Merge branches 'clk-qcom', 'clk-socfpga', 'clk-mediatek', 'clk-lmk' and 'clk-x86...
[platform/kernel/linux-rpi.git] / tools / perf / util / cs-etm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40
41 struct cs_etm_auxtrace {
42         struct auxtrace auxtrace;
43         struct auxtrace_queues queues;
44         struct auxtrace_heap heap;
45         struct itrace_synth_opts synth_opts;
46         struct perf_session *session;
47         struct machine *machine;
48         struct thread *unknown_thread;
49
50         u8 timeless_decoding;
51         u8 snapshot_mode;
52         u8 data_queued;
53         u8 sample_branches;
54         u8 sample_instructions;
55
56         int num_cpu;
57         u64 latest_kernel_timestamp;
58         u32 auxtrace_type;
59         u64 branches_sample_type;
60         u64 branches_id;
61         u64 instructions_sample_type;
62         u64 instructions_sample_period;
63         u64 instructions_id;
64         u64 **metadata;
65         u64 kernel_start;
66         unsigned int pmu_type;
67 };
68
69 struct cs_etm_traceid_queue {
70         u8 trace_chan_id;
71         pid_t pid, tid;
72         u64 period_instructions;
73         size_t last_branch_pos;
74         union perf_event *event_buf;
75         struct thread *thread;
76         struct branch_stack *last_branch;
77         struct branch_stack *last_branch_rb;
78         struct cs_etm_packet *prev_packet;
79         struct cs_etm_packet *packet;
80         struct cs_etm_packet_queue packet_queue;
81 };
82
83 struct cs_etm_queue {
84         struct cs_etm_auxtrace *etm;
85         struct cs_etm_decoder *decoder;
86         struct auxtrace_buffer *buffer;
87         unsigned int queue_nr;
88         u8 pending_timestamp_chan_id;
89         u64 offset;
90         const unsigned char *buf;
91         size_t buf_len, buf_used;
92         /* Conversion between traceID and index in traceid_queues array */
93         struct intlist *traceid_queues_list;
94         struct cs_etm_traceid_queue **traceid_queues;
95 };
96
97 /* RB tree for quick conversion between traceID and metadata pointers */
98 static struct intlist *traceid_list;
99
100 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
101 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
102 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
103                                            pid_t tid);
104 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
105 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
106
107 /* PTMs ETMIDR [11:8] set to b0011 */
108 #define ETMIDR_PTM_VERSION 0x00000300
109
110 /*
111  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
112  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
113  * encode the etm queue number as the upper 16 bit and the channel as
114  * the lower 16 bit.
115  */
116 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
117                       (queue_nr << 16 | trace_chan_id)
118 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
119 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
120
121 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
122 {
123         etmidr &= ETMIDR_PTM_VERSION;
124
125         if (etmidr == ETMIDR_PTM_VERSION)
126                 return CS_ETM_PROTO_PTM;
127
128         return CS_ETM_PROTO_ETMV3;
129 }
130
131 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
132 {
133         struct int_node *inode;
134         u64 *metadata;
135
136         inode = intlist__find(traceid_list, trace_chan_id);
137         if (!inode)
138                 return -EINVAL;
139
140         metadata = inode->priv;
141         *magic = metadata[CS_ETM_MAGIC];
142         return 0;
143 }
144
145 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
146 {
147         struct int_node *inode;
148         u64 *metadata;
149
150         inode = intlist__find(traceid_list, trace_chan_id);
151         if (!inode)
152                 return -EINVAL;
153
154         metadata = inode->priv;
155         *cpu = (int)metadata[CS_ETM_CPU];
156         return 0;
157 }
158
159 /*
160  * The returned PID format is presented by two bits:
161  *
162  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
163  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
164  *
165  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
166  * are enabled at the same time when the session runs on an EL2 kernel.
167  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
168  * recorded in the trace data, the tool will selectively use
169  * CONTEXTIDR_EL2 as PID.
170  */
171 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
172 {
173         struct int_node *inode;
174         u64 *metadata, val;
175
176         inode = intlist__find(traceid_list, trace_chan_id);
177         if (!inode)
178                 return -EINVAL;
179
180         metadata = inode->priv;
181
182         if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
183                 val = metadata[CS_ETM_ETMCR];
184                 /* CONTEXTIDR is traced */
185                 if (val & BIT(ETM_OPT_CTXTID))
186                         *pid_fmt = BIT(ETM_OPT_CTXTID);
187         } else {
188                 val = metadata[CS_ETMV4_TRCCONFIGR];
189                 /* CONTEXTIDR_EL2 is traced */
190                 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
191                         *pid_fmt = BIT(ETM_OPT_CTXTID2);
192                 /* CONTEXTIDR_EL1 is traced */
193                 else if (val & BIT(ETM4_CFG_BIT_CTXTID))
194                         *pid_fmt = BIT(ETM_OPT_CTXTID);
195         }
196
197         return 0;
198 }
199
200 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
201                                               u8 trace_chan_id)
202 {
203         /*
204          * When a timestamp packet is encountered the backend code
205          * is stopped so that the front end has time to process packets
206          * that were accumulated in the traceID queue.  Since there can
207          * be more than one channel per cs_etm_queue, we need to specify
208          * what traceID queue needs servicing.
209          */
210         etmq->pending_timestamp_chan_id = trace_chan_id;
211 }
212
213 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
214                                       u8 *trace_chan_id)
215 {
216         struct cs_etm_packet_queue *packet_queue;
217
218         if (!etmq->pending_timestamp_chan_id)
219                 return 0;
220
221         if (trace_chan_id)
222                 *trace_chan_id = etmq->pending_timestamp_chan_id;
223
224         packet_queue = cs_etm__etmq_get_packet_queue(etmq,
225                                                      etmq->pending_timestamp_chan_id);
226         if (!packet_queue)
227                 return 0;
228
229         /* Acknowledge pending status */
230         etmq->pending_timestamp_chan_id = 0;
231
232         /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
233         return packet_queue->cs_timestamp;
234 }
235
236 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
237 {
238         int i;
239
240         queue->head = 0;
241         queue->tail = 0;
242         queue->packet_count = 0;
243         for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
244                 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
245                 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
246                 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
247                 queue->packet_buffer[i].instr_count = 0;
248                 queue->packet_buffer[i].last_instr_taken_branch = false;
249                 queue->packet_buffer[i].last_instr_size = 0;
250                 queue->packet_buffer[i].last_instr_type = 0;
251                 queue->packet_buffer[i].last_instr_subtype = 0;
252                 queue->packet_buffer[i].last_instr_cond = 0;
253                 queue->packet_buffer[i].flags = 0;
254                 queue->packet_buffer[i].exception_number = UINT32_MAX;
255                 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
256                 queue->packet_buffer[i].cpu = INT_MIN;
257         }
258 }
259
260 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
261 {
262         int idx;
263         struct int_node *inode;
264         struct cs_etm_traceid_queue *tidq;
265         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
266
267         intlist__for_each_entry(inode, traceid_queues_list) {
268                 idx = (int)(intptr_t)inode->priv;
269                 tidq = etmq->traceid_queues[idx];
270                 cs_etm__clear_packet_queue(&tidq->packet_queue);
271         }
272 }
273
274 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
275                                       struct cs_etm_traceid_queue *tidq,
276                                       u8 trace_chan_id)
277 {
278         int rc = -ENOMEM;
279         struct auxtrace_queue *queue;
280         struct cs_etm_auxtrace *etm = etmq->etm;
281
282         cs_etm__clear_packet_queue(&tidq->packet_queue);
283
284         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
285         tidq->tid = queue->tid;
286         tidq->pid = -1;
287         tidq->trace_chan_id = trace_chan_id;
288
289         tidq->packet = zalloc(sizeof(struct cs_etm_packet));
290         if (!tidq->packet)
291                 goto out;
292
293         tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
294         if (!tidq->prev_packet)
295                 goto out_free;
296
297         if (etm->synth_opts.last_branch) {
298                 size_t sz = sizeof(struct branch_stack);
299
300                 sz += etm->synth_opts.last_branch_sz *
301                       sizeof(struct branch_entry);
302                 tidq->last_branch = zalloc(sz);
303                 if (!tidq->last_branch)
304                         goto out_free;
305                 tidq->last_branch_rb = zalloc(sz);
306                 if (!tidq->last_branch_rb)
307                         goto out_free;
308         }
309
310         tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
311         if (!tidq->event_buf)
312                 goto out_free;
313
314         return 0;
315
316 out_free:
317         zfree(&tidq->last_branch_rb);
318         zfree(&tidq->last_branch);
319         zfree(&tidq->prev_packet);
320         zfree(&tidq->packet);
321 out:
322         return rc;
323 }
324
325 static struct cs_etm_traceid_queue
326 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
327 {
328         int idx;
329         struct int_node *inode;
330         struct intlist *traceid_queues_list;
331         struct cs_etm_traceid_queue *tidq, **traceid_queues;
332         struct cs_etm_auxtrace *etm = etmq->etm;
333
334         if (etm->timeless_decoding)
335                 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
336
337         traceid_queues_list = etmq->traceid_queues_list;
338
339         /*
340          * Check if the traceid_queue exist for this traceID by looking
341          * in the queue list.
342          */
343         inode = intlist__find(traceid_queues_list, trace_chan_id);
344         if (inode) {
345                 idx = (int)(intptr_t)inode->priv;
346                 return etmq->traceid_queues[idx];
347         }
348
349         /* We couldn't find a traceid_queue for this traceID, allocate one */
350         tidq = malloc(sizeof(*tidq));
351         if (!tidq)
352                 return NULL;
353
354         memset(tidq, 0, sizeof(*tidq));
355
356         /* Get a valid index for the new traceid_queue */
357         idx = intlist__nr_entries(traceid_queues_list);
358         /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
359         inode = intlist__findnew(traceid_queues_list, trace_chan_id);
360         if (!inode)
361                 goto out_free;
362
363         /* Associate this traceID with this index */
364         inode->priv = (void *)(intptr_t)idx;
365
366         if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
367                 goto out_free;
368
369         /* Grow the traceid_queues array by one unit */
370         traceid_queues = etmq->traceid_queues;
371         traceid_queues = reallocarray(traceid_queues,
372                                       idx + 1,
373                                       sizeof(*traceid_queues));
374
375         /*
376          * On failure reallocarray() returns NULL and the original block of
377          * memory is left untouched.
378          */
379         if (!traceid_queues)
380                 goto out_free;
381
382         traceid_queues[idx] = tidq;
383         etmq->traceid_queues = traceid_queues;
384
385         return etmq->traceid_queues[idx];
386
387 out_free:
388         /*
389          * Function intlist__remove() removes the inode from the list
390          * and delete the memory associated to it.
391          */
392         intlist__remove(traceid_queues_list, inode);
393         free(tidq);
394
395         return NULL;
396 }
397
398 struct cs_etm_packet_queue
399 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
400 {
401         struct cs_etm_traceid_queue *tidq;
402
403         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
404         if (tidq)
405                 return &tidq->packet_queue;
406
407         return NULL;
408 }
409
410 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
411                                 struct cs_etm_traceid_queue *tidq)
412 {
413         struct cs_etm_packet *tmp;
414
415         if (etm->sample_branches || etm->synth_opts.last_branch ||
416             etm->sample_instructions) {
417                 /*
418                  * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
419                  * the next incoming packet.
