trace packets */
539         if (cs_etm__init_decoder_params(&d_params, NULL,
540                                         CS_ETM_OPERATION_PRINT))
541                 goto out_free;
542
543         decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
544
545         if (!decoder)
546                 goto out_free;
547         do {
548                 size_t consumed;
549
550                 ret = cs_etm_decoder__process_data_block(
551                                 decoder, buffer->offset,
552                                 &((u8 *)buffer->data)[buffer_used],
553                                 buffer->size - buffer_used, &consumed);
554                 if (ret)
555                         break;
556
557                 buffer_used += consumed;
558         } while (buffer_used < buffer->size);
559
560         cs_etm_decoder__free(decoder);
561
562 out_free:
563         zfree(&t_params);
564 }
565
566 static int cs_etm__flush_events(struct perf_session *session,
567                                 struct perf_tool *tool)
568 {
569         int ret;
570         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
571                                                    struct cs_etm_auxtrace,
572                                                    auxtrace);
573         if (dump_trace)
574                 return 0;
575
576         if (!tool->ordered_events)
577                 return -EINVAL;
578
579         ret = cs_etm__update_queues(etm);
580
581         if (ret < 0)
582                 return ret;
583
584         if (etm->timeless_decoding)
585                 return cs_etm__process_timeless_queues(etm, -1);
586
587         return cs_etm__process_queues(etm);
588 }
589
590 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
591 {
592         int idx;
593         uintptr_t priv;
594         struct int_node *inode, *tmp;
595         struct cs_etm_traceid_queue *tidq;
596         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
597
598         intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
599                 priv = (uintptr_t)inode->priv;
600                 idx = priv;
601
602                 /* Free this traceid_queue from the array */
603                 tidq = etmq->traceid_queues[idx];
604                 thread__zput(tidq->thread);
605                 zfree(&tidq->event_buf);
606                 zfree(&tidq->last_branch);
607                 zfree(&tidq->last_branch_rb);
608                 zfree(&tidq->prev_packet);
609                 zfree(&tidq->packet);
610                 zfree(&tidq);
611
612                 /*
613                  * Function intlist__remove() removes the inode from the list
614                  * and delete the memory associated to it.
615                  */
616                 intlist__remove(traceid_queues_list, inode);
617         }
618
619         /* Then the RB tree itself */
620         intlist__delete(traceid_queues_list);
621         etmq->traceid_queues_list = NULL;
622
623         /* finally free the traceid_queues array */
624         zfree(&etmq->traceid_queues);
625 }
626
627 static void cs_etm__free_queue(void *priv)
628 {
629         struct cs_etm_queue *etmq = priv;
630
631         if (!etmq)
632                 return;
633
634         cs_etm_decoder__free(etmq->decoder);
635         cs_etm__free_traceid_queues(etmq);
636         free(etmq);
637 }
638
639 static void cs_etm__free_events(struct perf_session *session)
640 {
641         unsigned int i;
642         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
643                                                    struct cs_etm_auxtrace,
644                                                    auxtrace);
645         struct auxtrace_queues *queues = &aux->queues;
646
647         for (i = 0; i < queues->nr_queues; i++) {
648                 cs_etm__free_queue(queues->queue_array[i].priv);
649                 queues->queue_array[i].priv = NULL;
650         }
651
652         auxtrace_queues__free(queues);
653 }
654
655 static void cs_etm__free(struct perf_session *session)
656 {
657         int i;
658         struct int_node *inode, *tmp;
659         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
660                                                    struct cs_etm_auxtrace,
661                                                    auxtrace);
662         cs_etm__free_events(session);
663         session->auxtrace = NULL;
664
665         /* First remove all traceID/metadata nodes for the RB tree */
666         intlist__for_each_entry_safe(inode, tmp, traceid_list)
667                 intlist__remove(traceid_list, inode);
668         /* Then the RB tree itself */
669         intlist__delete(traceid_list);
670
671         for (i = 0; i < aux->num_cpu; i++)
672                 zfree(&aux->metadata[i]);
673
674         thread__zput(aux->unknown_thread);
675         zfree(&aux->metadata);
676         zfree(&aux);
677 }
678
679 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
680                                       struct evsel *evsel)
681 {
682         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
683                                                    struct cs_etm_auxtrace,
684                                                    auxtrace);
685
686         return evsel->core.attr.type == aux->pmu_type;
687 }
688
689 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
690 {
691         struct machine *machine;
692
693         machine = etmq->etm->machine;
694
695         if (address >= etmq->etm->kernel_start) {
696                 if (machine__is_host(machine))
697                         return PERF_RECORD_MISC_KERNEL;
698                 else
699                         return PERF_RECORD_MISC_GUEST_KERNEL;
700         } else {
701                 if (machine__is_host(machine))
702                         return PERF_RECORD_MISC_USER;
703                 else if (perf_guest)
704                         return PERF_RECORD_MISC_GUEST_USER;
705                 else
706                         return PERF_RECORD_MISC_HYPERVISOR;
707         }
708 }
709
710 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
711                               u64 address, size_t size, u8 *buffer)
712 {
713         u8  cpumode;
714         u64 offset;
715         int len;
716         struct thread *thread;
717         struct machine *machine;
718         struct addr_location al;
719         struct cs_etm_traceid_queue *tidq;
720
721         if (!etmq)
722                 return 0;
723
724         machine = etmq->etm->machine;
725         cpumode = cs_etm__cpu_mode(etmq, address);
726         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
727         if (!tidq)
728                 return 0;
729
730         thread = tidq->thread;
731         if (!thread) {
732                 if (cpumode != PERF_RECORD_MISC_KERNEL)
733                         return 0;
734                 thread = etmq->etm->unknown_thread;
735         }
736
737         if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
738                 return 0;
739
740         if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
741             dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
742                 return 0;
743
744         offset = al.map->map_ip(al.map, address);
745
746         map__load(al.map);
747
748         len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
749
750         if (len <= 0)
751                 return 0;
752
753         return len;
754 }
755
756 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
757 {
758         struct cs_etm_decoder_params d_params;
759         struct cs_etm_trace_params  *t_params = NULL;
760         struct cs_etm_queue *etmq;
761
762         etmq = zalloc(sizeof(*etmq));
763         if (!etmq)
764                 return NULL;
765
766         etmq->traceid_queues_list = intlist__new(NULL);
767         if (!etmq->traceid_queues_list)
768                 goto out_free;
769
770         /* Use metadata to fill in trace parameters for trace decoder */
771         t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
772
773         if (!t_params)
774                 goto out_free;
775
776         if (cs_etm__init_trace_params(t_params, etm))
777                 goto out_free;
778
779         /* Set decoder parameters to decode trace packets */
780         if (cs_etm__init_decoder_params(&d_params, etmq,
781                                         CS_ETM_OPERATION_DECODE))
782                 goto out_free;
783
784         etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
785
786         if (!etmq->decoder)
787                 goto out_free;
788
789         /*
790          * Register a function to handle all memory accesses required by
791          * the trace decoder library.
792          */
793         if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
794                                               0x0L, ((u64) -1L),
795                                               cs_etm__mem_access))
796                 goto out_free_decoder;
797
798         zfree(&t_params);
799         return etmq;
800
801 out_free_decoder:
802         cs_etm_decoder__free(etmq->decoder);
803 out_free:
804         intlist__delete(etmq->traceid_queues_list);
805         free(etmq);
806
807         return NULL;
808 }
809
810 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
811                                struct auxtrace_queue *queue,
812                                unsigned int queue_nr)
813 {
814         int ret = 0;
815         unsigned int cs_queue_nr;
816         u8 trace_chan_id;
817         u64 timestamp;
818         struct cs_etm_queue *etmq = queue->priv;
819
820         if (list_empty(&queue->head) || etmq)
821                 goto out;
822
823         etmq = cs_etm__alloc_queue(etm);
824
825         if (!etmq) {
826                 ret = -ENOMEM;
827                 goto out;
828         }
829
830         queue->priv = etmq;
831         etmq->etm = etm;
832         etmq->queue_nr = queue_nr;
833         etmq->offset = 0;
834
835         if (etm->timeless_decoding)
836                 goto out;
837
838         /*
839          * We are under a CPU-wide trace scenario.  As such we need to know
840          * when the code that generated the traces started to execute so that
841          * it can be correlated with execution on other CPUs.  So we get a
842          * handle on the beginning of traces and decode until we find a
843          * timestamp.  The timestamp is then added to the auxtrace min heap
844          * in order to know what nibble (of all the etmqs) to decode first.
845          */
846         while (1) {
847                 /*
848                  * Fetch an aux_buffer from this etmq.  Bail if no more
849                  * blocks or an error has been encountered.
850                  */
851                 ret = cs_etm__get_data_block(etmq);
852                 if (ret <= 0)
853                         goto out;
854
855                 /*
856                  * Run decoder on the trace block.  The decoder will stop when
857                  * encountering a timestamp, a full packet queue or the end of
858                  * trace for that block.
859                  */
860                 ret = cs_etm__decode_data_block(etmq);
861                 if (ret)
862                         goto out;
863
864                 /*
865                  * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
866                  * the timestamp calculation for us.
