Merge tag 'linux-kselftest-next-6.6-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / tools / perf / util / cs-etm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/bitfield.h>
11 #include <linux/bitops.h>
12 #include <linux/coresight-pmu.h>
13 #include <linux/err.h>
14 #include <linux/log2.h>
15 #include <linux/types.h>
16 #include <linux/zalloc.h>
17
18 #include <stdlib.h>
19
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include "tsc.h"
39 #include <tools/libc_compat.h>
40 #include "util/synthetic-events.h"
41 #include "util/util.h"
42
43 struct cs_etm_auxtrace {
44         struct auxtrace auxtrace;
45         struct auxtrace_queues queues;
46         struct auxtrace_heap heap;
47         struct itrace_synth_opts synth_opts;
48         struct perf_session *session;
49         struct perf_tsc_conversion tc;
50
51         /*
52          * Timeless has no timestamps in the trace so overlapping mmap lookups
53          * are less accurate but produces smaller trace data. We use context IDs
54          * in the trace instead of matching timestamps with fork records so
55          * they're not really needed in the general case. Overlapping mmaps
56          * happen in cases like between a fork and an exec.
57          */
58         bool timeless_decoding;
59
60         /*
61          * Per-thread ignores the trace channel ID and instead assumes that
62          * everything in a buffer comes from the same process regardless of
63          * which CPU it ran on. It also implies no context IDs so the TID is
64          * taken from the auxtrace buffer.
65          */
66         bool per_thread_decoding;
67         bool snapshot_mode;
68         bool data_queued;
69         bool has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */
70
71         int num_cpu;
72         u64 latest_kernel_timestamp;
73         u32 auxtrace_type;
74         u64 branches_sample_type;
75         u64 branches_id;
76         u64 instructions_sample_type;
77         u64 instructions_sample_period;
78         u64 instructions_id;
79         u64 **metadata;
80         unsigned int pmu_type;
81         enum cs_etm_pid_fmt pid_fmt;
82 };
83
84 struct cs_etm_traceid_queue {
85         u8 trace_chan_id;
86         u64 period_instructions;
87         size_t last_branch_pos;
88         union perf_event *event_buf;
89         struct thread *thread;
90         struct thread *prev_packet_thread;
91         ocsd_ex_level prev_packet_el;
92         ocsd_ex_level el;
93         struct branch_stack *last_branch;
94         struct branch_stack *last_branch_rb;
95         struct cs_etm_packet *prev_packet;
96         struct cs_etm_packet *packet;
97         struct cs_etm_packet_queue packet_queue;
98 };
99
100 struct cs_etm_queue {
101         struct cs_etm_auxtrace *etm;
102         struct cs_etm_decoder *decoder;
103         struct auxtrace_buffer *buffer;
104         unsigned int queue_nr;
105         u8 pending_timestamp_chan_id;
106         u64 offset;
107         const unsigned char *buf;
108         size_t buf_len, buf_used;
109         /* Conversion between traceID and index in traceid_queues array */
110         struct intlist *traceid_queues_list;
111         struct cs_etm_traceid_queue **traceid_queues;
112 };
113
114 /* RB tree for quick conversion between traceID and metadata pointers */
115 static struct intlist *traceid_list;
116
117 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm);
118 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
119                                            pid_t tid);
120 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
121 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
122
123 /* PTMs ETMIDR [11:8] set to b0011 */
124 #define ETMIDR_PTM_VERSION 0x00000300
125
126 /*
127  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
128  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
129  * encode the etm queue number as the upper 16 bit and the channel as
130  * the lower 16 bit.
131  */
132 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
133                       (queue_nr << 16 | trace_chan_id)
134 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
135 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
136
137 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
138 {
139         etmidr &= ETMIDR_PTM_VERSION;
140
141         if (etmidr == ETMIDR_PTM_VERSION)
142                 return CS_ETM_PROTO_PTM;
143
144         return CS_ETM_PROTO_ETMV3;
145 }
146
147 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
148 {
149         struct int_node *inode;
150         u64 *metadata;
151
152         inode = intlist__find(traceid_list, trace_chan_id);
153         if (!inode)
154                 return -EINVAL;
155
156         metadata = inode->priv;
157         *magic = metadata[CS_ETM_MAGIC];
158         return 0;
159 }
160
161 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
162 {
163         struct int_node *inode;
164         u64 *metadata;
165
166         inode = intlist__find(traceid_list, trace_chan_id);
167         if (!inode)
168                 return -EINVAL;
169
170         metadata = inode->priv;
171         *cpu = (int)metadata[CS_ETM_CPU];
172         return 0;
173 }
174
175 /*
176  * The returned PID format is presented as an enum:
177  *
178  *   CS_ETM_PIDFMT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced.
179  *   CS_ETM_PIDFMT_CTXTID2: CONTEXTIDR_EL2 is traced.
180  *   CS_ETM_PIDFMT_NONE: No context IDs
181  *
182  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
183  * are enabled at the same time when the session runs on an EL2 kernel.
184  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
185  * recorded in the trace data, the tool will selectively use
186  * CONTEXTIDR_EL2 as PID.
187  *
188  * The result is cached in etm->pid_fmt so this function only needs to be called
189  * when processing the aux info.
190  */
191 static enum cs_etm_pid_fmt cs_etm__init_pid_fmt(u64 *metadata)
192 {
193         u64 val;
194
195         if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
196                 val = metadata[CS_ETM_ETMCR];
197                 /* CONTEXTIDR is traced */
198                 if (val & BIT(ETM_OPT_CTXTID))
199                         return CS_ETM_PIDFMT_CTXTID;
200         } else {
201                 val = metadata[CS_ETMV4_TRCCONFIGR];
202                 /* CONTEXTIDR_EL2 is traced */
203                 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
204                         return CS_ETM_PIDFMT_CTXTID2;
205                 /* CONTEXTIDR_EL1 is traced */
206                 else if (val & BIT(ETM4_CFG_BIT_CTXTID))
207                         return CS_ETM_PIDFMT_CTXTID;
208         }
209
210         return CS_ETM_PIDFMT_NONE;
211 }
212
213 enum cs_etm_pid_fmt cs_etm__get_pid_fmt(struct cs_etm_queue *etmq)
214 {
215         return etmq->etm->pid_fmt;
216 }
217
218 static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
219 {
220         struct int_node *inode;
221
222         /* Get an RB node for this CPU */
223         inode = intlist__findnew(traceid_list, trace_chan_id);
224
225         /* Something went wrong, no need to continue */
226         if (!inode)
227                 return -ENOMEM;
228
229         /*
230          * The node for that CPU should not be taken.
231          * Back out if that's the case.
232          */
233         if (inode->priv)
234                 return -EINVAL;
235
236         /* All good, associate the traceID with the metadata pointer */
237         inode->priv = cpu_metadata;
238
239         return 0;
240 }
241
242 static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata)
243 {
244         u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
245
246         switch (cs_etm_magic) {
247         case __perf_cs_etmv3_magic:
248                 *trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] &
249                                       CORESIGHT_TRACE_ID_VAL_MASK);
250                 break;
251         case __perf_cs_etmv4_magic:
252         case __perf_cs_ete_magic:
253                 *trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] &
254                                       CORESIGHT_TRACE_ID_VAL_MASK);
255                 break;
256         default:
257                 return -EINVAL;
258         }
259         return 0;
260 }
261
262 /*
263  * update metadata trace ID from the value found in the AUX_HW_INFO packet.
264  * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present.
265  */
266 static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
267 {
268         u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
269
270         switch (cs_etm_magic) {
271         case __perf_cs_etmv3_magic:
272                  cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id;
273                 break;
274         case __perf_cs_etmv4_magic:
275         case __perf_cs_ete_magic:
276                 cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id;
277                 break;
278
279         default:
280                 return -EINVAL;
281         }
282         return 0;
283 }
284
285 /*
286  * Get a metadata for a specific cpu from an array.
287  *
288  */
289 static u64 *get_cpu_data(struct cs_etm_auxtrace *etm, int cpu)
290 {
291         int i;
292         u64 *metadata = NULL;
293
294         for (i = 0; i < etm->num_cpu; i++) {
295                 if (etm->metadata[i][CS_ETM_CPU] == (u64)cpu) {
296                         metadata = etm->metadata[i];
297                         break;
298                 }
299         }
300
301         return metadata;
302 }
303
304 /*
305  * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event.
306  *
307  * The payload associates the Trace ID and the CPU.
308  * The routine is tolerant of seeing multiple packets with the same association,
309  * but a CPU / Trace ID association changing during a session is an error.
310  */
311 static int cs_etm__process_aux_output_hw_id(struct perf_session *session,
312                                             union perf_event *event)
313 {
314         struct cs_etm_auxtrace *etm;
315         struct perf_sample sample;
316         struct int_node *inode;
317         struct evsel *evsel;
318         u64 *cpu_data;
319         u64 hw_id;
320         int cpu, version, err;
321         u8 trace_chan_id, curr_chan_id;
322
323         /* extract and parse the HW ID */
324         hw_id = event->aux_output_hw_id.hw_id;
325         version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id);
326         trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id);
327
328         /* check that we can handle this version */
329         if (version > CS_AUX_HW_ID_CURR_VERSION)
330                 return -EINVAL;
331
332         /* get access to the etm metadata */
333         etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace);
334         if (!etm || !etm->metadata)
335                 return -EINVAL;
336
337         /* parse the sample to get the CPU */
338         evsel = evlist__event2evsel(session->evlist, event);
339         if (!evsel)
340                 return -EINVAL;
341         err = evsel__parse_sample(evsel, event, &sample);
342         if (err)
343                 return err;
344         cpu = sample.cpu;
345         if (cpu == -1) {
346                 /* no CPU in the sample - possibly recorded with an old version of perf */
347                 pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record.");
348                 return -EINVAL;
349         }
350
351         /* See if the ID is mapped to a CPU, and it matches the current CPU */
352         inode = intlist__find(traceid_list, trace_chan_id);
353         if (inode) {
354                 cpu_data = inode->priv;
355                 if ((int)cpu_data[CS_ETM_CPU] != cpu) {
356                         pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n");
357                         return -EINVAL;
358                 }
359
360                 /* check that the mapped ID matches */
361                 err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data);
362                 if (err)
363                         return err;
364                 if (curr_chan_id != trace_chan_id) {
365                         pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n");
366                         return -EINVAL;
367                 }
368
369                 /* mapped and matched - return OK */
370                 return 0;
371         }
372
373         cpu_data = get_cpu_data(etm, cpu);
374         if (cpu_data == NULL)
375                 return err;
376
377         /* not one we've seen before - lets map it */
378         err = cs_etm__map_trace_id(trace_chan_id, cpu_data);
379         if (err)
380                 return err;
381
382         /*
383          * if we are picking up the association from the packet, need to plug
384          * the correct trace ID into the metadata for setting up decoders later.
385          */
386         err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data);
387         return err;
388 }
389
390 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
391                                               u8 trace_chan_id)
392 {
393         /*
394          * When a timestamp packet is encountered the backend code
395          * is stopped so that the front end has time to process packets
396          * that were accumulated in the traceID queue.  Since there can
397          * be more than one channel per cs_etm_queue, we need to specify
398          * what traceID queue needs servicing.
399          */
400         etmq->pending_timestamp_chan_id = trace_chan_id;
401 }
402
403 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
404                                       u8 *trace_chan_id)
405 {
406         struct cs_etm_packet_queue *packet_queue;
407
408         if (!etmq->pending_timestamp_chan_id)
409                 return 0;
410
411         if (trace_chan_id)
412                 *trace_chan_id = etmq->pending_timestamp_chan_id;
413
414         packet_queue = cs_etm__etmq_get_packet_queue(etmq,
415                                                      etmq->pending_timestamp_chan_id);
416         if (!packet_queue)
417                 return 0;
418
419         /* Acknowledge pending status */
420         etmq->pending_timestamp_chan_id = 0;
421
422         /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
423         return packet_queue->cs_timestamp;
424 }
425
426 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
427 {
428         int i;
429
430         queue->head = 0;
431         queue->tail = 0;
432         queue->packet_count = 0;
433         for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
434                 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
435                 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
436                 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
437                 queue->packet_buffer[i].instr_count = 0;
438                 queue->packet_buffer[i].last_instr_taken_branch = false;
439                 queue->packet_buffer[i].last_instr_size = 0;
440                 queue->packet_buffer[i].last_instr_type = 0;
441                 queue->packet_buffer[i].last_instr_subtype = 0;
442                 queue->packet_buffer[i].last_instr_cond = 0;
443                 queue->packet_buffer[i].flags = 0;
444                 queue->packet_buffer[i].exception_number = UINT32_MAX;
445                 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
446                 queue->packet_buffer[i].cpu = INT_MIN;
447         }
448 }
449
450 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
451 {
452         int idx;
453         struct int_node *inode;
454         struct cs_etm_traceid_queue *tidq;
455         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
456
457         intlist__for_each_entry(inode, traceid_queues_list) {
458                 idx = (int)(intptr_t)inode->priv;
459                 tidq = etmq->traceid_queues[idx];
460                 cs_etm__clear_packet_queue(&tidq->packet_queue);
461         }
462 }
463
464 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
465                                       struct cs_etm_traceid_queue *tidq,
466                                       u8 trace_chan_id)
467 {
468         int rc = -ENOMEM;
469         struct auxtrace_queue *queue;
470         struct cs_etm_auxtrace *etm = etmq->etm;
471
472         cs_etm__clear_packet_queue(&tidq->packet_queue);
473
474         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
475         tidq->trace_chan_id = trace_chan_id;
476         tidq->el = tidq->prev_packet_el = ocsd_EL_unknown;
477         tidq->thread = machine__findnew_thread(&etm->session->machines.host, -1,
478                                                queue->tid);
479         tidq->prev_packet_thread = machine__idle_thread(&etm->session->machines.host);
480
481         tidq->packet = zalloc(sizeof(struct cs_etm_packet));
482         if (!tidq->packet)
483                 goto out;
484
485         tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
486         if (!tidq->prev_packet)
487                 goto out_free;
488
489         if (etm->synth_opts.last_branch) {
490                 size_t sz = sizeof(struct branch_stack);
491
492                 sz += etm->synth_opts.last_branch_sz *
493                       sizeof(struct branch_entry);
494                 tidq->last_branch = zalloc(sz);
495                 if (!tidq->last_branch)
496                         goto out_free;
497                 tidq->last_branch_rb = zalloc(sz);
498                 if (!tidq->last_branch_rb)
499                         goto out_free;
500         }
501
502         tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
503         if (!tidq->event_buf)
504                 goto out_free;
505
506         return 0;
507
508 out_free:
509         zfree(&tidq->last_branch_rb);
510         zfree(&tidq->last_branch);
511         zfree(&tidq->prev_packet);
512         zfree(&tidq->packet);
513 out:
514         return rc;
515 }
516
517 static struct cs_etm_traceid_queue
518 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
519 {
520         int idx;
521         struct int_node *inode;
522         struct intlist *traceid_queues_list;
523         struct cs_etm_traceid_queue *tidq, **traceid_queues;
524         struct cs_etm_auxtrace *etm = etmq->etm;
525
526         if (etm->per_thread_decoding)
527                 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
528
529         traceid_queues_list = etmq->traceid_queues_list;
530
531         /*
532          * Check if the traceid_queue exist for this traceID by looking
533          * in the queue list.