420                  */
421                 tmp = tidq->packet;
422                 tidq->packet = tidq->prev_packet;
423                 tidq->prev_packet = tmp;
424         }
425 }
426
427 static void cs_etm__packet_dump(const char *pkt_string)
428 {
429         const char *color = PERF_COLOR_BLUE;
430         int len = strlen(pkt_string);
431
432         if (len && (pkt_string[len-1] == '\n'))
433                 color_fprintf(stdout, color, "  %s", pkt_string);
434         else
435                 color_fprintf(stdout, color, "  %s\n", pkt_string);
436
437         fflush(stdout);
438 }
439
440 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
441                                           struct cs_etm_auxtrace *etm, int idx,
442                                           u32 etmidr)
443 {
444         u64 **metadata = etm->metadata;
445
446         t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
447         t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
448         t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
449 }
450
451 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
452                                           struct cs_etm_auxtrace *etm, int idx)
453 {
454         u64 **metadata = etm->metadata;
455
456         t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
457         t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
458         t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
459         t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
460         t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
461         t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
462         t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
463 }
464
465 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
466                                      struct cs_etm_auxtrace *etm)
467 {
468         int i;
469         u32 etmidr;
470         u64 architecture;
471
472         for (i = 0; i < etm->num_cpu; i++) {
473                 architecture = etm->metadata[i][CS_ETM_MAGIC];
474
475                 switch (architecture) {
476                 case __perf_cs_etmv3_magic:
477                         etmidr = etm->metadata[i][CS_ETM_ETMIDR];
478                         cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
479                         break;
480                 case __perf_cs_etmv4_magic:
481                         cs_etm__set_trace_param_etmv4(t_params, etm, i);
482                         break;
483                 default:
484                         return -EINVAL;
485                 }
486         }
487
488         return 0;
489 }
490
491 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
492                                        struct cs_etm_queue *etmq,
493                                        enum cs_etm_decoder_operation mode)
494 {
495         int ret = -EINVAL;
496
497         if (!(mode < CS_ETM_OPERATION_MAX))
498                 goto out;
499
500         d_params->packet_printer = cs_etm__packet_dump;
501         d_params->operation = mode;
502         d_params->data = etmq;
503         d_params->formatted = true;
504         d_params->fsyncs = false;
505         d_params->hsyncs = false;
506         d_params->frame_aligned = true;
507
508         ret = 0;
509 out:
510         return ret;
511 }
512
513 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
514                                struct auxtrace_buffer *buffer)
515 {
516         int ret;
517         const char *color = PERF_COLOR_BLUE;
518         struct cs_etm_decoder_params d_params;
519         struct cs_etm_trace_params *t_params;
520         struct cs_etm_decoder *decoder;
521         size_t buffer_used = 0;
522
523         fprintf(stdout, "\n");
524         color_fprintf(stdout, color,
525                      ". ... CoreSight ETM Trace data: size %zu bytes\n",
526                      buffer->size);
527
528         /* Use metadata to fill in trace parameters for trace decoder */
529         t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
530
531         if (!t_params)
532                 return;
533
534         if (cs_etm__init_trace_params(t_params, etm))
535                 goto out_free;
536
537         /* Set decoder parameters to simply print the trace packets */
538         if (cs_etm__init_decoder_params(&d_params, NULL,
539                                         CS_ETM_OPERATION_PRINT))
540                 goto out_free;
541
542         decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
543
544         if (!decoder)
545                 goto out_free;
546         do {
547                 size_t consumed;
548
549                 ret = cs_etm_decoder__process_data_block(
550                                 decoder, buffer->offset,
551                                 &((u8 *)buffer->data)[buffer_used],
552                                 buffer->size - buffer_used, &consumed);
553                 if (ret)
554                         break;
555
556                 buffer_used += consumed;
557         } while (buffer_used < buffer->size);
558
559         cs_etm_decoder__free(decoder);
560
561 out_free:
562         zfree(&t_params);
563 }
564
565 static int cs_etm__flush_events(struct perf_session *session,
566                                 struct perf_tool *tool)
567 {
568         int ret;
569         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
570                                                    struct cs_etm_auxtrace,
571                                                    auxtrace);
572         if (dump_trace)
573                 return 0;
574
575         if (!tool->ordered_events)
576                 return -EINVAL;
577
578         ret = cs_etm__update_queues(etm);
579
580         if (ret < 0)
581                 return ret;
582
583         if (etm->timeless_decoding)
584                 return cs_etm__process_timeless_queues(etm, -1);
585
586         return cs_etm__process_queues(etm);
587 }
588
589 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
590 {
591         int idx;
592         uintptr_t priv;
593         struct int_node *inode, *tmp;
594         struct cs_etm_traceid_queue *tidq;
595         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
596
597         intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
598                 priv = (uintptr_t)inode->priv;
599                 idx = priv;
600
601                 /* Free this traceid_queue from the array */
602                 tidq = etmq->traceid_queues[idx];
603                 thread__zput(tidq->thread);
604                 zfree(&tidq->event_buf);
605                 zfree(&tidq->last_branch);
606                 zfree(&tidq->last_branch_rb);
607                 zfree(&tidq->prev_packet);
608                 zfree(&tidq->packet);
609                 zfree(&tidq);
610
611                 /*
612                  * Function intlist__remove() removes the inode from the list
613                  * and delete the memory associated to it.
614                  */
615                 intlist__remove(traceid_queues_list, inode);
616         }
617
618         /* Then the RB tree itself */
619         intlist__delete(traceid_queues_list);
620         etmq->traceid_queues_list = NULL;
621
622         /* finally free the traceid_queues array */
623         zfree(&etmq->traceid_queues);
624 }
625
626 static void cs_etm__free_queue(void *priv)
627 {
628         struct cs_etm_queue *etmq = priv;
629
630         if (!etmq)
631                 return;
632
633         cs_etm_decoder__free(etmq->decoder);
634         cs_etm__free_traceid_queues(etmq);
635         free(etmq);
636 }
637
638 static void cs_etm__free_events(struct perf_session *session)
639 {
640         unsigned int i;
641         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
642                                                    struct cs_etm_auxtrace,
643                                                    auxtrace);
644         struct auxtrace_queues *queues = &aux->queues;
645
646         for (i = 0; i < queues->nr_queues; i++) {
647                 cs_etm__free_queue(queues->queue_array[i].priv);
648                 queues->queue_array[i].priv = NULL;
649         }
650
651         auxtrace_queues__free(queues);
652 }
653
654 static void cs_etm__free(struct perf_session *session)
655 {
656         int i;
657         struct int_node *inode, *tmp;
658         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
659                                                    struct cs_etm_auxtrace,
660                                                    auxtrace);
661         cs_etm__free_events(session);
662         session->auxtrace = NULL;
663
664         /* First remove all traceID/metadata nodes for the RB tree */
665         intlist__for_each_entry_safe(inode, tmp, traceid_list)
666                 intlist__remove(traceid_list, inode);
667         /* Then the RB tree itself */
668         intlist__delete(traceid_list);
669
670         for (i = 0; i < aux->num_cpu; i++)
671                 zfree(&aux->metadata[i]);
672
673         thread__zput(aux->unknown_thread);
674         zfree(&aux->metadata);
675         zfree(&aux);
676 }
677
678 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
679                                       struct evsel *evsel)
680 {
681         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
682                                                    struct cs_etm_auxtrace,
683                                                    auxtrace);
684
685         return evsel->core.attr.type == aux->pmu_type;
686 }
687
688 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
689 {
690         struct machine *machine;
691
692         machine = etmq->etm->machine;
693
694         if (address >= etmq->etm->kernel_start) {
695                 if (machine__is_host(machine))
696                         return PERF_RECORD_MISC_KERNEL;
697                 else
698                         return PERF_RECORD_MISC_GUEST_KERNEL;
699         } else {
700                 if (machine__is_host(machine))
701                         return PERF_RECORD_MISC_USER;
702                 else if (perf_guest)
703                         return PERF_RECORD_MISC_GUEST_USER;
704                 else
705                         return PERF_RECORD_MISC_HYPERVISOR;
706         }
707 }
708
709 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
710                               u64 address, size_t size, u8 *buffer)
711 {
712         u8  cpumode;
713         u64 offset;
714         int len;
715         struct thread *thread;
716         struct machine *machine;
717         struct addr_location al;
718         struct cs_etm_traceid_queue *tidq;
719
720         if (!etmq)
721                 return 0;
722
723         machine = etmq->etm->machine;
724         cpumode = cs_etm__cpu_mode(etmq, address);
725         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
726         if (!tidq)
727                 return 0;
728
729         thread = tidq->thread;
730         if (!thread) {
731                 if (cpumode != PERF_RECORD_MISC_KERNEL)
732                         return 0;
733                 thread = etmq->etm->unknown_thread;
734         }
735
736         if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
737                 return 0;
738
739         if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
740             dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
741                 return 0;
742
743         offset = al.map->map_ip(al.map, address);
744
745         map__load(al.map);
746
747         len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
748
749         if (len <= 0)
750                 return 0;
751
752         return len;
753 }
754
755 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
756 {
757         struct cs_etm_decoder_params d_params;
758         struct cs_etm_trace_params  *t_params = NULL;
759         struct cs_etm_queue *etmq;
760
761         etmq = zalloc(sizeof(*etmq));
762         if (!etmq)
763                 return NULL;
764
765         etmq->traceid_queues_list = intlist__new(NULL);
766         if (!etmq->traceid_queues_list)
767                 goto out_free;
768
769         /* Use metadata to fill in trace parameters for trace decoder */
770         t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
771
772         if (!t_params)
773                 goto out_free;
774
775         if (cs_etm__init_trace_params(t_params, etm))
776                 goto out_free;
777
778         /* Set decoder parameters to decode trace packets */
779         if (cs_etm__init_decoder_params(&d_params, etmq,
780                                         CS_ETM_OPERATION_DECODE))
781                 goto out_free;
782
783         etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
784
785         if (!etmq->decoder)
786                 goto out_free;
787
788         /*
789          * Register a function to handle all memory accesses required by
790          * the trace decoder library.
791          */
792         if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
793                                               0x0L, ((u64) -1L),
794                                               cs_etm__mem_access))
795                 goto out_free_decoder;
796
797         zfree(&t_params);
798         return etmq;
799
800 out_free_decoder:
801         cs_etm_decoder__free(etmq->decoder);
802 out_free:
803         intlist__delete(etmq->traceid_queues_list);
804         free(etmq);
805
806         return NULL;
807 }
808
809 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
810                                struct auxtrace_queue *queue,
811                                unsigned int queue_nr)
812 {
813         int ret = 0;
814         unsigned int cs_queue_nr;
815         u8 trace_chan_id;
816         u64 cs_timestamp;
817         struct cs_etm_queue *etmq = queue->priv;
818
819         if (list_empty(&queue->head) || etmq)
820                 goto out;
821
822         etmq = cs_etm__alloc_queue(etm);
823
824         if (!etmq) {
825                 ret = -ENOMEM;
826                 goto out;
827         }
828
829         queue->priv = etmq;
830         etmq->etm = etm;
831         etmq->queue_nr = queue_nr;
832         etmq->offset = 0;
833
834         if (etm->timeless_decoding)
835                 goto out;
836
837         /*
838          * We are under a CPU-wide trace scenario.  As such we need to know
839          * when the code that generated the traces started to execute so that
840          * it can be correlated with execution on other CPUs.  So we get a
841          * handle on the beginning of traces and decode until we find a
842          * timestamp.  The timestamp is then added to the auxtrace min heap
843          * in order to know what nibble (of all the etmqs) to decode first.
844          */
845         while (1) {
846                 /*
847                  * Fetch an aux_buffer from this etmq.  Bail if no more
848                  * blocks or an error has been encountered.
849                  */
850                 ret = cs_etm__get_data_block(etmq);
851                 if (ret <= 0)
852                         goto out;
853
854                 /*
855                  * Run decoder on the trace block.  The decoder will stop when
856                  * encountering a CS timestamp, a full packet queue or the end of
857                  * trace for that block.
