perf cs-etm: Fix timeless decode mode detection
[platform/kernel/linux-starfive.git] / tools / perf / util / cs-etm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40
41 struct cs_etm_auxtrace {
42         struct auxtrace auxtrace;
43         struct auxtrace_queues queues;
44         struct auxtrace_heap heap;
45         struct itrace_synth_opts synth_opts;
46         struct perf_session *session;
47         struct machine *machine;
48         struct thread *unknown_thread;
49
50         u8 timeless_decoding;
51         u8 snapshot_mode;
52         u8 data_queued;
53
54         int num_cpu;
55         u64 latest_kernel_timestamp;
56         u32 auxtrace_type;
57         u64 branches_sample_type;
58         u64 branches_id;
59         u64 instructions_sample_type;
60         u64 instructions_sample_period;
61         u64 instructions_id;
62         u64 **metadata;
63         unsigned int pmu_type;
64 };
65
66 struct cs_etm_traceid_queue {
67         u8 trace_chan_id;
68         pid_t pid, tid;
69         u64 period_instructions;
70         size_t last_branch_pos;
71         union perf_event *event_buf;
72         struct thread *thread;
73         struct branch_stack *last_branch;
74         struct branch_stack *last_branch_rb;
75         struct cs_etm_packet *prev_packet;
76         struct cs_etm_packet *packet;
77         struct cs_etm_packet_queue packet_queue;
78 };
79
80 struct cs_etm_queue {
81         struct cs_etm_auxtrace *etm;
82         struct cs_etm_decoder *decoder;
83         struct auxtrace_buffer *buffer;
84         unsigned int queue_nr;
85         u8 pending_timestamp_chan_id;
86         u64 offset;
87         const unsigned char *buf;
88         size_t buf_len, buf_used;
89         /* Conversion between traceID and index in traceid_queues array */
90         struct intlist *traceid_queues_list;
91         struct cs_etm_traceid_queue **traceid_queues;
92 };
93
94 /* RB tree for quick conversion between traceID and metadata pointers */
95 static struct intlist *traceid_list;
96
97 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
98 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
99                                            pid_t tid);
100 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
101 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
102
103 /* PTMs ETMIDR [11:8] set to b0011 */
104 #define ETMIDR_PTM_VERSION 0x00000300
105
106 /*
107  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
108  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
109  * encode the etm queue number as the upper 16 bit and the channel as
110  * the lower 16 bit.
111  */
112 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
113                       (queue_nr << 16 | trace_chan_id)
114 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
115 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
116
117 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
118 {
119         etmidr &= ETMIDR_PTM_VERSION;
120
121         if (etmidr == ETMIDR_PTM_VERSION)
122                 return CS_ETM_PROTO_PTM;
123
124         return CS_ETM_PROTO_ETMV3;
125 }
126
127 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
128 {
129         struct int_node *inode;
130         u64 *metadata;
131
132         inode = intlist__find(traceid_list, trace_chan_id);
133         if (!inode)
134                 return -EINVAL;
135
136         metadata = inode->priv;
137         *magic = metadata[CS_ETM_MAGIC];
138         return 0;
139 }
140
141 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
142 {
143         struct int_node *inode;
144         u64 *metadata;
145
146         inode = intlist__find(traceid_list, trace_chan_id);
147         if (!inode)
148                 return -EINVAL;
149
150         metadata = inode->priv;
151         *cpu = (int)metadata[CS_ETM_CPU];
152         return 0;
153 }
154
155 /*
156  * The returned PID format is presented by two bits:
157  *
158  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
159  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
160  *
161  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
162  * are enabled at the same time when the session runs on an EL2 kernel.
163  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
164  * recorded in the trace data, the tool will selectively use
165  * CONTEXTIDR_EL2 as PID.
166  */
167 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
168 {
169         struct int_node *inode;
170         u64 *metadata, val;
171
172         inode = intlist__find(traceid_list, trace_chan_id);
173         if (!inode)
174                 return -EINVAL;
175
176         metadata = inode->priv;
177
178         if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
179                 val = metadata[CS_ETM_ETMCR];
180                 /* CONTEXTIDR is traced */
181                 if (val & BIT(ETM_OPT_CTXTID))
182                         *pid_fmt = BIT(ETM_OPT_CTXTID);
183         } else {
184                 val = metadata[CS_ETMV4_TRCCONFIGR];
185                 /* CONTEXTIDR_EL2 is traced */
186                 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
187                         *pid_fmt = BIT(ETM_OPT_CTXTID2);
188                 /* CONTEXTIDR_EL1 is traced */
189                 else if (val & BIT(ETM4_CFG_BIT_CTXTID))
190                         *pid_fmt = BIT(ETM_OPT_CTXTID);
191         }
192
193         return 0;
194 }
195
196 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
197                                               u8 trace_chan_id)
198 {
199         /*
200          * When a timestamp packet is encountered the backend code
201          * is stopped so that the front end has time to process packets
202          * that were accumulated in the traceID queue.  Since there can
203          * be more than one channel per cs_etm_queue, we need to specify
204          * what traceID queue needs servicing.
205          */
206         etmq->pending_timestamp_chan_id = trace_chan_id;
207 }
208
209 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
210                                       u8 *trace_chan_id)
211 {
212         struct cs_etm_packet_queue *packet_queue;
213
214         if (!etmq->pending_timestamp_chan_id)
215                 return 0;
216
217         if (trace_chan_id)
218                 *trace_chan_id = etmq->pending_timestamp_chan_id;
219
220         packet_queue = cs_etm__etmq_get_packet_queue(etmq,
221                                                      etmq->pending_timestamp_chan_id);
222         if (!packet_queue)
223                 return 0;
224
225         /* Acknowledge pending status */
226         etmq->pending_timestamp_chan_id = 0;
227
228         /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
229         return packet_queue->cs_timestamp;
230 }
231
232 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
233 {
234         int i;
235
236         queue->head = 0;
237         queue->tail = 0;
238         queue->packet_count = 0;
239         for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
240                 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
241                 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
242                 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
243                 queue->packet_buffer[i].instr_count = 0;
244                 queue->packet_buffer[i].last_instr_taken_branch = false;
245                 queue->packet_buffer[i].last_instr_size = 0;
246                 queue->packet_buffer[i].last_instr_type = 0;
247                 queue->packet_buffer[i].last_instr_subtype = 0;
248                 queue->packet_buffer[i].last_instr_cond = 0;
249                 queue->packet_buffer[i].flags = 0;
250                 queue->packet_buffer[i].exception_number = UINT32_MAX;
251                 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
252                 queue->packet_buffer[i].cpu = INT_MIN;
253         }
254 }
255
256 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
257 {
258         int idx;
259         struct int_node *inode;
260         struct cs_etm_traceid_queue *tidq;
261         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
262
263         intlist__for_each_entry(inode, traceid_queues_list) {
264                 idx = (int)(intptr_t)inode->priv;
265                 tidq = etmq->traceid_queues[idx];
266                 cs_etm__clear_packet_queue(&tidq->packet_queue);
267         }
268 }
269
270 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
271                                       struct cs_etm_traceid_queue *tidq,
272                                       u8 trace_chan_id)
273 {
274         int rc = -ENOMEM;
275         struct auxtrace_queue *queue;
276         struct cs_etm_auxtrace *etm = etmq->etm;
277
278         cs_etm__clear_packet_queue(&tidq->packet_queue);
279
280         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
281         tidq->tid = queue->tid;
282         tidq->pid = -1;
283         tidq->trace_chan_id = trace_chan_id;
284
285         tidq->packet = zalloc(sizeof(struct cs_etm_packet));
286         if (!tidq->packet)
287                 goto out;
288
289         tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
290         if (!tidq->prev_packet)
291                 goto out_free;
292
293         if (etm->synth_opts.last_branch) {
294                 size_t sz = sizeof(struct branch_stack);
295
296                 sz += etm->synth_opts.last_branch_sz *
297                       sizeof(struct branch_entry);
298                 tidq->last_branch = zalloc(sz);
299                 if (!tidq->last_branch)
300                         goto out_free;
301                 tidq->last_branch_rb = zalloc(sz);
302                 if (!tidq->last_branch_rb)
303                         goto out_free;
304         }
305
306         tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
307         if (!tidq->event_buf)
308                 goto out_free;
309
310         return 0;
311
312 out_free:
313         zfree(&tidq->last_branch_rb);
314         zfree(&tidq->last_branch);
315         zfree(&tidq->prev_packet);
316         zfree(&tidq->packet);
317 out:
318         return rc;
319 }
320
321 static struct cs_etm_traceid_queue
322 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
323 {
324         int idx;
325         struct int_node *inode;
326         struct intlist *traceid_queues_list;
327         struct cs_etm_traceid_queue *tidq, **traceid_queues;
328         struct cs_etm_auxtrace *etm = etmq->etm;
329
330         if (etm->timeless_decoding)
331                 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
332
333         traceid_queues_list = etmq->traceid_queues_list;
334
335         /*
336          * Check if the traceid_queue exist for this traceID by looking
337          * in the queue list.