534          */
535         inode = intlist__find(traceid_queues_list, trace_chan_id);
536         if (inode) {
537                 idx = (int)(intptr_t)inode->priv;
538                 return etmq->traceid_queues[idx];
539         }
540
541         /* We couldn't find a traceid_queue for this traceID, allocate one */
542         tidq = malloc(sizeof(*tidq));
543         if (!tidq)
544                 return NULL;
545
546         memset(tidq, 0, sizeof(*tidq));
547
548         /* Get a valid index for the new traceid_queue */
549         idx = intlist__nr_entries(traceid_queues_list);
550         /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
551         inode = intlist__findnew(traceid_queues_list, trace_chan_id);
552         if (!inode)
553                 goto out_free;
554
555         /* Associate this traceID with this index */
556         inode->priv = (void *)(intptr_t)idx;
557
558         if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
559                 goto out_free;
560
561         /* Grow the traceid_queues array by one unit */
562         traceid_queues = etmq->traceid_queues;
563         traceid_queues = reallocarray(traceid_queues,
564                                       idx + 1,
565                                       sizeof(*traceid_queues));
566
567         /*
568          * On failure reallocarray() returns NULL and the original block of
569          * memory is left untouched.
570          */
571         if (!traceid_queues)
572                 goto out_free;
573
574         traceid_queues[idx] = tidq;
575         etmq->traceid_queues = traceid_queues;
576
577         return etmq->traceid_queues[idx];
578
579 out_free:
580         /*
581          * Function intlist__remove() removes the inode from the list
582          * and delete the memory associated to it.
583          */
584         intlist__remove(traceid_queues_list, inode);
585         free(tidq);
586
587         return NULL;
588 }
589
590 struct cs_etm_packet_queue
591 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
592 {
593         struct cs_etm_traceid_queue *tidq;
594
595         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
596         if (tidq)
597                 return &tidq->packet_queue;
598
599         return NULL;
600 }
601
602 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
603                                 struct cs_etm_traceid_queue *tidq)
604 {
605         struct cs_etm_packet *tmp;
606
607         if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
608             etm->synth_opts.instructions) {
609                 /*
610                  * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
611                  * the next incoming packet.
612                  *
613                  * Threads and exception levels are also tracked for both the
614                  * previous and current packets. This is because the previous
615                  * packet is used for the 'from' IP for branch samples, so the
616                  * thread at that time must also be assigned to that sample.
617                  * Across discontinuity packets the thread can change, so by
618                  * tracking the thread for the previous packet the branch sample
619                  * will have the correct info.
620                  */
621                 tmp = tidq->packet;
622                 tidq->packet = tidq->prev_packet;
623                 tidq->prev_packet = tmp;
624                 tidq->prev_packet_el = tidq->el;
625                 thread__put(tidq->prev_packet_thread);
626                 tidq->prev_packet_thread = thread__get(tidq->thread);
627         }
628 }
629
630 static void cs_etm__packet_dump(const char *pkt_string)
631 {
632         const char *color = PERF_COLOR_BLUE;
633         int len = strlen(pkt_string);
634
635         if (len && (pkt_string[len-1] == '\n'))
636                 color_fprintf(stdout, color, "  %s", pkt_string);
637         else
638                 color_fprintf(stdout, color, "  %s\n", pkt_string);
639
640         fflush(stdout);
641 }
642
643 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
644                                           struct cs_etm_auxtrace *etm, int idx,
645                                           u32 etmidr)
646 {
647         u64 **metadata = etm->metadata;
648
649         t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
650         t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
651         t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
652 }
653
654 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
655                                           struct cs_etm_auxtrace *etm, int idx)
656 {
657         u64 **metadata = etm->metadata;
658
659         t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
660         t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
661         t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
662         t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
663         t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
664         t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
665         t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
666 }
667
668 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
669                                           struct cs_etm_auxtrace *etm, int idx)
670 {
671         u64 **metadata = etm->metadata;
672
673         t_params[idx].protocol = CS_ETM_PROTO_ETE;
674         t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETE_TRCIDR0];
675         t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETE_TRCIDR1];
676         t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETE_TRCIDR2];
677         t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETE_TRCIDR8];
678         t_params[idx].ete.reg_configr = metadata[idx][CS_ETE_TRCCONFIGR];
679         t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETE_TRCTRACEIDR];
680         t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
681 }
682
683 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
684                                      struct cs_etm_auxtrace *etm,
685                                      int decoders)
686 {
687         int i;
688         u32 etmidr;
689         u64 architecture;
690
691         for (i = 0; i < decoders; i++) {
692                 architecture = etm->metadata[i][CS_ETM_MAGIC];
693
694                 switch (architecture) {
695                 case __perf_cs_etmv3_magic:
696                         etmidr = etm->metadata[i][CS_ETM_ETMIDR];
697                         cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
698                         break;
699                 case __perf_cs_etmv4_magic:
700                         cs_etm__set_trace_param_etmv4(t_params, etm, i);
701                         break;
702                 case __perf_cs_ete_magic:
703                         cs_etm__set_trace_param_ete(t_params, etm, i);
704                         break;
705                 default:
706                         return -EINVAL;
707                 }
708         }
709
710         return 0;
711 }
712
713 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
714                                        struct cs_etm_queue *etmq,
715                                        enum cs_etm_decoder_operation mode,
716                                        bool formatted)
717 {
718         int ret = -EINVAL;
719
720         if (!(mode < CS_ETM_OPERATION_MAX))
721                 goto out;
722
723         d_params->packet_printer = cs_etm__packet_dump;
724         d_params->operation = mode;
725         d_params->data = etmq;
726         d_params->formatted = formatted;
727         d_params->fsyncs = false;
728         d_params->hsyncs = false;
729         d_params->frame_aligned = true;
730
731         ret = 0;
732 out:
733         return ret;
734 }
735
736 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
737                                struct auxtrace_buffer *buffer)
738 {
739         int ret;
740         const char *color = PERF_COLOR_BLUE;
741         size_t buffer_used = 0;
742
743         fprintf(stdout, "\n");
744         color_fprintf(stdout, color,
745                      ". ... CoreSight %s Trace data: size %#zx bytes\n",
746                      cs_etm_decoder__get_name(etmq->decoder), buffer->size);
747
748         do {
749                 size_t consumed;
750
751                 ret = cs_etm_decoder__process_data_block(
752                                 etmq->decoder, buffer->offset,
753                                 &((u8 *)buffer->data)[buffer_used],
754                                 buffer->size - buffer_used, &consumed);
755                 if (ret)
756                         break;
757
758                 buffer_used += consumed;
759         } while (buffer_used < buffer->size);
760
761         cs_etm_decoder__reset(etmq->decoder);
762 }
763
764 static int cs_etm__flush_events(struct perf_session *session,
765                                 struct perf_tool *tool)
766 {
767         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
768                                                    struct cs_etm_auxtrace,
769                                                    auxtrace);
770         if (dump_trace)
771                 return 0;
772
773         if (!tool->ordered_events)
774                 return -EINVAL;
775
776         if (etm->timeless_decoding) {
777                 /*
778                  * Pass tid = -1 to process all queues. But likely they will have
779                  * already been processed on PERF_RECORD_EXIT anyway.
780                  */
781                 return cs_etm__process_timeless_queues(etm, -1);
782         }
783
784         return cs_etm__process_timestamped_queues(etm);
785 }
786
787 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
788 {
789         int idx;
790         uintptr_t priv;
791         struct int_node *inode, *tmp;
792         struct cs_etm_traceid_queue *tidq;
793         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
794
795         intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
796                 priv = (uintptr_t)inode->priv;
797                 idx = priv;
798
799                 /* Free this traceid_queue from the array */
800                 tidq = etmq->traceid_queues[idx];
801                 thread__zput(tidq->thread);
802                 thread__zput(tidq->prev_packet_thread);
803                 zfree(&tidq->event_buf);
804                 zfree(&tidq->last_branch);
805                 zfree(&tidq->last_branch_rb);
806                 zfree(&tidq->prev_packet);
807                 zfree(&tidq->packet);
808                 zfree(&tidq);
809
810                 /*
811                  * Function intlist__remove() removes the inode from the list
812                  * and delete the memory associated to it.
813                  */
814                 intlist__remove(traceid_queues_list, inode);
815         }
816
817         /* Then the RB tree itself */
818         intlist__delete(traceid_queues_list);
819         etmq->traceid_queues_list = NULL;
820
821         /* finally free the traceid_queues array */
822         zfree(&etmq->traceid_queues);
823 }
824
825 static void cs_etm__free_queue(void *priv)
826 {
827         struct cs_etm_queue *etmq = priv;
828
829         if (!etmq)
830                 return;
831
832         cs_etm_decoder__free(etmq->decoder);
833         cs_etm__free_traceid_queues(etmq);
834         free(etmq);
835 }
836
837 static void cs_etm__free_events(struct perf_session *session)
838 {
839         unsigned int i;
840         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
841                                                    struct cs_etm_auxtrace,
842                                                    auxtrace);
843         struct auxtrace_queues *queues = &aux->queues;
844
845         for (i = 0; i < queues->nr_queues; i++) {
846                 cs_etm__free_queue(queues->queue_array[i].priv);
847                 queues->queue_array[i].priv = NULL;
848         }
849
850         auxtrace_queues__free(queues);
851 }
852
853 static void cs_etm__free(struct perf_session *session)
854 {
855         int i;
856         struct int_node *inode, *tmp;
857         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
858                                                    struct cs_etm_auxtrace,
859                                                    auxtrace);
860         cs_etm__free_events(session);
861         session->auxtrace = NULL;
862
863         /* First remove all traceID/metadata nodes for the RB tree */
864         intlist__for_each_entry_safe(inode, tmp, traceid_list)
865                 intlist__remove(traceid_list, inode);
866         /* Then the RB tree itself */
867         intlist__delete(traceid_list);
868
869         for (i = 0; i < aux->num_cpu; i++)
870                 zfree(&aux->metadata[i]);
871
872         zfree(&aux->metadata);
873         zfree(&aux);
874 }
875
876 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
877                                       struct evsel *evsel)
878 {
879         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
880                                                    struct cs_etm_auxtrace,
881                                                    auxtrace);
882
883         return evsel->core.attr.type == aux->pmu_type;
884 }
885
886 static struct machine *cs_etm__get_machine(struct cs_etm_queue *etmq,
887                                            ocsd_ex_level el)
888 {
889         enum cs_etm_pid_fmt pid_fmt = cs_etm__get_pid_fmt(etmq);
890
891         /*
892          * For any virtualisation based on nVHE (e.g. pKVM), or host kernels
893          * running at EL1 assume everything is the host.
894          */
895         if (pid_fmt == CS_ETM_PIDFMT_CTXTID)
896                 return &etmq->etm->session->machines.host;
897
898         /*
899          * Not perfect, but otherwise assume anything in EL1 is the default
900          * guest, and everything else is the host. Distinguishing between guest
901          * and host userspaces isn't currently supported either. Neither is
902          * multiple guest support. All this does is reduce the likeliness of
903          * decode errors where we look into the host kernel maps when it should
904          * have been the guest maps.
905          */
906         switch (el) {
907         case ocsd_EL1:
908                 return machines__find_guest(&etmq->etm->session->machines,
909                                             DEFAULT_GUEST_KERNEL_ID);
910         case ocsd_EL3:
911         case ocsd_EL2:
912         case ocsd_EL0:
913         case ocsd_EL_unknown:
914         default:
915                 return &etmq->etm->session->machines.host;
916         }
917 }
918
919 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address,
920                            ocsd_ex_level el)
921 {
922         struct machine *machine = cs_etm__get_machine(etmq, el);
923
924         if (address >= machine__kernel_start(machine)) {
925                 if (machine__is_host(machine))
926                         return PERF_RECORD_MISC_KERNEL;
927                 else
928                         return PERF_RECORD_MISC_GUEST_KERNEL;
929         } else {
930                 if (machine__is_host(machine))
931                         return PERF_RECORD_MISC_USER;
932                 else {
933                         /*
934                          * Can't really happen at the moment because
935                          * cs_etm__get_machine() will always return
936                          * machines.host for any non EL1 trace.