858                  */
859                 ret = cs_etm__decode_data_block(etmq);
860                 if (ret)
861                         goto out;
862
863                 /*
864                  * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
865                  * the timestamp calculation for us.
866                  */
867                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
868
869                 /* We found a timestamp, no need to continue. */
870                 if (cs_timestamp)
871                         break;
872
873                 /*
874                  * We didn't find a timestamp so empty all the traceid packet
875                  * queues before looking for another timestamp packet, either
876                  * in the current data block or a new one.  Packets that were
877                  * just decoded are useless since no timestamp has been
878                  * associated with them.  As such simply discard them.
879                  */
880                 cs_etm__clear_all_packet_queues(etmq);
881         }
882
883         /*
884          * We have a timestamp.  Add it to the min heap to reflect when
885          * instructions conveyed by the range packets of this traceID queue
886          * started to execute.  Once the same has been done for all the traceID
887          * queues of each etmq, redenring and decoding can start in
888          * chronological order.
889          *
890          * Note that packets decoded above are still in the traceID's packet
891          * queue and will be processed in cs_etm__process_queues().
892          */
893         cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
894         ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
895 out:
896         return ret;
897 }
898
899 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
900 {
901         unsigned int i;
902         int ret;
903
904         if (!etm->kernel_start)
905                 etm->kernel_start = machine__kernel_start(etm->machine);
906
907         for (i = 0; i < etm->queues.nr_queues; i++) {
908                 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
909                 if (ret)
910                         return ret;
911         }
912
913         return 0;
914 }
915
916 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
917 {
918         if (etm->queues.new_data) {
919                 etm->queues.new_data = false;
920                 return cs_etm__setup_queues(etm);
921         }
922
923         return 0;
924 }
925
926 static inline
927 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
928                                  struct cs_etm_traceid_queue *tidq)
929 {
930         struct branch_stack *bs_src = tidq->last_branch_rb;
931         struct branch_stack *bs_dst = tidq->last_branch;
932         size_t nr = 0;
933
934         /*
935          * Set the number of records before early exit: ->nr is used to
936          * determine how many branches to copy from ->entries.
937          */
938         bs_dst->nr = bs_src->nr;
939
940         /*
941          * Early exit when there is nothing to copy.
942          */
943         if (!bs_src->nr)
944                 return;
945
946         /*
947          * As bs_src->entries is a circular buffer, we need to copy from it in
948          * two steps.  First, copy the branches from the most recently inserted
949          * branch ->last_branch_pos until the end of bs_src->entries buffer.
950          */
951         nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
952         memcpy(&bs_dst->entries[0],
953                &bs_src->entries[tidq->last_branch_pos],
954                sizeof(struct branch_entry) * nr);
955
956         /*
957          * If we wrapped around at least once, the branches from the beginning
958          * of the bs_src->entries buffer and until the ->last_branch_pos element
959          * are older valid branches: copy them over.  The total number of
960          * branches copied over will be equal to the number of branches asked by
961          * the user in last_branch_sz.
962          */
963         if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
964                 memcpy(&bs_dst->entries[nr],
965                        &bs_src->entries[0],
966                        sizeof(struct branch_entry) * tidq->last_branch_pos);
967         }
968 }
969
970 static inline
971 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
972 {
973         tidq->last_branch_pos = 0;
974         tidq->last_branch_rb->nr = 0;
975 }
976
977 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
978                                          u8 trace_chan_id, u64 addr)
979 {
980         u8 instrBytes[2];
981
982         cs_etm__mem_access(etmq, trace_chan_id, addr,
983                            ARRAY_SIZE(instrBytes), instrBytes);
984         /*
985          * T32 instruction size is indicated by bits[15:11] of the first
986          * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
987          * denote a 32-bit instruction.
988          */
989         return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
990 }
991
992 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
993 {
994         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
995         if (packet->sample_type == CS_ETM_DISCONTINUITY)
996                 return 0;
997
998         return packet->start_addr;
999 }
1000
1001 static inline
1002 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
1003 {
1004         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1005         if (packet->sample_type == CS_ETM_DISCONTINUITY)
1006                 return 0;
1007
1008         return packet->end_addr - packet->last_instr_size;
1009 }
1010
1011 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1012                                      u64 trace_chan_id,
1013                                      const struct cs_etm_packet *packet,
1014                                      u64 offset)
1015 {
1016         if (packet->isa == CS_ETM_ISA_T32) {
1017                 u64 addr = packet->start_addr;
1018
1019                 while (offset) {
1020                         addr += cs_etm__t32_instr_size(etmq,
1021                                                        trace_chan_id, addr);
1022                         offset--;
1023                 }
1024                 return addr;
1025         }
1026
1027         /* Assume a 4 byte instruction size (A32/A64) */
1028         return packet->start_addr + offset * 4;
1029 }
1030
1031 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1032                                           struct cs_etm_traceid_queue *tidq)
1033 {
1034         struct branch_stack *bs = tidq->last_branch_rb;
1035         struct branch_entry *be;
1036
1037         /*
1038          * The branches are recorded in a circular buffer in reverse
1039          * chronological order: we start recording from the last element of the
1040          * buffer down.  After writing the first element of the stack, move the
1041          * insert position back to the end of the buffer.
1042          */
1043         if (!tidq->last_branch_pos)
1044                 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1045
1046         tidq->last_branch_pos -= 1;
1047
1048         be       = &bs->entries[tidq->last_branch_pos];
1049         be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1050         be->to   = cs_etm__first_executed_instr(tidq->packet);
1051         /* No support for mispredict */
1052         be->flags.mispred = 0;
1053         be->flags.predicted = 1;
1054
1055         /*
1056          * Increment bs->nr until reaching the number of last branches asked by
1057          * the user on the command line.
1058          */
1059         if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1060                 bs->nr += 1;
1061 }
1062
1063 static int cs_etm__inject_event(union perf_event *event,
1064                                struct perf_sample *sample, u64 type)
1065 {
1066         event->header.size = perf_event__sample_event_size(sample, type, 0);
1067         return perf_event__synthesize_sample(event, type, 0, sample);
1068 }
1069
1070
1071 static int
1072 cs_etm__get_trace(struct cs_etm_queue *etmq)
1073 {
1074         struct auxtrace_buffer *aux_buffer = etmq->buffer;
1075         struct auxtrace_buffer *old_buffer = aux_buffer;
1076         struct auxtrace_queue *queue;
1077
1078         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1079
1080         aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1081
1082         /* If no more data, drop the previous auxtrace_buffer and return */
1083         if (!aux_buffer) {
1084                 if (old_buffer)
1085                         auxtrace_buffer__drop_data(old_buffer);
1086                 etmq->buf_len = 0;
1087                 return 0;
1088         }
1089
1090         etmq->buffer = aux_buffer;
1091
1092         /* If the aux_buffer doesn't have data associated, try to load it */
1093         if (!aux_buffer->data) {
1094                 /* get the file desc associated with the perf data file */
1095                 int fd = perf_data__fd(etmq->etm->session->data);
1096
1097                 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1098                 if (!aux_buffer->data)
1099                         return -ENOMEM;
1100         }
1101
1102         /* If valid, drop the previous buffer */
1103         if (old_buffer)
1104                 auxtrace_buffer__drop_data(old_buffer);
1105
1106         etmq->buf_used = 0;
1107         etmq->buf_len = aux_buffer->size;
1108         etmq->buf = aux_buffer->data;
1109
1110         return etmq->buf_len;
1111 }
1112
1113 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1114                                     struct cs_etm_traceid_queue *tidq)
1115 {
1116         if ((!tidq->thread) && (tidq->tid != -1))
1117                 tidq->thread = machine__find_thread(etm->machine, -1,
1118                                                     tidq->tid);
1119
1120         if (tidq->thread)
1121                 tidq->pid = tidq->thread->pid_;
1122 }
1123
1124 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1125                          pid_t tid, u8 trace_chan_id)
1126 {
1127         int cpu, err = -EINVAL;
1128         struct cs_etm_auxtrace *etm = etmq->etm;
1129         struct cs_etm_traceid_queue *tidq;
1130
1131         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1132         if (!tidq)
1133                 return err;
1134
1135         if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1136                 return err;
1137
1138         err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1139         if (err)
1140                 return err;
1141
1142         tidq->tid = tid;
1143         thread__zput(tidq->thread);
1144
1145         cs_etm__set_pid_tid_cpu(etm, tidq);
1146         return 0;
1147 }
1148
1149 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1150 {
1151         return !!etmq->etm->timeless_decoding;
1152 }
1153
1154 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1155                               u64 trace_chan_id,
1156                               const struct cs_etm_packet *packet,
1157                               struct perf_sample *sample)
1158 {
1159         /*
1160          * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1161          * packet, so directly bail out with 'insn_len' = 0.
1162          */
1163         if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1164                 sample->insn_len = 0;
1165                 return;
1166         }
1167
1168         /*
1169          * T32 instruction size might be 32-bit or 16-bit, decide by calling
1170          * cs_etm__t32_instr_size().
1171          */
1172         if (packet->isa == CS_ETM_ISA_T32)
1173                 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1174                                                           sample->ip);
1175         /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1176         else
1177                 sample->insn_len = 4;
1178
1179         cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1180                            sample->insn_len, (void *)sample->insn);
1181 }
1182
1183 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1184                                             struct cs_etm_traceid_queue *tidq,
1185                                             u64 addr, u64 period)
1186 {
1187         int ret = 0;
1188         struct cs_etm_auxtrace *etm = etmq->etm;
1189         union perf_event *event = tidq->event_buf;
1190         struct perf_sample sample = {.ip = 0,};
1191
1192         event->sample.header.type = PERF_RECORD_SAMPLE;
1193         event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1194         event->sample.header.size = sizeof(struct perf_event_header);
1195
1196         if (!etm->timeless_decoding)
1197                 sample.time = etm->latest_kernel_timestamp;
1198         sample.ip = addr;
1199         sample.pid = tidq->pid;
1200         sample.tid = tidq->tid;
1201         sample.id = etmq->etm->instructions_id;
1202         sample.stream_id = etmq->etm->instructions_id;
1203         sample.period = period;
1204         sample.cpu = tidq->packet->cpu;
1205         sample.flags = tidq->prev_packet->flags;
1206         sample.cpumode = event->sample.header.misc;
1207
1208         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1209
1210         if (etm->synth_opts.last_branch)
1211                 sample.branch_stack = tidq->last_branch;
1212
1213         if (etm->synth_opts.inject) {
1214                 ret = cs_etm__inject_event(event, &sample,
1215                                            etm->instructions_sample_type);
1216                 if (ret)
1217                         return ret;
1218         }
1219
1220         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1221
1222         if (ret)
1223                 pr_err(
1224                         "CS ETM Trace: failed to deliver instruction event, error %d\n",
1225                         ret);
1226
1227         return ret;
1228 }
1229
1230 /*
1231  * The cs etm packet encodes an instruction range between a branch target
1232  * and the next taken branch. Generate sample accordingly.