338          */
339         inode = intlist__find(traceid_queues_list, trace_chan_id);
340         if (inode) {
341                 idx = (int)(intptr_t)inode->priv;
342                 return etmq->traceid_queues[idx];
343         }
344
345         /* We couldn't find a traceid_queue for this traceID, allocate one */
346         tidq = malloc(sizeof(*tidq));
347         if (!tidq)
348                 return NULL;
349
350         memset(tidq, 0, sizeof(*tidq));
351
352         /* Get a valid index for the new traceid_queue */
353         idx = intlist__nr_entries(traceid_queues_list);
354         /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
355         inode = intlist__findnew(traceid_queues_list, trace_chan_id);
356         if (!inode)
357                 goto out_free;
358
359         /* Associate this traceID with this index */
360         inode->priv = (void *)(intptr_t)idx;
361
362         if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
363                 goto out_free;
364
365         /* Grow the traceid_queues array by one unit */
366         traceid_queues = etmq->traceid_queues;
367         traceid_queues = reallocarray(traceid_queues,
368                                       idx + 1,
369                                       sizeof(*traceid_queues));
370
371         /*
372          * On failure reallocarray() returns NULL and the original block of
373          * memory is left untouched.
374          */
375         if (!traceid_queues)
376                 goto out_free;
377
378         traceid_queues[idx] = tidq;
379         etmq->traceid_queues = traceid_queues;
380
381         return etmq->traceid_queues[idx];
382
383 out_free:
384         /*
385          * Function intlist__remove() removes the inode from the list
386          * and delete the memory associated to it.
387          */
388         intlist__remove(traceid_queues_list, inode);
389         free(tidq);
390
391         return NULL;
392 }
393
394 struct cs_etm_packet_queue
395 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
396 {
397         struct cs_etm_traceid_queue *tidq;
398
399         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
400         if (tidq)
401                 return &tidq->packet_queue;
402
403         return NULL;
404 }
405
406 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
407                                 struct cs_etm_traceid_queue *tidq)
408 {
409         struct cs_etm_packet *tmp;
410
411         if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
412             etm->synth_opts.instructions) {
413                 /*
414                  * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
415                  * the next incoming packet.
416                  */
417                 tmp = tidq->packet;
418                 tidq->packet = tidq->prev_packet;
419                 tidq->prev_packet = tmp;
420         }
421 }
422
423 static void cs_etm__packet_dump(const char *pkt_string)
424 {
425         const char *color = PERF_COLOR_BLUE;
426         int len = strlen(pkt_string);
427
428         if (len && (pkt_string[len-1] == '\n'))
429                 color_fprintf(stdout, color, "  %s", pkt_string);
430         else
431                 color_fprintf(stdout, color, "  %s\n", pkt_string);
432
433         fflush(stdout);
434 }
435
436 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
437                                           struct cs_etm_auxtrace *etm, int idx,
438                                           u32 etmidr)
439 {
440         u64 **metadata = etm->metadata;
441
442         t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
443         t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
444         t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
445 }
446
447 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
448                                           struct cs_etm_auxtrace *etm, int idx)
449 {
450         u64 **metadata = etm->metadata;
451
452         t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
453         t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
454         t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
455         t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
456         t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
457         t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
458         t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
459 }
460
461 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
462                                           struct cs_etm_auxtrace *etm, int idx)
463 {
464         u64 **metadata = etm->metadata;
465
466         t_params[idx].protocol = CS_ETM_PROTO_ETE;
467         t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
468         t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
469         t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
470         t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
471         t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
472         t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
473         t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
474 }
475
476 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
477                                      struct cs_etm_auxtrace *etm,
478                                      int decoders)
479 {
480         int i;
481         u32 etmidr;
482         u64 architecture;
483
484         for (i = 0; i < decoders; i++) {
485                 architecture = etm->metadata[i][CS_ETM_MAGIC];
486
487                 switch (architecture) {
488                 case __perf_cs_etmv3_magic:
489                         etmidr = etm->metadata[i][CS_ETM_ETMIDR];
490                         cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
491                         break;
492                 case __perf_cs_etmv4_magic:
493                         cs_etm__set_trace_param_etmv4(t_params, etm, i);
494                         break;
495                 case __perf_cs_ete_magic:
496                         cs_etm__set_trace_param_ete(t_params, etm, i);
497                         break;
498                 default:
499                         return -EINVAL;
500                 }
501         }
502
503         return 0;
504 }
505
506 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
507                                        struct cs_etm_queue *etmq,
508                                        enum cs_etm_decoder_operation mode,
509                                        bool formatted)
510 {
511         int ret = -EINVAL;
512
513         if (!(mode < CS_ETM_OPERATION_MAX))
514                 goto out;
515
516         d_params->packet_printer = cs_etm__packet_dump;
517         d_params->operation = mode;
518         d_params->data = etmq;
519         d_params->formatted = formatted;
520         d_params->fsyncs = false;
521         d_params->hsyncs = false;
522         d_params->frame_aligned = true;
523
524         ret = 0;
525 out:
526         return ret;
527 }
528
529 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
530                                struct auxtrace_buffer *buffer)
531 {
532         int ret;
533         const char *color = PERF_COLOR_BLUE;
534         size_t buffer_used = 0;
535
536         fprintf(stdout, "\n");
537         color_fprintf(stdout, color,
538                      ". ... CoreSight %s Trace data: size %#zx bytes\n",
539                      cs_etm_decoder__get_name(etmq->decoder), buffer->size);
540
541         do {
542                 size_t consumed;
543
544                 ret = cs_etm_decoder__process_data_block(
545                                 etmq->decoder, buffer->offset,
546                                 &((u8 *)buffer->data)[buffer_used],
547                                 buffer->size - buffer_used, &consumed);
548                 if (ret)
549                         break;
550
551                 buffer_used += consumed;
552         } while (buffer_used < buffer->size);
553
554         cs_etm_decoder__reset(etmq->decoder);
555 }
556
557 static int cs_etm__flush_events(struct perf_session *session,
558                                 struct perf_tool *tool)
559 {
560         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
561                                                    struct cs_etm_auxtrace,
562                                                    auxtrace);
563         if (dump_trace)
564                 return 0;
565
566         if (!tool->ordered_events)
567                 return -EINVAL;
568
569         if (etm->timeless_decoding)
570                 return cs_etm__process_timeless_queues(etm, -1);
571
572         return cs_etm__process_queues(etm);
573 }
574
575 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
576 {
577         int idx;
578         uintptr_t priv;
579         struct int_node *inode, *tmp;
580         struct cs_etm_traceid_queue *tidq;
581         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
582
583         intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
584                 priv = (uintptr_t)inode->priv;
585                 idx = priv;
586
587                 /* Free this traceid_queue from the array */
588                 tidq = etmq->traceid_queues[idx];
589                 thread__zput(tidq->thread);
590                 zfree(&tidq->event_buf);
591                 zfree(&tidq->last_branch);
592                 zfree(&tidq->last_branch_rb);
593                 zfree(&tidq->prev_packet);
594                 zfree(&tidq->packet);
595                 zfree(&tidq);
596
597                 /*
598                  * Function intlist__remove() removes the inode from the list
599                  * and delete the memory associated to it.