867                  */
868                 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
869
870                 /* We found a timestamp, no need to continue. */
871                 if (timestamp)
872                         break;
873
874                 /*
875                  * We didn't find a timestamp so empty all the traceid packet
876                  * queues before looking for another timestamp packet, either
877                  * in the current data block or a new one.  Packets that were
878                  * just decoded are useless since no timestamp has been
879                  * associated with them.  As such simply discard them.
880                  */
881                 cs_etm__clear_all_packet_queues(etmq);
882         }
883
884         /*
885          * We have a timestamp.  Add it to the min heap to reflect when
886          * instructions conveyed by the range packets of this traceID queue
887          * started to execute.  Once the same has been done for all the traceID
888          * queues of each etmq, redenring and decoding can start in
889          * chronological order.
890          *
891          * Note that packets decoded above are still in the traceID's packet
892          * queue and will be processed in cs_etm__process_queues().
893          */
894         cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
895         ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
896 out:
897         return ret;
898 }
899
900 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
901 {
902         unsigned int i;
903         int ret;
904
905         if (!etm->kernel_start)
906                 etm->kernel_start = machine__kernel_start(etm->machine);
907
908         for (i = 0; i < etm->queues.nr_queues; i++) {
909                 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
910                 if (ret)
911                         return ret;
912         }
913
914         return 0;
915 }
916
917 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
918 {
919         if (etm->queues.new_data) {
920                 etm->queues.new_data = false;
921                 return cs_etm__setup_queues(etm);
922         }
923
924         return 0;
925 }
926
927 static inline
928 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
929                                  struct cs_etm_traceid_queue *tidq)
930 {
931         struct branch_stack *bs_src = tidq->last_branch_rb;
932         struct branch_stack *bs_dst = tidq->last_branch;
933         size_t nr = 0;
934
935         /*
936          * Set the number of records before early exit: ->nr is used to
937          * determine how many branches to copy from ->entries.
938          */
939         bs_dst->nr = bs_src->nr;
940
941         /*
942          * Early exit when there is nothing to copy.
943          */
944         if (!bs_src->nr)
945                 return;
946
947         /*
948          * As bs_src->entries is a circular buffer, we need to copy from it in
949          * two steps.  First, copy the branches from the most recently inserted
950          * branch ->last_branch_pos until the end of bs_src->entries buffer.
951          */
952         nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
953         memcpy(&bs_dst->entries[0],
954                &bs_src->entries[tidq->last_branch_pos],
955                sizeof(struct branch_entry) * nr);
956
957         /*
958          * If we wrapped around at least once, the branches from the beginning
959          * of the bs_src->entries buffer and until the ->last_branch_pos element
960          * are older valid branches: copy them over.  The total number of
961          * branches copied over will be equal to the number of branches asked by
962          * the user in last_branch_sz.
963          */
964         if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
965                 memcpy(&bs_dst->entries[nr],
966                        &bs_src->entries[0],
967                        sizeof(struct branch_entry) * tidq->last_branch_pos);
968         }
969 }
970
971 static inline
972 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
973 {
974         tidq->last_branch_pos = 0;
975         tidq->last_branch_rb->nr = 0;
976 }
977
978 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
979                                          u8 trace_chan_id, u64 addr)
980 {
981         u8 instrBytes[2];
982
983         cs_etm__mem_access(etmq, trace_chan_id, addr,
984                            ARRAY_SIZE(instrBytes), instrBytes);
985         /*
986          * T32 instruction size is indicated by bits[15:11] of the first
987          * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
988          * denote a 32-bit instruction.
989          */
990         return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
991 }
992
993 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
994 {
995         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
996         if (packet->sample_type == CS_ETM_DISCONTINUITY)
997                 return 0;
998
999         return packet->start_addr;
1000 }
1001
1002 static inline
1003 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
1004 {
1005         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1006         if (packet->sample_type == CS_ETM_DISCONTINUITY)
1007                 return 0;
1008
1009         return packet->end_addr - packet->last_instr_size;
1010 }
1011
1012 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1013                                      u64 trace_chan_id,
1014                                      const struct cs_etm_packet *packet,
1015                                      u64 offset)
1016 {
1017         if (packet->isa == CS_ETM_ISA_T32) {
1018                 u64 addr = packet->start_addr;
1019
1020                 while (offset) {
1021                         addr += cs_etm__t32_instr_size(etmq,
1022                                                        trace_chan_id, addr);
1023                         offset--;
1024                 }
1025                 return addr;
1026         }
1027
1028         /* Assume a 4 byte instruction size (A32/A64) */
1029         return packet->start_addr + offset * 4;
1030 }
1031
1032 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1033                                           struct cs_etm_traceid_queue *tidq)
1034 {
1035         struct branch_stack *bs = tidq->last_branch_rb;
1036         struct branch_entry *be;
1037
1038         /*
1039          * The branches are recorded in a circular buffer in reverse
1040          * chronological order: we start recording from the last element of the
1041          * buffer down.  After writing the first element of the stack, move the
1042          * insert position back to the end of the buffer.
1043          */
1044         if (!tidq->last_branch_pos)
1045                 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1046
1047         tidq->last_branch_pos -= 1;
1048
1049         be       = &bs->entries[tidq->last_branch_pos];
1050         be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1051         be->to   = cs_etm__first_executed_instr(tidq->packet);
1052         /* No support for mispredict */
1053         be->flags.mispred = 0;
1054         be->flags.predicted = 1;
1055
1056         /*
1057          * Increment bs->nr until reaching the number of last branches asked by
1058          * the user on the command line.
1059          */
1060         if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1061                 bs->nr += 1;
1062 }
1063
1064 static int cs_etm__inject_event(union perf_event *event,
1065                                struct perf_sample *sample, u64 type)
1066 {
1067         event->header.size = perf_event__sample_event_size(sample, type, 0);
1068         return perf_event__synthesize_sample(event, type, 0, sample);
1069 }
1070
1071
1072 static int
1073 cs_etm__get_trace(struct cs_etm_queue *etmq)
1074 {
1075         struct auxtrace_buffer *aux_buffer = etmq->buffer;
1076         struct auxtrace_buffer *old_buffer = aux_buffer;
1077         struct auxtrace_queue *queue;
1078
1079         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1080
1081         aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1082
1083         /* If no more data, drop the previous auxtrace_buffer and return */
1084         if (!aux_buffer) {
1085                 if (old_buffer)
1086                         auxtrace_buffer__drop_data(old_buffer);
1087                 etmq->buf_len = 0;
1088                 return 0;
1089         }
1090
1091         etmq->buffer = aux_buffer;
1092
1093         /* If the aux_buffer doesn't have data associated, try to load it */
1094         if (!aux_buffer->data) {
1095                 /* get the file desc associated with the perf data file */
1096                 int fd = perf_data__fd(etmq->etm->session->data);
1097
1098                 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1099                 if (!aux_buffer->data)
1100                         return -ENOMEM;
1101         }
1102
1103         /* If valid, drop the previous buffer */
1104         if (old_buffer)
1105                 auxtrace_buffer__drop_data(old_buffer);
1106
1107         etmq->buf_used = 0;
1108         etmq->buf_len = aux_buffer->size;
1109         etmq->buf = aux_buffer->data;
1110
1111         return etmq->buf_len;
1112 }
1113
1114 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1115                                     struct cs_etm_traceid_queue *tidq)
1116 {
1117         if ((!tidq->thread) && (tidq->tid != -1))
1118                 tidq->thread = machine__find_thread(etm->machine, -1,
1119                                                     tidq->tid);
1120
1121         if (tidq->thread)
1122                 tidq->pid = tidq->thread->pid_;
1123 }
1124
1125 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1126                          pid_t tid, u8 trace_chan_id)
1127 {
1128         int cpu, err = -EINVAL;
1129         struct cs_etm_auxtrace *etm = etmq->etm;
1130         struct cs_etm_traceid_queue *tidq;
1131
1132         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1133         if (!tidq)
1134                 return err;
1135
1136         if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1137                 return err;
1138
1139         err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1140         if (err)
1141                 return err;
1142
1143         tidq->tid = tid;
1144         thread__zput(tidq->thread);
1145
1146         cs_etm__set_pid_tid_cpu(etm, tidq);
1147         return 0;
1148 }
1149
1150 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1151 {
1152         return !!etmq->etm->timeless_decoding;
1153 }
1154
1155 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1156                               u64 trace_chan_id,
1157                               const struct cs_etm_packet *packet,
1158                               struct perf_sample *sample)
1159 {
1160         /*
1161          * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1162          * packet, so directly bail out with 'insn_len' = 0.
1163          */
1164         if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1165                 sample->insn_len = 0;
1166                 return;
1167         }
1168
1169         /*
1170          * T32 instruction size might be 32-bit or 16-bit, decide by calling
1171          * cs_etm__t32_instr_size().