1233  */
1234 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1235                                        struct cs_etm_traceid_queue *tidq)
1236 {
1237         int ret = 0;
1238         struct cs_etm_auxtrace *etm = etmq->etm;
1239         struct perf_sample sample = {.ip = 0,};
1240         union perf_event *event = tidq->event_buf;
1241         struct dummy_branch_stack {
1242                 u64                     nr;
1243                 u64                     hw_idx;
1244                 struct branch_entry     entries;
1245         } dummy_bs;
1246         u64 ip;
1247
1248         ip = cs_etm__last_executed_instr(tidq->prev_packet);
1249
1250         event->sample.header.type = PERF_RECORD_SAMPLE;
1251         event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1252         event->sample.header.size = sizeof(struct perf_event_header);
1253
1254         if (!etm->timeless_decoding)
1255                 sample.time = etm->latest_kernel_timestamp;
1256         sample.ip = ip;
1257         sample.pid = tidq->pid;
1258         sample.tid = tidq->tid;
1259         sample.addr = cs_etm__first_executed_instr(tidq->packet);
1260         sample.id = etmq->etm->branches_id;
1261         sample.stream_id = etmq->etm->branches_id;
1262         sample.period = 1;
1263         sample.cpu = tidq->packet->cpu;
1264         sample.flags = tidq->prev_packet->flags;
1265         sample.cpumode = event->sample.header.misc;
1266
1267         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1268                           &sample);
1269
1270         /*
1271          * perf report cannot handle events without a branch stack
1272          */
1273         if (etm->synth_opts.last_branch) {
1274                 dummy_bs = (struct dummy_branch_stack){
1275                         .nr = 1,
1276                         .hw_idx = -1ULL,
1277                         .entries = {
1278                                 .from = sample.ip,
1279                                 .to = sample.addr,
1280                         },
1281                 };
1282                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1283         }
1284
1285         if (etm->synth_opts.inject) {
1286                 ret = cs_etm__inject_event(event, &sample,
1287                                            etm->branches_sample_type);
1288                 if (ret)
1289                         return ret;
1290         }
1291
1292         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1293
1294         if (ret)
1295                 pr_err(
1296                 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1297                 ret);
1298
1299         return ret;
1300 }
1301
1302 struct cs_etm_synth {
1303         struct perf_tool dummy_tool;
1304         struct perf_session *session;
1305 };
1306
1307 static int cs_etm__event_synth(struct perf_tool *tool,
1308                                union perf_event *event,
1309                                struct perf_sample *sample __maybe_unused,
1310                                struct machine *machine __maybe_unused)
1311 {
1312         struct cs_etm_synth *cs_etm_synth =
1313                       container_of(tool, struct cs_etm_synth, dummy_tool);
1314
1315         return perf_session__deliver_synth_event(cs_etm_synth->session,
1316                                                  event, NULL);
1317 }
1318
1319 static int cs_etm__synth_event(struct perf_session *session,
1320                                struct perf_event_attr *attr, u64 id)
1321 {
1322         struct cs_etm_synth cs_etm_synth;
1323
1324         memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1325         cs_etm_synth.session = session;
1326
1327         return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1328                                            &id, cs_etm__event_synth);
1329 }
1330
1331 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1332                                 struct perf_session *session)
1333 {
1334         struct evlist *evlist = session->evlist;
1335         struct evsel *evsel;
1336         struct perf_event_attr attr;
1337         bool found = false;
1338         u64 id;
1339         int err;
1340
1341         evlist__for_each_entry(evlist, evsel) {
1342                 if (evsel->core.attr.type == etm->pmu_type) {
1343                         found = true;
1344                         break;
1345                 }
1346         }
1347
1348         if (!found) {
1349                 pr_debug("No selected events with CoreSight Trace data\n");
1350                 return 0;
1351         }
1352
1353         memset(&attr, 0, sizeof(struct perf_event_attr));
1354         attr.size = sizeof(struct perf_event_attr);
1355         attr.type = PERF_TYPE_HARDWARE;
1356         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1357         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1358                             PERF_SAMPLE_PERIOD;
1359         if (etm->timeless_decoding)
1360                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1361         else
1362                 attr.sample_type |= PERF_SAMPLE_TIME;
1363
1364         attr.exclude_user = evsel->core.attr.exclude_user;
1365         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1366         attr.exclude_hv = evsel->core.attr.exclude_hv;
1367         attr.exclude_host = evsel->core.attr.exclude_host;
1368         attr.exclude_guest = evsel->core.attr.exclude_guest;
1369         attr.sample_id_all = evsel->core.attr.sample_id_all;
1370         attr.read_format = evsel->core.attr.read_format;
1371
1372         /* create new id val to be a fixed offset from evsel id */
1373         id = evsel->core.id[0] + 1000000000;
1374
1375         if (!id)
1376                 id = 1;
1377
1378         if (etm->synth_opts.branches) {
1379                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1380                 attr.sample_period = 1;
1381                 attr.sample_type |= PERF_SAMPLE_ADDR;
1382                 err = cs_etm__synth_event(session, &attr, id);
1383                 if (err)
1384                         return err;
1385                 etm->sample_branches = true;
1386                 etm->branches_sample_type = attr.sample_type;
1387                 etm->branches_id = id;
1388                 id += 1;
1389                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1390         }
1391
1392         if (etm->synth_opts.last_branch) {
1393                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1394                 /*
1395                  * We don't use the hardware index, but the sample generation
1396                  * code uses the new format branch_stack with this field,
1397                  * so the event attributes must indicate that it's present.
1398                  */
1399                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1400         }
1401
1402         if (etm->synth_opts.instructions) {
1403                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1404                 attr.sample_period = etm->synth_opts.period;
1405                 etm->instructions_sample_period = attr.sample_period;
1406                 err = cs_etm__synth_event(session, &attr, id);
1407                 if (err)
1408                         return err;
1409                 etm->sample_instructions = true;
1410                 etm->instructions_sample_type = attr.sample_type;
1411                 etm->instructions_id = id;
1412                 id += 1;
1413         }
1414
1415         return 0;
1416 }
1417
1418 static int cs_etm__sample(struct cs_etm_queue *etmq,
1419                           struct cs_etm_traceid_queue *tidq)
1420 {
1421         struct cs_etm_auxtrace *etm = etmq->etm;
1422         int ret;
1423         u8 trace_chan_id = tidq->trace_chan_id;
1424         u64 instrs_prev;
1425
1426         /* Get instructions remainder from previous packet */
1427         instrs_prev = tidq->period_instructions;
1428
1429         tidq->period_instructions += tidq->packet->instr_count;
1430
1431         /*
1432          * Record a branch when the last instruction in
1433          * PREV_PACKET is a branch.
1434          */
1435         if (etm->synth_opts.last_branch &&
1436             tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1437             tidq->prev_packet->last_instr_taken_branch)
1438                 cs_etm__update_last_branch_rb(etmq, tidq);
1439
1440         if (etm->sample_instructions &&
1441             tidq->period_instructions >= etm->instructions_sample_period) {
1442                 /*
1443                  * Emit instruction sample periodically
1444                  * TODO: allow period to be defined in cycles and clock time
1445                  */
1446
1447                 /*
1448                  * Below diagram demonstrates the instruction samples
1449                  * generation flows:
1450                  *
1451                  *    Instrs     Instrs       Instrs       Instrs
1452                  *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1453                  *    |            |            |            |
1454                  *    V            V            V            V
1455                  *   --------------------------------------------------
1456                  *            ^                                  ^
1457                  *            |                                  |
1458                  *         Period                             Period
1459                  *    instructions(Pi)                   instructions(Pi')
1460                  *
1461                  *            |                                  |
1462                  *            \---------------- -----------------/
1463                  *                             V
1464                  *                 tidq->packet->instr_count
1465                  *
1466                  * Instrs Sample(n...) are the synthesised samples occurring
1467                  * every etm->instructions_sample_period instructions - as
1468                  * defined on the perf command line.  Sample(n) is being the
1469                  * last sample before the current etm packet, n+1 to n+3
1470                  * samples are generated from the current etm packet.
1471                  *
1472                  * tidq->packet->instr_count represents the number of
1473                  * instructions in the current etm packet.
1474                  *
1475                  * Period instructions (Pi) contains the the number of
1476                  * instructions executed after the sample point(n) from the
1477                  * previous etm packet.  This will always be less than
1478                  * etm->instructions_sample_period.
1479                  *
1480                  * When generate new samples, it combines with two parts
1481                  * instructions, one is the tail of the old packet and another
1482                  * is the head of the new coming packet, to generate
1483                  * sample(n+1); sample(n+2) and sample(n+3) consume the
1484                  * instructions with sample period.  After sample(n+3), the rest
1485                  * instructions will be used by later packet and it is assigned
1486                  * to tidq->period_instructions for next round calculation.
1487                  */
1488
1489                 /*
1490                  * Get the initial offset into the current packet instructions;
1491                  * entry conditions ensure that instrs_prev is less than
1492                  * etm->instructions_sample_period.
1493                  */
1494                 u64 offset = etm->instructions_sample_period - instrs_prev;
1495                 u64 addr;
1496
1497                 /* Prepare last branches for instruction sample */
1498                 if (etm->synth_opts.last_branch)
1499                         cs_etm__copy_last_branch_rb(etmq, tidq);
1500
1501                 while (tidq->period_instructions >=
1502                                 etm->instructions_sample_period) {
1503                         /*
1504                          * Calculate the address of the sampled instruction (-1
1505                          * as sample is reported as though instruction has just
1506                          * been executed, but PC has not advanced to next
1507                          * instruction)
1508                          */
1509                         addr = cs_etm__instr_addr(etmq, trace_chan_id,
1510                                                   tidq->packet, offset - 1);
1511                         ret = cs_etm__synth_instruction_sample(
1512                                 etmq, tidq, addr,
1513                                 etm->instructions_sample_period);
1514                         if (ret)
1515                                 return ret;
1516
1517                         offset += etm->instructions_sample_period;
1518                         tidq->period_instructions -=
1519                                 etm->instructions_sample_period;
1520                 }
1521         }
1522
1523         if (etm->sample_branches) {
1524                 bool generate_sample = false;
1525
1526                 /* Generate sample for tracing on packet */
1527                 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1528                         generate_sample = true;
1529
1530                 /* Generate sample for branch taken packet */
1531                 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1532                     tidq->prev_packet->last_instr_taken_branch)
1533                         generate_sample = true;
1534
1535                 if (generate_sample) {
1536                         ret = cs_etm__synth_branch_sample(etmq, tidq);
1537                         if (ret)
1538                                 return ret;
1539                 }
1540         }
1541
1542         cs_etm__packet_swap(etm, tidq);
1543
1544         return 0;
1545 }
1546
1547 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1548 {
1549         /*
1550          * When the exception packet is inserted, whether the last instruction
1551          * in previous range packet is taken branch or not, we need to force
1552          * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1553          * to generate branch sample for the instruction range before the
1554          * exception is trapped to kernel or before the exception returning.
1555          *
1556          * The exception packet includes the dummy address values, so don't
1557          * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1558          * for generating instruction and branch samples.
1559          */
1560         if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1561                 tidq->prev_packet->last_instr_taken_branch = true;
1562
1563         return 0;
1564 }
1565
1566 static int cs_etm__flush(struct cs_etm_queue *etmq,
1567                          struct cs_etm_traceid_queue *tidq)
1568 {
1569         int err = 0;
1570         struct cs_etm_auxtrace *etm = etmq->etm;
1571
1572         /* Handle start tracing packet */
1573         if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1574                 goto swap_packet;
1575
1576         if (etmq->etm->synth_opts.last_branch &&
1577             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1578                 u64 addr;
1579
1580                 /* Prepare last branches for instruction sample */
1581                 cs_etm__copy_last_branch_rb(etmq, tidq);
1582
1583                 /*
1584                  * Generate a last branch event for the branches left in the
1585                  * circular buffer at the end of the trace.