600                  */
601                 intlist__remove(traceid_queues_list, inode);
602         }
603
604         /* Then the RB tree itself */
605         intlist__delete(traceid_queues_list);
606         etmq->traceid_queues_list = NULL;
607
608         /* finally free the traceid_queues array */
609         zfree(&etmq->traceid_queues);
610 }
611
612 static void cs_etm__free_queue(void *priv)
613 {
614         struct cs_etm_queue *etmq = priv;
615
616         if (!etmq)
617                 return;
618
619         cs_etm_decoder__free(etmq->decoder);
620         cs_etm__free_traceid_queues(etmq);
621         free(etmq);
622 }
623
624 static void cs_etm__free_events(struct perf_session *session)
625 {
626         unsigned int i;
627         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
628                                                    struct cs_etm_auxtrace,
629                                                    auxtrace);
630         struct auxtrace_queues *queues = &aux->queues;
631
632         for (i = 0; i < queues->nr_queues; i++) {
633                 cs_etm__free_queue(queues->queue_array[i].priv);
634                 queues->queue_array[i].priv = NULL;
635         }
636
637         auxtrace_queues__free(queues);
638 }
639
640 static void cs_etm__free(struct perf_session *session)
641 {
642         int i;
643         struct int_node *inode, *tmp;
644         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
645                                                    struct cs_etm_auxtrace,
646                                                    auxtrace);
647         cs_etm__free_events(session);
648         session->auxtrace = NULL;
649
650         /* First remove all traceID/metadata nodes for the RB tree */
651         intlist__for_each_entry_safe(inode, tmp, traceid_list)
652                 intlist__remove(traceid_list, inode);
653         /* Then the RB tree itself */
654         intlist__delete(traceid_list);
655
656         for (i = 0; i < aux->num_cpu; i++)
657                 zfree(&aux->metadata[i]);
658
659         thread__zput(aux->unknown_thread);
660         zfree(&aux->metadata);
661         zfree(&aux);
662 }
663
664 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
665                                       struct evsel *evsel)
666 {
667         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
668                                                    struct cs_etm_auxtrace,
669                                                    auxtrace);
670
671         return evsel->core.attr.type == aux->pmu_type;
672 }
673
674 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
675 {
676         struct machine *machine;
677
678         machine = etmq->etm->machine;
679
680         if (address >= machine__kernel_start(machine)) {
681                 if (machine__is_host(machine))
682                         return PERF_RECORD_MISC_KERNEL;
683                 else
684                         return PERF_RECORD_MISC_GUEST_KERNEL;
685         } else {
686                 if (machine__is_host(machine))
687                         return PERF_RECORD_MISC_USER;
688                 else if (perf_guest)
689                         return PERF_RECORD_MISC_GUEST_USER;
690                 else
691                         return PERF_RECORD_MISC_HYPERVISOR;
692         }
693 }
694
695 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
696                               u64 address, size_t size, u8 *buffer)
697 {
698         u8  cpumode;
699         u64 offset;
700         int len;
701         struct thread *thread;
702         struct machine *machine;
703         struct addr_location al;
704         struct cs_etm_traceid_queue *tidq;
705
706         if (!etmq)
707                 return 0;
708
709         machine = etmq->etm->machine;
710         cpumode = cs_etm__cpu_mode(etmq, address);
711         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
712         if (!tidq)
713                 return 0;
714
715         thread = tidq->thread;
716         if (!thread) {
717                 if (cpumode != PERF_RECORD_MISC_KERNEL)
718                         return 0;
719                 thread = etmq->etm->unknown_thread;
720         }
721
722         if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
723                 return 0;
724
725         if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
726             dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
727                 return 0;
728
729         offset = al.map->map_ip(al.map, address);
730
731         map__load(al.map);
732
733         len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
734
735         if (len <= 0) {
736                 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
737                                  "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
738                 if (!al.map->dso->auxtrace_warned) {
739                         pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
740                                     address,
741                                     al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
742                         al.map->dso->auxtrace_warned = true;
743                 }
744                 return 0;
745         }
746
747         return len;
748 }
749
750 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
751                                                 bool formatted)
752 {
753         struct cs_etm_decoder_params d_params;
754         struct cs_etm_trace_params  *t_params = NULL;
755         struct cs_etm_queue *etmq;
756         /*
757          * Each queue can only contain data from one CPU when unformatted, so only one decoder is
758          * needed.
759          */
760         int decoders = formatted ? etm->num_cpu : 1;
761
762         etmq = zalloc(sizeof(*etmq));
763         if (!etmq)
764                 return NULL;
765
766         etmq->traceid_queues_list = intlist__new(NULL);
767         if (!etmq->traceid_queues_list)
768                 goto out_free;
769
770         /* Use metadata to fill in trace parameters for trace decoder */
771         t_params = zalloc(sizeof(*t_params) * decoders);
772
773         if (!t_params)
774                 goto out_free;
775
776         if (cs_etm__init_trace_params(t_params, etm, decoders))
777                 goto out_free;
778
779         /* Set decoder parameters to decode trace packets */
780         if (cs_etm__init_decoder_params(&d_params, etmq,
781                                         dump_trace ? CS_ETM_OPERATION_PRINT :
782                                                      CS_ETM_OPERATION_DECODE,
783                                         formatted))
784                 goto out_free;
785
786         etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
787                                             t_params);
788
789         if (!etmq->decoder)
790                 goto out_free;
791
792         /*
793          * Register a function to handle all memory accesses required by
794          * the trace decoder library.
795          */
796         if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
797                                               0x0L, ((u64) -1L),
798                                               cs_etm__mem_access))
799                 goto out_free_decoder;
800
801         zfree(&t_params);
802         return etmq;
803
804 out_free_decoder:
805         cs_etm_decoder__free(etmq->decoder);
806 out_free:
807         intlist__delete(etmq->traceid_queues_list);
808         free(etmq);
809
810         return NULL;
811 }
812
813 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
814                                struct auxtrace_queue *queue,
815                                unsigned int queue_nr,
816                                bool formatted)
817 {
818         struct cs_etm_queue *etmq = queue->priv;
819
820         if (list_empty(&queue->head) || etmq)
821                 return 0;
822
823         etmq = cs_etm__alloc_queue(etm, formatted);
824
825         if (!etmq)
826                 return -ENOMEM;
827
828         queue->priv = etmq;
829         etmq->etm = etm;
830         etmq->queue_nr = queue_nr;
831         etmq->offset = 0;
832
833         return 0;
834 }
835
836 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
837                                             struct cs_etm_queue *etmq,
838                                             unsigned int queue_nr)
839 {
840         int ret = 0;
841         unsigned int cs_queue_nr;
842         u8 trace_chan_id;
843         u64 cs_timestamp;
844
845         /*
846          * We are under a CPU-wide trace scenario.  As such we need to know
847          * when the code that generated the traces started to execute so that
848          * it can be correlated with execution on other CPUs.  So we get a
849          * handle on the beginning of traces and decode until we find a
850          * timestamp.  The timestamp is then added to the auxtrace min heap
851          * in order to know what nibble (of all the etmqs) to decode first.
852          */
853         while (1) {
854                 /*
855                  * Fetch an aux_buffer from this etmq.  Bail if no more
856                  * blocks or an error has been encountered.
857                  */
858                 ret = cs_etm__get_data_block(etmq);
859                 if (ret <= 0)
860                         goto out;
861
862                 /*
863                  * Run decoder on the trace block.  The decoder will stop when
864                  * encountering a CS timestamp, a full packet queue or the end of
865                  * trace for that block.
866                  */
867                 ret = cs_etm__decode_data_block(etmq);
868                 if (ret)
869                         goto out;
870
871                 /*
872                  * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
873                  * the timestamp calculation for us.
874                  */
875                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
876
877                 /* We found a timestamp, no need to continue. */
878                 if (cs_timestamp)
879                         break;
880
881                 /*
882                  * We didn't find a timestamp so empty all the traceid packet
883                  * queues before looking for another timestamp packet, either
884                  * in the current data block or a new one.  Packets that were
885                  * just decoded are useless since no timestamp has been
886                  * associated with them.  As such simply discard them.
887                  */
888                 cs_etm__clear_all_packet_queues(etmq);
889         }
890
891         /*
892          * We have a timestamp.  Add it to the min heap to reflect when
893          * instructions conveyed by the range packets of this traceID queue
894          * started to execute.  Once the same has been done for all the traceID
895          * queues of each etmq, redenring and decoding can start in
896          * chronological order.