1172          */
1173         if (packet->isa == CS_ETM_ISA_T32)
1174                 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1175                                                           sample->ip);
1176         /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1177         else
1178                 sample->insn_len = 4;
1179
1180         cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1181                            sample->insn_len, (void *)sample->insn);
1182 }
1183
1184 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1185                                             struct cs_etm_traceid_queue *tidq,
1186                                             u64 addr, u64 period)
1187 {
1188         int ret = 0;
1189         struct cs_etm_auxtrace *etm = etmq->etm;
1190         union perf_event *event = tidq->event_buf;
1191         struct perf_sample sample = {.ip = 0,};
1192
1193         event->sample.header.type = PERF_RECORD_SAMPLE;
1194         event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1195         event->sample.header.size = sizeof(struct perf_event_header);
1196
1197         sample.ip = addr;
1198         sample.pid = tidq->pid;
1199         sample.tid = tidq->tid;
1200         sample.id = etmq->etm->instructions_id;
1201         sample.stream_id = etmq->etm->instructions_id;
1202         sample.period = period;
1203         sample.cpu = tidq->packet->cpu;
1204         sample.flags = tidq->prev_packet->flags;
1205         sample.cpumode = event->sample.header.misc;
1206
1207         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1208
1209         if (etm->synth_opts.last_branch)
1210                 sample.branch_stack = tidq->last_branch;
1211
1212         if (etm->synth_opts.inject) {
1213                 ret = cs_etm__inject_event(event, &sample,
1214                                            etm->instructions_sample_type);
1215                 if (ret)
1216                         return ret;
1217         }
1218
1219         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1220
1221         if (ret)
1222                 pr_err(
1223                         "CS ETM Trace: failed to deliver instruction event, error %d\n",
1224                         ret);
1225
1226         return ret;
1227 }
1228
1229 /*
1230  * The cs etm packet encodes an instruction range between a branch target
1231  * and the next taken branch. Generate sample accordingly.
1232  */
1233 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1234                                        struct cs_etm_traceid_queue *tidq)
1235 {
1236         int ret = 0;
1237         struct cs_etm_auxtrace *etm = etmq->etm;
1238         struct perf_sample sample = {.ip = 0,};
1239         union perf_event *event = tidq->event_buf;
1240         struct dummy_branch_stack {
1241                 u64                     nr;
1242                 u64                     hw_idx;
1243                 struct branch_entry     entries;
1244         } dummy_bs;
1245         u64 ip;
1246
1247         ip = cs_etm__last_executed_instr(tidq->prev_packet);
1248
1249         event->sample.header.type = PERF_RECORD_SAMPLE;
1250         event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1251         event->sample.header.size = sizeof(struct perf_event_header);
1252
1253         sample.ip = ip;
1254         sample.pid = tidq->pid;
1255         sample.tid = tidq->tid;
1256         sample.addr = cs_etm__first_executed_instr(tidq->packet);
1257         sample.id = etmq->etm->branches_id;
1258         sample.stream_id = etmq->etm->branches_id;
1259         sample.period = 1;
1260         sample.cpu = tidq->packet->cpu;
1261         sample.flags = tidq->prev_packet->flags;
1262         sample.cpumode = event->sample.header.misc;
1263
1264         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1265                           &sample);
1266
1267         /*
1268          * perf report cannot handle events without a branch stack
1269          */
1270         if (etm->synth_opts.last_branch) {
1271                 dummy_bs = (struct dummy_branch_stack){
1272                         .nr = 1,
1273                         .hw_idx = -1ULL,
1274                         .entries = {
1275                                 .from = sample.ip,
1276                                 .to = sample.addr,
1277                         },
1278                 };
1279                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1280         }
1281
1282         if (etm->synth_opts.inject) {
1283                 ret = cs_etm__inject_event(event, &sample,
1284                                            etm->branches_sample_type);
1285                 if (ret)
1286                         return ret;
1287         }
1288
1289         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1290
1291         if (ret)
1292                 pr_err(
1293                 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1294                 ret);
1295
1296         return ret;
1297 }
1298
1299 struct cs_etm_synth {
1300         struct perf_tool dummy_tool;
1301         struct perf_session *session;
1302 };
1303
1304 static int cs_etm__event_synth(struct perf_tool *tool,
1305                                union perf_event *event,
1306                                struct perf_sample *sample __maybe_unused,
1307                                struct machine *machine __maybe_unused)
1308 {
1309         struct cs_etm_synth *cs_etm_synth =
1310                       container_of(tool, struct cs_etm_synth, dummy_tool);
1311
1312         return perf_session__deliver_synth_event(cs_etm_synth->session,
1313                                                  event, NULL);
1314 }
1315
1316 static int cs_etm__synth_event(struct perf_session *session,
1317                                struct perf_event_attr *attr, u64 id)
1318 {
1319         struct cs_etm_synth cs_etm_synth;
1320
1321         memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1322         cs_etm_synth.session = session;
1323
1324         return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1325                                            &id, cs_etm__event_synth);
1326 }
1327
1328 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1329                                 struct perf_session *session)
1330 {
1331         struct evlist *evlist = session->evlist;
1332         struct evsel *evsel;
1333         struct perf_event_attr attr;
1334         bool found = false;
1335         u64 id;
1336         int err;
1337
1338         evlist__for_each_entry(evlist, evsel) {
1339                 if (evsel->core.attr.type == etm->pmu_type) {
1340                         found = true;
1341                         break;
1342                 }
1343         }
1344
1345         if (!found) {
1346                 pr_debug("No selected events with CoreSight Trace data\n");
1347                 return 0;
1348         }
1349
1350         memset(&attr, 0, sizeof(struct perf_event_attr));
1351         attr.size = sizeof(struct perf_event_attr);
1352         attr.type = PERF_TYPE_HARDWARE;
1353         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1354         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1355                             PERF_SAMPLE_PERIOD;
1356         if (etm->timeless_decoding)
1357                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1358         else
1359                 attr.sample_type |= PERF_SAMPLE_TIME;
1360
1361         attr.exclude_user = evsel->core.attr.exclude_user;
1362         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1363         attr.exclude_hv = evsel->core.attr.exclude_hv;
1364         attr.exclude_host = evsel->core.attr.exclude_host;
1365         attr.exclude_guest = evsel->core.attr.exclude_guest;
1366         attr.sample_id_all = evsel->core.attr.sample_id_all;
1367         attr.read_format = evsel->core.attr.read_format;
1368
1369         /* create new id val to be a fixed offset from evsel id */
1370         id = evsel->core.id[0] + 1000000000;
1371
1372         if (!id)
1373                 id = 1;
1374
1375         if (etm->synth_opts.branches) {
1376                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1377                 attr.sample_period = 1;
1378                 attr.sample_type |= PERF_SAMPLE_ADDR;
1379                 err = cs_etm__synth_event(session, &attr, id);
1380                 if (err)
1381                         return err;
1382                 etm->sample_branches = true;
1383                 etm->branches_sample_type = attr.sample_type;
1384                 etm->branches_id = id;
1385                 id += 1;
1386                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1387         }
1388
1389         if (etm->synth_opts.last_branch) {
1390                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1391                 /*
1392                  * We don't use the hardware index, but the sample generation
1393                  * code uses the new format branch_stack with this field,
1394                  * so the event attributes must indicate that it's present.
1395                  */
1396                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1397         }
1398
1399         if (etm->synth_opts.instructions) {
1400                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1401                 attr.sample_period = etm->synth_opts.period;
1402                 etm->instructions_sample_period = attr.sample_period;
1403                 err = cs_etm__synth_event(session, &attr, id);
1404                 if (err)
1405                         return err;
1406                 etm->sample_instructions = true;
1407                 etm->instructions_sample_type = attr.sample_type;
1408                 etm->instructions_id = id;
1409                 id += 1;
1410         }
1411
1412         return 0;
1413 }
1414
1415 static int cs_etm__sample(struct cs_etm_queue *etmq,
1416                           struct cs_etm_traceid_queue *tidq)
1417 {
1418         struct cs_etm_auxtrace *etm = etmq->etm;
1419         int ret;
1420         u8 trace_chan_id = tidq->trace_chan_id;
1421         u64 instrs_prev;
1422
1423         /* Get instructions remainder from previous packet */
1424         instrs_prev = tidq->period_instructions;
1425
1426         tidq->period_instructions += tidq->packet->instr_count;
1427
1428         /*
1429          * Record a branch when the last instruction in
1430          * PREV_PACKET is a branch.
1431          */
1432         if (etm->synth_opts.last_branch &&
1433             tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1434             tidq->prev_packet->last_instr_taken_branch)
1435                 cs_etm__update_last_branch_rb(etmq, tidq);
1436
1437         if (etm->sample_instructions &&
1438             tidq->period_instructions >= etm->instructions_sample_period) {
1439                 /*
1440                  * Emit instruction sample periodically
1441                  * TODO: allow period to be defined in cycles and clock time
1442                  */
1443
1444                 /*
1445                  * Below diagram demonstrates the instruction samples
1446                  * generation flows:
1447                  *
1448                  *    Instrs     Instrs       Instrs       Instrs
1449                  *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1450                  *    |            |            |            |
1451                  *    V            V            V            V
1452                  *   --------------------------------------------------
1453                  *            ^                                  ^
1454                  *            |                                  |
1455                  *         Period                             Period
1456                  *    instructions(Pi)                   instructions(Pi')
1457                  *
1458                  *            |                                  |
1459                  *            \---------------- -----------------/
1460                  *                             V
1461                  *                 tidq->packet->instr_count
1462                  *
1463                  * Instrs Sample(n...) are the synthesised samples occurring
1464                  * every etm->instructions_sample_period instructions - as
1465                  * defined on the perf command line.  Sample(n) is being the
1466                  * last sample before the current etm packet, n+1 to n+3
1467                  * samples are generated from the current etm packet.