937                          */
938                         return PERF_RECORD_MISC_GUEST_USER;
939                 }
940         }
941 }
942
943 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
944                               u64 address, size_t size, u8 *buffer,
945                               const ocsd_mem_space_acc_t mem_space)
946 {
947         u8  cpumode;
948         u64 offset;
949         int len;
950         struct addr_location al;
951         struct dso *dso;
952         struct cs_etm_traceid_queue *tidq;
953         int ret = 0;
954
955         if (!etmq)
956                 return 0;
957
958         addr_location__init(&al);
959         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
960         if (!tidq)
961                 goto out;
962
963         /*
964          * We've already tracked EL along side the PID in cs_etm__set_thread()
965          * so double check that it matches what OpenCSD thinks as well. It
966          * doesn't distinguish between EL0 and EL1 for this mem access callback
967          * so we had to do the extra tracking. Skip validation if it's any of
968          * the 'any' values.
969          */
970         if (!(mem_space == OCSD_MEM_SPACE_ANY ||
971               mem_space == OCSD_MEM_SPACE_N || mem_space == OCSD_MEM_SPACE_S)) {
972                 if (mem_space & OCSD_MEM_SPACE_EL1N) {
973                         /* Includes both non secure EL1 and EL0 */
974                         assert(tidq->el == ocsd_EL1 || tidq->el == ocsd_EL0);
975                 } else if (mem_space & OCSD_MEM_SPACE_EL2)
976                         assert(tidq->el == ocsd_EL2);
977                 else if (mem_space & OCSD_MEM_SPACE_EL3)
978                         assert(tidq->el == ocsd_EL3);
979         }
980
981         cpumode = cs_etm__cpu_mode(etmq, address, tidq->el);
982
983         if (!thread__find_map(tidq->thread, cpumode, address, &al))
984                 goto out;
985
986         dso = map__dso(al.map);
987         if (!dso)
988                 goto out;
989
990         if (dso->data.status == DSO_DATA_STATUS_ERROR &&
991             dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE))
992                 goto out;
993
994         offset = map__map_ip(al.map, address);
995
996         map__load(al.map);
997
998         len = dso__data_read_offset(dso, maps__machine(thread__maps(tidq->thread)),
999                                     offset, buffer, size);
1000
1001         if (len <= 0) {
1002                 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
1003                                  "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
1004                 if (!dso->auxtrace_warned) {
1005                         pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
1006                                     address,
1007                                     dso->long_name ? dso->long_name : "Unknown");
1008                         dso->auxtrace_warned = true;
1009                 }
1010                 goto out;
1011         }
1012         ret = len;
1013 out:
1014         addr_location__exit(&al);
1015         return ret;
1016 }
1017
1018 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
1019                                                 bool formatted)
1020 {
1021         struct cs_etm_decoder_params d_params;
1022         struct cs_etm_trace_params  *t_params = NULL;
1023         struct cs_etm_queue *etmq;
1024         /*
1025          * Each queue can only contain data from one CPU when unformatted, so only one decoder is
1026          * needed.
1027          */
1028         int decoders = formatted ? etm->num_cpu : 1;
1029
1030         etmq = zalloc(sizeof(*etmq));
1031         if (!etmq)
1032                 return NULL;
1033
1034         etmq->traceid_queues_list = intlist__new(NULL);
1035         if (!etmq->traceid_queues_list)
1036                 goto out_free;
1037
1038         /* Use metadata to fill in trace parameters for trace decoder */
1039         t_params = zalloc(sizeof(*t_params) * decoders);
1040
1041         if (!t_params)
1042                 goto out_free;
1043
1044         if (cs_etm__init_trace_params(t_params, etm, decoders))
1045                 goto out_free;
1046
1047         /* Set decoder parameters to decode trace packets */
1048         if (cs_etm__init_decoder_params(&d_params, etmq,
1049                                         dump_trace ? CS_ETM_OPERATION_PRINT :
1050                                                      CS_ETM_OPERATION_DECODE,
1051                                         formatted))
1052                 goto out_free;
1053
1054         etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
1055                                             t_params);
1056
1057         if (!etmq->decoder)
1058                 goto out_free;
1059
1060         /*
1061          * Register a function to handle all memory accesses required by
1062          * the trace decoder library.
1063          */
1064         if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
1065                                               0x0L, ((u64) -1L),
1066                                               cs_etm__mem_access))
1067                 goto out_free_decoder;
1068
1069         zfree(&t_params);
1070         return etmq;
1071
1072 out_free_decoder:
1073         cs_etm_decoder__free(etmq->decoder);
1074 out_free:
1075         intlist__delete(etmq->traceid_queues_list);
1076         free(etmq);
1077
1078         return NULL;
1079 }
1080
1081 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
1082                                struct auxtrace_queue *queue,
1083                                unsigned int queue_nr,
1084                                bool formatted)
1085 {
1086         struct cs_etm_queue *etmq = queue->priv;
1087
1088         if (list_empty(&queue->head) || etmq)
1089                 return 0;
1090
1091         etmq = cs_etm__alloc_queue(etm, formatted);
1092
1093         if (!etmq)
1094                 return -ENOMEM;
1095
1096         queue->priv = etmq;
1097         etmq->etm = etm;
1098         etmq->queue_nr = queue_nr;
1099         etmq->offset = 0;
1100
1101         return 0;
1102 }
1103
1104 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
1105                                             struct cs_etm_queue *etmq,
1106                                             unsigned int queue_nr)
1107 {
1108         int ret = 0;
1109         unsigned int cs_queue_nr;
1110         u8 trace_chan_id;
1111         u64 cs_timestamp;
1112
1113         /*
1114          * We are under a CPU-wide trace scenario.  As such we need to know
1115          * when the code that generated the traces started to execute so that
1116          * it can be correlated with execution on other CPUs.  So we get a
1117          * handle on the beginning of traces and decode until we find a
1118          * timestamp.  The timestamp is then added to the auxtrace min heap
1119          * in order to know what nibble (of all the etmqs) to decode first.
1120          */
1121         while (1) {
1122                 /*
1123                  * Fetch an aux_buffer from this etmq.  Bail if no more
1124                  * blocks or an error has been encountered.
1125                  */
1126                 ret = cs_etm__get_data_block(etmq);
1127                 if (ret <= 0)
1128                         goto out;
1129
1130                 /*
1131                  * Run decoder on the trace block.  The decoder will stop when
1132                  * encountering a CS timestamp, a full packet queue or the end of
1133                  * trace for that block.
1134                  */
1135                 ret = cs_etm__decode_data_block(etmq);
1136                 if (ret)
1137                         goto out;
1138
1139                 /*
1140                  * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
1141                  * the timestamp calculation for us.
1142                  */
1143                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
1144
1145                 /* We found a timestamp, no need to continue. */
1146                 if (cs_timestamp)
1147                         break;
1148
1149                 /*
1150                  * We didn't find a timestamp so empty all the traceid packet
1151                  * queues before looking for another timestamp packet, either
1152                  * in the current data block or a new one.  Packets that were
1153                  * just decoded are useless since no timestamp has been
1154                  * associated with them.  As such simply discard them.
1155                  */
1156                 cs_etm__clear_all_packet_queues(etmq);
1157         }
1158
1159         /*
1160          * We have a timestamp.  Add it to the min heap to reflect when
1161          * instructions conveyed by the range packets of this traceID queue
1162          * started to execute.  Once the same has been done for all the traceID
1163          * queues of each etmq, redenring and decoding can start in
1164          * chronological order.
1165          *
1166          * Note that packets decoded above are still in the traceID's packet
1167          * queue and will be processed in cs_etm__process_timestamped_queues().
1168          */
1169         cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
1170         ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
1171 out:
1172         return ret;
1173 }
1174
1175 static inline
1176 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
1177                                  struct cs_etm_traceid_queue *tidq)
1178 {
1179         struct branch_stack *bs_src = tidq->last_branch_rb;
1180         struct branch_stack *bs_dst = tidq->last_branch;
1181         size_t nr = 0;
1182
1183         /*
1184          * Set the number of records before early exit: ->nr is used to
1185          * determine how many branches to copy from ->entries.
1186          */
1187         bs_dst->nr = bs_src->nr;
1188
1189         /*
1190          * Early exit when there is nothing to copy.
1191          */
1192         if (!bs_src->nr)
1193                 return;
1194
1195         /*
1196          * As bs_src->entries is a circular buffer, we need to copy from it in
1197          * two steps.  First, copy the branches from the most recently inserted
1198          * branch ->last_branch_pos until the end of bs_src->entries buffer.
1199          */
1200         nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
1201         memcpy(&bs_dst->entries[0],
1202                &bs_src->entries[tidq->last_branch_pos],
1203                sizeof(struct branch_entry) * nr);
1204
1205         /*
1206          * If we wrapped around at least once, the branches from the beginning
1207          * of the bs_src->entries buffer and until the ->last_branch_pos element
1208          * are older valid branches: copy them over.  The total number of
1209          * branches copied over will be equal to the number of branches asked by
1210          * the user in last_branch_sz.
1211          */
1212         if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
1213                 memcpy(&bs_dst->entries[nr],
1214                        &bs_src->entries[0],
1215                        sizeof(struct branch_entry) * tidq->last_branch_pos);
1216         }
1217 }
1218
1219 static inline
1220 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
1221 {
1222         tidq->last_branch_pos = 0;
1223         tidq->last_branch_rb->nr = 0;
1224 }
1225
1226 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
1227                                          u8 trace_chan_id, u64 addr)
1228 {
1229         u8 instrBytes[2];
1230
1231         cs_etm__mem_access(etmq, trace_chan_id, addr, ARRAY_SIZE(instrBytes),
1232                            instrBytes, 0);
1233         /*
1234          * T32 instruction size is indicated by bits[15:11] of the first
1235          * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
1236          * denote a 32-bit instruction.
1237          */
1238         return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
1239 }
1240
1241 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
1242 {
1243         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1244         if (packet->sample_type == CS_ETM_DISCONTINUITY)
1245                 return 0;
1246
1247         return packet->start_addr;
1248 }
1249
1250 static inline
1251 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
1252 {
1253         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1254         if (packet->sample_type == CS_ETM_DISCONTINUITY)
1255                 return 0;
1256
1257         return packet->end_addr - packet->last_instr_size;
1258 }
1259
1260 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1261                                      u64 trace_chan_id,
1262                                      const struct cs_etm_packet *packet,
1263                                      u64 offset)
1264 {
1265         if (packet->isa == CS_ETM_ISA_T32) {
1266                 u64 addr = packet->start_addr;
1267
1268                 while (offset) {
1269                         addr += cs_etm__t32_instr_size(etmq,
1270                                                        trace_chan_id, addr);
1271                         offset--;
1272                 }
1273                 return addr;
1274         }
1275
1276         /* Assume a 4 byte instruction size (A32/A64) */
1277         return packet->start_addr + offset * 4;
1278 }
1279
1280 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1281                                           struct cs_etm_traceid_queue *tidq)
1282 {
1283         struct branch_stack *bs = tidq->last_branch_rb;
1284         struct branch_entry *be;
1285
1286         /*
1287          * The branches are recorded in a circular buffer in reverse
1288          * chronological order: we start recording from the last element of the
1289          * buffer down.  After writing the first element of the stack, move the
1290          * insert position back to the end of the buffer.
1291          */
1292         if (!tidq->last_branch_pos)
1293                 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1294
1295         tidq->last_branch_pos -= 1;
1296
1297         be       = &bs->entries[tidq->last_branch_pos];
1298         be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1299         be->to   = cs_etm__first_executed_instr(tidq->packet);
1300         /* No support for mispredict */
1301         be->flags.mispred = 0;
1302         be->flags.predicted = 1;
1303
1304         /*
1305          * Increment bs->nr until reaching the number of last branches asked by
1306          * the user on the command line.