897          *
898          * Note that packets decoded above are still in the traceID's packet
899          * queue and will be processed in cs_etm__process_queues().
900          */
901         cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
902         ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
903 out:
904         return ret;
905 }
906
907 static inline
908 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
909                                  struct cs_etm_traceid_queue *tidq)
910 {
911         struct branch_stack *bs_src = tidq->last_branch_rb;
912         struct branch_stack *bs_dst = tidq->last_branch;
913         size_t nr = 0;
914
915         /*
916          * Set the number of records before early exit: ->nr is used to
917          * determine how many branches to copy from ->entries.
918          */
919         bs_dst->nr = bs_src->nr;
920
921         /*
922          * Early exit when there is nothing to copy.
923          */
924         if (!bs_src->nr)
925                 return;
926
927         /*
928          * As bs_src->entries is a circular buffer, we need to copy from it in
929          * two steps.  First, copy the branches from the most recently inserted
930          * branch ->last_branch_pos until the end of bs_src->entries buffer.
931          */
932         nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
933         memcpy(&bs_dst->entries[0],
934                &bs_src->entries[tidq->last_branch_pos],
935                sizeof(struct branch_entry) * nr);
936
937         /*
938          * If we wrapped around at least once, the branches from the beginning
939          * of the bs_src->entries buffer and until the ->last_branch_pos element
940          * are older valid branches: copy them over.  The total number of
941          * branches copied over will be equal to the number of branches asked by
942          * the user in last_branch_sz.
943          */
944         if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
945                 memcpy(&bs_dst->entries[nr],
946                        &bs_src->entries[0],
947                        sizeof(struct branch_entry) * tidq->last_branch_pos);
948         }
949 }
950
951 static inline
952 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
953 {
954         tidq->last_branch_pos = 0;
955         tidq->last_branch_rb->nr = 0;
956 }
957
958 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
959                                          u8 trace_chan_id, u64 addr)
960 {
961         u8 instrBytes[2];
962
963         cs_etm__mem_access(etmq, trace_chan_id, addr,
964                            ARRAY_SIZE(instrBytes), instrBytes);
965         /*
966          * T32 instruction size is indicated by bits[15:11] of the first
967          * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
968          * denote a 32-bit instruction.
969          */
970         return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
971 }
972
973 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
974 {
975         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
976         if (packet->sample_type == CS_ETM_DISCONTINUITY)
977                 return 0;
978
979         return packet->start_addr;
980 }
981
982 static inline
983 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
984 {
985         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
986         if (packet->sample_type == CS_ETM_DISCONTINUITY)
987                 return 0;
988
989         return packet->end_addr - packet->last_instr_size;
990 }
991
992 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
993                                      u64 trace_chan_id,
994                                      const struct cs_etm_packet *packet,
995                                      u64 offset)
996 {
997         if (packet->isa == CS_ETM_ISA_T32) {
998                 u64 addr = packet->start_addr;
999
1000                 while (offset) {
1001                         addr += cs_etm__t32_instr_size(etmq,
1002                                                        trace_chan_id, addr);
1003                         offset--;
1004                 }
1005                 return addr;
1006         }
1007
1008         /* Assume a 4 byte instruction size (A32/A64) */
1009         return packet->start_addr + offset * 4;
1010 }
1011
1012 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1013                                           struct cs_etm_traceid_queue *tidq)
1014 {
1015         struct branch_stack *bs = tidq->last_branch_rb;
1016         struct branch_entry *be;
1017
1018         /*
1019          * The branches are recorded in a circular buffer in reverse
1020          * chronological order: we start recording from the last element of the
1021          * buffer down.  After writing the first element of the stack, move the
1022          * insert position back to the end of the buffer.
1023          */
1024         if (!tidq->last_branch_pos)
1025                 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1026
1027         tidq->last_branch_pos -= 1;
1028
1029         be       = &bs->entries[tidq->last_branch_pos];
1030         be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1031         be->to   = cs_etm__first_executed_instr(tidq->packet);
1032         /* No support for mispredict */
1033         be->flags.mispred = 0;
1034         be->flags.predicted = 1;
1035
1036         /*
1037          * Increment bs->nr until reaching the number of last branches asked by
1038          * the user on the command line.
1039          */
1040         if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1041                 bs->nr += 1;
1042 }
1043
1044 static int cs_etm__inject_event(union perf_event *event,
1045                                struct perf_sample *sample, u64 type)
1046 {
1047         event->header.size = perf_event__sample_event_size(sample, type, 0);
1048         return perf_event__synthesize_sample(event, type, 0, sample);
1049 }
1050
1051
1052 static int
1053 cs_etm__get_trace(struct cs_etm_queue *etmq)
1054 {
1055         struct auxtrace_buffer *aux_buffer = etmq->buffer;
1056         struct auxtrace_buffer *old_buffer = aux_buffer;
1057         struct auxtrace_queue *queue;
1058
1059         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1060
1061         aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1062
1063         /* If no more data, drop the previous auxtrace_buffer and return */
1064         if (!aux_buffer) {
1065                 if (old_buffer)
1066                         auxtrace_buffer__drop_data(old_buffer);
1067                 etmq->buf_len = 0;
1068                 return 0;
1069         }
1070
1071         etmq->buffer = aux_buffer;
1072
1073         /* If the aux_buffer doesn't have data associated, try to load it */
1074         if (!aux_buffer->data) {
1075                 /* get the file desc associated with the perf data file */
1076                 int fd = perf_data__fd(etmq->etm->session->data);
1077
1078                 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1079                 if (!aux_buffer->data)
1080                         return -ENOMEM;
1081         }
1082
1083         /* If valid, drop the previous buffer */
1084         if (old_buffer)
1085                 auxtrace_buffer__drop_data(old_buffer);
1086
1087         etmq->buf_used = 0;
1088         etmq->buf_len = aux_buffer->size;
1089         etmq->buf = aux_buffer->data;
1090
1091         return etmq->buf_len;
1092 }
1093
1094 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1095                                     struct cs_etm_traceid_queue *tidq)
1096 {
1097         if ((!tidq->thread) && (tidq->tid != -1))
1098                 tidq->thread = machine__find_thread(etm->machine, -1,
1099                                                     tidq->tid);
1100
1101         if (tidq->thread)
1102                 tidq->pid = tidq->thread->pid_;
1103 }
1104
1105 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1106                          pid_t tid, u8 trace_chan_id)
1107 {
1108         int cpu, err = -EINVAL;
1109         struct cs_etm_auxtrace *etm = etmq->etm;
1110         struct cs_etm_traceid_queue *tidq;
1111
1112         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1113         if (!tidq)
1114                 return err;
1115
1116         if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1117                 return err;
1118
1119         err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1120         if (err)
1121                 return err;
1122
1123         tidq->tid = tid;
1124         thread__zput(tidq->thread);
1125
1126         cs_etm__set_pid_tid_cpu(etm, tidq);
1127         return 0;
1128 }
1129
1130 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1131 {
1132         return !!etmq->etm->timeless_decoding;
1133 }
1134
1135 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1136                               u64 trace_chan_id,
1137                               const struct cs_etm_packet *packet,
1138                               struct perf_sample *sample)
1139 {
1140         /*
1141          * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1142          * packet, so directly bail out with 'insn_len' = 0.
1143          */
1144         if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1145                 sample->insn_len = 0;
1146                 return;
1147         }
1148
1149         /*
1150          * T32 instruction size might be 32-bit or 16-bit, decide by calling
1151          * cs_etm__t32_instr_size().