1468                  *
1469                  * tidq->packet->instr_count represents the number of
1470                  * instructions in the current etm packet.
1471                  *
1472                  * Period instructions (Pi) contains the the number of
1473                  * instructions executed after the sample point(n) from the
1474                  * previous etm packet.  This will always be less than
1475                  * etm->instructions_sample_period.
1476                  *
1477                  * When generate new samples, it combines with two parts
1478                  * instructions, one is the tail of the old packet and another
1479                  * is the head of the new coming packet, to generate
1480                  * sample(n+1); sample(n+2) and sample(n+3) consume the
1481                  * instructions with sample period.  After sample(n+3), the rest
1482                  * instructions will be used by later packet and it is assigned
1483                  * to tidq->period_instructions for next round calculation.
1484                  */
1485
1486                 /*
1487                  * Get the initial offset into the current packet instructions;
1488                  * entry conditions ensure that instrs_prev is less than
1489                  * etm->instructions_sample_period.
1490                  */
1491                 u64 offset = etm->instructions_sample_period - instrs_prev;
1492                 u64 addr;
1493
1494                 /* Prepare last branches for instruction sample */
1495                 if (etm->synth_opts.last_branch)
1496                         cs_etm__copy_last_branch_rb(etmq, tidq);
1497
1498                 while (tidq->period_instructions >=
1499                                 etm->instructions_sample_period) {
1500                         /*
1501                          * Calculate the address of the sampled instruction (-1
1502                          * as sample is reported as though instruction has just
1503                          * been executed, but PC has not advanced to next
1504                          * instruction)
1505                          */
1506                         addr = cs_etm__instr_addr(etmq, trace_chan_id,
1507                                                   tidq->packet, offset - 1);
1508                         ret = cs_etm__synth_instruction_sample(
1509                                 etmq, tidq, addr,
1510                                 etm->instructions_sample_period);
1511                         if (ret)
1512                                 return ret;
1513
1514                         offset += etm->instructions_sample_period;
1515                         tidq->period_instructions -=
1516                                 etm->instructions_sample_period;
1517                 }
1518         }
1519
1520         if (etm->sample_branches) {
1521                 bool generate_sample = false;
1522
1523                 /* Generate sample for tracing on packet */
1524                 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1525                         generate_sample = true;
1526
1527                 /* Generate sample for branch taken packet */
1528                 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1529                     tidq->prev_packet->last_instr_taken_branch)
1530                         generate_sample = true;
1531
1532                 if (generate_sample) {
1533                         ret = cs_etm__synth_branch_sample(etmq, tidq);
1534                         if (ret)
1535                                 return ret;
1536                 }
1537         }
1538
1539         cs_etm__packet_swap(etm, tidq);
1540
1541         return 0;
1542 }
1543
1544 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1545 {
1546         /*
1547          * When the exception packet is inserted, whether the last instruction
1548          * in previous range packet is taken branch or not, we need to force
1549          * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1550          * to generate branch sample for the instruction range before the
1551          * exception is trapped to kernel or before the exception returning.
1552          *
1553          * The exception packet includes the dummy address values, so don't
1554          * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1555          * for generating instruction and branch samples.
1556          */
1557         if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1558                 tidq->prev_packet->last_instr_taken_branch = true;
1559
1560         return 0;
1561 }
1562
1563 static int cs_etm__flush(struct cs_etm_queue *etmq,
1564                          struct cs_etm_traceid_queue *tidq)
1565 {
1566         int err = 0;
1567         struct cs_etm_auxtrace *etm = etmq->etm;
1568
1569         /* Handle start tracing packet */
1570         if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1571                 goto swap_packet;
1572
1573         if (etmq->etm->synth_opts.last_branch &&
1574             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1575                 u64 addr;
1576
1577                 /* Prepare last branches for instruction sample */
1578                 cs_etm__copy_last_branch_rb(etmq, tidq);
1579
1580                 /*
1581                  * Generate a last branch event for the branches left in the
1582                  * circular buffer at the end of the trace.
1583                  *
1584                  * Use the address of the end of the last reported execution
1585                  * range
1586                  */
1587                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1588
1589                 err = cs_etm__synth_instruction_sample(
1590                         etmq, tidq, addr,
1591                         tidq->period_instructions);
1592                 if (err)
1593                         return err;
1594
1595                 tidq->period_instructions = 0;
1596
1597         }
1598
1599         if (etm->sample_branches &&
1600             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1601                 err = cs_etm__synth_branch_sample(etmq, tidq);
1602                 if (err)
1603                         return err;
1604         }
1605
1606 swap_packet:
1607         cs_etm__packet_swap(etm, tidq);
1608
1609         /* Reset last branches after flush the trace */
1610         if (etm->synth_opts.last_branch)
1611                 cs_etm__reset_last_branch_rb(tidq);
1612
1613         return err;
1614 }
1615
1616 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1617                              struct cs_etm_traceid_queue *tidq)
1618 {
1619         int err;
1620
1621         /*
1622          * It has no new packet coming and 'etmq->packet' contains the stale
1623          * packet which was set at the previous time with packets swapping;
1624          * so skip to generate branch sample to avoid stale packet.
1625          *
1626          * For this case only flush branch stack and generate a last branch
1627          * event for the branches left in the circular buffer at the end of
1628          * the trace.
1629          */
1630         if (etmq->etm->synth_opts.last_branch &&
1631             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1632                 u64 addr;
1633
1634                 /* Prepare last branches for instruction sample */
1635                 cs_etm__copy_last_branch_rb(etmq, tidq);
1636
1637                 /*
1638                  * Use the address of the end of the last reported execution
1639                  * range.
1640                  */
1641                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1642
1643                 err = cs_etm__synth_instruction_sample(
1644                         etmq, tidq, addr,
1645                         tidq->period_instructions);
1646                 if (err)
1647                         return err;
1648
1649                 tidq->period_instructions = 0;
1650         }
1651
1652         return 0;
1653 }
1654 /*
1655  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1656  *                         if need be.
1657  * Returns:     < 0     if error
1658  *              = 0     if no more auxtrace_buffer to read
1659  *              > 0     if the current buffer isn't empty yet
1660  */
1661 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1662 {
1663         int ret;
1664
1665         if (!etmq->buf_len) {
1666                 ret = cs_etm__get_trace(etmq);
1667                 if (ret <= 0)
1668                         return ret;
1669                 /*
1670                  * We cannot assume consecutive blocks in the data file
1671                  * are contiguous, reset the decoder to force re-sync.
1672                  */
1673                 ret = cs_etm_decoder__reset(etmq->decoder);
1674                 if (ret)
1675                         return ret;
1676         }
1677
1678         return etmq->buf_len;
1679 }
1680
1681 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1682                                  struct cs_etm_packet *packet,
1683                                  u64 end_addr)
1684 {
1685         /* Initialise to keep compiler happy */
1686         u16 instr16 = 0;
1687         u32 instr32 = 0;
1688         u64 addr;
1689
1690         switch (packet->isa) {
1691         case CS_ETM_ISA_T32:
1692                 /*
1693                  * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1694                  *
1695                  *  b'15         b'8
1696                  * +-----------------+--------+
1697                  * | 1 1 0 1 1 1 1 1 |  imm8  |
1698                  * +-----------------+--------+
1699                  *
1700                  * According to the specification, it only defines SVC for T32
1701                  * with 16 bits instruction and has no definition for 32bits;
1702                  * so below only read 2 bytes as instruction size for T32.
1703                  */
1704                 addr = end_addr - 2;
1705                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1706                                    sizeof(instr16), (u8 *)&instr16);
1707                 if ((instr16 & 0xFF00) == 0xDF00)
1708                         return true;
1709
1710                 break;
1711         case CS_ETM_ISA_A32:
1712                 /*
1713                  * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1714                  *
1715                  *  b'31 b'28 b'27 b'24
1716                  * +---------+---------+-------------------------+
1717                  * |  !1111  | 1 1 1 1 |        imm24            |
1718                  * +---------+---------+-------------------------+
1719                  */
1720                 addr = end_addr - 4;
1721                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1722                                    sizeof(instr32), (u8 *)&instr32);
1723                 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1724                     (instr32 & 0xF0000000) != 0xF0000000)
1725                         return true;
1726
1727                 break;
1728         case CS_ETM_ISA_A64:
1729                 /*
1730                  * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1731                  *
1732                  *  b'31               b'21           b'4     b'0
1733                  * +-----------------------+---------+-----------+
1734                  * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1735                  * +-----------------------+---------+-----------+
1736                  */
1737                 addr = end_addr - 4;
1738                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1739                                    sizeof(instr32), (u8 *)&instr32);
1740                 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1741                         return true;
1742
1743                 break;
1744         case CS_ETM_ISA_UNKNOWN:
1745         default:
1746                 break;
1747         }
1748
1749         return false;
1750 }
1751
1752 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1753                                struct cs_etm_traceid_queue *tidq, u64 magic)
1754 {
1755         u8 trace_chan_id = tidq->trace_chan_id;
1756         struct cs_etm_packet *packet = tidq->packet;
1757         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1758
1759         if (magic == __perf_cs_etmv3_magic)
1760                 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1761                         return true;
1762
1763         /*
1764          * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1765          * HVC cases; need to check if it's SVC instruction based on
1766          * packet address.