1586                  *
1587                  * Use the address of the end of the last reported execution
1588                  * range
1589                  */
1590                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1591
1592                 err = cs_etm__synth_instruction_sample(
1593                         etmq, tidq, addr,
1594                         tidq->period_instructions);
1595                 if (err)
1596                         return err;
1597
1598                 tidq->period_instructions = 0;
1599
1600         }
1601
1602         if (etm->sample_branches &&
1603             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1604                 err = cs_etm__synth_branch_sample(etmq, tidq);
1605                 if (err)
1606                         return err;
1607         }
1608
1609 swap_packet:
1610         cs_etm__packet_swap(etm, tidq);
1611
1612         /* Reset last branches after flush the trace */
1613         if (etm->synth_opts.last_branch)
1614                 cs_etm__reset_last_branch_rb(tidq);
1615
1616         return err;
1617 }
1618
1619 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1620                              struct cs_etm_traceid_queue *tidq)
1621 {
1622         int err;
1623
1624         /*
1625          * It has no new packet coming and 'etmq->packet' contains the stale
1626          * packet which was set at the previous time with packets swapping;
1627          * so skip to generate branch sample to avoid stale packet.
1628          *
1629          * For this case only flush branch stack and generate a last branch
1630          * event for the branches left in the circular buffer at the end of
1631          * the trace.
1632          */
1633         if (etmq->etm->synth_opts.last_branch &&
1634             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1635                 u64 addr;
1636
1637                 /* Prepare last branches for instruction sample */
1638                 cs_etm__copy_last_branch_rb(etmq, tidq);
1639
1640                 /*
1641                  * Use the address of the end of the last reported execution
1642                  * range.
1643                  */
1644                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1645
1646                 err = cs_etm__synth_instruction_sample(
1647                         etmq, tidq, addr,
1648                         tidq->period_instructions);
1649                 if (err)
1650                         return err;
1651
1652                 tidq->period_instructions = 0;
1653         }
1654
1655         return 0;
1656 }
1657 /*
1658  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1659  *                         if need be.
1660  * Returns:     < 0     if error
1661  *              = 0     if no more auxtrace_buffer to read
1662  *              > 0     if the current buffer isn't empty yet
1663  */
1664 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1665 {
1666         int ret;
1667
1668         if (!etmq->buf_len) {
1669                 ret = cs_etm__get_trace(etmq);
1670                 if (ret <= 0)
1671                         return ret;
1672                 /*
1673                  * We cannot assume consecutive blocks in the data file
1674                  * are contiguous, reset the decoder to force re-sync.
1675                  */
1676                 ret = cs_etm_decoder__reset(etmq->decoder);
1677                 if (ret)
1678                         return ret;
1679         }
1680
1681         return etmq->buf_len;
1682 }
1683
1684 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1685                                  struct cs_etm_packet *packet,
1686                                  u64 end_addr)
1687 {
1688         /* Initialise to keep compiler happy */
1689         u16 instr16 = 0;
1690         u32 instr32 = 0;
1691         u64 addr;
1692
1693         switch (packet->isa) {
1694         case CS_ETM_ISA_T32:
1695                 /*
1696                  * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1697                  *
1698                  *  b'15         b'8
1699                  * +-----------------+--------+
1700                  * | 1 1 0 1 1 1 1 1 |  imm8  |
1701                  * +-----------------+--------+
1702                  *
1703                  * According to the specification, it only defines SVC for T32
1704                  * with 16 bits instruction and has no definition for 32bits;
1705                  * so below only read 2 bytes as instruction size for T32.
1706                  */
1707                 addr = end_addr - 2;
1708                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1709                                    sizeof(instr16), (u8 *)&instr16);
1710                 if ((instr16 & 0xFF00) == 0xDF00)
1711                         return true;
1712
1713                 break;
1714         case CS_ETM_ISA_A32:
1715                 /*
1716                  * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1717                  *
1718                  *  b'31 b'28 b'27 b'24
1719                  * +---------+---------+-------------------------+
1720                  * |  !1111  | 1 1 1 1 |        imm24            |
1721                  * +---------+---------+-------------------------+
1722                  */
1723                 addr = end_addr - 4;
1724                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1725                                    sizeof(instr32), (u8 *)&instr32);
1726                 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1727                     (instr32 & 0xF0000000) != 0xF0000000)
1728                         return true;
1729
1730                 break;
1731         case CS_ETM_ISA_A64:
1732                 /*
1733                  * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1734                  *
1735                  *  b'31               b'21           b'4     b'0
1736                  * +-----------------------+---------+-----------+
1737                  * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1738                  * +-----------------------+---------+-----------+
1739                  */
1740                 addr = end_addr - 4;
1741                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1742                                    sizeof(instr32), (u8 *)&instr32);
1743                 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1744                         return true;
1745
1746                 break;
1747         case CS_ETM_ISA_UNKNOWN:
1748         default:
1749                 break;
1750         }
1751
1752         return false;
1753 }
1754
1755 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1756                                struct cs_etm_traceid_queue *tidq, u64 magic)
1757 {
1758         u8 trace_chan_id = tidq->trace_chan_id;
1759         struct cs_etm_packet *packet = tidq->packet;
1760         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1761
1762         if (magic == __perf_cs_etmv3_magic)
1763                 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1764                         return true;
1765
1766         /*
1767          * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1768          * HVC cases; need to check if it's SVC instruction based on
1769          * packet address.
1770          */
1771         if (magic == __perf_cs_etmv4_magic) {
1772                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1773                     cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1774                                          prev_packet->end_addr))
1775                         return true;
1776         }
1777
1778         return false;
1779 }
1780
1781 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1782                                        u64 magic)
1783 {
1784         struct cs_etm_packet *packet = tidq->packet;
1785
1786         if (magic == __perf_cs_etmv3_magic)
1787                 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1788                     packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1789                     packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1790                     packet->exception_number == CS_ETMV3_EXC_IRQ ||
1791                     packet->exception_number == CS_ETMV3_EXC_FIQ)
1792                         return true;
1793
1794         if (magic == __perf_cs_etmv4_magic)
1795                 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1796                     packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1797                     packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1798                     packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1799                     packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1800                     packet->exception_number == CS_ETMV4_EXC_IRQ ||
1801                     packet->exception_number == CS_ETMV4_EXC_FIQ)
1802                         return true;
1803
1804         return false;
1805 }
1806
1807 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1808                                       struct cs_etm_traceid_queue *tidq,
1809                                       u64 magic)
1810 {
1811         u8 trace_chan_id = tidq->trace_chan_id;
1812         struct cs_etm_packet *packet = tidq->packet;
1813         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1814
1815         if (magic == __perf_cs_etmv3_magic)
1816                 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1817                     packet->exception_number == CS_ETMV3_EXC_HYP ||
1818                     packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1819                     packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1820                     packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1821                     packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1822                     packet->exception_number == CS_ETMV3_EXC_GENERIC)
1823                         return true;
1824
1825         if (magic == __perf_cs_etmv4_magic) {
1826                 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1827                     packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1828                     packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1829                     packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1830                         return true;
1831
1832                 /*
1833                  * For CS_ETMV4_EXC_CALL, except SVC other instructions
1834                  * (SMC, HVC) are taken as sync exceptions.
1835                  */
1836                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1837                     !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1838                                           prev_packet->end_addr))
1839                         return true;
1840
1841                 /*
1842                  * ETMv4 has 5 bits for exception number; if the numbers
1843                  * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1844                  * they are implementation defined exceptions.
1845                  *
1846                  * For this case, simply take it as sync exception.
1847                  */
1848                 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1849                     packet->exception_number <= CS_ETMV4_EXC_END)
1850                         return true;
1851         }
1852
1853         return false;
1854 }
1855
1856 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1857                                     struct cs_etm_traceid_queue *tidq)
1858 {
1859         struct cs_etm_packet *packet = tidq->packet;
1860         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1861         u8 trace_chan_id = tidq->trace_chan_id;
1862         u64 magic;
1863         int ret;
1864
1865         switch (packet->sample_type) {
1866         case CS_ETM_RANGE:
1867                 /*
1868                  * Immediate branch instruction without neither link nor
1869                  * return flag, it's normal branch instruction within
1870                  * the function.
1871                  */
1872                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1873                     packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1874                         packet->flags = PERF_IP_FLAG_BRANCH;
1875
1876                         if (packet->last_instr_cond)
1877                                 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1878                 }
1879
1880                 /*
1881                  * Immediate branch instruction with link (e.g. BL), this is
1882                  * branch instruction for function call.
1883                  */
1884                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1885                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1886                         packet->flags = PERF_IP_FLAG_BRANCH |
1887                                         PERF_IP_FLAG_CALL;
1888
1889                 /*
1890                  * Indirect branch instruction with link (e.g. BLR), this is
1891                  * branch instruction for function call.
1892                  */
1893                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1894                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1895                         packet->flags = PERF_IP_FLAG_BRANCH |
1896                                         PERF_IP_FLAG_CALL;
1897
1898                 /*
1899                  * Indirect branch instruction with subtype of
1900                  * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1901                  * function return for A32/T32.
1902                  */
1903                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1904                     packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1905                         packet->flags = PERF_IP_FLAG_BRANCH |
1906                                         PERF_IP_FLAG_RETURN;
1907
1908                 /*
1909                  * Indirect branch instruction without link (e.g. BR), usually
1910                  * this is used for function return, especially for functions
1911                  * within dynamic link lib.
1912                  */
1913                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1914                     packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1915                         packet->flags = PERF_IP_FLAG_BRANCH |
1916                                         PERF_IP_FLAG_RETURN;
1917
1918                 /* Return instruction for function return. */
1919                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1920                     packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1921                         packet->flags = PERF_IP_FLAG_BRANCH |
1922                                         PERF_IP_FLAG_RETURN;
1923
1924                 /*
1925                  * Decoder might insert a discontinuity in the middle of
1926                  * instruction packets, fixup prev_packet with flag
1927                  * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1928                  */
1929                 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1930                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1931                                               PERF_IP_FLAG_TRACE_BEGIN;
1932
1933                 /*
1934                  * If the previous packet is an exception return packet
1935                  * and the return address just follows SVC instruction,
1936                  * it needs to calibrate the previous packet sample flags
1937                  * as PERF_IP_FLAG_SYSCALLRET.
1938                  */
1939                 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1940                                            PERF_IP_FLAG_RETURN |
1941                                            PERF_IP_FLAG_INTERRUPT) &&
1942                     cs_etm__is_svc_instr(etmq, trace_chan_id,
1943                                          packet, packet->start_addr))
1944                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
1945                                              PERF_IP_FLAG_RETURN |
1946                                              PERF_IP_FLAG_SYSCALLRET;
1947                 break;
1948         case CS_ETM_DISCONTINUITY:
1949                 /*
1950                  * The trace is discontinuous, if the previous packet is
1951                  * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1952                  * for previous packet.
1953                  */
1954                 if (prev_packet->sample_type == CS_ETM_RANGE)
1955                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1956                                               PERF_IP_FLAG_TRACE_END;
1957                 break;
1958         case CS_ETM_EXCEPTION:
1959                 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1960                 if (ret)
1961                         return ret;
1962
1963                 /* The exception is for system call. */
1964                 if (cs_etm__is_syscall(etmq, tidq, magic))
1965                         packet->flags = PERF_IP_FLAG_BRANCH |
1966                                         PERF_IP_FLAG_CALL |
1967                                         PERF_IP_FLAG_SYSCALLRET;
1968                 /*
1969                  * The exceptions are triggered by external signals from bus,
1970                  * interrupt controller, debug module, PE reset or halt.
1971                  */
1972                 else if (cs_etm__is_async_exception(tidq, magic))
1973                         packet->flags = PERF_IP_FLAG_BRANCH |
1974                                         PERF_IP_FLAG_CALL |
1975                                         PERF_IP_FLAG_ASYNC |
1976                                         PERF_IP_FLAG_INTERRUPT;
1977                 /*
1978                  * Otherwise, exception is caused by trap, instruction &
1979                  * data fault, or alignment errors.