1152          */
1153         if (packet->isa == CS_ETM_ISA_T32)
1154                 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1155                                                           sample->ip);
1156         /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1157         else
1158                 sample->insn_len = 4;
1159
1160         cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1161                            sample->insn_len, (void *)sample->insn);
1162 }
1163
1164 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1165                                             struct cs_etm_traceid_queue *tidq,
1166                                             u64 addr, u64 period)
1167 {
1168         int ret = 0;
1169         struct cs_etm_auxtrace *etm = etmq->etm;
1170         union perf_event *event = tidq->event_buf;
1171         struct perf_sample sample = {.ip = 0,};
1172
1173         event->sample.header.type = PERF_RECORD_SAMPLE;
1174         event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1175         event->sample.header.size = sizeof(struct perf_event_header);
1176
1177         if (!etm->timeless_decoding)
1178                 sample.time = etm->latest_kernel_timestamp;
1179         sample.ip = addr;
1180         sample.pid = tidq->pid;
1181         sample.tid = tidq->tid;
1182         sample.id = etmq->etm->instructions_id;
1183         sample.stream_id = etmq->etm->instructions_id;
1184         sample.period = period;
1185         sample.cpu = tidq->packet->cpu;
1186         sample.flags = tidq->prev_packet->flags;
1187         sample.cpumode = event->sample.header.misc;
1188
1189         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1190
1191         if (etm->synth_opts.last_branch)
1192                 sample.branch_stack = tidq->last_branch;
1193
1194         if (etm->synth_opts.inject) {
1195                 ret = cs_etm__inject_event(event, &sample,
1196                                            etm->instructions_sample_type);
1197                 if (ret)
1198                         return ret;
1199         }
1200
1201         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1202
1203         if (ret)
1204                 pr_err(
1205                         "CS ETM Trace: failed to deliver instruction event, error %d\n",
1206                         ret);
1207
1208         return ret;
1209 }
1210
1211 /*
1212  * The cs etm packet encodes an instruction range between a branch target
1213  * and the next taken branch. Generate sample accordingly.
1214  */
1215 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1216                                        struct cs_etm_traceid_queue *tidq)
1217 {
1218         int ret = 0;
1219         struct cs_etm_auxtrace *etm = etmq->etm;
1220         struct perf_sample sample = {.ip = 0,};
1221         union perf_event *event = tidq->event_buf;
1222         struct dummy_branch_stack {
1223                 u64                     nr;
1224                 u64                     hw_idx;
1225                 struct branch_entry     entries;
1226         } dummy_bs;
1227         u64 ip;
1228
1229         ip = cs_etm__last_executed_instr(tidq->prev_packet);
1230
1231         event->sample.header.type = PERF_RECORD_SAMPLE;
1232         event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1233         event->sample.header.size = sizeof(struct perf_event_header);
1234
1235         if (!etm->timeless_decoding)
1236                 sample.time = etm->latest_kernel_timestamp;
1237         sample.ip = ip;
1238         sample.pid = tidq->pid;
1239         sample.tid = tidq->tid;
1240         sample.addr = cs_etm__first_executed_instr(tidq->packet);
1241         sample.id = etmq->etm->branches_id;
1242         sample.stream_id = etmq->etm->branches_id;
1243         sample.period = 1;
1244         sample.cpu = tidq->packet->cpu;
1245         sample.flags = tidq->prev_packet->flags;
1246         sample.cpumode = event->sample.header.misc;
1247
1248         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1249                           &sample);
1250
1251         /*
1252          * perf report cannot handle events without a branch stack
1253          */
1254         if (etm->synth_opts.last_branch) {
1255                 dummy_bs = (struct dummy_branch_stack){
1256                         .nr = 1,
1257                         .hw_idx = -1ULL,
1258                         .entries = {
1259                                 .from = sample.ip,
1260                                 .to = sample.addr,
1261                         },
1262                 };
1263                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1264         }
1265
1266         if (etm->synth_opts.inject) {
1267                 ret = cs_etm__inject_event(event, &sample,
1268                                            etm->branches_sample_type);
1269                 if (ret)
1270                         return ret;
1271         }
1272
1273         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1274
1275         if (ret)
1276                 pr_err(
1277                 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1278                 ret);
1279
1280         return ret;
1281 }
1282
1283 struct cs_etm_synth {
1284         struct perf_tool dummy_tool;
1285         struct perf_session *session;
1286 };
1287
1288 static int cs_etm__event_synth(struct perf_tool *tool,
1289                                union perf_event *event,
1290                                struct perf_sample *sample __maybe_unused,
1291                                struct machine *machine __maybe_unused)
1292 {
1293         struct cs_etm_synth *cs_etm_synth =
1294                       container_of(tool, struct cs_etm_synth, dummy_tool);
1295
1296         return perf_session__deliver_synth_event(cs_etm_synth->session,
1297                                                  event, NULL);
1298 }
1299
1300 static int cs_etm__synth_event(struct perf_session *session,
1301                                struct perf_event_attr *attr, u64 id)
1302 {
1303         struct cs_etm_synth cs_etm_synth;
1304
1305         memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1306         cs_etm_synth.session = session;
1307
1308         return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1309                                            &id, cs_etm__event_synth);
1310 }
1311
1312 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1313                                 struct perf_session *session)
1314 {
1315         struct evlist *evlist = session->evlist;
1316         struct evsel *evsel;
1317         struct perf_event_attr attr;
1318         bool found = false;
1319         u64 id;
1320         int err;
1321
1322         evlist__for_each_entry(evlist, evsel) {
1323                 if (evsel->core.attr.type == etm->pmu_type) {
1324                         found = true;
1325                         break;
1326                 }
1327         }
1328
1329         if (!found) {
1330                 pr_debug("No selected events with CoreSight Trace data\n");
1331                 return 0;
1332         }
1333
1334         memset(&attr, 0, sizeof(struct perf_event_attr));
1335         attr.size = sizeof(struct perf_event_attr);
1336         attr.type = PERF_TYPE_HARDWARE;
1337         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1338         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1339                             PERF_SAMPLE_PERIOD;
1340         if (etm->timeless_decoding)
1341                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1342         else
1343                 attr.sample_type |= PERF_SAMPLE_TIME;
1344
1345         attr.exclude_user = evsel->core.attr.exclude_user;
1346         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1347         attr.exclude_hv = evsel->core.attr.exclude_hv;
1348         attr.exclude_host = evsel->core.attr.exclude_host;
1349         attr.exclude_guest = evsel->core.attr.exclude_guest;
1350         attr.sample_id_all = evsel->core.attr.sample_id_all;
1351         attr.read_format = evsel->core.attr.read_format;
1352
1353         /* create new id val to be a fixed offset from evsel id */
1354         id = evsel->core.id[0] + 1000000000;
1355
1356         if (!id)
1357                 id = 1;
1358
1359         if (etm->synth_opts.branches) {
1360                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1361                 attr.sample_period = 1;
1362                 attr.sample_type |= PERF_SAMPLE_ADDR;
1363                 err = cs_etm__synth_event(session, &attr, id);
1364                 if (err)
1365                         return err;
1366                 etm->branches_sample_type = attr.sample_type;
1367                 etm->branches_id = id;
1368                 id += 1;
1369                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1370         }
1371
1372         if (etm->synth_opts.last_branch) {
1373                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1374                 /*
1375                  * We don't use the hardware index, but the sample generation
1376                  * code uses the new format branch_stack with this field,
1377                  * so the event attributes must indicate that it's present.
1378                  */
1379                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1380         }
1381
1382         if (etm->synth_opts.instructions) {
1383                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1384                 attr.sample_period = etm->synth_opts.period;
1385                 etm->instructions_sample_period = attr.sample_period;
1386                 err = cs_etm__synth_event(session, &attr, id);
1387                 if (err)
1388                         return err;
1389                 etm->instructions_sample_type = attr.sample_type;
1390                 etm->instructions_id = id;
1391                 id += 1;
1392         }
1393
1394         return 0;
1395 }
1396
1397 static int cs_etm__sample(struct cs_etm_queue *etmq,
1398                           struct cs_etm_traceid_queue *tidq)
1399 {
1400         struct cs_etm_auxtrace *etm = etmq->etm;
1401         int ret;
1402         u8 trace_chan_id = tidq->trace_chan_id;
1403         u64 instrs_prev;
1404
1405         /* Get instructions remainder from previous packet */
1406         instrs_prev = tidq->period_instructions;
1407
1408         tidq->period_instructions += tidq->packet->instr_count;
1409
1410         /*
1411          * Record a branch when the last instruction in
1412          * PREV_PACKET is a branch.