1767          */
1768         if (magic == __perf_cs_etmv4_magic) {
1769                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1770                     cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1771                                          prev_packet->end_addr))
1772                         return true;
1773         }
1774
1775         return false;
1776 }
1777
1778 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1779                                        u64 magic)
1780 {
1781         struct cs_etm_packet *packet = tidq->packet;
1782
1783         if (magic == __perf_cs_etmv3_magic)
1784                 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1785                     packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1786                     packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1787                     packet->exception_number == CS_ETMV3_EXC_IRQ ||
1788                     packet->exception_number == CS_ETMV3_EXC_FIQ)
1789                         return true;
1790
1791         if (magic == __perf_cs_etmv4_magic)
1792                 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1793                     packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1794                     packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1795                     packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1796                     packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1797                     packet->exception_number == CS_ETMV4_EXC_IRQ ||
1798                     packet->exception_number == CS_ETMV4_EXC_FIQ)
1799                         return true;
1800
1801         return false;
1802 }
1803
1804 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1805                                       struct cs_etm_traceid_queue *tidq,
1806                                       u64 magic)
1807 {
1808         u8 trace_chan_id = tidq->trace_chan_id;
1809         struct cs_etm_packet *packet = tidq->packet;
1810         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1811
1812         if (magic == __perf_cs_etmv3_magic)
1813                 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1814                     packet->exception_number == CS_ETMV3_EXC_HYP ||
1815                     packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1816                     packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1817                     packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1818                     packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1819                     packet->exception_number == CS_ETMV3_EXC_GENERIC)
1820                         return true;
1821
1822         if (magic == __perf_cs_etmv4_magic) {
1823                 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1824                     packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1825                     packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1826                     packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1827                         return true;
1828
1829                 /*
1830                  * For CS_ETMV4_EXC_CALL, except SVC other instructions
1831                  * (SMC, HVC) are taken as sync exceptions.
1832                  */
1833                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1834                     !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1835                                           prev_packet->end_addr))
1836                         return true;
1837
1838                 /*
1839                  * ETMv4 has 5 bits for exception number; if the numbers
1840                  * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1841                  * they are implementation defined exceptions.
1842                  *
1843                  * For this case, simply take it as sync exception.
1844                  */
1845                 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1846                     packet->exception_number <= CS_ETMV4_EXC_END)
1847                         return true;
1848         }
1849
1850         return false;
1851 }
1852
1853 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1854                                     struct cs_etm_traceid_queue *tidq)
1855 {
1856         struct cs_etm_packet *packet = tidq->packet;
1857         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1858         u8 trace_chan_id = tidq->trace_chan_id;
1859         u64 magic;
1860         int ret;
1861
1862         switch (packet->sample_type) {
1863         case CS_ETM_RANGE:
1864                 /*
1865                  * Immediate branch instruction without neither link nor
1866                  * return flag, it's normal branch instruction within
1867                  * the function.
1868                  */
1869                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1870                     packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1871                         packet->flags = PERF_IP_FLAG_BRANCH;
1872
1873                         if (packet->last_instr_cond)
1874                                 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1875                 }
1876
1877                 /*
1878                  * Immediate branch instruction with link (e.g. BL), this is
1879                  * branch instruction for function call.
1880                  */
1881                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1882                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1883                         packet->flags = PERF_IP_FLAG_BRANCH |
1884                                         PERF_IP_FLAG_CALL;
1885
1886                 /*
1887                  * Indirect branch instruction with link (e.g. BLR), this is
1888                  * branch instruction for function call.
1889                  */
1890                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1891                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1892                         packet->flags = PERF_IP_FLAG_BRANCH |
1893                                         PERF_IP_FLAG_CALL;
1894
1895                 /*
1896                  * Indirect branch instruction with subtype of
1897                  * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1898                  * function return for A32/T32.
1899                  */
1900                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1901                     packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1902                         packet->flags = PERF_IP_FLAG_BRANCH |
1903                                         PERF_IP_FLAG_RETURN;
1904
1905                 /*
1906                  * Indirect branch instruction without link (e.g. BR), usually
1907                  * this is used for function return, especially for functions
1908                  * within dynamic link lib.
1909                  */
1910                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1911                     packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1912                         packet->flags = PERF_IP_FLAG_BRANCH |
1913                                         PERF_IP_FLAG_RETURN;
1914
1915                 /* Return instruction for function return. */
1916                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1917                     packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1918                         packet->flags = PERF_IP_FLAG_BRANCH |
1919                                         PERF_IP_FLAG_RETURN;
1920
1921                 /*
1922                  * Decoder might insert a discontinuity in the middle of
1923                  * instruction packets, fixup prev_packet with flag
1924                  * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1925                  */
1926                 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1927                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1928                                               PERF_IP_FLAG_TRACE_BEGIN;
1929
1930                 /*
1931                  * If the previous packet is an exception return packet
1932                  * and the return address just follows SVC instruction,
1933                  * it needs to calibrate the previous packet sample flags
1934                  * as PERF_IP_FLAG_SYSCALLRET.
1935                  */
1936                 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1937                                            PERF_IP_FLAG_RETURN |
1938                                            PERF_IP_FLAG_INTERRUPT) &&
1939                     cs_etm__is_svc_instr(etmq, trace_chan_id,
1940                                          packet, packet->start_addr))
1941                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
1942                                              PERF_IP_FLAG_RETURN |
1943                                              PERF_IP_FLAG_SYSCALLRET;
1944                 break;
1945         case CS_ETM_DISCONTINUITY:
1946                 /*
1947                  * The trace is discontinuous, if the previous packet is
1948                  * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1949                  * for previous packet.
1950                  */
1951                 if (prev_packet->sample_type == CS_ETM_RANGE)
1952                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1953                                               PERF_IP_FLAG_TRACE_END;
1954                 break;
1955         case CS_ETM_EXCEPTION:
1956                 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1957                 if (ret)
1958                         return ret;
1959
1960                 /* The exception is for system call. */
1961                 if (cs_etm__is_syscall(etmq, tidq, magic))
1962                         packet->flags = PERF_IP_FLAG_BRANCH |
1963                                         PERF_IP_FLAG_CALL |
1964                                         PERF_IP_FLAG_SYSCALLRET;
1965                 /*
1966                  * The exceptions are triggered by external signals from bus,
1967                  * interrupt controller, debug module, PE reset or halt.
1968                  */
1969                 else if (cs_etm__is_async_exception(tidq, magic))
1970                         packet->flags = PERF_IP_FLAG_BRANCH |
1971                                         PERF_IP_FLAG_CALL |
1972                                         PERF_IP_FLAG_ASYNC |
1973                                         PERF_IP_FLAG_INTERRUPT;
1974                 /*
1975                  * Otherwise, exception is caused by trap, instruction &
1976                  * data fault, or alignment errors.
1977                  */
1978                 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1979                         packet->flags = PERF_IP_FLAG_BRANCH |
1980                                         PERF_IP_FLAG_CALL |
1981                                         PERF_IP_FLAG_INTERRUPT;
1982
1983                 /*
1984                  * When the exception packet is inserted, since exception
1985                  * packet is not used standalone for generating samples
1986                  * and it's affiliation to the previous instruction range
1987                  * packet; so set previous range packet flags to tell perf
1988                  * it is an exception taken branch.
1989                  */
1990                 if (prev_packet->sample_type == CS_ETM_RANGE)
1991                         prev_packet->flags = packet->flags;
1992                 break;
1993         case CS_ETM_EXCEPTION_RET:
1994                 /*
1995                  * When the exception return packet is inserted, since
1996                  * exception return packet is not used standalone for
1997                  * generating samples and it's affiliation to the previous
1998                  * instruction range packet; so set previous range packet
1999                  * flags to tell perf it is an exception return branch.
2000                  *
2001                  * The exception return can be for either system call or
2002                  * other exception types; unfortunately the packet doesn't
2003                  * contain exception type related info so we cannot decide
2004                  * the exception type purely based on exception return packet.
2005                  * If we record the exception number from exception packet and
2006                  * reuse it for exception return packet, this is not reliable
2007                  * due the trace can be discontinuity or the interrupt can
2008                  * be nested, thus the recorded exception number cannot be
2009                  * used for exception return packet for these two cases.
2010                  *
2011                  * For exception return packet, we only need to distinguish the
2012                  * packet is for system call or for other types.  Thus the
2013                  * decision can be deferred when receive the next packet which
2014                  * contains the return address, based on the return address we
2015                  * can read out the previous instruction and check if it's a
2016                  * system call instruction and then calibrate the sample flag
2017                  * as needed.
2018                  */
2019                 if (prev_packet->sample_type == CS_ETM_RANGE)
2020                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
2021                                              PERF_IP_FLAG_RETURN |
2022                                              PERF_IP_FLAG_INTERRUPT;
2023                 break;
2024         case CS_ETM_EMPTY:
2025         default:
2026                 break;
2027         }
2028
2029         return 0;
2030 }
2031
2032 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2033 {
2034         int ret = 0;
2035         size_t processed = 0;
2036
2037         /*
2038          * Packets are decoded and added to the decoder's packet queue
2039          * until the decoder packet processing callback has requested that
2040          * processing stops or there is nothing left in the buffer.  Normal
2041          * operations that stop processing are a timestamp packet or a full
2042          * decoder buffer queue.