1980                  */
1981                 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1982                         packet->flags = PERF_IP_FLAG_BRANCH |
1983                                         PERF_IP_FLAG_CALL |
1984                                         PERF_IP_FLAG_INTERRUPT;
1985
1986                 /*
1987                  * When the exception packet is inserted, since exception
1988                  * packet is not used standalone for generating samples
1989                  * and it's affiliation to the previous instruction range
1990                  * packet; so set previous range packet flags to tell perf
1991                  * it is an exception taken branch.
1992                  */
1993                 if (prev_packet->sample_type == CS_ETM_RANGE)
1994                         prev_packet->flags = packet->flags;
1995                 break;
1996         case CS_ETM_EXCEPTION_RET:
1997                 /*
1998                  * When the exception return packet is inserted, since
1999                  * exception return packet is not used standalone for
2000                  * generating samples and it's affiliation to the previous
2001                  * instruction range packet; so set previous range packet
2002                  * flags to tell perf it is an exception return branch.
2003                  *
2004                  * The exception return can be for either system call or
2005                  * other exception types; unfortunately the packet doesn't
2006                  * contain exception type related info so we cannot decide
2007                  * the exception type purely based on exception return packet.
2008                  * If we record the exception number from exception packet and
2009                  * reuse it for exception return packet, this is not reliable
2010                  * due the trace can be discontinuity or the interrupt can
2011                  * be nested, thus the recorded exception number cannot be
2012                  * used for exception return packet for these two cases.
2013                  *
2014                  * For exception return packet, we only need to distinguish the
2015                  * packet is for system call or for other types.  Thus the
2016                  * decision can be deferred when receive the next packet which
2017                  * contains the return address, based on the return address we
2018                  * can read out the previous instruction and check if it's a
2019                  * system call instruction and then calibrate the sample flag
2020                  * as needed.
2021                  */
2022                 if (prev_packet->sample_type == CS_ETM_RANGE)
2023                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
2024                                              PERF_IP_FLAG_RETURN |
2025                                              PERF_IP_FLAG_INTERRUPT;
2026                 break;
2027         case CS_ETM_EMPTY:
2028         default:
2029                 break;
2030         }
2031
2032         return 0;
2033 }
2034
2035 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2036 {
2037         int ret = 0;
2038         size_t processed = 0;
2039
2040         /*
2041          * Packets are decoded and added to the decoder's packet queue
2042          * until the decoder packet processing callback has requested that
2043          * processing stops or there is nothing left in the buffer.  Normal
2044          * operations that stop processing are a timestamp packet or a full
2045          * decoder buffer queue.
2046          */
2047         ret = cs_etm_decoder__process_data_block(etmq->decoder,
2048                                                  etmq->offset,
2049                                                  &etmq->buf[etmq->buf_used],
2050                                                  etmq->buf_len,
2051                                                  &processed);
2052         if (ret)
2053                 goto out;
2054
2055         etmq->offset += processed;
2056         etmq->buf_used += processed;
2057         etmq->buf_len -= processed;
2058
2059 out:
2060         return ret;
2061 }
2062
2063 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2064                                          struct cs_etm_traceid_queue *tidq)
2065 {
2066         int ret;
2067         struct cs_etm_packet_queue *packet_queue;
2068
2069         packet_queue = &tidq->packet_queue;
2070
2071         /* Process each packet in this chunk */
2072         while (1) {
2073                 ret = cs_etm_decoder__get_packet(packet_queue,
2074                                                  tidq->packet);
2075                 if (ret <= 0)
2076                         /*
2077                          * Stop processing this chunk on
2078                          * end of data or error
2079                          */
2080                         break;
2081
2082                 /*
2083                  * Since packet addresses are swapped in packet
2084                  * handling within below switch() statements,
2085                  * thus setting sample flags must be called
2086                  * prior to switch() statement to use address
2087                  * information before packets swapping.
2088                  */
2089                 ret = cs_etm__set_sample_flags(etmq, tidq);
2090                 if (ret < 0)
2091                         break;
2092
2093                 switch (tidq->packet->sample_type) {
2094                 case CS_ETM_RANGE:
2095                         /*
2096                          * If the packet contains an instruction
2097                          * range, generate instruction sequence
2098                          * events.
2099                          */
2100                         cs_etm__sample(etmq, tidq);
2101                         break;
2102                 case CS_ETM_EXCEPTION:
2103                 case CS_ETM_EXCEPTION_RET:
2104                         /*
2105                          * If the exception packet is coming,
2106                          * make sure the previous instruction
2107                          * range packet to be handled properly.
2108                          */
2109                         cs_etm__exception(tidq);
2110                         break;
2111                 case CS_ETM_DISCONTINUITY:
2112                         /*
2113                          * Discontinuity in trace, flush
2114                          * previous branch stack
2115                          */
2116                         cs_etm__flush(etmq, tidq);
2117                         break;
2118                 case CS_ETM_EMPTY:
2119                         /*
2120                          * Should not receive empty packet,
2121                          * report error.
2122                          */
2123                         pr_err("CS ETM Trace: empty packet\n");
2124                         return -EINVAL;
2125                 default:
2126                         break;
2127                 }
2128         }
2129
2130         return ret;
2131 }
2132
2133 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2134 {
2135         int idx;
2136         struct int_node *inode;
2137         struct cs_etm_traceid_queue *tidq;
2138         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2139
2140         intlist__for_each_entry(inode, traceid_queues_list) {
2141                 idx = (int)(intptr_t)inode->priv;
2142                 tidq = etmq->traceid_queues[idx];
2143
2144                 /* Ignore return value */
2145                 cs_etm__process_traceid_queue(etmq, tidq);
2146
2147                 /*
2148                  * Generate an instruction sample with the remaining
2149                  * branchstack entries.
2150                  */
2151                 cs_etm__flush(etmq, tidq);
2152         }
2153 }
2154
2155 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2156 {
2157         int err = 0;
2158         struct cs_etm_traceid_queue *tidq;
2159
2160         tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2161         if (!tidq)
2162                 return -EINVAL;
2163
2164         /* Go through each buffer in the queue and decode them one by one */
2165         while (1) {
2166                 err = cs_etm__get_data_block(etmq);
2167                 if (err <= 0)
2168                         return err;
2169
2170                 /* Run trace decoder until buffer consumed or end of trace */
2171                 do {
2172                         err = cs_etm__decode_data_block(etmq);
2173                         if (err)
2174                                 return err;
2175
2176                         /*
2177                          * Process each packet in this chunk, nothing to do if
2178                          * an error occurs other than hoping the next one will
2179                          * be better.
2180                          */
2181                         err = cs_etm__process_traceid_queue(etmq, tidq);
2182
2183                 } while (etmq->buf_len);
2184
2185                 if (err == 0)
2186                         /* Flush any remaining branch stack entries */
2187                         err = cs_etm__end_block(etmq, tidq);
2188         }
2189
2190         return err;
2191 }
2192
2193 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2194                                            pid_t tid)
2195 {
2196         unsigned int i;
2197         struct auxtrace_queues *queues = &etm->queues;
2198
2199         for (i = 0; i < queues->nr_queues; i++) {
2200                 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2201                 struct cs_etm_queue *etmq = queue->priv;
2202                 struct cs_etm_traceid_queue *tidq;
2203
2204                 if (!etmq)
2205                         continue;
2206
2207                 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2208                                                 CS_ETM_PER_THREAD_TRACEID);
2209
2210                 if (!tidq)
2211                         continue;
2212
2213                 if ((tid == -1) || (tidq->tid == tid)) {
2214                         cs_etm__set_pid_tid_cpu(etm, tidq);
2215                         cs_etm__run_decoder(etmq);
2216                 }
2217         }
2218
2219         return 0;
2220 }
2221
2222 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2223 {
2224         int ret = 0;
2225         unsigned int cs_queue_nr, queue_nr;
2226         u8 trace_chan_id;
2227         u64 cs_timestamp;
2228         struct auxtrace_queue *queue;
2229         struct cs_etm_queue *etmq;
2230         struct cs_etm_traceid_queue *tidq;
2231
2232         while (1) {
2233                 if (!etm->heap.heap_cnt)
2234                         goto out;
2235
2236                 /* Take the entry at the top of the min heap */
2237                 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2238                 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2239                 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2240                 queue = &etm->queues.queue_array[queue_nr];
2241                 etmq = queue->priv;
2242
2243                 /*
2244                  * Remove the top entry from the heap since we are about
2245                  * to process it.
2246                  */
2247                 auxtrace_heap__pop(&etm->heap);
2248
2249                 tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2250                 if (!tidq) {
2251                         /*
2252                          * No traceID queue has been allocated for this traceID,
2253                          * which means something somewhere went very wrong.  No
2254                          * other choice than simply exit.
2255                          */
2256                         ret = -EINVAL;
2257                         goto out;
2258                 }
2259
2260                 /*
2261                  * Packets associated with this timestamp are already in
2262                  * the etmq's traceID queue, so process them.
2263                  */
2264                 ret = cs_etm__process_traceid_queue(etmq, tidq);
2265                 if (ret < 0)
2266                         goto out;
2267
2268                 /*
2269                  * Packets for this timestamp have been processed, time to
2270                  * move on to the next timestamp, fetching a new auxtrace_buffer
2271                  * if need be.
2272                  */
2273 refetch:
2274                 ret = cs_etm__get_data_block(etmq);
2275                 if (ret < 0)
2276                         goto out;
2277
2278                 /*
2279                  * No more auxtrace_buffers to process in this etmq, simply
2280                  * move on to another entry in the auxtrace_heap.
2281                  */
2282                 if (!ret)
2283                         continue;
2284
2285                 ret = cs_etm__decode_data_block(etmq);
2286                 if (ret)
2287                         goto out;
2288
2289                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2290
2291                 if (!cs_timestamp) {
2292                         /*
2293                          * Function cs_etm__decode_data_block() returns when
2294                          * there is no more traces to decode in the current
2295                          * auxtrace_buffer OR when a timestamp has been
2296                          * encountered on any of the traceID queues.  Since we
2297                          * did not get a timestamp, there is no more traces to
2298                          * process in this auxtrace_buffer.  As such empty and
2299                          * flush all traceID queues.
2300                          */
2301                         cs_etm__clear_all_traceid_queues(etmq);
2302
2303                         /* Fetch another auxtrace_buffer for this etmq */
2304                         goto refetch;
2305                 }
2306
2307                 /*
2308                  * Add to the min heap the timestamp for packets that have
2309                  * just been decoded.  They will be processed and synthesized
2310                  * during the next call to cs_etm__process_traceid_queue() for
2311                  * this queue/traceID.
2312                  */
2313                 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2314                 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2315         }
2316
2317 out:
2318         return ret;
2319 }
2320
2321 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2322                                         union perf_event *event)
2323 {
2324         struct thread *th;
2325
2326         if (etm->timeless_decoding)
2327                 return 0;
2328
2329         /*
2330          * Add the tid/pid to the log so that we can get a match when
2331          * we get a contextID from the decoder.
2332          */
2333         th = machine__findnew_thread(etm->machine,
2334                                      event->itrace_start.pid,
2335                                      event->itrace_start.tid);
2336         if (!th)
2337                 return -ENOMEM;
2338
2339         thread__put(th);
2340
2341         return 0;
2342 }
2343
2344 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2345                                            union perf_event *event)
2346 {
2347         struct thread *th;
2348         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2349
2350         /*
2351          * Context switch in per-thread mode are irrelevant since perf
2352          * will start/stop tracing as the process is scheduled.
2353          */
2354         if (etm->timeless_decoding)
2355                 return 0;
2356
2357         /*
2358          * SWITCH_IN events carry the next process to be switched out while
2359          * SWITCH_OUT events carry the process to be switched in.  As such
2360          * we don't care about IN events.