1413          */
1414         if (etm->synth_opts.last_branch &&
1415             tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1416             tidq->prev_packet->last_instr_taken_branch)
1417                 cs_etm__update_last_branch_rb(etmq, tidq);
1418
1419         if (etm->synth_opts.instructions &&
1420             tidq->period_instructions >= etm->instructions_sample_period) {
1421                 /*
1422                  * Emit instruction sample periodically
1423                  * TODO: allow period to be defined in cycles and clock time
1424                  */
1425
1426                 /*
1427                  * Below diagram demonstrates the instruction samples
1428                  * generation flows:
1429                  *
1430                  *    Instrs     Instrs       Instrs       Instrs
1431                  *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1432                  *    |            |            |            |
1433                  *    V            V            V            V
1434                  *   --------------------------------------------------
1435                  *            ^                                  ^
1436                  *            |                                  |
1437                  *         Period                             Period
1438                  *    instructions(Pi)                   instructions(Pi')
1439                  *
1440                  *            |                                  |
1441                  *            \---------------- -----------------/
1442                  *                             V
1443                  *                 tidq->packet->instr_count
1444                  *
1445                  * Instrs Sample(n...) are the synthesised samples occurring
1446                  * every etm->instructions_sample_period instructions - as
1447                  * defined on the perf command line.  Sample(n) is being the
1448                  * last sample before the current etm packet, n+1 to n+3
1449                  * samples are generated from the current etm packet.
1450                  *
1451                  * tidq->packet->instr_count represents the number of
1452                  * instructions in the current etm packet.
1453                  *
1454                  * Period instructions (Pi) contains the number of
1455                  * instructions executed after the sample point(n) from the
1456                  * previous etm packet.  This will always be less than
1457                  * etm->instructions_sample_period.
1458                  *
1459                  * When generate new samples, it combines with two parts
1460                  * instructions, one is the tail of the old packet and another
1461                  * is the head of the new coming packet, to generate
1462                  * sample(n+1); sample(n+2) and sample(n+3) consume the
1463                  * instructions with sample period.  After sample(n+3), the rest
1464                  * instructions will be used by later packet and it is assigned
1465                  * to tidq->period_instructions for next round calculation.
1466                  */
1467
1468                 /*
1469                  * Get the initial offset into the current packet instructions;
1470                  * entry conditions ensure that instrs_prev is less than
1471                  * etm->instructions_sample_period.
1472                  */
1473                 u64 offset = etm->instructions_sample_period - instrs_prev;
1474                 u64 addr;
1475
1476                 /* Prepare last branches for instruction sample */
1477                 if (etm->synth_opts.last_branch)
1478                         cs_etm__copy_last_branch_rb(etmq, tidq);
1479
1480                 while (tidq->period_instructions >=
1481                                 etm->instructions_sample_period) {
1482                         /*
1483                          * Calculate the address of the sampled instruction (-1
1484                          * as sample is reported as though instruction has just
1485                          * been executed, but PC has not advanced to next
1486                          * instruction)
1487                          */
1488                         addr = cs_etm__instr_addr(etmq, trace_chan_id,
1489                                                   tidq->packet, offset - 1);
1490                         ret = cs_etm__synth_instruction_sample(
1491                                 etmq, tidq, addr,
1492                                 etm->instructions_sample_period);
1493                         if (ret)
1494                                 return ret;
1495
1496                         offset += etm->instructions_sample_period;
1497                         tidq->period_instructions -=
1498                                 etm->instructions_sample_period;
1499                 }
1500         }
1501
1502         if (etm->synth_opts.branches) {
1503                 bool generate_sample = false;
1504
1505                 /* Generate sample for tracing on packet */
1506                 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1507                         generate_sample = true;
1508
1509                 /* Generate sample for branch taken packet */
1510                 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1511                     tidq->prev_packet->last_instr_taken_branch)
1512                         generate_sample = true;
1513
1514                 if (generate_sample) {
1515                         ret = cs_etm__synth_branch_sample(etmq, tidq);
1516                         if (ret)
1517                                 return ret;
1518                 }
1519         }
1520
1521         cs_etm__packet_swap(etm, tidq);
1522
1523         return 0;
1524 }
1525
1526 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1527 {
1528         /*
1529          * When the exception packet is inserted, whether the last instruction
1530          * in previous range packet is taken branch or not, we need to force
1531          * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1532          * to generate branch sample for the instruction range before the
1533          * exception is trapped to kernel or before the exception returning.
1534          *
1535          * The exception packet includes the dummy address values, so don't
1536          * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1537          * for generating instruction and branch samples.
1538          */
1539         if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1540                 tidq->prev_packet->last_instr_taken_branch = true;
1541
1542         return 0;
1543 }
1544
1545 static int cs_etm__flush(struct cs_etm_queue *etmq,
1546                          struct cs_etm_traceid_queue *tidq)
1547 {
1548         int err = 0;
1549         struct cs_etm_auxtrace *etm = etmq->etm;
1550
1551         /* Handle start tracing packet */
1552         if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1553                 goto swap_packet;
1554
1555         if (etmq->etm->synth_opts.last_branch &&
1556             etmq->etm->synth_opts.instructions &&
1557             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1558                 u64 addr;
1559
1560                 /* Prepare last branches for instruction sample */
1561                 cs_etm__copy_last_branch_rb(etmq, tidq);
1562
1563                 /*
1564                  * Generate a last branch event for the branches left in the
1565                  * circular buffer at the end of the trace.
1566                  *
1567                  * Use the address of the end of the last reported execution
1568                  * range
1569                  */
1570                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1571
1572                 err = cs_etm__synth_instruction_sample(
1573                         etmq, tidq, addr,
1574                         tidq->period_instructions);
1575                 if (err)
1576                         return err;
1577
1578                 tidq->period_instructions = 0;
1579
1580         }
1581
1582         if (etm->synth_opts.branches &&
1583             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1584                 err = cs_etm__synth_branch_sample(etmq, tidq);
1585                 if (err)
1586                         return err;
1587         }
1588
1589 swap_packet:
1590         cs_etm__packet_swap(etm, tidq);
1591
1592         /* Reset last branches after flush the trace */
1593         if (etm->synth_opts.last_branch)
1594                 cs_etm__reset_last_branch_rb(tidq);
1595
1596         return err;
1597 }
1598
1599 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1600                              struct cs_etm_traceid_queue *tidq)
1601 {
1602         int err;
1603
1604         /*
1605          * It has no new packet coming and 'etmq->packet' contains the stale
1606          * packet which was set at the previous time with packets swapping;
1607          * so skip to generate branch sample to avoid stale packet.
1608          *
1609          * For this case only flush branch stack and generate a last branch
1610          * event for the branches left in the circular buffer at the end of
1611          * the trace.
1612          */
1613         if (etmq->etm->synth_opts.last_branch &&
1614             etmq->etm->synth_opts.instructions &&
1615             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1616                 u64 addr;
1617
1618                 /* Prepare last branches for instruction sample */
1619                 cs_etm__copy_last_branch_rb(etmq, tidq);
1620
1621                 /*
1622                  * Use the address of the end of the last reported execution
1623                  * range.
1624                  */
1625                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1626
1627                 err = cs_etm__synth_instruction_sample(
1628                         etmq, tidq, addr,
1629                         tidq->period_instructions);
1630                 if (err)
1631                         return err;
1632
1633                 tidq->period_instructions = 0;
1634         }
1635
1636         return 0;
1637 }
1638 /*
1639  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1640  *                         if need be.
1641  * Returns:     < 0     if error
1642  *              = 0     if no more auxtrace_buffer to read
1643  *              > 0     if the current buffer isn't empty yet
1644  */
1645 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1646 {
1647         int ret;
1648
1649         if (!etmq->buf_len) {
1650                 ret = cs_etm__get_trace(etmq);
1651                 if (ret <= 0)
1652                         return ret;
1653                 /*
1654                  * We cannot assume consecutive blocks in the data file
1655                  * are contiguous, reset the decoder to force re-sync.