1307          */
1308         if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1309                 bs->nr += 1;
1310 }
1311
1312 static int cs_etm__inject_event(union perf_event *event,
1313                                struct perf_sample *sample, u64 type)
1314 {
1315         event->header.size = perf_event__sample_event_size(sample, type, 0);
1316         return perf_event__synthesize_sample(event, type, 0, sample);
1317 }
1318
1319
1320 static int
1321 cs_etm__get_trace(struct cs_etm_queue *etmq)
1322 {
1323         struct auxtrace_buffer *aux_buffer = etmq->buffer;
1324         struct auxtrace_buffer *old_buffer = aux_buffer;
1325         struct auxtrace_queue *queue;
1326
1327         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1328
1329         aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1330
1331         /* If no more data, drop the previous auxtrace_buffer and return */
1332         if (!aux_buffer) {
1333                 if (old_buffer)
1334                         auxtrace_buffer__drop_data(old_buffer);
1335                 etmq->buf_len = 0;
1336                 return 0;
1337         }
1338
1339         etmq->buffer = aux_buffer;
1340
1341         /* If the aux_buffer doesn't have data associated, try to load it */
1342         if (!aux_buffer->data) {
1343                 /* get the file desc associated with the perf data file */
1344                 int fd = perf_data__fd(etmq->etm->session->data);
1345
1346                 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1347                 if (!aux_buffer->data)
1348                         return -ENOMEM;
1349         }
1350
1351         /* If valid, drop the previous buffer */
1352         if (old_buffer)
1353                 auxtrace_buffer__drop_data(old_buffer);
1354
1355         etmq->buf_used = 0;
1356         etmq->buf_len = aux_buffer->size;
1357         etmq->buf = aux_buffer->data;
1358
1359         return etmq->buf_len;
1360 }
1361
1362 static void cs_etm__set_thread(struct cs_etm_queue *etmq,
1363                                struct cs_etm_traceid_queue *tidq, pid_t tid,
1364                                ocsd_ex_level el)
1365 {
1366         struct machine *machine = cs_etm__get_machine(etmq, el);
1367
1368         if (tid != -1) {
1369                 thread__zput(tidq->thread);
1370                 tidq->thread = machine__find_thread(machine, -1, tid);
1371         }
1372
1373         /* Couldn't find a known thread */
1374         if (!tidq->thread)
1375                 tidq->thread = machine__idle_thread(machine);
1376
1377         tidq->el = el;
1378 }
1379
1380 int cs_etm__etmq_set_tid_el(struct cs_etm_queue *etmq, pid_t tid,
1381                             u8 trace_chan_id, ocsd_ex_level el)
1382 {
1383         struct cs_etm_traceid_queue *tidq;
1384
1385         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1386         if (!tidq)
1387                 return -EINVAL;
1388
1389         cs_etm__set_thread(etmq, tidq, tid, el);
1390         return 0;
1391 }
1392
1393 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1394 {
1395         return !!etmq->etm->timeless_decoding;
1396 }
1397
1398 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1399                               u64 trace_chan_id,
1400                               const struct cs_etm_packet *packet,
1401                               struct perf_sample *sample)
1402 {
1403         /*
1404          * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1405          * packet, so directly bail out with 'insn_len' = 0.
1406          */
1407         if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1408                 sample->insn_len = 0;
1409                 return;
1410         }
1411
1412         /*
1413          * T32 instruction size might be 32-bit or 16-bit, decide by calling
1414          * cs_etm__t32_instr_size().
1415          */
1416         if (packet->isa == CS_ETM_ISA_T32)
1417                 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1418                                                           sample->ip);
1419         /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1420         else
1421                 sample->insn_len = 4;
1422
1423         cs_etm__mem_access(etmq, trace_chan_id, sample->ip, sample->insn_len,
1424                            (void *)sample->insn, 0);
1425 }
1426
1427 u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp)
1428 {
1429         struct cs_etm_auxtrace *etm = etmq->etm;
1430
1431         if (etm->has_virtual_ts)
1432                 return tsc_to_perf_time(cs_timestamp, &etm->tc);
1433         else
1434                 return cs_timestamp;
1435 }
1436
1437 static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq,
1438                                                struct cs_etm_traceid_queue *tidq)
1439 {
1440         struct cs_etm_auxtrace *etm = etmq->etm;
1441         struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue;
1442
1443         if (!etm->timeless_decoding && etm->has_virtual_ts)
1444                 return packet_queue->cs_timestamp;
1445         else
1446                 return etm->latest_kernel_timestamp;
1447 }
1448
1449 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1450                                             struct cs_etm_traceid_queue *tidq,
1451                                             u64 addr, u64 period)
1452 {
1453         int ret = 0;
1454         struct cs_etm_auxtrace *etm = etmq->etm;
1455         union perf_event *event = tidq->event_buf;
1456         struct perf_sample sample = {.ip = 0,};
1457
1458         event->sample.header.type = PERF_RECORD_SAMPLE;
1459         event->sample.header.misc = cs_etm__cpu_mode(etmq, addr, tidq->el);
1460         event->sample.header.size = sizeof(struct perf_event_header);
1461
1462         /* Set time field based on etm auxtrace config. */
1463         sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1464
1465         sample.ip = addr;
1466         sample.pid = thread__pid(tidq->thread);
1467         sample.tid = thread__tid(tidq->thread);
1468         sample.id = etmq->etm->instructions_id;
1469         sample.stream_id = etmq->etm->instructions_id;
1470         sample.period = period;
1471         sample.cpu = tidq->packet->cpu;
1472         sample.flags = tidq->prev_packet->flags;
1473         sample.cpumode = event->sample.header.misc;
1474
1475         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1476
1477         if (etm->synth_opts.last_branch)
1478                 sample.branch_stack = tidq->last_branch;
1479
1480         if (etm->synth_opts.inject) {
1481                 ret = cs_etm__inject_event(event, &sample,
1482                                            etm->instructions_sample_type);
1483                 if (ret)
1484                         return ret;
1485         }
1486
1487         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1488
1489         if (ret)
1490                 pr_err(
1491                         "CS ETM Trace: failed to deliver instruction event, error %d\n",
1492                         ret);
1493
1494         return ret;
1495 }
1496
1497 /*
1498  * The cs etm packet encodes an instruction range between a branch target
1499  * and the next taken branch. Generate sample accordingly.
1500  */
1501 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1502                                        struct cs_etm_traceid_queue *tidq)
1503 {
1504         int ret = 0;
1505         struct cs_etm_auxtrace *etm = etmq->etm;
1506         struct perf_sample sample = {.ip = 0,};
1507         union perf_event *event = tidq->event_buf;
1508         struct dummy_branch_stack {
1509                 u64                     nr;
1510                 u64                     hw_idx;
1511                 struct branch_entry     entries;
1512         } dummy_bs;
1513         u64 ip;
1514
1515         ip = cs_etm__last_executed_instr(tidq->prev_packet);
1516
1517         event->sample.header.type = PERF_RECORD_SAMPLE;
1518         event->sample.header.misc = cs_etm__cpu_mode(etmq, ip,
1519                                                      tidq->prev_packet_el);
1520         event->sample.header.size = sizeof(struct perf_event_header);
1521
1522         /* Set time field based on etm auxtrace config. */
1523         sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1524
1525         sample.ip = ip;
1526         sample.pid = thread__pid(tidq->prev_packet_thread);
1527         sample.tid = thread__tid(tidq->prev_packet_thread);
1528         sample.addr = cs_etm__first_executed_instr(tidq->packet);
1529         sample.id = etmq->etm->branches_id;
1530         sample.stream_id = etmq->etm->branches_id;
1531         sample.period = 1;
1532         sample.cpu = tidq->packet->cpu;
1533         sample.flags = tidq->prev_packet->flags;
1534         sample.cpumode = event->sample.header.misc;
1535
1536         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1537                           &sample);
1538
1539         /*
1540          * perf report cannot handle events without a branch stack
1541          */
1542         if (etm->synth_opts.last_branch) {
1543                 dummy_bs = (struct dummy_branch_stack){
1544                         .nr = 1,
1545                         .hw_idx = -1ULL,
1546                         .entries = {
1547                                 .from = sample.ip,
1548                                 .to = sample.addr,
1549                         },
1550                 };
1551                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1552         }
1553
1554         if (etm->synth_opts.inject) {
1555                 ret = cs_etm__inject_event(event, &sample,
1556                                            etm->branches_sample_type);
1557                 if (ret)
1558                         return ret;
1559         }
1560
1561         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1562
1563         if (ret)
1564                 pr_err(
1565                 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1566                 ret);
1567
1568         return ret;
1569 }
1570
1571 struct cs_etm_synth {
1572         struct perf_tool dummy_tool;
1573         struct perf_session *session;
1574 };
1575
1576 static int cs_etm__event_synth(struct perf_tool *tool,
1577                                union perf_event *event,
1578                                struct perf_sample *sample __maybe_unused,
1579                                struct machine *machine __maybe_unused)
1580 {
1581         struct cs_etm_synth *cs_etm_synth =
1582                       container_of(tool, struct cs_etm_synth, dummy_tool);
1583
1584         return perf_session__deliver_synth_event(cs_etm_synth->session,
1585                                                  event, NULL);
1586 }
1587
1588 static int cs_etm__synth_event(struct perf_session *session,
1589                                struct perf_event_attr *attr, u64 id)
1590 {
1591         struct cs_etm_synth cs_etm_synth;
1592
1593         memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1594         cs_etm_synth.session = session;
1595
1596         return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1597                                            &id, cs_etm__event_synth);
1598 }
1599
1600 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1601                                 struct perf_session *session)
1602 {
1603         struct evlist *evlist = session->evlist;
1604         struct evsel *evsel;
1605         struct perf_event_attr attr;
1606         bool found = false;
1607         u64 id;
1608         int err;
1609
1610         evlist__for_each_entry(evlist, evsel) {
1611                 if (evsel->core.attr.type == etm->pmu_type) {
1612                         found = true;
1613                         break;
1614                 }
1615         }
1616
1617         if (!found) {
1618                 pr_debug("No selected events with CoreSight Trace data\n");
1619                 return 0;
1620         }
1621
1622         memset(&attr, 0, sizeof(struct perf_event_attr));
1623         attr.size = sizeof(struct perf_event_attr);
1624         attr.type = PERF_TYPE_HARDWARE;
1625         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1626         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1627                             PERF_SAMPLE_PERIOD;
1628         if (etm->timeless_decoding)
1629                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1630         else
1631                 attr.sample_type |= PERF_SAMPLE_TIME;
1632
1633         attr.exclude_user = evsel->core.attr.exclude_user;
1634         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1635         attr.exclude_hv = evsel->core.attr.exclude_hv;
1636         attr.exclude_host = evsel->core.attr.exclude_host;
1637         attr.exclude_guest = evsel->core.attr.exclude_guest;
1638         attr.sample_id_all = evsel->core.attr.sample_id_all;
1639         attr.read_format = evsel->core.attr.read_format;
1640
1641         /* create new id val to be a fixed offset from evsel id */
1642         id = evsel->core.id[0] + 1000000000;
1643
1644         if (!id)
1645                 id = 1;
1646
1647         if (etm->synth_opts.branches) {
1648                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1649                 attr.sample_period = 1;
1650                 attr.sample_type |= PERF_SAMPLE_ADDR;
1651                 err = cs_etm__synth_event(session, &attr, id);
1652                 if (err)
1653                         return err;
1654                 etm->branches_sample_type = attr.sample_type;
1655                 etm->branches_id = id;
1656                 id += 1;
1657                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1658         }
1659
1660         if (etm->synth_opts.last_branch) {
1661                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1662                 /*
1663                  * We don't use the hardware index, but the sample generation
1664                  * code uses the new format branch_stack with this field,
1665                  * so the event attributes must indicate that it's present.
1666                  */
1667                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1668         }
1669
1670         if (etm->synth_opts.instructions) {
1671                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1672                 attr.sample_period = etm->synth_opts.period;
1673                 etm->instructions_sample_period = attr.sample_period;
1674                 err = cs_etm__synth_event(session, &attr, id);
1675                 if (err)
1676                         return err;
1677                 etm->instructions_sample_type = attr.sample_type;
1678                 etm->instructions_id = id;
1679                 id += 1;
1680         }
1681
1682         return 0;
1683 }
1684
1685 static int cs_etm__sample(struct cs_etm_queue *etmq,
1686                           struct cs_etm_traceid_queue *tidq)
1687 {
1688         struct cs_etm_auxtrace *etm = etmq->etm;
1689         int ret;
1690         u8 trace_chan_id = tidq->trace_chan_id;
1691         u64 instrs_prev;
1692
1693         /* Get instructions remainder from previous packet */
1694         instrs_prev = tidq->period_instructions;
1695
1696         tidq->period_instructions += tidq->packet->instr_count;
1697
1698         /*
1699          * Record a branch when the last instruction in
1700          * PREV_PACKET is a branch.
1701          */
1702         if (etm->synth_opts.last_branch &&
1703             tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1704             tidq->prev_packet->last_instr_taken_branch)
1705                 cs_etm__update_last_branch_rb(etmq, tidq);
1706
1707         if (etm->synth_opts.instructions &&
1708             tidq->period_instructions >= etm->instructions_sample_period) {
1709                 /*
1710                  * Emit instruction sample periodically
1711                  * TODO: allow period to be defined in cycles and clock time
1712                  */
1713
1714                 /*
1715                  * Below diagram demonstrates the instruction samples
1716                  * generation flows:
1717                  *
1718                  *    Instrs     Instrs       Instrs       Instrs
1719                  *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1720                  *    |            |            |            |
1721                  *    V            V            V            V
1722                  *   --------------------------------------------------
1723                  *            ^                                  ^
1724                  *            |                                  |
1725                  *         Period                             Period
1726                  *    instructions(Pi)                   instructions(Pi')
1727                  *
1728                  *            |                                  |
1729                  *            \---------------- -----------------/
1730                  *                             V
1731                  *                 tidq->packet->instr_count
1732                  *
1733                  * Instrs Sample(n...) are the synthesised samples occurring
1734                  * every etm->instructions_sample_period instructions - as
1735                  * defined on the perf command line.  Sample(n) is being the
1736                  * last sample before the current etm packet, n+1 to n+3
1737                  * samples are generated from the current etm packet.
1738                  *
1739                  * tidq->packet->instr_count represents the number of
1740                  * instructions in the current etm packet.
1741                  *
1742                  * Period instructions (Pi) contains the number of
1743                  * instructions executed after the sample point(n) from the
1744                  * previous etm packet.  This will always be less than
1745                  * etm->instructions_sample_period.
1746                  *
1747                  * When generate new samples, it combines with two parts
1748                  * instructions, one is the tail of the old packet and another
1749                  * is the head of the new coming packet, to generate
1750                  * sample(n+1); sample(n+2) and sample(n+3) consume the
1751                  * instructions with sample period.  After sample(n+3), the rest
1752                  * instructions will be used by later packet and it is assigned
1753                  * to tidq->period_instructions for next round calculation.