2361          */
2362         if (!out)
2363                 return 0;
2364
2365         /*
2366          * Add the tid/pid to the log so that we can get a match when
2367          * we get a contextID from the decoder.
2368          */
2369         th = machine__findnew_thread(etm->machine,
2370                                      event->context_switch.next_prev_pid,
2371                                      event->context_switch.next_prev_tid);
2372         if (!th)
2373                 return -ENOMEM;
2374
2375         thread__put(th);
2376
2377         return 0;
2378 }
2379
2380 static int cs_etm__process_event(struct perf_session *session,
2381                                  union perf_event *event,
2382                                  struct perf_sample *sample,
2383                                  struct perf_tool *tool)
2384 {
2385         int err = 0;
2386         u64 sample_kernel_timestamp;
2387         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2388                                                    struct cs_etm_auxtrace,
2389                                                    auxtrace);
2390
2391         if (dump_trace)
2392                 return 0;
2393
2394         if (!tool->ordered_events) {
2395                 pr_err("CoreSight ETM Trace requires ordered events\n");
2396                 return -EINVAL;
2397         }
2398
2399         if (sample->time && (sample->time != (u64) -1))
2400                 sample_kernel_timestamp = sample->time;
2401         else
2402                 sample_kernel_timestamp = 0;
2403
2404         if (sample_kernel_timestamp || etm->timeless_decoding) {
2405                 err = cs_etm__update_queues(etm);
2406                 if (err)
2407                         return err;
2408         }
2409
2410         /*
2411          * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2412          * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2413          * ETM_OPT_CTXTID is not enabled.
2414          */
2415         if (etm->timeless_decoding &&
2416             event->header.type == PERF_RECORD_EXIT)
2417                 return cs_etm__process_timeless_queues(etm,
2418                                                        event->fork.tid);
2419
2420         if (event->header.type == PERF_RECORD_ITRACE_START)
2421                 return cs_etm__process_itrace_start(etm, event);
2422         else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2423                 return cs_etm__process_switch_cpu_wide(etm, event);
2424
2425         if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2426                 /*
2427                  * Record the latest kernel timestamp available in the header
2428                  * for samples so that synthesised samples occur from this point
2429                  * onwards.
2430                  */
2431                 etm->latest_kernel_timestamp = sample_kernel_timestamp;
2432         }
2433
2434         return 0;
2435 }
2436
2437 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2438                                           union perf_event *event,
2439                                           struct perf_tool *tool __maybe_unused)
2440 {
2441         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2442                                                    struct cs_etm_auxtrace,
2443                                                    auxtrace);
2444         if (!etm->data_queued) {
2445                 struct auxtrace_buffer *buffer;
2446                 off_t  data_offset;
2447                 int fd = perf_data__fd(session->data);
2448                 bool is_pipe = perf_data__is_pipe(session->data);
2449                 int err;
2450
2451                 if (is_pipe)
2452                         data_offset = 0;
2453                 else {
2454                         data_offset = lseek(fd, 0, SEEK_CUR);
2455                         if (data_offset == -1)
2456                                 return -errno;
2457                 }
2458
2459                 err = auxtrace_queues__add_event(&etm->queues, session,
2460                                                  event, data_offset, &buffer);
2461                 if (err)
2462                         return err;
2463
2464                 if (dump_trace)
2465                         if (auxtrace_buffer__get_data(buffer, fd)) {
2466                                 cs_etm__dump_event(etm, buffer);
2467                                 auxtrace_buffer__put_data(buffer);
2468                         }
2469         }
2470
2471         return 0;
2472 }
2473
2474 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2475 {
2476         struct evsel *evsel;
2477         struct evlist *evlist = etm->session->evlist;
2478         bool timeless_decoding = true;
2479
2480         /* Override timeless mode with user input from --itrace=Z */
2481         if (etm->synth_opts.timeless_decoding)
2482                 return true;
2483
2484         /*
2485          * Circle through the list of event and complain if we find one
2486          * with the time bit set.
2487          */
2488         evlist__for_each_entry(evlist, evsel) {
2489                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2490                         timeless_decoding = false;
2491         }
2492
2493         return timeless_decoding;
2494 }
2495
2496 static const char * const cs_etm_global_header_fmts[] = {
2497         [CS_HEADER_VERSION]     = "     Header version                 %llx\n",
2498         [CS_PMU_TYPE_CPUS]      = "     PMU type/num cpus              %llx\n",
2499         [CS_ETM_SNAPSHOT]       = "     Snapshot                       %llx\n",
2500 };
2501
2502 static const char * const cs_etm_priv_fmts[] = {
2503         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2504         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2505         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2506         [CS_ETM_ETMCR]          = "     ETMCR                          %llx\n",
2507         [CS_ETM_ETMTRACEIDR]    = "     ETMTRACEIDR                    %llx\n",
2508         [CS_ETM_ETMCCER]        = "     ETMCCER                        %llx\n",
2509         [CS_ETM_ETMIDR]         = "     ETMIDR                         %llx\n",
2510 };
2511
2512 static const char * const cs_etmv4_priv_fmts[] = {
2513         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2514         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2515         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2516         [CS_ETMV4_TRCCONFIGR]   = "     TRCCONFIGR                     %llx\n",
2517         [CS_ETMV4_TRCTRACEIDR]  = "     TRCTRACEIDR                    %llx\n",
2518         [CS_ETMV4_TRCIDR0]      = "     TRCIDR0                        %llx\n",
2519         [CS_ETMV4_TRCIDR1]      = "     TRCIDR1                        %llx\n",
2520         [CS_ETMV4_TRCIDR2]      = "     TRCIDR2                        %llx\n",
2521         [CS_ETMV4_TRCIDR8]      = "     TRCIDR8                        %llx\n",
2522         [CS_ETMV4_TRCAUTHSTATUS] = "    TRCAUTHSTATUS                  %llx\n",
2523 };
2524
2525 static const char * const param_unk_fmt =
2526         "       Unknown parameter [%d]         %llx\n";
2527 static const char * const magic_unk_fmt =
2528         "       Magic number Unknown           %llx\n";
2529
2530 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2531 {
2532         int i = *offset, j, nr_params = 0, fmt_offset;
2533         __u64 magic;
2534
2535         /* check magic value */
2536         magic = val[i + CS_ETM_MAGIC];
2537         if ((magic != __perf_cs_etmv3_magic) &&
2538             (magic != __perf_cs_etmv4_magic)) {
2539                 /* failure - note bad magic value */
2540                 fprintf(stdout, magic_unk_fmt, magic);
2541                 return -EINVAL;
2542         }
2543
2544         /* print common header block */
2545         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2546         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2547
2548         if (magic == __perf_cs_etmv3_magic) {
2549                 nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2550                 fmt_offset = CS_ETM_ETMCR;
2551                 /* after common block, offset format index past NR_PARAMS */
2552                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2553                         fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2554         } else if (magic == __perf_cs_etmv4_magic) {
2555                 nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2556                 fmt_offset = CS_ETMV4_TRCCONFIGR;
2557                 /* after common block, offset format index past NR_PARAMS */
2558                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2559                         fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2560         }
2561         *offset = i;
2562         return 0;
2563 }
2564
2565 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2566 {
2567         int i = *offset, j, total_params = 0;
2568         __u64 magic;
2569
2570         magic = val[i + CS_ETM_MAGIC];
2571         /* total params to print is NR_PARAMS + common block size for v1 */
2572         total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2573
2574         if (magic == __perf_cs_etmv3_magic) {
2575                 for (j = 0; j < total_params; j++, i++) {
2576                         /* if newer record - could be excess params */
2577                         if (j >= CS_ETM_PRIV_MAX)
2578                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2579                         else
2580                                 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2581                 }
2582         } else if (magic == __perf_cs_etmv4_magic) {
2583                 for (j = 0; j < total_params; j++, i++) {
2584                         /* if newer record - could be excess params */
2585                         if (j >= CS_ETMV4_PRIV_MAX)
2586                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2587                         else
2588                                 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2589                 }
2590         } else {
2591                 /* failure - note bad magic value and error out */
2592                 fprintf(stdout, magic_unk_fmt, magic);
2593                 return -EINVAL;
2594         }
2595         *offset = i;
2596         return 0;
2597 }
2598
2599 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2600 {
2601         int i, cpu = 0, version, err;
2602
2603         /* bail out early on bad header version */
2604         version = val[0];
2605         if (version > CS_HEADER_CURRENT_VERSION) {
2606                 /* failure.. return */
2607                 fprintf(stdout, "       Unknown Header Version = %x, ", version);
2608                 fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2609                 return;
2610         }
2611
2612         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2613                 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2614
2615         for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2616                 if (version == 0)
2617                         err = cs_etm__print_cpu_metadata_v0(val, &i);
2618                 else if (version == 1)
2619                         err = cs_etm__print_cpu_metadata_v1(val, &i);
2620                 if (err)
2621                         return;
2622         }
2623 }
2624
2625 /*
2626  * Read a single cpu parameter block from the auxtrace_info priv block.
2627  *
2628  * For version 1 there is a per cpu nr_params entry. If we are handling
2629  * version 1 file, then there may be less, the same, or more params
2630  * indicated by this value than the compile time number we understand.
2631  *
2632  * For a version 0 info block, there are a fixed number, and we need to
2633  * fill out the nr_param value in the metadata we create.
2634  */
2635 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2636                                     int out_blk_size, int nr_params_v0)
2637 {
2638         u64 *metadata = NULL;
2639         int hdr_version;
2640         int nr_in_params, nr_out_params, nr_cmn_params;
2641         int i, k;
2642
2643         metadata = zalloc(sizeof(*metadata) * out_blk_size);
2644         if (!metadata)
2645                 return NULL;
2646
2647         /* read block current index & version */
2648         i = *buff_in_offset;
2649         hdr_version = buff_in[CS_HEADER_VERSION];
2650
2651         if (!hdr_version) {
2652         /* read version 0 info block into a version 1 metadata block  */
2653                 nr_in_params = nr_params_v0;
2654                 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2655                 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2656                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2657                 /* remaining block params at offset +1 from source */
2658                 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2659                         metadata[k + 1] = buff_in[i + k];
2660                 /* version 0 has 2 common params */
2661                 nr_cmn_params = 2;
2662         } else {
2663         /* read version 1 info block - input and output nr_params may differ */
2664                 /* version 1 has 3 common params */
2665                 nr_cmn_params = 3;
2666                 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2667
2668                 /* if input has more params than output - skip excess */
2669                 nr_out_params = nr_in_params + nr_cmn_params;
2670                 if (nr_out_params > out_blk_size)
2671                         nr_out_params = out_blk_size;
2672
2673                 for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2674                         metadata[k] = buff_in[i + k];
2675
2676                 /* record the actual nr params we copied */
2677                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2678         }
2679
2680         /* adjust in offset by number of in params used */
2681         i += nr_in_params + nr_cmn_params;
2682         *buff_in_offset = i;
2683         return metadata;
2684 }
2685
2686 /**
2687  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2688  * on the bounds of aux_event, if it matches with the buffer that's at
2689  * file_offset.
2690  *
2691  * Normally, whole auxtrace buffers would be added to the queue. But we
2692  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2693  * is reset across each buffer, so splitting the buffers up in advance has
2694  * the same effect.
2695  */
2696 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2697                                       struct perf_record_aux *aux_event, struct perf_sample *sample)
2698 {
2699         int err;
2700         char buf[PERF_SAMPLE_MAX_SIZE];
2701         union perf_event *auxtrace_event_union;
2702         struct perf_record_auxtrace *auxtrace_event;
2703         union perf_event auxtrace_fragment;
2704         __u64 aux_offset, aux_size;
2705
2706         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2707                                                    struct cs_etm_auxtrace,
2708                                                    auxtrace);
2709
2710         /*
2711          * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2712          * from looping through the auxtrace index.