1656                  */
1657                 ret = cs_etm_decoder__reset(etmq->decoder);
1658                 if (ret)
1659                         return ret;
1660         }
1661
1662         return etmq->buf_len;
1663 }
1664
1665 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1666                                  struct cs_etm_packet *packet,
1667                                  u64 end_addr)
1668 {
1669         /* Initialise to keep compiler happy */
1670         u16 instr16 = 0;
1671         u32 instr32 = 0;
1672         u64 addr;
1673
1674         switch (packet->isa) {
1675         case CS_ETM_ISA_T32:
1676                 /*
1677                  * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1678                  *
1679                  *  b'15         b'8
1680                  * +-----------------+--------+
1681                  * | 1 1 0 1 1 1 1 1 |  imm8  |
1682                  * +-----------------+--------+
1683                  *
1684                  * According to the specification, it only defines SVC for T32
1685                  * with 16 bits instruction and has no definition for 32bits;
1686                  * so below only read 2 bytes as instruction size for T32.
1687                  */
1688                 addr = end_addr - 2;
1689                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1690                                    sizeof(instr16), (u8 *)&instr16);
1691                 if ((instr16 & 0xFF00) == 0xDF00)
1692                         return true;
1693
1694                 break;
1695         case CS_ETM_ISA_A32:
1696                 /*
1697                  * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1698                  *
1699                  *  b'31 b'28 b'27 b'24
1700                  * +---------+---------+-------------------------+
1701                  * |  !1111  | 1 1 1 1 |        imm24            |
1702                  * +---------+---------+-------------------------+
1703                  */
1704                 addr = end_addr - 4;
1705                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1706                                    sizeof(instr32), (u8 *)&instr32);
1707                 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1708                     (instr32 & 0xF0000000) != 0xF0000000)
1709                         return true;
1710
1711                 break;
1712         case CS_ETM_ISA_A64:
1713                 /*
1714                  * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1715                  *
1716                  *  b'31               b'21           b'4     b'0
1717                  * +-----------------------+---------+-----------+
1718                  * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1719                  * +-----------------------+---------+-----------+
1720                  */
1721                 addr = end_addr - 4;
1722                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1723                                    sizeof(instr32), (u8 *)&instr32);
1724                 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1725                         return true;
1726
1727                 break;
1728         case CS_ETM_ISA_UNKNOWN:
1729         default:
1730                 break;
1731         }
1732
1733         return false;
1734 }
1735
1736 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1737                                struct cs_etm_traceid_queue *tidq, u64 magic)
1738 {
1739         u8 trace_chan_id = tidq->trace_chan_id;
1740         struct cs_etm_packet *packet = tidq->packet;
1741         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1742
1743         if (magic == __perf_cs_etmv3_magic)
1744                 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1745                         return true;
1746
1747         /*
1748          * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1749          * HVC cases; need to check if it's SVC instruction based on
1750          * packet address.
1751          */
1752         if (magic == __perf_cs_etmv4_magic) {
1753                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1754                     cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1755                                          prev_packet->end_addr))
1756                         return true;
1757         }
1758
1759         return false;
1760 }
1761
1762 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1763                                        u64 magic)
1764 {
1765         struct cs_etm_packet *packet = tidq->packet;
1766
1767         if (magic == __perf_cs_etmv3_magic)
1768                 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1769                     packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1770                     packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1771                     packet->exception_number == CS_ETMV3_EXC_IRQ ||
1772                     packet->exception_number == CS_ETMV3_EXC_FIQ)
1773                         return true;
1774
1775         if (magic == __perf_cs_etmv4_magic)
1776                 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1777                     packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1778                     packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1779                     packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1780                     packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1781                     packet->exception_number == CS_ETMV4_EXC_IRQ ||
1782                     packet->exception_number == CS_ETMV4_EXC_FIQ)
1783                         return true;
1784
1785         return false;
1786 }
1787
1788 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1789                                       struct cs_etm_traceid_queue *tidq,
1790                                       u64 magic)
1791 {
1792         u8 trace_chan_id = tidq->trace_chan_id;
1793         struct cs_etm_packet *packet = tidq->packet;
1794         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1795
1796         if (magic == __perf_cs_etmv3_magic)
1797                 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1798                     packet->exception_number == CS_ETMV3_EXC_HYP ||
1799                     packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1800                     packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1801                     packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1802                     packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1803                     packet->exception_number == CS_ETMV3_EXC_GENERIC)
1804                         return true;
1805
1806         if (magic == __perf_cs_etmv4_magic) {
1807                 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1808                     packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1809                     packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1810                     packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1811                         return true;
1812
1813                 /*
1814                  * For CS_ETMV4_EXC_CALL, except SVC other instructions
1815                  * (SMC, HVC) are taken as sync exceptions.
1816                  */
1817                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1818                     !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1819                                           prev_packet->end_addr))
1820                         return true;
1821
1822                 /*
1823                  * ETMv4 has 5 bits for exception number; if the numbers
1824                  * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1825                  * they are implementation defined exceptions.
1826                  *
1827                  * For this case, simply take it as sync exception.
1828                  */
1829                 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1830                     packet->exception_number <= CS_ETMV4_EXC_END)
1831                         return true;
1832         }
1833
1834         return false;
1835 }
1836
1837 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1838                                     struct cs_etm_traceid_queue *tidq)
1839 {
1840         struct cs_etm_packet *packet = tidq->packet;
1841         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1842         u8 trace_chan_id = tidq->trace_chan_id;
1843         u64 magic;
1844         int ret;
1845
1846         switch (packet->sample_type) {
1847         case CS_ETM_RANGE:
1848                 /*
1849                  * Immediate branch instruction without neither link nor
1850                  * return flag, it's normal branch instruction within
1851                  * the function.
1852                  */
1853                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1854                     packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1855                         packet->flags = PERF_IP_FLAG_BRANCH;
1856
1857                         if (packet->last_instr_cond)
1858                                 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1859                 }
1860
1861                 /*
1862                  * Immediate branch instruction with link (e.g. BL), this is
1863                  * branch instruction for function call.
1864                  */
1865                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1866                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1867                         packet->flags = PERF_IP_FLAG_BRANCH |
1868                                         PERF_IP_FLAG_CALL;
1869
1870                 /*
1871                  * Indirect branch instruction with link (e.g. BLR), this is
1872                  * branch instruction for function call.
1873                  */
1874                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1875                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1876                         packet->flags = PERF_IP_FLAG_BRANCH |
1877                                         PERF_IP_FLAG_CALL;
1878
1879                 /*
1880                  * Indirect branch instruction with subtype of
1881                  * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1882                  * function return for A32/T32.
1883                  */
1884                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1885                     packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1886                         packet->flags = PERF_IP_FLAG_BRANCH |
1887                                         PERF_IP_FLAG_RETURN;
1888
1889                 /*
1890                  * Indirect branch instruction without link (e.g. BR), usually
1891                  * this is used for function return, especially for functions
1892                  * within dynamic link lib.
1893                  */
1894                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1895                     packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1896                         packet->flags = PERF_IP_FLAG_BRANCH |
1897                                         PERF_IP_FLAG_RETURN;
1898
1899                 /* Return instruction for function return. */
1900                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1901                     packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1902                         packet->flags = PERF_IP_FLAG_BRANCH |
1903                                         PERF_IP_FLAG_RETURN;
1904
1905                 /*
1906                  * Decoder might insert a discontinuity in the middle of
1907                  * instruction packets, fixup prev_packet with flag
1908                  * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1909                  */
1910                 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1911                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1912                                               PERF_IP_FLAG_TRACE_BEGIN;
1913
1914                 /*
1915                  * If the previous packet is an exception return packet
1916                  * and the return address just follows SVC instruction,
1917                  * it needs to calibrate the previous packet sample flags
1918                  * as PERF_IP_FLAG_SYSCALLRET.
1919                  */
1920                 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1921                                            PERF_IP_FLAG_RETURN |
1922                                            PERF_IP_FLAG_INTERRUPT) &&
1923                     cs_etm__is_svc_instr(etmq, trace_chan_id,
1924                                          packet, packet->start_addr))
1925                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
1926                                              PERF_IP_FLAG_RETURN |
1927                                              PERF_IP_FLAG_SYSCALLRET;
1928                 break;
1929         case CS_ETM_DISCONTINUITY:
1930                 /*
1931                  * The trace is discontinuous, if the previous packet is
1932                  * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1933                  * for previous packet.