1754                  */
1755
1756                 /*
1757                  * Get the initial offset into the current packet instructions;
1758                  * entry conditions ensure that instrs_prev is less than
1759                  * etm->instructions_sample_period.
1760                  */
1761                 u64 offset = etm->instructions_sample_period - instrs_prev;
1762                 u64 addr;
1763
1764                 /* Prepare last branches for instruction sample */
1765                 if (etm->synth_opts.last_branch)
1766                         cs_etm__copy_last_branch_rb(etmq, tidq);
1767
1768                 while (tidq->period_instructions >=
1769                                 etm->instructions_sample_period) {
1770                         /*
1771                          * Calculate the address of the sampled instruction (-1
1772                          * as sample is reported as though instruction has just
1773                          * been executed, but PC has not advanced to next
1774                          * instruction)
1775                          */
1776                         addr = cs_etm__instr_addr(etmq, trace_chan_id,
1777                                                   tidq->packet, offset - 1);
1778                         ret = cs_etm__synth_instruction_sample(
1779                                 etmq, tidq, addr,
1780                                 etm->instructions_sample_period);
1781                         if (ret)
1782                                 return ret;
1783
1784                         offset += etm->instructions_sample_period;
1785                         tidq->period_instructions -=
1786                                 etm->instructions_sample_period;
1787                 }
1788         }
1789
1790         if (etm->synth_opts.branches) {
1791                 bool generate_sample = false;
1792
1793                 /* Generate sample for tracing on packet */
1794                 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1795                         generate_sample = true;
1796
1797                 /* Generate sample for branch taken packet */
1798                 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1799                     tidq->prev_packet->last_instr_taken_branch)
1800                         generate_sample = true;
1801
1802                 if (generate_sample) {
1803                         ret = cs_etm__synth_branch_sample(etmq, tidq);
1804                         if (ret)
1805                                 return ret;
1806                 }
1807         }
1808
1809         cs_etm__packet_swap(etm, tidq);
1810
1811         return 0;
1812 }
1813
1814 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1815 {
1816         /*
1817          * When the exception packet is inserted, whether the last instruction
1818          * in previous range packet is taken branch or not, we need to force
1819          * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1820          * to generate branch sample for the instruction range before the
1821          * exception is trapped to kernel or before the exception returning.
1822          *
1823          * The exception packet includes the dummy address values, so don't
1824          * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1825          * for generating instruction and branch samples.
1826          */
1827         if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1828                 tidq->prev_packet->last_instr_taken_branch = true;
1829
1830         return 0;
1831 }
1832
1833 static int cs_etm__flush(struct cs_etm_queue *etmq,
1834                          struct cs_etm_traceid_queue *tidq)
1835 {
1836         int err = 0;
1837         struct cs_etm_auxtrace *etm = etmq->etm;
1838
1839         /* Handle start tracing packet */
1840         if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1841                 goto swap_packet;
1842
1843         if (etmq->etm->synth_opts.last_branch &&
1844             etmq->etm->synth_opts.instructions &&
1845             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1846                 u64 addr;
1847
1848                 /* Prepare last branches for instruction sample */
1849                 cs_etm__copy_last_branch_rb(etmq, tidq);
1850
1851                 /*
1852                  * Generate a last branch event for the branches left in the
1853                  * circular buffer at the end of the trace.
1854                  *
1855                  * Use the address of the end of the last reported execution
1856                  * range
1857                  */
1858                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1859
1860                 err = cs_etm__synth_instruction_sample(
1861                         etmq, tidq, addr,
1862                         tidq->period_instructions);
1863                 if (err)
1864                         return err;
1865
1866                 tidq->period_instructions = 0;
1867
1868         }
1869
1870         if (etm->synth_opts.branches &&
1871             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1872                 err = cs_etm__synth_branch_sample(etmq, tidq);
1873                 if (err)
1874                         return err;
1875         }
1876
1877 swap_packet:
1878         cs_etm__packet_swap(etm, tidq);
1879
1880         /* Reset last branches after flush the trace */
1881         if (etm->synth_opts.last_branch)
1882                 cs_etm__reset_last_branch_rb(tidq);
1883
1884         return err;
1885 }
1886
1887 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1888                              struct cs_etm_traceid_queue *tidq)
1889 {
1890         int err;
1891
1892         /*
1893          * It has no new packet coming and 'etmq->packet' contains the stale
1894          * packet which was set at the previous time with packets swapping;
1895          * so skip to generate branch sample to avoid stale packet.
1896          *
1897          * For this case only flush branch stack and generate a last branch
1898          * event for the branches left in the circular buffer at the end of
1899          * the trace.
1900          */
1901         if (etmq->etm->synth_opts.last_branch &&
1902             etmq->etm->synth_opts.instructions &&
1903             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1904                 u64 addr;
1905
1906                 /* Prepare last branches for instruction sample */
1907                 cs_etm__copy_last_branch_rb(etmq, tidq);
1908
1909                 /*
1910                  * Use the address of the end of the last reported execution
1911                  * range.
1912                  */
1913                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1914
1915                 err = cs_etm__synth_instruction_sample(
1916                         etmq, tidq, addr,
1917                         tidq->period_instructions);
1918                 if (err)
1919                         return err;
1920
1921                 tidq->period_instructions = 0;
1922         }
1923
1924         return 0;
1925 }
1926 /*
1927  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1928  *                         if need be.
1929  * Returns:     < 0     if error
1930  *              = 0     if no more auxtrace_buffer to read
1931  *              > 0     if the current buffer isn't empty yet
1932  */
1933 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1934 {
1935         int ret;
1936
1937         if (!etmq->buf_len) {
1938                 ret = cs_etm__get_trace(etmq);
1939                 if (ret <= 0)
1940                         return ret;
1941                 /*
1942                  * We cannot assume consecutive blocks in the data file
1943                  * are contiguous, reset the decoder to force re-sync.
1944                  */
1945                 ret = cs_etm_decoder__reset(etmq->decoder);
1946                 if (ret)
1947                         return ret;
1948         }
1949
1950         return etmq->buf_len;
1951 }
1952
1953 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1954                                  struct cs_etm_packet *packet,
1955                                  u64 end_addr)
1956 {
1957         /* Initialise to keep compiler happy */
1958         u16 instr16 = 0;
1959         u32 instr32 = 0;
1960         u64 addr;
1961
1962         switch (packet->isa) {
1963         case CS_ETM_ISA_T32:
1964                 /*
1965                  * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1966                  *
1967                  *  b'15         b'8
1968                  * +-----------------+--------+
1969                  * | 1 1 0 1 1 1 1 1 |  imm8  |
1970                  * +-----------------+--------+
1971                  *
1972                  * According to the specification, it only defines SVC for T32
1973                  * with 16 bits instruction and has no definition for 32bits;
1974                  * so below only read 2 bytes as instruction size for T32.
1975                  */
1976                 addr = end_addr - 2;
1977                 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr16),
1978                                    (u8 *)&instr16, 0);
1979                 if ((instr16 & 0xFF00) == 0xDF00)
1980                         return true;
1981
1982                 break;
1983         case CS_ETM_ISA_A32:
1984                 /*
1985                  * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1986                  *
1987                  *  b'31 b'28 b'27 b'24
1988                  * +---------+---------+-------------------------+
1989                  * |  !1111  | 1 1 1 1 |        imm24            |
1990                  * +---------+---------+-------------------------+
1991                  */
1992                 addr = end_addr - 4;
1993                 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32),
1994                                    (u8 *)&instr32, 0);
1995                 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1996                     (instr32 & 0xF0000000) != 0xF0000000)
1997                         return true;
1998
1999                 break;
2000         case CS_ETM_ISA_A64:
2001                 /*
2002                  * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
2003                  *
2004                  *  b'31               b'21           b'4     b'0
2005                  * +-----------------------+---------+-----------+
2006                  * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
2007                  * +-----------------------+---------+-----------+
2008                  */
2009                 addr = end_addr - 4;
2010                 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32),
2011                                    (u8 *)&instr32, 0);
2012                 if ((instr32 & 0xFFE0001F) == 0xd4000001)
2013                         return true;
2014
2015                 break;
2016         case CS_ETM_ISA_UNKNOWN:
2017         default:
2018                 break;
2019         }
2020
2021         return false;
2022 }
2023
2024 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
2025                                struct cs_etm_traceid_queue *tidq, u64 magic)
2026 {
2027         u8 trace_chan_id = tidq->trace_chan_id;
2028         struct cs_etm_packet *packet = tidq->packet;
2029         struct cs_etm_packet *prev_packet = tidq->prev_packet;
2030
2031         if (magic == __perf_cs_etmv3_magic)
2032                 if (packet->exception_number == CS_ETMV3_EXC_SVC)
2033                         return true;
2034
2035         /*
2036          * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
2037          * HVC cases; need to check if it's SVC instruction based on
2038          * packet address.
2039          */
2040         if (magic == __perf_cs_etmv4_magic) {
2041                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
2042                     cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
2043                                          prev_packet->end_addr))
2044                         return true;
2045         }
2046
2047         return false;
2048 }
2049
2050 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
2051                                        u64 magic)
2052 {
2053         struct cs_etm_packet *packet = tidq->packet;
2054
2055         if (magic == __perf_cs_etmv3_magic)
2056                 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
2057                     packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
2058                     packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
2059                     packet->exception_number == CS_ETMV3_EXC_IRQ ||
2060                     packet->exception_number == CS_ETMV3_EXC_FIQ)
2061                         return true;
2062
2063         if (magic == __perf_cs_etmv4_magic)
2064                 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
2065                     packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
2066                     packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
2067                     packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
2068                     packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
2069                     packet->exception_number == CS_ETMV4_EXC_IRQ ||
2070                     packet->exception_number == CS_ETMV4_EXC_FIQ)
2071                         return true;
2072
2073         return false;
2074 }
2075
2076 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
2077                                       struct cs_etm_traceid_queue *tidq,
2078                                       u64 magic)
2079 {
2080         u8 trace_chan_id = tidq->trace_chan_id;
2081         struct cs_etm_packet *packet = tidq->packet;
2082         struct cs_etm_packet *prev_packet = tidq->prev_packet;
2083
2084         if (magic == __perf_cs_etmv3_magic)
2085                 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
2086                     packet->exception_number == CS_ETMV3_EXC_HYP ||
2087                     packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
2088                     packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
2089                     packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
2090                     packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
2091                     packet->exception_number == CS_ETMV3_EXC_GENERIC)
2092                         return true;
2093
2094         if (magic == __perf_cs_etmv4_magic) {
2095                 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
2096                     packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
2097                     packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
2098                     packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
2099                         return true;
2100
2101                 /*
2102                  * For CS_ETMV4_EXC_CALL, except SVC other instructions
2103                  * (SMC, HVC) are taken as sync exceptions.
2104                  */
2105                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
2106                     !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
2107                                           prev_packet->end_addr))
2108                         return true;
2109
2110                 /*
2111                  * ETMv4 has 5 bits for exception number; if the numbers
2112                  * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
2113                  * they are implementation defined exceptions.
2114                  *
2115                  * For this case, simply take it as sync exception.
2116                  */
2117                 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
2118                     packet->exception_number <= CS_ETMV4_EXC_END)
2119                         return true;
2120         }
2121
2122         return false;
2123 }
2124
2125 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
2126                                     struct cs_etm_traceid_queue *tidq)
2127 {
2128         struct cs_etm_packet *packet = tidq->packet;
2129         struct cs_etm_packet *prev_packet = tidq->prev_packet;
2130         u8 trace_chan_id = tidq->trace_chan_id;
2131         u64 magic;
2132         int ret;
2133
2134         switch (packet->sample_type) {
2135         case CS_ETM_RANGE:
2136                 /*
2137                  * Immediate branch instruction without neither link nor
2138                  * return flag, it's normal branch instruction within
2139                  * the function.
2140                  */
2141                 if (packet->last_instr_type == OCSD_INSTR_BR &&
2142                     packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
2143                         packet->flags = PERF_IP_FLAG_BRANCH;
2144
2145                         if (packet->last_instr_cond)
2146                                 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
2147                 }
2148
2149                 /*
2150                  * Immediate branch instruction with link (e.g. BL), this is
2151                  * branch instruction for function call.
2152                  */
2153                 if (packet->last_instr_type == OCSD_INSTR_BR &&
2154                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2155                         packet->flags = PERF_IP_FLAG_BRANCH |
2156                                         PERF_IP_FLAG_CALL;
2157
2158                 /*
2159                  * Indirect branch instruction with link (e.g. BLR), this is
2160                  * branch instruction for function call.
2161                  */
2162                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2163                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2164                         packet->flags = PERF_IP_FLAG_BRANCH |
2165                                         PERF_IP_FLAG_CALL;
2166
2167                 /*
2168                  * Indirect branch instruction with subtype of
2169                  * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
2170                  * function return for A32/T32.
2171                  */
2172                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2173                     packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
2174                         packet->flags = PERF_IP_FLAG_BRANCH |
2175                                         PERF_IP_FLAG_RETURN;
2176
2177                 /*
2178                  * Indirect branch instruction without link (e.g. BR), usually
2179                  * this is used for function return, especially for functions
2180                  * within dynamic link lib.