2043          */
2044         ret = cs_etm_decoder__process_data_block(etmq->decoder,
2045                                                  etmq->offset,
2046                                                  &etmq->buf[etmq->buf_used],
2047                                                  etmq->buf_len,
2048                                                  &processed);
2049         if (ret)
2050                 goto out;
2051
2052         etmq->offset += processed;
2053         etmq->buf_used += processed;
2054         etmq->buf_len -= processed;
2055
2056 out:
2057         return ret;
2058 }
2059
2060 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2061                                          struct cs_etm_traceid_queue *tidq)
2062 {
2063         int ret;
2064         struct cs_etm_packet_queue *packet_queue;
2065
2066         packet_queue = &tidq->packet_queue;
2067
2068         /* Process each packet in this chunk */
2069         while (1) {
2070                 ret = cs_etm_decoder__get_packet(packet_queue,
2071                                                  tidq->packet);
2072                 if (ret <= 0)
2073                         /*
2074                          * Stop processing this chunk on
2075                          * end of data or error
2076                          */
2077                         break;
2078
2079                 /*
2080                  * Since packet addresses are swapped in packet
2081                  * handling within below switch() statements,
2082                  * thus setting sample flags must be called
2083                  * prior to switch() statement to use address
2084                  * information before packets swapping.
2085                  */
2086                 ret = cs_etm__set_sample_flags(etmq, tidq);
2087                 if (ret < 0)
2088                         break;
2089
2090                 switch (tidq->packet->sample_type) {
2091                 case CS_ETM_RANGE:
2092                         /*
2093                          * If the packet contains an instruction
2094                          * range, generate instruction sequence
2095                          * events.
2096                          */
2097                         cs_etm__sample(etmq, tidq);
2098                         break;
2099                 case CS_ETM_EXCEPTION:
2100                 case CS_ETM_EXCEPTION_RET:
2101                         /*
2102                          * If the exception packet is coming,
2103                          * make sure the previous instruction
2104                          * range packet to be handled properly.
2105                          */
2106                         cs_etm__exception(tidq);
2107                         break;
2108                 case CS_ETM_DISCONTINUITY:
2109                         /*
2110                          * Discontinuity in trace, flush
2111                          * previous branch stack
2112                          */
2113                         cs_etm__flush(etmq, tidq);
2114                         break;
2115                 case CS_ETM_EMPTY:
2116                         /*
2117                          * Should not receive empty packet,
2118                          * report error.
2119                          */
2120                         pr_err("CS ETM Trace: empty packet\n");
2121                         return -EINVAL;
2122                 default:
2123                         break;
2124                 }
2125         }
2126
2127         return ret;
2128 }
2129
2130 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2131 {
2132         int idx;
2133         struct int_node *inode;
2134         struct cs_etm_traceid_queue *tidq;
2135         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2136
2137         intlist__for_each_entry(inode, traceid_queues_list) {
2138                 idx = (int)(intptr_t)inode->priv;
2139                 tidq = etmq->traceid_queues[idx];
2140
2141                 /* Ignore return value */
2142                 cs_etm__process_traceid_queue(etmq, tidq);
2143
2144                 /*
2145                  * Generate an instruction sample with the remaining
2146                  * branchstack entries.
2147                  */
2148                 cs_etm__flush(etmq, tidq);
2149         }
2150 }
2151
2152 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2153 {
2154         int err = 0;
2155         struct cs_etm_traceid_queue *tidq;
2156
2157         tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2158         if (!tidq)
2159                 return -EINVAL;
2160
2161         /* Go through each buffer in the queue and decode them one by one */
2162         while (1) {
2163                 err = cs_etm__get_data_block(etmq);
2164                 if (err <= 0)
2165                         return err;
2166
2167                 /* Run trace decoder until buffer consumed or end of trace */
2168                 do {
2169                         err = cs_etm__decode_data_block(etmq);
2170                         if (err)
2171                                 return err;
2172
2173                         /*
2174                          * Process each packet in this chunk, nothing to do if
2175                          * an error occurs other than hoping the next one will
2176                          * be better.
2177                          */
2178                         err = cs_etm__process_traceid_queue(etmq, tidq);
2179
2180                 } while (etmq->buf_len);
2181
2182                 if (err == 0)
2183                         /* Flush any remaining branch stack entries */
2184                         err = cs_etm__end_block(etmq, tidq);
2185         }
2186
2187         return err;
2188 }
2189
2190 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2191                                            pid_t tid)
2192 {
2193         unsigned int i;
2194         struct auxtrace_queues *queues = &etm->queues;
2195
2196         for (i = 0; i < queues->nr_queues; i++) {
2197                 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2198                 struct cs_etm_queue *etmq = queue->priv;
2199                 struct cs_etm_traceid_queue *tidq;
2200
2201                 if (!etmq)
2202                         continue;
2203
2204                 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2205                                                 CS_ETM_PER_THREAD_TRACEID);
2206
2207                 if (!tidq)
2208                         continue;
2209
2210                 if ((tid == -1) || (tidq->tid == tid)) {
2211                         cs_etm__set_pid_tid_cpu(etm, tidq);
2212                         cs_etm__run_decoder(etmq);
2213                 }
2214         }
2215
2216         return 0;
2217 }
2218
2219 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2220 {
2221         int ret = 0;
2222         unsigned int cs_queue_nr, queue_nr;
2223         u8 trace_chan_id;
2224         u64 timestamp;
2225         struct auxtrace_queue *queue;
2226         struct cs_etm_queue *etmq;
2227         struct cs_etm_traceid_queue *tidq;
2228
2229         while (1) {
2230                 if (!etm->heap.heap_cnt)
2231                         goto out;
2232
2233                 /* Take the entry at the top of the min heap */
2234                 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2235                 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2236                 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2237                 queue = &etm->queues.queue_array[queue_nr];
2238                 etmq = queue->priv;
2239
2240                 /*
2241                  * Remove the top entry from the heap since we are about
2242                  * to process it.
2243                  */
2244                 auxtrace_heap__pop(&etm->heap);
2245
2246                 tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2247                 if (!tidq) {
2248                         /*
2249                          * No traceID queue has been allocated for this traceID,
2250                          * which means something somewhere went very wrong.  No
2251                          * other choice than simply exit.
2252                          */
2253                         ret = -EINVAL;
2254                         goto out;
2255                 }
2256
2257                 /*
2258                  * Packets associated with this timestamp are already in
2259                  * the etmq's traceID queue, so process them.
2260                  */
2261                 ret = cs_etm__process_traceid_queue(etmq, tidq);
2262                 if (ret < 0)
2263                         goto out;
2264
2265                 /*
2266                  * Packets for this timestamp have been processed, time to
2267                  * move on to the next timestamp, fetching a new auxtrace_buffer
2268                  * if need be.
2269                  */
2270 refetch:
2271                 ret = cs_etm__get_data_block(etmq);
2272                 if (ret < 0)
2273                         goto out;
2274
2275                 /*
2276                  * No more auxtrace_buffers to process in this etmq, simply
2277                  * move on to another entry in the auxtrace_heap.
2278                  */
2279                 if (!ret)
2280                         continue;
2281
2282                 ret = cs_etm__decode_data_block(etmq);
2283                 if (ret)
2284                         goto out;
2285
2286                 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2287
2288                 if (!timestamp) {
2289                         /*
2290                          * Function cs_etm__decode_data_block() returns when
2291                          * there is no more traces to decode in the current
2292                          * auxtrace_buffer OR when a timestamp has been
2293                          * encountered on any of the traceID queues.  Since we
2294                          * did not get a timestamp, there is no more traces to
2295                          * process in this auxtrace_buffer.  As such empty and
2296                          * flush all traceID queues.
2297                          */
2298                         cs_etm__clear_all_traceid_queues(etmq);
2299
2300                         /* Fetch another auxtrace_buffer for this etmq */
2301                         goto refetch;
2302                 }
2303
2304                 /*
2305                  * Add to the min heap the timestamp for packets that have
2306                  * just been decoded.  They will be processed and synthesized
2307                  * during the next call to cs_etm__process_traceid_queue() for
2308                  * this queue/traceID.
2309                  */
2310                 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2311                 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2312         }
2313
2314 out:
2315         return ret;
2316 }
2317
2318 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2319                                         union perf_event *event)
2320 {
2321         struct thread *th;
2322
2323         if (etm->timeless_decoding)
2324                 return 0;
2325
2326         /*
2327          * Add the tid/pid to the log so that we can get a match when
2328          * we get a contextID from the decoder.
2329          */
2330         th = machine__findnew_thread(etm->machine,
2331                                      event->itrace_start.pid,
2332                                      event->itrace_start.tid);
2333         if (!th)
2334                 return -ENOMEM;
2335
2336         thread__put(th);
2337
2338         return 0;
2339 }
2340
2341 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2342                                            union perf_event *event)
2343 {
2344         struct thread *th;
2345         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2346
2347         /*
2348          * Context switch in per-thread mode are irrelevant since perf
2349          * will start/stop tracing as the process is scheduled.