2713          */
2714         err = perf_session__peek_event(session, file_offset, buf,
2715                                        PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2716         if (err)
2717                 return err;
2718         auxtrace_event = &auxtrace_event_union->auxtrace;
2719         if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2720                 return -EINVAL;
2721
2722         if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2723                 auxtrace_event->header.size != sz) {
2724                 return -EINVAL;
2725         }
2726
2727         /*
2728          * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2729          * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2730          */
2731         if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2732                         auxtrace_event->cpu != sample->cpu)
2733                 return 1;
2734
2735         if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2736                 /*
2737                  * Clamp size in snapshot mode. The buffer size is clamped in
2738                  * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2739                  * the buffer size.
2740                  */
2741                 aux_size = min(aux_event->aux_size, auxtrace_event->size);
2742
2743                 /*
2744                  * In this mode, the head also points to the end of the buffer so aux_offset
2745                  * needs to have the size subtracted so it points to the beginning as in normal mode
2746                  */
2747                 aux_offset = aux_event->aux_offset - aux_size;
2748         } else {
2749                 aux_size = aux_event->aux_size;
2750                 aux_offset = aux_event->aux_offset;
2751         }
2752
2753         if (aux_offset >= auxtrace_event->offset &&
2754             aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2755                 /*
2756                  * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2757                  * based on the sizes of the aux event, and queue that fragment.
2758                  */
2759                 auxtrace_fragment.auxtrace = *auxtrace_event;
2760                 auxtrace_fragment.auxtrace.size = aux_size;
2761                 auxtrace_fragment.auxtrace.offset = aux_offset;
2762                 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2763
2764                 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2765                           " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2766                 return auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2767                                                   file_offset, NULL);
2768         }
2769
2770         /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2771         return 1;
2772 }
2773
2774 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2775                                         u64 offset __maybe_unused, void *data __maybe_unused)
2776 {
2777         struct perf_sample sample;
2778         int ret;
2779         struct auxtrace_index_entry *ent;
2780         struct auxtrace_index *auxtrace_index;
2781         struct evsel *evsel;
2782         size_t i;
2783
2784         /* Don't care about any other events, we're only queuing buffers for AUX events */
2785         if (event->header.type != PERF_RECORD_AUX)
2786                 return 0;
2787
2788         if (event->header.size < sizeof(struct perf_record_aux))
2789                 return -EINVAL;
2790
2791         /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2792         if (!event->aux.aux_size)
2793                 return 0;
2794
2795         /*
2796          * Parse the sample, we need the sample_id_all data that comes after the event so that the
2797          * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2798          */
2799         evsel = evlist__event2evsel(session->evlist, event);
2800         if (!evsel)
2801                 return -EINVAL;
2802         ret = evsel__parse_sample(evsel, event, &sample);
2803         if (ret)
2804                 return ret;
2805
2806         /*
2807          * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2808          */
2809         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2810                 for (i = 0; i < auxtrace_index->nr; i++) {
2811                         ent = &auxtrace_index->entries[i];
2812                         ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2813                                                          ent->sz, &event->aux, &sample);
2814                         /*
2815                          * Stop search on error or successful values. Continue search on
2816                          * 1 ('not found')
2817                          */
2818                         if (ret != 1)
2819                                 return ret;
2820                 }
2821         }
2822
2823         /*
2824          * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2825          * don't exit with an error because it will still be possible to decode other aux records.
2826          */
2827         pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2828                " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2829         return 0;
2830 }
2831
2832 static int cs_etm__queue_aux_records(struct perf_session *session)
2833 {
2834         struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2835                                                                 struct auxtrace_index, list);
2836         if (index && index->nr > 0)
2837                 return perf_session__peek_events(session, session->header.data_offset,
2838                                                  session->header.data_size,
2839                                                  cs_etm__queue_aux_records_cb, NULL);
2840
2841         /*
2842          * We would get here if there are no entries in the index (either no auxtrace
2843          * buffers or no index at all). Fail silently as there is the possibility of
2844          * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2845          * false.
2846          *
2847          * In that scenario, buffers will not be split by AUX records.
2848          */
2849         return 0;
2850 }
2851
2852 int cs_etm__process_auxtrace_info(union perf_event *event,
2853                                   struct perf_session *session)
2854 {
2855         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2856         struct cs_etm_auxtrace *etm = NULL;
2857         struct int_node *inode;
2858         unsigned int pmu_type;
2859         int event_header_size = sizeof(struct perf_event_header);
2860         int info_header_size;
2861         int total_size = auxtrace_info->header.size;
2862         int priv_size = 0;
2863         int num_cpu, trcidr_idx;
2864         int err = 0;
2865         int i, j;
2866         u64 *ptr, *hdr = NULL;
2867         u64 **metadata = NULL;
2868         u64 hdr_version;
2869
2870         /*
2871          * sizeof(auxtrace_info_event::type) +
2872          * sizeof(auxtrace_info_event::reserved) == 8
2873          */
2874         info_header_size = 8;
2875
2876         if (total_size < (event_header_size + info_header_size))
2877                 return -EINVAL;
2878
2879         priv_size = total_size - event_header_size - info_header_size;
2880
2881         /* First the global part */
2882         ptr = (u64 *) auxtrace_info->priv;
2883
2884         /* Look for version of the header */
2885         hdr_version = ptr[0];
2886         if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2887                 /* print routine will print an error on bad version */
2888                 if (dump_trace)
2889                         cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2890                 return -EINVAL;
2891         }
2892
2893         hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2894         if (!hdr)
2895                 return -ENOMEM;
2896
2897         /* Extract header information - see cs-etm.h for format */
2898         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2899                 hdr[i] = ptr[i];
2900         num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2901         pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2902                                     0xffffffff);
2903
2904         /*
2905          * Create an RB tree for traceID-metadata tuple.  Since the conversion
2906          * has to be made for each packet that gets decoded, optimizing access
2907          * in anything other than a sequential array is worth doing.
2908          */
2909         traceid_list = intlist__new(NULL);
2910         if (!traceid_list) {
2911                 err = -ENOMEM;
2912                 goto err_free_hdr;
2913         }
2914
2915         metadata = zalloc(sizeof(*metadata) * num_cpu);
2916         if (!metadata) {
2917                 err = -ENOMEM;
2918                 goto err_free_traceid_list;
2919         }
2920
2921         /*
2922          * The metadata is stored in the auxtrace_info section and encodes
2923          * the configuration of the ARM embedded trace macrocell which is
2924          * required by the trace decoder to properly decode the trace due
2925          * to its highly compressed nature.
2926          */
2927         for (j = 0; j < num_cpu; j++) {
2928                 if (ptr[i] == __perf_cs_etmv3_magic) {
2929                         metadata[j] =
2930                                 cs_etm__create_meta_blk(ptr, &i,
2931                                                         CS_ETM_PRIV_MAX,
2932                                                         CS_ETM_NR_TRC_PARAMS_V0);
2933
2934                         /* The traceID is our handle */
2935                         trcidr_idx = CS_ETM_ETMTRACEIDR;
2936
2937                 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2938                         metadata[j] =
2939                                 cs_etm__create_meta_blk(ptr, &i,
2940                                                         CS_ETMV4_PRIV_MAX,
2941                                                         CS_ETMV4_NR_TRC_PARAMS_V0);
2942
2943                         /* The traceID is our handle */
2944                         trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2945                 }
2946
2947                 if (!metadata[j]) {
2948                         err = -ENOMEM;
2949                         goto err_free_metadata;
2950                 }
2951
2952                 /* Get an RB node for this CPU */
2953                 inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2954
2955                 /* Something went wrong, no need to continue */
2956                 if (!inode) {
2957                         err = -ENOMEM;
2958                         goto err_free_metadata;
2959                 }
2960
2961                 /*
2962                  * The node for that CPU should not be taken.
2963                  * Back out if that's the case.
2964                  */
2965                 if (inode->priv) {
2966                         err = -EINVAL;
2967                         goto err_free_metadata;
2968                 }
2969                 /* All good, associate the traceID with the metadata pointer */
2970                 inode->priv = metadata[j];
2971         }
2972
2973         /*
2974          * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2975          * CS_ETMV4_PRIV_MAX mark how many double words are in the
2976          * global metadata, and each cpu's metadata respectively.
2977          * The following tests if the correct number of double words was
2978          * present in the auxtrace info section.
2979          */
2980         if (i * 8 != priv_size) {
2981                 err = -EINVAL;
2982                 goto err_free_metadata;
2983         }
2984
2985         etm = zalloc(sizeof(*etm));
2986
2987         if (!etm) {
2988                 err = -ENOMEM;
2989                 goto err_free_metadata;
2990         }
2991
2992         err = auxtrace_queues__init(&etm->queues);
2993         if (err)
2994                 goto err_free_etm;
2995
2996         if (session->itrace_synth_opts->set) {
2997                 etm->synth_opts = *session->itrace_synth_opts;
2998         } else {
2999                 itrace_synth_opts__set_default(&etm->synth_opts,
3000                                 session->itrace_synth_opts->default_no_sample);
3001                 etm->synth_opts.callchain = false;
3002         }
3003
3004         etm->session = session;
3005         etm->machine = &session->machines.host;
3006
3007         etm->num_cpu = num_cpu;
3008         etm->pmu_type = pmu_type;
3009         etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3010         etm->metadata = metadata;
3011         etm->auxtrace_type = auxtrace_info->type;
3012         etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
3013
3014         etm->auxtrace.process_event = cs_etm__process_event;
3015         etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3016         etm->auxtrace.flush_events = cs_etm__flush_events;
3017         etm->auxtrace.free_events = cs_etm__free_events;
3018         etm->auxtrace.free = cs_etm__free;
3019         etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3020         session->auxtrace = &etm->auxtrace;
3021
3022         etm->unknown_thread = thread__new(999999999, 999999999);
3023         if (!etm->unknown_thread) {
3024                 err = -ENOMEM;
3025                 goto err_free_queues;
3026         }
3027
3028         /*
3029          * Initialize list node so that at thread__zput() we can avoid
3030          * segmentation fault at list_del_init().
3031          */
3032         INIT_LIST_HEAD(&etm->unknown_thread->node);
3033
3034         err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3035         if (err)
3036                 goto err_delete_thread;
3037
3038         if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3039                 err = -ENOMEM;
3040                 goto err_delete_thread;
3041         }
3042
3043         if (dump_trace) {
3044                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3045                 return 0;
3046         }
3047
3048         err = cs_etm__synth_events(etm, session);
3049         if (err)
3050                 goto err_delete_thread;
3051
3052         err = cs_etm__queue_aux_records(session);
3053         if (err)
3054                 goto err_delete_thread;
3055
3056         etm->data_queued = etm->queues.populated;
3057
3058         return 0;
3059
3060 err_delete_thread:
3061         thread__zput(etm->unknown_thread);
3062 err_free_queues:
3063         auxtrace_queues__free(&etm->queues);
3064         session->auxtrace = NULL;
3065 err_free_etm:
3066         zfree(&etm);
3067 err_free_metadata:
3068         /* No need to check @metadata[j], free(NULL) is supported */
3069         for (j = 0; j < num_cpu; j++)
3070                 zfree(&metadata[j]);
3071         zfree(&metadata);
3072 err_free_traceid_list:
3073         intlist__delete(traceid_list);
3074 err_free_hdr:
3075         zfree(&hdr);
3076         /*
3077          * At this point, as a minimum we have valid header. Dump the rest of
3078          * the info section - the print routines will error out on structural
3079          * issues.
3080          */
3081         if (dump_trace)
3082                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3083         return err;
3084 }