2181                  */
2182                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2183                     packet->last_instr_subtype == OCSD_S_INSTR_NONE)
2184                         packet->flags = PERF_IP_FLAG_BRANCH |
2185                                         PERF_IP_FLAG_RETURN;
2186
2187                 /* Return instruction for function return. */
2188                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2189                     packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
2190                         packet->flags = PERF_IP_FLAG_BRANCH |
2191                                         PERF_IP_FLAG_RETURN;
2192
2193                 /*
2194                  * Decoder might insert a discontinuity in the middle of
2195                  * instruction packets, fixup prev_packet with flag
2196                  * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
2197                  */
2198                 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
2199                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2200                                               PERF_IP_FLAG_TRACE_BEGIN;
2201
2202                 /*
2203                  * If the previous packet is an exception return packet
2204                  * and the return address just follows SVC instruction,
2205                  * it needs to calibrate the previous packet sample flags
2206                  * as PERF_IP_FLAG_SYSCALLRET.
2207                  */
2208                 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
2209                                            PERF_IP_FLAG_RETURN |
2210                                            PERF_IP_FLAG_INTERRUPT) &&
2211                     cs_etm__is_svc_instr(etmq, trace_chan_id,
2212                                          packet, packet->start_addr))
2213                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
2214                                              PERF_IP_FLAG_RETURN |
2215                                              PERF_IP_FLAG_SYSCALLRET;
2216                 break;
2217         case CS_ETM_DISCONTINUITY:
2218                 /*
2219                  * The trace is discontinuous, if the previous packet is
2220                  * instruction packet, set flag PERF_IP_FLAG_TRACE_END
2221                  * for previous packet.
2222                  */
2223                 if (prev_packet->sample_type == CS_ETM_RANGE)
2224                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2225                                               PERF_IP_FLAG_TRACE_END;
2226                 break;
2227         case CS_ETM_EXCEPTION:
2228                 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
2229                 if (ret)
2230                         return ret;
2231
2232                 /* The exception is for system call. */
2233                 if (cs_etm__is_syscall(etmq, tidq, magic))
2234                         packet->flags = PERF_IP_FLAG_BRANCH |
2235                                         PERF_IP_FLAG_CALL |
2236                                         PERF_IP_FLAG_SYSCALLRET;
2237                 /*
2238                  * The exceptions are triggered by external signals from bus,
2239                  * interrupt controller, debug module, PE reset or halt.
2240                  */
2241                 else if (cs_etm__is_async_exception(tidq, magic))
2242                         packet->flags = PERF_IP_FLAG_BRANCH |
2243                                         PERF_IP_FLAG_CALL |
2244                                         PERF_IP_FLAG_ASYNC |
2245                                         PERF_IP_FLAG_INTERRUPT;
2246                 /*
2247                  * Otherwise, exception is caused by trap, instruction &
2248                  * data fault, or alignment errors.
2249                  */
2250                 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
2251                         packet->flags = PERF_IP_FLAG_BRANCH |
2252                                         PERF_IP_FLAG_CALL |
2253                                         PERF_IP_FLAG_INTERRUPT;
2254
2255                 /*
2256                  * When the exception packet is inserted, since exception
2257                  * packet is not used standalone for generating samples
2258                  * and it's affiliation to the previous instruction range
2259                  * packet; so set previous range packet flags to tell perf
2260                  * it is an exception taken branch.
2261                  */
2262                 if (prev_packet->sample_type == CS_ETM_RANGE)
2263                         prev_packet->flags = packet->flags;
2264                 break;
2265         case CS_ETM_EXCEPTION_RET:
2266                 /*
2267                  * When the exception return packet is inserted, since
2268                  * exception return packet is not used standalone for
2269                  * generating samples and it's affiliation to the previous
2270                  * instruction range packet; so set previous range packet
2271                  * flags to tell perf it is an exception return branch.
2272                  *
2273                  * The exception return can be for either system call or
2274                  * other exception types; unfortunately the packet doesn't
2275                  * contain exception type related info so we cannot decide
2276                  * the exception type purely based on exception return packet.
2277                  * If we record the exception number from exception packet and
2278                  * reuse it for exception return packet, this is not reliable
2279                  * due the trace can be discontinuity or the interrupt can
2280                  * be nested, thus the recorded exception number cannot be
2281                  * used for exception return packet for these two cases.
2282                  *
2283                  * For exception return packet, we only need to distinguish the
2284                  * packet is for system call or for other types.  Thus the
2285                  * decision can be deferred when receive the next packet which
2286                  * contains the return address, based on the return address we
2287                  * can read out the previous instruction and check if it's a
2288                  * system call instruction and then calibrate the sample flag
2289                  * as needed.
2290                  */
2291                 if (prev_packet->sample_type == CS_ETM_RANGE)
2292                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
2293                                              PERF_IP_FLAG_RETURN |
2294                                              PERF_IP_FLAG_INTERRUPT;
2295                 break;
2296         case CS_ETM_EMPTY:
2297         default:
2298                 break;
2299         }
2300
2301         return 0;
2302 }
2303
2304 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2305 {
2306         int ret = 0;
2307         size_t processed = 0;
2308
2309         /*
2310          * Packets are decoded and added to the decoder's packet queue
2311          * until the decoder packet processing callback has requested that
2312          * processing stops or there is nothing left in the buffer.  Normal
2313          * operations that stop processing are a timestamp packet or a full
2314          * decoder buffer queue.
2315          */
2316         ret = cs_etm_decoder__process_data_block(etmq->decoder,
2317                                                  etmq->offset,
2318                                                  &etmq->buf[etmq->buf_used],
2319                                                  etmq->buf_len,
2320                                                  &processed);
2321         if (ret)
2322                 goto out;
2323
2324         etmq->offset += processed;
2325         etmq->buf_used += processed;
2326         etmq->buf_len -= processed;
2327
2328 out:
2329         return ret;
2330 }
2331
2332 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2333                                          struct cs_etm_traceid_queue *tidq)
2334 {
2335         int ret;
2336         struct cs_etm_packet_queue *packet_queue;
2337
2338         packet_queue = &tidq->packet_queue;
2339
2340         /* Process each packet in this chunk */
2341         while (1) {
2342                 ret = cs_etm_decoder__get_packet(packet_queue,
2343                                                  tidq->packet);
2344                 if (ret <= 0)
2345                         /*
2346                          * Stop processing this chunk on
2347                          * end of data or error
2348                          */
2349                         break;
2350
2351                 /*
2352                  * Since packet addresses are swapped in packet
2353                  * handling within below switch() statements,
2354                  * thus setting sample flags must be called
2355                  * prior to switch() statement to use address
2356                  * information before packets swapping.
2357                  */
2358                 ret = cs_etm__set_sample_flags(etmq, tidq);
2359                 if (ret < 0)
2360                         break;
2361
2362                 switch (tidq->packet->sample_type) {
2363                 case CS_ETM_RANGE:
2364                         /*
2365                          * If the packet contains an instruction
2366                          * range, generate instruction sequence
2367                          * events.
2368                          */
2369                         cs_etm__sample(etmq, tidq);
2370                         break;
2371                 case CS_ETM_EXCEPTION:
2372                 case CS_ETM_EXCEPTION_RET:
2373                         /*
2374                          * If the exception packet is coming,
2375                          * make sure the previous instruction
2376                          * range packet to be handled properly.
2377                          */
2378                         cs_etm__exception(tidq);
2379                         break;
2380                 case CS_ETM_DISCONTINUITY:
2381                         /*
2382                          * Discontinuity in trace, flush
2383                          * previous branch stack
2384                          */
2385                         cs_etm__flush(etmq, tidq);
2386                         break;
2387                 case CS_ETM_EMPTY:
2388                         /*
2389                          * Should not receive empty packet,
2390                          * report error.
2391                          */
2392                         pr_err("CS ETM Trace: empty packet\n");
2393                         return -EINVAL;
2394                 default:
2395                         break;
2396                 }
2397         }
2398
2399         return ret;
2400 }
2401
2402 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2403 {
2404         int idx;
2405         struct int_node *inode;
2406         struct cs_etm_traceid_queue *tidq;
2407         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2408
2409         intlist__for_each_entry(inode, traceid_queues_list) {
2410                 idx = (int)(intptr_t)inode->priv;
2411                 tidq = etmq->traceid_queues[idx];
2412
2413                 /* Ignore return value */
2414                 cs_etm__process_traceid_queue(etmq, tidq);
2415
2416                 /*
2417                  * Generate an instruction sample with the remaining
2418                  * branchstack entries.
2419                  */
2420                 cs_etm__flush(etmq, tidq);
2421         }
2422 }
2423
2424 static int cs_etm__run_per_thread_timeless_decoder(struct cs_etm_queue *etmq)
2425 {
2426         int err = 0;
2427         struct cs_etm_traceid_queue *tidq;
2428
2429         tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2430         if (!tidq)
2431                 return -EINVAL;
2432
2433         /* Go through each buffer in the queue and decode them one by one */
2434         while (1) {
2435                 err = cs_etm__get_data_block(etmq);
2436                 if (err <= 0)
2437                         return err;
2438
2439                 /* Run trace decoder until buffer consumed or end of trace */
2440                 do {
2441                         err = cs_etm__decode_data_block(etmq);
2442                         if (err)
2443                                 return err;
2444
2445                         /*
2446                          * Process each packet in this chunk, nothing to do if
2447                          * an error occurs other than hoping the next one will
2448                          * be better.
2449                          */
2450                         err = cs_etm__process_traceid_queue(etmq, tidq);
2451
2452                 } while (etmq->buf_len);
2453
2454                 if (err == 0)
2455                         /* Flush any remaining branch stack entries */
2456                         err = cs_etm__end_block(etmq, tidq);
2457         }
2458
2459         return err;
2460 }
2461
2462 static int cs_etm__run_per_cpu_timeless_decoder(struct cs_etm_queue *etmq)
2463 {
2464         int idx, err = 0;
2465         struct cs_etm_traceid_queue *tidq;
2466         struct int_node *inode;
2467
2468         /* Go through each buffer in the queue and decode them one by one */
2469         while (1) {
2470                 err = cs_etm__get_data_block(etmq);
2471                 if (err <= 0)
2472                         return err;
2473
2474                 /* Run trace decoder until buffer consumed or end of trace */
2475                 do {
2476                         err = cs_etm__decode_data_block(etmq);
2477                         if (err)
2478                                 return err;
2479
2480                         /*
2481                          * cs_etm__run_per_thread_timeless_decoder() runs on a
2482                          * single traceID queue because each TID has a separate
2483                          * buffer. But here in per-cpu mode we need to iterate
2484                          * over each channel instead.
2485                          */
2486                         intlist__for_each_entry(inode,
2487                                                 etmq->traceid_queues_list) {
2488                                 idx = (int)(intptr_t)inode->priv;
2489                                 tidq = etmq->traceid_queues[idx];
2490                                 cs_etm__process_traceid_queue(etmq, tidq);
2491                         }
2492                 } while (etmq->buf_len);
2493
2494                 intlist__for_each_entry(inode, etmq->traceid_queues_list) {
2495                         idx = (int)(intptr_t)inode->priv;
2496                         tidq = etmq->traceid_queues[idx];
2497                         /* Flush any remaining branch stack entries */
2498                         err = cs_etm__end_block(etmq, tidq);
2499                         if (err)
2500                                 return err;
2501                 }
2502         }
2503
2504         return err;
2505 }
2506
2507 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2508                                            pid_t tid)
2509 {
2510         unsigned int i;
2511         struct auxtrace_queues *queues = &etm->queues;
2512
2513         for (i = 0; i < queues->nr_queues; i++) {
2514                 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2515                 struct cs_etm_queue *etmq = queue->priv;
2516                 struct cs_etm_traceid_queue *tidq;
2517
2518                 if (!etmq)
2519                         continue;
2520
2521                 if (etm->per_thread_decoding) {
2522                         tidq = cs_etm__etmq_get_traceid_queue(
2523                                 etmq, CS_ETM_PER_THREAD_TRACEID);
2524
2525                         if (!tidq)
2526                                 continue;
2527
2528                         if (tid == -1 || thread__tid(tidq->thread) == tid)
2529                                 cs_etm__run_per_thread_timeless_decoder(etmq);
2530                 } else
2531                         cs_etm__run_per_cpu_timeless_decoder(etmq);
2532         }
2533
2534         return 0;
2535 }
2536
2537 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm)
2538 {
2539         int ret = 0;
2540         unsigned int cs_queue_nr, queue_nr, i;
2541         u8 trace_chan_id;
2542         u64 cs_timestamp;
2543         struct auxtrace_queue *queue;
2544         struct cs_etm_queue *etmq;
2545         struct cs_etm_traceid_queue *tidq;
2546
2547         /*
2548          * Pre-populate the heap with one entry from each queue so that we can
2549          * start processing in time order across all queues.
2550          */
2551         for (i = 0; i < etm->queues.nr_queues; i++) {
2552                 etmq = etm->queues.queue_array[i].priv;
2553                 if (!etmq)
2554                         continue;
2555
2556                 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2557                 if (ret)
2558                         return ret;
2559         }
2560
2561         while (1) {
2562                 if (!etm->heap.heap_cnt)
2563                         goto out;
2564
2565                 /* Take the entry at the top of the min heap */
2566                 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2567                 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2568                 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2569                 queue = &etm->queues.queue_array[queue_nr];
2570                 etmq = queue->priv;
2571
2572                 /*
2573                  * Remove the top entry from the heap since we are about
2574                  * to process it.
2575                  */
2576                 auxtrace_heap__pop(&etm->heap);
2577
2578                 tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2579                 if (!tidq) {
2580                         /*
2581                          * No traceID queue has been allocated for this traceID,
2582                          * which means something somewhere went very wrong.  No
2583                          * other choice than simply exit.