2350          */
2351         if (etm->timeless_decoding)
2352                 return 0;
2353
2354         /*
2355          * SWITCH_IN events carry the next process to be switched out while
2356          * SWITCH_OUT events carry the process to be switched in.  As such
2357          * we don't care about IN events.
2358          */
2359         if (!out)
2360                 return 0;
2361
2362         /*
2363          * Add the tid/pid to the log so that we can get a match when
2364          * we get a contextID from the decoder.
2365          */
2366         th = machine__findnew_thread(etm->machine,
2367                                      event->context_switch.next_prev_pid,
2368                                      event->context_switch.next_prev_tid);
2369         if (!th)
2370                 return -ENOMEM;
2371
2372         thread__put(th);
2373
2374         return 0;
2375 }
2376
2377 static int cs_etm__process_event(struct perf_session *session,
2378                                  union perf_event *event,
2379                                  struct perf_sample *sample,
2380                                  struct perf_tool *tool)
2381 {
2382         int err = 0;
2383         u64 timestamp;
2384         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2385                                                    struct cs_etm_auxtrace,
2386                                                    auxtrace);
2387
2388         if (dump_trace)
2389                 return 0;
2390
2391         if (!tool->ordered_events) {
2392                 pr_err("CoreSight ETM Trace requires ordered events\n");
2393                 return -EINVAL;
2394         }
2395
2396         if (sample->time && (sample->time != (u64) -1))
2397                 timestamp = sample->time;
2398         else
2399                 timestamp = 0;
2400
2401         if (timestamp || etm->timeless_decoding) {
2402                 err = cs_etm__update_queues(etm);
2403                 if (err)
2404                         return err;
2405         }
2406
2407         if (etm->timeless_decoding &&
2408             event->header.type == PERF_RECORD_EXIT)
2409                 return cs_etm__process_timeless_queues(etm,
2410                                                        event->fork.tid);
2411
2412         if (event->header.type == PERF_RECORD_ITRACE_START)
2413                 return cs_etm__process_itrace_start(etm, event);
2414         else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2415                 return cs_etm__process_switch_cpu_wide(etm, event);
2416
2417         if (!etm->timeless_decoding &&
2418             event->header.type == PERF_RECORD_AUX)
2419                 return cs_etm__process_queues(etm);
2420
2421         return 0;
2422 }
2423
2424 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2425                                           union perf_event *event,
2426                                           struct perf_tool *tool __maybe_unused)
2427 {
2428         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2429                                                    struct cs_etm_auxtrace,
2430                                                    auxtrace);
2431         if (!etm->data_queued) {
2432                 struct auxtrace_buffer *buffer;
2433                 off_t  data_offset;
2434                 int fd = perf_data__fd(session->data);
2435                 bool is_pipe = perf_data__is_pipe(session->data);
2436                 int err;
2437
2438                 if (is_pipe)
2439                         data_offset = 0;
2440                 else {
2441                         data_offset = lseek(fd, 0, SEEK_CUR);
2442                         if (data_offset == -1)
2443                                 return -errno;
2444                 }
2445
2446                 err = auxtrace_queues__add_event(&etm->queues, session,
2447                                                  event, data_offset, &buffer);
2448                 if (err)
2449                         return err;
2450
2451                 if (dump_trace)
2452                         if (auxtrace_buffer__get_data(buffer, fd)) {
2453                                 cs_etm__dump_event(etm, buffer);
2454                                 auxtrace_buffer__put_data(buffer);
2455                         }
2456         }
2457
2458         return 0;
2459 }
2460
2461 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2462 {
2463         struct evsel *evsel;
2464         struct evlist *evlist = etm->session->evlist;
2465         bool timeless_decoding = true;
2466
2467         /*
2468          * Circle through the list of event and complain if we find one
2469          * with the time bit set.
2470          */
2471         evlist__for_each_entry(evlist, evsel) {
2472                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2473                         timeless_decoding = false;
2474         }
2475
2476         return timeless_decoding;
2477 }
2478
2479 static const char * const cs_etm_global_header_fmts[] = {
2480         [CS_HEADER_VERSION]     = "     Header version                 %llx\n",
2481         [CS_PMU_TYPE_CPUS]      = "     PMU type/num cpus              %llx\n",
2482         [CS_ETM_SNAPSHOT]       = "     Snapshot                       %llx\n",
2483 };
2484
2485 static const char * const cs_etm_priv_fmts[] = {
2486         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2487         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2488         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2489         [CS_ETM_ETMCR]          = "     ETMCR                          %llx\n",
2490         [CS_ETM_ETMTRACEIDR]    = "     ETMTRACEIDR                    %llx\n",
2491         [CS_ETM_ETMCCER]        = "     ETMCCER                        %llx\n",
2492         [CS_ETM_ETMIDR]         = "     ETMIDR                         %llx\n",
2493 };
2494
2495 static const char * const cs_etmv4_priv_fmts[] = {
2496         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2497         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2498         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2499         [CS_ETMV4_TRCCONFIGR]   = "     TRCCONFIGR                     %llx\n",
2500         [CS_ETMV4_TRCTRACEIDR]  = "     TRCTRACEIDR                    %llx\n",
2501         [CS_ETMV4_TRCIDR0]      = "     TRCIDR0                        %llx\n",
2502         [CS_ETMV4_TRCIDR1]      = "     TRCIDR1                        %llx\n",
2503         [CS_ETMV4_TRCIDR2]      = "     TRCIDR2                        %llx\n",
2504         [CS_ETMV4_TRCIDR8]      = "     TRCIDR8                        %llx\n",
2505         [CS_ETMV4_TRCAUTHSTATUS] = "    TRCAUTHSTATUS                  %llx\n",
2506 };
2507
2508 static const char * const param_unk_fmt =
2509         "       Unknown parameter [%d]         %llx\n";
2510 static const char * const magic_unk_fmt =
2511         "       Magic number Unknown           %llx\n";
2512
2513 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2514 {
2515         int i = *offset, j, nr_params = 0, fmt_offset;
2516         __u64 magic;
2517
2518         /* check magic value */
2519         magic = val[i + CS_ETM_MAGIC];
2520         if ((magic != __perf_cs_etmv3_magic) &&
2521             (magic != __perf_cs_etmv4_magic)) {
2522                 /* failure - note bad magic value */
2523                 fprintf(stdout, magic_unk_fmt, magic);
2524                 return -EINVAL;
2525         }
2526
2527         /* print common header block */
2528         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2529         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2530
2531         if (magic == __perf_cs_etmv3_magic) {
2532                 nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2533                 fmt_offset = CS_ETM_ETMCR;
2534                 /* after common block, offset format index past NR_PARAMS */
2535                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2536                         fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2537         } else if (magic == __perf_cs_etmv4_magic) {
2538                 nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2539                 fmt_offset = CS_ETMV4_TRCCONFIGR;
2540                 /* after common block, offset format index past NR_PARAMS */
2541                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2542                         fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2543         }
2544         *offset = i;
2545         return 0;
2546 }
2547
2548 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2549 {
2550         int i = *offset, j, total_params = 0;
2551         __u64 magic;
2552
2553         magic = val[i + CS_ETM_MAGIC];
2554         /* total params to print is NR_PARAMS + common block size for v1 */
2555         total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2556
2557         if (magic == __perf_cs_etmv3_magic) {
2558                 for (j = 0; j < total_params; j++, i++) {
2559                         /* if newer record - could be excess params */
2560                         if (j >= CS_ETM_PRIV_MAX)
2561                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2562                         else
2563                                 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2564                 }
2565         } else if (magic == __perf_cs_etmv4_magic) {
2566                 for (j = 0; j < total_params; j++, i++) {
2567                         /* if newer record - could be excess params */
2568                         if (j >= CS_ETMV4_PRIV_MAX)
2569                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2570                         else
2571                                 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2572                 }
2573         } else {
2574                 /* failure - note bad magic value and error out */
2575                 fprintf(stdout, magic_unk_fmt, magic);
2576                 return -EINVAL;
2577         }
2578         *offset = i;
2579         return 0;
2580 }
2581
2582 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2583 {
2584         int i, cpu = 0, version, err;
2585
2586         /* bail out early on bad header version */
2587         version = val[0];
2588         if (version > CS_HEADER_CURRENT_VERSION) {
2589                 /* failure.. return */
2590                 fprintf(stdout, "       Unknown Header Version = %x, ", version);
2591                 fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2592                 return;
2593         }
2594
2595         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2596                 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2597
2598         for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2599                 if (version == 0)
2600                         err = cs_etm__print_cpu_metadata_v0(val, &i);
2601                 else if (version == 1)
2602                         err = cs_etm__print_cpu_metadata_v1(val, &i);
2603                 if (err)
2604                         return;
2605         }
2606 }
2607
2608 /*
2609  * Read a single cpu parameter block from the auxtrace_info priv block.
2610  *
2611  * For version 1 there is a per cpu nr_params entry. If we are handling
2612  * version 1 file, then there may be less, the same, or more params
2613  * indicated by this value than the compile time number we understand.
2614  *
2615  * For a version 0 info block, there are a fixed number, and we need to
2616  * fill out the nr_param value in the metadata we create.