2584                          */
2585                         ret = -EINVAL;
2586                         goto out;
2587                 }
2588
2589                 /*
2590                  * Packets associated with this timestamp are already in
2591                  * the etmq's traceID queue, so process them.
2592                  */
2593                 ret = cs_etm__process_traceid_queue(etmq, tidq);
2594                 if (ret < 0)
2595                         goto out;
2596
2597                 /*
2598                  * Packets for this timestamp have been processed, time to
2599                  * move on to the next timestamp, fetching a new auxtrace_buffer
2600                  * if need be.
2601                  */
2602 refetch:
2603                 ret = cs_etm__get_data_block(etmq);
2604                 if (ret < 0)
2605                         goto out;
2606
2607                 /*
2608                  * No more auxtrace_buffers to process in this etmq, simply
2609                  * move on to another entry in the auxtrace_heap.
2610                  */
2611                 if (!ret)
2612                         continue;
2613
2614                 ret = cs_etm__decode_data_block(etmq);
2615                 if (ret)
2616                         goto out;
2617
2618                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2619
2620                 if (!cs_timestamp) {
2621                         /*
2622                          * Function cs_etm__decode_data_block() returns when
2623                          * there is no more traces to decode in the current
2624                          * auxtrace_buffer OR when a timestamp has been
2625                          * encountered on any of the traceID queues.  Since we
2626                          * did not get a timestamp, there is no more traces to
2627                          * process in this auxtrace_buffer.  As such empty and
2628                          * flush all traceID queues.
2629                          */
2630                         cs_etm__clear_all_traceid_queues(etmq);
2631
2632                         /* Fetch another auxtrace_buffer for this etmq */
2633                         goto refetch;
2634                 }
2635
2636                 /*
2637                  * Add to the min heap the timestamp for packets that have
2638                  * just been decoded.  They will be processed and synthesized
2639                  * during the next call to cs_etm__process_traceid_queue() for
2640                  * this queue/traceID.
2641                  */
2642                 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2643                 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2644         }
2645
2646 out:
2647         return ret;
2648 }
2649
2650 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2651                                         union perf_event *event)
2652 {
2653         struct thread *th;
2654
2655         if (etm->timeless_decoding)
2656                 return 0;
2657
2658         /*
2659          * Add the tid/pid to the log so that we can get a match when we get a
2660          * contextID from the decoder. Only track for the host: only kernel
2661          * trace is supported for guests which wouldn't need pids so this should
2662          * be fine.
2663          */
2664         th = machine__findnew_thread(&etm->session->machines.host,
2665                                      event->itrace_start.pid,
2666                                      event->itrace_start.tid);
2667         if (!th)
2668                 return -ENOMEM;
2669
2670         thread__put(th);
2671
2672         return 0;
2673 }
2674
2675 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2676                                            union perf_event *event)
2677 {
2678         struct thread *th;
2679         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2680
2681         /*
2682          * Context switch in per-thread mode are irrelevant since perf
2683          * will start/stop tracing as the process is scheduled.
2684          */
2685         if (etm->timeless_decoding)
2686                 return 0;
2687
2688         /*
2689          * SWITCH_IN events carry the next process to be switched out while
2690          * SWITCH_OUT events carry the process to be switched in.  As such
2691          * we don't care about IN events.
2692          */
2693         if (!out)
2694                 return 0;
2695
2696         /*
2697          * Add the tid/pid to the log so that we can get a match when we get a
2698          * contextID from the decoder. Only track for the host: only kernel
2699          * trace is supported for guests which wouldn't need pids so this should
2700          * be fine.
2701          */
2702         th = machine__findnew_thread(&etm->session->machines.host,
2703                                      event->context_switch.next_prev_pid,
2704                                      event->context_switch.next_prev_tid);
2705         if (!th)
2706                 return -ENOMEM;
2707
2708         thread__put(th);
2709
2710         return 0;
2711 }
2712
2713 static int cs_etm__process_event(struct perf_session *session,
2714                                  union perf_event *event,
2715                                  struct perf_sample *sample,
2716                                  struct perf_tool *tool)
2717 {
2718         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2719                                                    struct cs_etm_auxtrace,
2720                                                    auxtrace);
2721
2722         if (dump_trace)
2723                 return 0;
2724
2725         if (!tool->ordered_events) {
2726                 pr_err("CoreSight ETM Trace requires ordered events\n");
2727                 return -EINVAL;
2728         }
2729
2730         switch (event->header.type) {
2731         case PERF_RECORD_EXIT:
2732                 /*
2733                  * Don't need to wait for cs_etm__flush_events() in per-thread mode to
2734                  * start the decode because we know there will be no more trace from
2735                  * this thread. All this does is emit samples earlier than waiting for
2736                  * the flush in other modes, but with timestamps it makes sense to wait
2737                  * for flush so that events from different threads are interleaved
2738                  * properly.
2739                  */
2740                 if (etm->per_thread_decoding && etm->timeless_decoding)
2741                         return cs_etm__process_timeless_queues(etm,
2742                                                                event->fork.tid);
2743                 break;
2744
2745         case PERF_RECORD_ITRACE_START:
2746                 return cs_etm__process_itrace_start(etm, event);
2747
2748         case PERF_RECORD_SWITCH_CPU_WIDE:
2749                 return cs_etm__process_switch_cpu_wide(etm, event);
2750
2751         case PERF_RECORD_AUX:
2752                 /*
2753                  * Record the latest kernel timestamp available in the header
2754                  * for samples so that synthesised samples occur from this point
2755                  * onwards.
2756                  */
2757                 if (sample->time && (sample->time != (u64)-1))
2758                         etm->latest_kernel_timestamp = sample->time;
2759                 break;
2760
2761         default:
2762                 break;
2763         }
2764
2765         return 0;
2766 }
2767
2768 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2769                              struct perf_record_auxtrace *event)
2770 {
2771         struct auxtrace_buffer *buf;
2772         unsigned int i;
2773         /*
2774          * Find all buffers with same reference in the queues and dump them.
2775          * This is because the queues can contain multiple entries of the same
2776          * buffer that were split on aux records.
2777          */
2778         for (i = 0; i < etm->queues.nr_queues; ++i)
2779                 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2780                         if (buf->reference == event->reference)
2781                                 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2782 }
2783
2784 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2785                                           union perf_event *event,
2786                                           struct perf_tool *tool __maybe_unused)
2787 {
2788         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2789                                                    struct cs_etm_auxtrace,
2790                                                    auxtrace);
2791         if (!etm->data_queued) {
2792                 struct auxtrace_buffer *buffer;
2793                 off_t  data_offset;
2794                 int fd = perf_data__fd(session->data);
2795                 bool is_pipe = perf_data__is_pipe(session->data);
2796                 int err;
2797                 int idx = event->auxtrace.idx;
2798
2799                 if (is_pipe)
2800                         data_offset = 0;
2801                 else {
2802                         data_offset = lseek(fd, 0, SEEK_CUR);
2803                         if (data_offset == -1)
2804                                 return -errno;
2805                 }
2806
2807                 err = auxtrace_queues__add_event(&etm->queues, session,
2808                                                  event, data_offset, &buffer);
2809                 if (err)
2810                         return err;
2811
2812                 /*
2813                  * Knowing if the trace is formatted or not requires a lookup of
2814                  * the aux record so only works in non-piped mode where data is
2815                  * queued in cs_etm__queue_aux_records(). Always assume
2816                  * formatted in piped mode (true).
2817                  */
2818                 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2819                                           idx, true);
2820                 if (err)
2821                         return err;
2822
2823                 if (dump_trace)
2824                         if (auxtrace_buffer__get_data(buffer, fd)) {
2825                                 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2826                                 auxtrace_buffer__put_data(buffer);
2827                         }
2828         } else if (dump_trace)
2829                 dump_queued_data(etm, &event->auxtrace);
2830
2831         return 0;
2832 }
2833
2834 static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm)
2835 {
2836         struct evsel *evsel;
2837         struct evlist *evlist = etm->session->evlist;
2838
2839         /* Override timeless mode with user input from --itrace=Z */
2840         if (etm->synth_opts.timeless_decoding) {
2841                 etm->timeless_decoding = true;
2842                 return 0;
2843         }
2844
2845         /*
2846          * Find the cs_etm evsel and look at what its timestamp setting was
2847          */
2848         evlist__for_each_entry(evlist, evsel)
2849                 if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) {
2850                         etm->timeless_decoding =
2851                                 !(evsel->core.attr.config & BIT(ETM_OPT_TS));
2852                         return 0;
2853                 }
2854
2855         pr_err("CS ETM: Couldn't find ETM evsel\n");
2856         return -EINVAL;
2857 }
2858
2859 /*
2860  * Read a single cpu parameter block from the auxtrace_info priv block.
2861  *
2862  * For version 1 there is a per cpu nr_params entry. If we are handling
2863  * version 1 file, then there may be less, the same, or more params
2864  * indicated by this value than the compile time number we understand.
2865  *
2866  * For a version 0 info block, there are a fixed number, and we need to
2867  * fill out the nr_param value in the metadata we create.
2868  */
2869 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2870                                     int out_blk_size, int nr_params_v0)
2871 {
2872         u64 *metadata = NULL;
2873         int hdr_version;
2874         int nr_in_params, nr_out_params, nr_cmn_params;
2875         int i, k;
2876
2877         metadata = zalloc(sizeof(*metadata) * out_blk_size);
2878         if (!metadata)
2879                 return NULL;
2880
2881         /* read block current index & version */
2882         i = *buff_in_offset;
2883         hdr_version = buff_in[CS_HEADER_VERSION];
2884
2885         if (!hdr_version) {
2886         /* read version 0 info block into a version 1 metadata block  */
2887                 nr_in_params = nr_params_v0;
2888                 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2889                 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2890                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2891                 /* remaining block params at offset +1 from source */
2892                 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2893                         metadata[k + 1] = buff_in[i + k];
2894                 /* version 0 has 2 common params */
2895                 nr_cmn_params = 2;
2896         } else {
2897         /* read version 1 info block - input and output nr_params may differ */
2898                 /* version 1 has 3 common params */
2899                 nr_cmn_params = 3;
2900                 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2901
2902                 /* if input has more params than output - skip excess */
2903                 nr_out_params = nr_in_params + nr_cmn_params;
2904                 if (nr_out_params > out_blk_size)
2905                         nr_out_params = out_blk_size;
2906
2907                 for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2908                         metadata[k] = buff_in[i + k];
2909
2910                 /* record the actual nr params we copied */
2911                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2912         }
2913
2914         /* adjust in offset by number of in params used */
2915         i += nr_in_params + nr_cmn_params;
2916         *buff_in_offset = i;
2917         return metadata;
2918 }
2919
2920 /**
2921  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2922  * on the bounds of aux_event, if it matches with the buffer that's at
2923  * file_offset.
2924  *
2925  * Normally, whole auxtrace buffers would be added to the queue. But we
2926  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2927  * is reset across each buffer, so splitting the buffers up in advance has
2928  * the same effect.
2929  */
2930 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2931                                       struct perf_record_aux *aux_event, struct perf_sample *sample)
2932 {
2933         int err;
2934         char buf[PERF_SAMPLE_MAX_SIZE];
2935         union perf_event *auxtrace_event_union;
2936         struct perf_record_auxtrace *auxtrace_event;
2937         union perf_event auxtrace_fragment;
2938         __u64 aux_offset, aux_size;
2939         __u32 idx;
2940         bool formatted;
2941
2942         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2943                                                    struct cs_etm_auxtrace,
2944                                                    auxtrace);
2945
2946         /*
2947          * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2948          * from looping through the auxtrace index.
2949          */
2950         err = perf_session__peek_event(session, file_offset, buf,
2951                                        PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2952         if (err)
2953                 return err;
2954         auxtrace_event = &auxtrace_event_union->auxtrace;
2955         if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2956                 return -EINVAL;
2957
2958         if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2959                 auxtrace_event->header.size != sz) {
2960                 return -EINVAL;
2961         }
2962
2963         /*
2964          * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See
2965          * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a
2966          * CPU as we set this always for the AUX_OUTPUT_HW_ID event.
2967          * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1.
2968          * Return 'not found' if mismatch.
2969          */
2970         if (auxtrace_event->cpu == (__u32) -1) {
2971                 etm->per_thread_decoding = true;
2972                 if (auxtrace_event->tid != sample->tid)
2973                         return 1;
2974         } else if (auxtrace_event->cpu != sample->cpu) {
2975                 if (etm->per_thread_decoding) {
2976                         /*
2977                          * Found a per-cpu buffer after a per-thread one was
2978                          * already found
2979                          */
2980                         pr_err("CS ETM: Inconsistent per-thread/per-cpu mode.\n");
2981                         return -EINVAL;
2982                 }
2983                 return 1;
2984         }
2985
2986         if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2987                 /*
2988                  * Clamp size in snapshot mode. The buffer size is clamped in
2989                  * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2990                  * the buffer size.
2991                  */
2992                 aux_size = min(aux_event->aux_size, auxtrace_event->size);
2993
2994                 /*
2995                  * In this mode, the head also points to the end of the buffer so aux_offset
2996                  * needs to have the size subtracted so it points to the beginning as in normal mode
2997                  */
2998                 aux_offset = aux_event->aux_offset - aux_size;
2999         } else {
3000                 aux_size = aux_event->aux_size;
3001                 aux_offset = aux_event->aux_offset;
3002         }
3003
3004         if (aux_offset >= auxtrace_event->offset &&
3005             aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
3006                 /*
3007                  * If this AUX event was inside this buffer somewhere, create a new auxtrace event
3008                  * based on the sizes of the aux event, and queue that fragment.
3009                  */
3010                 auxtrace_fragment.auxtrace = *auxtrace_event;
3011                 auxtrace_fragment.auxtrace.size = aux_size;
3012                 auxtrace_fragment.auxtrace.offset = aux_offset;
3013                 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
3014
3015                 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
3016                           " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
3017                 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
3018                                                  file_offset, NULL);
3019                 if (err)
3020                         return err;
3021
3022                 idx = auxtrace_event->idx;
3023                 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
3024                 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
3025                                            idx, formatted);
3026         }
3027
3028         /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
3029         return 1;
3030 }
3031
3032 static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event,
3033                                         u64 offset __maybe_unused, void *data __maybe_unused)
3034 {
3035         /* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */
3036         if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) {
3037                 (*(int *)data)++; /* increment found count */
3038                 return cs_etm__process_aux_output_hw_id(session, event);
3039         }
3040         return 0;
3041 }
3042
3043 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
3044                                         u64 offset __maybe_unused, void *data __maybe_unused)
3045 {
3046         struct perf_sample sample;
3047         int ret;
3048         struct auxtrace_index_entry *ent;
3049         struct auxtrace_index *auxtrace_index;
3050         struct evsel *evsel;
3051         size_t i;
3052
3053         /* Don't care about any other events, we're only queuing buffers for AUX events */
3054         if (event->header.type != PERF_RECORD_AUX)
3055                 return 0;
3056
3057         if (event->header.size < sizeof(struct perf_record_aux))
3058                 return -EINVAL;
3059
3060         /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
3061         if (!event->aux.aux_size)
3062                 return 0;
3063
3064         /*
3065          * Parse the sample, we need the sample_id_all data that comes after the event so that the
3066          * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
3067          */
3068         evsel = evlist__event2evsel(session->evlist, event);
3069         if (!evsel)
3070                 return -EINVAL;
3071         ret = evsel__parse_sample(evsel, event, &sample);
3072         if (ret)
3073                 return ret;
3074
3075         /*
3076          * Loop through the auxtrace index to find the buffer that matches up with this aux event.
3077          */
3078         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
3079                 for (i = 0; i < auxtrace_index->nr; i++) {
3080                         ent = &auxtrace_index->entries[i];
3081                         ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
3082                                                          ent->sz, &event->aux, &sample);
3083                         /*
3084                          * Stop search on error or successful values. Continue search on
3085                          * 1 ('not found')
3086                          */
3087                         if (ret != 1)
3088                                 return ret;
3089                 }
3090         }
3091
3092         /*
3093          * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
3094          * don't exit with an error because it will still be possible to decode other aux records.
3095          */
3096         pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
3097                " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
3098         return 0;
3099 }
3100
3101 static int cs_etm__queue_aux_records(struct perf_session *session)
3102 {
3103         struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
3104                                                                 struct auxtrace_index, list);
3105         if (index && index->nr > 0)
3106                 return perf_session__peek_events(session, session->header.data_offset,
3107                                                  session->header.data_size,
3108                                                  cs_etm__queue_aux_records_cb, NULL);
3109
3110         /*
3111          * We would get here if there are no entries in the index (either no auxtrace
3112          * buffers or no index at all). Fail silently as there is the possibility of
3113          * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
3114          * false.
3115          *
3116          * In that scenario, buffers will not be split by AUX records.
3117          */
3118         return 0;
3119 }
3120
3121 #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \
3122                                   (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1))
3123
3124 /*
3125  * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual
3126  * timestamps).
3127  */
3128 static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu)
3129 {
3130         int j;
3131
3132         for (j = 0; j < num_cpu; j++) {
3133                 switch (metadata[j][CS_ETM_MAGIC]) {
3134                 case __perf_cs_etmv4_magic:
3135                         if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1)
3136                                 return false;
3137                         break;
3138                 case __perf_cs_ete_magic:
3139                         if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1)
3140                                 return false;
3141                         break;
3142                 default:
3143                         /* Unknown / unsupported magic number. */
3144                         return false;
3145                 }
3146         }
3147         return true;
3148 }
3149
3150 /* map trace ids to correct metadata block, from information in metadata */
3151 static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata)
3152 {
3153         u64 cs_etm_magic;
3154         u8 trace_chan_id;
3155         int i, err;
3156
3157         for (i = 0; i < num_cpu; i++) {
3158                 cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3159                 switch (cs_etm_magic) {
3160                 case __perf_cs_etmv3_magic:
3161                         metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3162                         trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]);
3163                         break;
3164                 case __perf_cs_etmv4_magic:
3165                 case __perf_cs_ete_magic:
3166                         metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3167                         trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]);
3168                         break;
3169                 default:
3170                         /* unknown magic number */
3171                         return -EINVAL;
3172                 }
3173                 err = cs_etm__map_trace_id(trace_chan_id, metadata[i]);
3174                 if (err)
3175                         return err;
3176         }
3177         return 0;
3178 }
3179
3180 /*
3181  * If we found AUX_HW_ID packets, then set any metadata marked as unused to the
3182  * unused value to reduce the number of unneeded decoders created.
3183  */
3184 static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata)
3185 {
3186         u64 cs_etm_magic;
3187         int i;
3188
3189         for (i = 0; i < num_cpu; i++) {
3190                 cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3191                 switch (cs_etm_magic) {
3192                 case __perf_cs_etmv3_magic:
3193                         if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3194                                 metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3195                         break;
3196                 case __perf_cs_etmv4_magic:
3197                 case __perf_cs_ete_magic:
3198                         if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3199                                 metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3200                         break;
3201                 default:
3202                         /* unknown magic number */
3203                         return -EINVAL;
3204                 }
3205         }
3206         return 0;
3207 }
3208
3209 int cs_etm__process_auxtrace_info_full(union perf_event *event,
3210                                        struct perf_session *session)
3211 {
3212         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3213         struct cs_etm_auxtrace *etm = NULL;
3214         struct perf_record_time_conv *tc = &session->time_conv;
3215         int event_header_size = sizeof(struct perf_event_header);
3216         int total_size = auxtrace_info->header.size;
3217         int priv_size = 0;
3218         int num_cpu;
3219         int err = 0;
3220         int aux_hw_id_found;
3221         int i, j;
3222         u64 *ptr = NULL;
3223         u64 **metadata = NULL;
3224
3225         /*
3226          * Create an RB tree for traceID-metadata tuple.  Since the conversion
3227          * has to be made for each packet that gets decoded, optimizing access
3228          * in anything other than a sequential array is worth doing.
3229          */
3230         traceid_list = intlist__new(NULL);
3231         if (!traceid_list)
3232                 return -ENOMEM;
3233
3234         /* First the global part */
3235         ptr = (u64 *) auxtrace_info->priv;
3236         num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff;
3237         metadata = zalloc(sizeof(*metadata) * num_cpu);
3238         if (!metadata) {
3239                 err = -ENOMEM;
3240                 goto err_free_traceid_list;
3241         }
3242
3243         /* Start parsing after the common part of the header */
3244         i = CS_HEADER_VERSION_MAX;
3245
3246         /*
3247          * The metadata is stored in the auxtrace_info section and encodes
3248          * the configuration of the ARM embedded trace macrocell which is
3249          * required by the trace decoder to properly decode the trace due
3250          * to its highly compressed nature.
3251          */
3252         for (j = 0; j < num_cpu; j++) {
3253                 if (ptr[i] == __perf_cs_etmv3_magic) {
3254                         metadata[j] =
3255                                 cs_etm__create_meta_blk(ptr, &i,
3256                                                         CS_ETM_PRIV_MAX,
3257                                                         CS_ETM_NR_TRC_PARAMS_V0);
3258                 } else if (ptr[i] == __perf_cs_etmv4_magic) {
3259                         metadata[j] =
3260                                 cs_etm__create_meta_blk(ptr, &i,
3261                                                         CS_ETMV4_PRIV_MAX,
3262                                                         CS_ETMV4_NR_TRC_PARAMS_V0);
3263                 } else if (ptr[i] == __perf_cs_ete_magic) {
3264                         metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
3265                 } else {
3266                         ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
3267                                   ptr[i]);
3268                         err = -EINVAL;
3269                         goto err_free_metadata;
3270                 }
3271
3272                 if (!metadata[j]) {
3273                         err = -ENOMEM;
3274                         goto err_free_metadata;
3275                 }
3276         }
3277
3278         /*
3279          * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
3280          * CS_ETMV4_PRIV_MAX mark how many double words are in the
3281          * global metadata, and each cpu's metadata respectively.
3282          * The following tests if the correct number of double words was
3283          * present in the auxtrace info section.
3284          */
3285         priv_size = total_size - event_header_size - INFO_HEADER_SIZE;
3286         if (i * 8 != priv_size) {
3287                 err = -EINVAL;
3288                 goto err_free_metadata;
3289         }
3290
3291         etm = zalloc(sizeof(*etm));
3292
3293         if (!etm) {
3294                 err = -ENOMEM;
3295                 goto err_free_metadata;
3296         }
3297
3298         /*
3299          * As all the ETMs run at the same exception level, the system should
3300          * have the same PID format crossing CPUs.  So cache the PID format
3301          * and reuse it for sequential decoding.
3302          */
3303         etm->pid_fmt = cs_etm__init_pid_fmt(metadata[0]);
3304
3305         err = auxtrace_queues__init(&etm->queues);
3306         if (err)
3307                 goto err_free_etm;
3308
3309         if (session->itrace_synth_opts->set) {
3310                 etm->synth_opts = *session->itrace_synth_opts;
3311         } else {
3312                 itrace_synth_opts__set_default(&etm->synth_opts,
3313                                 session->itrace_synth_opts->default_no_sample);
3314                 etm->synth_opts.callchain = false;
3315         }
3316
3317         etm->session = session;
3318
3319         etm->num_cpu = num_cpu;
3320         etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff);
3321         etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0);
3322         etm->metadata = metadata;
3323         etm->auxtrace_type = auxtrace_info->type;
3324
3325         /* Use virtual timestamps if all ETMs report ts_source = 1 */
3326         etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu);
3327
3328         if (!etm->has_virtual_ts)
3329                 ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n"
3330                             "The time field of the samples will not be set accurately.\n\n");
3331
3332         etm->auxtrace.process_event = cs_etm__process_event;
3333         etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3334         etm->auxtrace.flush_events = cs_etm__flush_events;
3335         etm->auxtrace.free_events = cs_etm__free_events;
3336         etm->auxtrace.free = cs_etm__free;
3337         etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3338         session->auxtrace = &etm->auxtrace;
3339
3340         err = cs_etm__setup_timeless_decoding(etm);
3341         if (err)
3342                 return err;
3343
3344         etm->tc.time_shift = tc->time_shift;
3345         etm->tc.time_mult = tc->time_mult;
3346         etm->tc.time_zero = tc->time_zero;
3347         if (event_contains(*tc, time_cycles)) {
3348                 etm->tc.time_cycles = tc->time_cycles;
3349                 etm->tc.time_mask = tc->time_mask;
3350                 etm->tc.cap_user_time_zero = tc->cap_user_time_zero;
3351                 etm->tc.cap_user_time_short = tc->cap_user_time_short;
3352         }
3353         err = cs_etm__synth_events(etm, session);
3354         if (err)
3355                 goto err_free_queues;
3356
3357         /*
3358          * Map Trace ID values to CPU metadata.
3359          *
3360          * Trace metadata will always contain Trace ID values from the legacy algorithm. If the
3361          * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata
3362          * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set.
3363          *
3364          * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use
3365          * the same IDs as the old algorithm as far as is possible, unless there are clashes
3366          * in which case a different value will be used. This means an older perf may still
3367          * be able to record and read files generate on a newer system.
3368          *
3369          * For a perf able to interpret AUX_HW_ID packets we first check for the presence of
3370          * those packets. If they are there then the values will be mapped and plugged into
3371          * the metadata. We then set any remaining metadata values with the used flag to a
3372          * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required.
3373          *
3374          * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel
3375          * then we map Trace ID values to CPU directly from the metadata - clearing any unused
3376          * flags if present.
3377          */
3378
3379         /* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */
3380         aux_hw_id_found = 0;
3381         err = perf_session__peek_events(session, session->header.data_offset,
3382                                         session->header.data_size,
3383                                         cs_etm__process_aux_hw_id_cb, &aux_hw_id_found);
3384         if (err)
3385                 goto err_free_queues;
3386
3387         /* if HW ID found then clear any unused metadata ID values */
3388         if (aux_hw_id_found)
3389                 err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata);
3390         /* otherwise, this is a file with metadata values only, map from metadata */
3391         else
3392                 err = cs_etm__map_trace_ids_metadata(num_cpu, metadata);
3393
3394         if (err)
3395                 goto err_free_queues;
3396
3397         err = cs_etm__queue_aux_records(session);
3398         if (err)
3399                 goto err_free_queues;
3400
3401         etm->data_queued = etm->queues.populated;
3402         return 0;
3403
3404 err_free_queues:
3405         auxtrace_queues__free(&etm->queues);
3406         session->auxtrace = NULL;
3407 err_free_etm:
3408         zfree(&etm);
3409 err_free_metadata:
3410         /* No need to check @metadata[j], free(NULL) is supported */
3411         for (j = 0; j < num_cpu; j++)
3412                 zfree(&metadata[j]);
3413         zfree(&metadata);
3414 err_free_traceid_list:
3415         intlist__delete(traceid_list);
3416         return err;
3417 }