2617  */
2618 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2619                                     int out_blk_size, int nr_params_v0)
2620 {
2621         u64 *metadata = NULL;
2622         int hdr_version;
2623         int nr_in_params, nr_out_params, nr_cmn_params;
2624         int i, k;
2625
2626         metadata = zalloc(sizeof(*metadata) * out_blk_size);
2627         if (!metadata)
2628                 return NULL;
2629
2630         /* read block current index & version */
2631         i = *buff_in_offset;
2632         hdr_version = buff_in[CS_HEADER_VERSION];
2633
2634         if (!hdr_version) {
2635         /* read version 0 info block into a version 1 metadata block  */
2636                 nr_in_params = nr_params_v0;
2637                 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2638                 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2639                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2640                 /* remaining block params at offset +1 from source */
2641                 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2642                         metadata[k + 1] = buff_in[i + k];
2643                 /* version 0 has 2 common params */
2644                 nr_cmn_params = 2;
2645         } else {
2646         /* read version 1 info block - input and output nr_params may differ */
2647                 /* version 1 has 3 common params */
2648                 nr_cmn_params = 3;
2649                 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2650
2651                 /* if input has more params than output - skip excess */
2652                 nr_out_params = nr_in_params + nr_cmn_params;
2653                 if (nr_out_params > out_blk_size)
2654                         nr_out_params = out_blk_size;
2655
2656                 for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2657                         metadata[k] = buff_in[i + k];
2658
2659                 /* record the actual nr params we copied */
2660                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2661         }
2662
2663         /* adjust in offset by number of in params used */
2664         i += nr_in_params + nr_cmn_params;
2665         *buff_in_offset = i;
2666         return metadata;
2667 }
2668
2669 int cs_etm__process_auxtrace_info(union perf_event *event,
2670                                   struct perf_session *session)
2671 {
2672         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2673         struct cs_etm_auxtrace *etm = NULL;
2674         struct int_node *inode;
2675         unsigned int pmu_type;
2676         int event_header_size = sizeof(struct perf_event_header);
2677         int info_header_size;
2678         int total_size = auxtrace_info->header.size;
2679         int priv_size = 0;
2680         int num_cpu, trcidr_idx;
2681         int err = 0;
2682         int i, j;
2683         u64 *ptr, *hdr = NULL;
2684         u64 **metadata = NULL;
2685         u64 hdr_version;
2686
2687         /*
2688          * sizeof(auxtrace_info_event::type) +
2689          * sizeof(auxtrace_info_event::reserved) == 8
2690          */
2691         info_header_size = 8;
2692
2693         if (total_size < (event_header_size + info_header_size))
2694                 return -EINVAL;
2695
2696         priv_size = total_size - event_header_size - info_header_size;
2697
2698         /* First the global part */
2699         ptr = (u64 *) auxtrace_info->priv;
2700
2701         /* Look for version of the header */
2702         hdr_version = ptr[0];
2703         if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2704                 /* print routine will print an error on bad version */
2705                 if (dump_trace)
2706                         cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2707                 return -EINVAL;
2708         }
2709
2710         hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2711         if (!hdr)
2712                 return -ENOMEM;
2713
2714         /* Extract header information - see cs-etm.h for format */
2715         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2716                 hdr[i] = ptr[i];
2717         num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2718         pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2719                                     0xffffffff);
2720
2721         /*
2722          * Create an RB tree for traceID-metadata tuple.  Since the conversion
2723          * has to be made for each packet that gets decoded, optimizing access
2724          * in anything other than a sequential array is worth doing.
2725          */
2726         traceid_list = intlist__new(NULL);
2727         if (!traceid_list) {
2728                 err = -ENOMEM;
2729                 goto err_free_hdr;
2730         }
2731
2732         metadata = zalloc(sizeof(*metadata) * num_cpu);
2733         if (!metadata) {
2734                 err = -ENOMEM;
2735                 goto err_free_traceid_list;
2736         }
2737
2738         /*
2739          * The metadata is stored in the auxtrace_info section and encodes
2740          * the configuration of the ARM embedded trace macrocell which is
2741          * required by the trace decoder to properly decode the trace due
2742          * to its highly compressed nature.
2743          */
2744         for (j = 0; j < num_cpu; j++) {
2745                 if (ptr[i] == __perf_cs_etmv3_magic) {
2746                         metadata[j] =
2747                                 cs_etm__create_meta_blk(ptr, &i,
2748                                                         CS_ETM_PRIV_MAX,
2749                                                         CS_ETM_NR_TRC_PARAMS_V0);
2750
2751                         /* The traceID is our handle */
2752                         trcidr_idx = CS_ETM_ETMTRACEIDR;
2753
2754                 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2755                         metadata[j] =
2756                                 cs_etm__create_meta_blk(ptr, &i,
2757                                                         CS_ETMV4_PRIV_MAX,
2758                                                         CS_ETMV4_NR_TRC_PARAMS_V0);
2759
2760                         /* The traceID is our handle */
2761                         trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2762                 }
2763
2764                 if (!metadata[j]) {
2765                         err = -ENOMEM;
2766                         goto err_free_metadata;
2767                 }
2768
2769                 /* Get an RB node for this CPU */
2770                 inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2771
2772                 /* Something went wrong, no need to continue */
2773                 if (!inode) {
2774                         err = -ENOMEM;
2775                         goto err_free_metadata;
2776                 }
2777
2778                 /*
2779                  * The node for that CPU should not be taken.
2780                  * Back out if that's the case.
2781                  */
2782                 if (inode->priv) {
2783                         err = -EINVAL;
2784                         goto err_free_metadata;
2785                 }
2786                 /* All good, associate the traceID with the metadata pointer */
2787                 inode->priv = metadata[j];
2788         }
2789
2790         /*
2791          * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2792          * CS_ETMV4_PRIV_MAX mark how many double words are in the
2793          * global metadata, and each cpu's metadata respectively.
2794          * The following tests if the correct number of double words was
2795          * present in the auxtrace info section.
2796          */
2797         if (i * 8 != priv_size) {
2798                 err = -EINVAL;
2799                 goto err_free_metadata;
2800         }
2801
2802         etm = zalloc(sizeof(*etm));
2803
2804         if (!etm) {
2805                 err = -ENOMEM;
2806                 goto err_free_metadata;
2807         }
2808
2809         err = auxtrace_queues__init(&etm->queues);
2810         if (err)
2811                 goto err_free_etm;
2812
2813         etm->session = session;
2814         etm->machine = &session->machines.host;
2815
2816         etm->num_cpu = num_cpu;
2817         etm->pmu_type = pmu_type;
2818         etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2819         etm->metadata = metadata;
2820         etm->auxtrace_type = auxtrace_info->type;
2821         etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2822
2823         etm->auxtrace.process_event = cs_etm__process_event;
2824         etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2825         etm->auxtrace.flush_events = cs_etm__flush_events;
2826         etm->auxtrace.free_events = cs_etm__free_events;
2827         etm->auxtrace.free = cs_etm__free;
2828         etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2829         session->auxtrace = &etm->auxtrace;
2830
2831         etm->unknown_thread = thread__new(999999999, 999999999);
2832         if (!etm->unknown_thread) {
2833                 err = -ENOMEM;
2834                 goto err_free_queues;
2835         }
2836
2837         /*
2838          * Initialize list node so that at thread__zput() we can avoid
2839          * segmentation fault at list_del_init().
2840          */
2841         INIT_LIST_HEAD(&etm->unknown_thread->node);
2842
2843         err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2844         if (err)
2845                 goto err_delete_thread;
2846
2847         if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2848                 err = -ENOMEM;
2849                 goto err_delete_thread;
2850         }
2851
2852         if (dump_trace) {
2853                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2854                 return 0;
2855         }
2856
2857         if (session->itrace_synth_opts->set) {
2858                 etm->synth_opts = *session->itrace_synth_opts;
2859         } else {
2860                 itrace_synth_opts__set_default(&etm->synth_opts,
2861                                 session->itrace_synth_opts->default_no_sample);
2862                 etm->synth_opts.callchain = false;
2863         }
2864
2865         err = cs_etm__synth_events(etm, session);
2866         if (err)
2867                 goto err_delete_thread;
2868
2869         err = auxtrace_queues__process_index(&etm->queues, session);
2870         if (err)
2871                 goto err_delete_thread;
2872
2873         etm->data_queued = etm->queues.populated;
2874
2875         return 0;
2876
2877 err_delete_thread:
2878         thread__zput(etm->unknown_thread);
2879 err_free_queues:
2880         auxtrace_queues__free(&etm->queues);
2881         session->auxtrace = NULL;
2882 err_free_etm:
2883         zfree(&etm);
2884 err_free_metadata:
2885         /* No need to check @metadata[j], free(NULL) is supported */
2886         for (j = 0; j < num_cpu; j++)
2887                 zfree(&metadata[j]);
2888         zfree(&metadata);
2889 err_free_traceid_list:
2890         intlist__delete(traceid_list);
2891 err_free_hdr:
2892         zfree(&hdr);
2893         /*
2894          * At this point, as a minimum we have valid header. Dump the rest of
2895          * the info section - the print routines will error out on structural
2896          * issues.
2897          */
2898         if (dump_trace)
2899                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2900         return err;
2901 }