1934                  */
1935                 if (prev_packet->sample_type == CS_ETM_RANGE)
1936                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1937                                               PERF_IP_FLAG_TRACE_END;
1938                 break;
1939         case CS_ETM_EXCEPTION:
1940                 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1941                 if (ret)
1942                         return ret;
1943
1944                 /* The exception is for system call. */
1945                 if (cs_etm__is_syscall(etmq, tidq, magic))
1946                         packet->flags = PERF_IP_FLAG_BRANCH |
1947                                         PERF_IP_FLAG_CALL |
1948                                         PERF_IP_FLAG_SYSCALLRET;
1949                 /*
1950                  * The exceptions are triggered by external signals from bus,
1951                  * interrupt controller, debug module, PE reset or halt.
1952                  */
1953                 else if (cs_etm__is_async_exception(tidq, magic))
1954                         packet->flags = PERF_IP_FLAG_BRANCH |
1955                                         PERF_IP_FLAG_CALL |
1956                                         PERF_IP_FLAG_ASYNC |
1957                                         PERF_IP_FLAG_INTERRUPT;
1958                 /*
1959                  * Otherwise, exception is caused by trap, instruction &
1960                  * data fault, or alignment errors.
1961                  */
1962                 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1963                         packet->flags = PERF_IP_FLAG_BRANCH |
1964                                         PERF_IP_FLAG_CALL |
1965                                         PERF_IP_FLAG_INTERRUPT;
1966
1967                 /*
1968                  * When the exception packet is inserted, since exception
1969                  * packet is not used standalone for generating samples
1970                  * and it's affiliation to the previous instruction range
1971                  * packet; so set previous range packet flags to tell perf
1972                  * it is an exception taken branch.
1973                  */
1974                 if (prev_packet->sample_type == CS_ETM_RANGE)
1975                         prev_packet->flags = packet->flags;
1976                 break;
1977         case CS_ETM_EXCEPTION_RET:
1978                 /*
1979                  * When the exception return packet is inserted, since
1980                  * exception return packet is not used standalone for
1981                  * generating samples and it's affiliation to the previous
1982                  * instruction range packet; so set previous range packet
1983                  * flags to tell perf it is an exception return branch.
1984                  *
1985                  * The exception return can be for either system call or
1986                  * other exception types; unfortunately the packet doesn't
1987                  * contain exception type related info so we cannot decide
1988                  * the exception type purely based on exception return packet.
1989                  * If we record the exception number from exception packet and
1990                  * reuse it for exception return packet, this is not reliable
1991                  * due the trace can be discontinuity or the interrupt can
1992                  * be nested, thus the recorded exception number cannot be
1993                  * used for exception return packet for these two cases.
1994                  *
1995                  * For exception return packet, we only need to distinguish the
1996                  * packet is for system call or for other types.  Thus the
1997                  * decision can be deferred when receive the next packet which
1998                  * contains the return address, based on the return address we
1999                  * can read out the previous instruction and check if it's a
2000                  * system call instruction and then calibrate the sample flag
2001                  * as needed.
2002                  */
2003                 if (prev_packet->sample_type == CS_ETM_RANGE)
2004                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
2005                                              PERF_IP_FLAG_RETURN |
2006                                              PERF_IP_FLAG_INTERRUPT;
2007                 break;
2008         case CS_ETM_EMPTY:
2009         default:
2010                 break;
2011         }
2012
2013         return 0;
2014 }
2015
2016 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2017 {
2018         int ret = 0;
2019         size_t processed = 0;
2020
2021         /*
2022          * Packets are decoded and added to the decoder's packet queue
2023          * until the decoder packet processing callback has requested that
2024          * processing stops or there is nothing left in the buffer.  Normal
2025          * operations that stop processing are a timestamp packet or a full
2026          * decoder buffer queue.
2027          */
2028         ret = cs_etm_decoder__process_data_block(etmq->decoder,
2029                                                  etmq->offset,
2030                                                  &etmq->buf[etmq->buf_used],
2031                                                  etmq->buf_len,
2032                                                  &processed);
2033         if (ret)
2034                 goto out;
2035
2036         etmq->offset += processed;
2037         etmq->buf_used += processed;
2038         etmq->buf_len -= processed;
2039
2040 out:
2041         return ret;
2042 }
2043
2044 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2045                                          struct cs_etm_traceid_queue *tidq)
2046 {
2047         int ret;
2048         struct cs_etm_packet_queue *packet_queue;
2049
2050         packet_queue = &tidq->packet_queue;
2051
2052         /* Process each packet in this chunk */
2053         while (1) {
2054                 ret = cs_etm_decoder__get_packet(packet_queue,
2055                                                  tidq->packet);
2056                 if (ret <= 0)
2057                         /*
2058                          * Stop processing this chunk on
2059                          * end of data or error
2060                          */
2061                         break;
2062
2063                 /*
2064                  * Since packet addresses are swapped in packet
2065                  * handling within below switch() statements,
2066                  * thus setting sample flags must be called
2067                  * prior to switch() statement to use address
2068                  * information before packets swapping.
2069                  */
2070                 ret = cs_etm__set_sample_flags(etmq, tidq);
2071                 if (ret < 0)
2072                         break;
2073
2074                 switch (tidq->packet->sample_type) {
2075                 case CS_ETM_RANGE:
2076                         /*
2077                          * If the packet contains an instruction
2078                          * range, generate instruction sequence
2079                          * events.
2080                          */
2081                         cs_etm__sample(etmq, tidq);
2082                         break;
2083                 case CS_ETM_EXCEPTION:
2084                 case CS_ETM_EXCEPTION_RET:
2085                         /*
2086                          * If the exception packet is coming,
2087                          * make sure the previous instruction
2088                          * range packet to be handled properly.
2089                          */
2090                         cs_etm__exception(tidq);
2091                         break;
2092                 case CS_ETM_DISCONTINUITY:
2093                         /*
2094                          * Discontinuity in trace, flush
2095                          * previous branch stack
2096                          */
2097                         cs_etm__flush(etmq, tidq);
2098                         break;
2099                 case CS_ETM_EMPTY:
2100                         /*
2101                          * Should not receive empty packet,
2102                          * report error.
2103                          */
2104                         pr_err("CS ETM Trace: empty packet\n");
2105                         return -EINVAL;
2106                 default:
2107                         break;
2108                 }
2109         }
2110
2111         return ret;
2112 }
2113
2114 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2115 {
2116         int idx;
2117         struct int_node *inode;
2118         struct cs_etm_traceid_queue *tidq;
2119         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2120
2121         intlist__for_each_entry(inode, traceid_queues_list) {
2122                 idx = (int)(intptr_t)inode->priv;
2123                 tidq = etmq->traceid_queues[idx];
2124
2125                 /* Ignore return value */
2126                 cs_etm__process_traceid_queue(etmq, tidq);
2127
2128                 /*
2129                  * Generate an instruction sample with the remaining
2130                  * branchstack entries.
2131                  */
2132                 cs_etm__flush(etmq, tidq);
2133         }
2134 }
2135
2136 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2137 {
2138         int err = 0;
2139         struct cs_etm_traceid_queue *tidq;
2140
2141         tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2142         if (!tidq)
2143                 return -EINVAL;
2144
2145         /* Go through each buffer in the queue and decode them one by one */
2146         while (1) {
2147                 err = cs_etm__get_data_block(etmq);
2148                 if (err <= 0)
2149                         return err;
2150
2151                 /* Run trace decoder until buffer consumed or end of trace */
2152                 do {
2153                         err = cs_etm__decode_data_block(etmq);
2154                         if (err)
2155                                 return err;
2156
2157                         /*
2158                          * Process each packet in this chunk, nothing to do if
2159                          * an error occurs other than hoping the next one will
2160                          * be better.
2161                          */
2162                         err = cs_etm__process_traceid_queue(etmq, tidq);
2163
2164                 } while (etmq->buf_len);
2165
2166                 if (err == 0)
2167                         /* Flush any remaining branch stack entries */
2168                         err = cs_etm__end_block(etmq, tidq);
2169         }
2170
2171         return err;
2172 }
2173
2174 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2175                                            pid_t tid)
2176 {
2177         unsigned int i;
2178         struct auxtrace_queues *queues = &etm->queues;
2179
2180         for (i = 0; i < queues->nr_queues; i++) {
2181                 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2182                 struct cs_etm_queue *etmq = queue->priv;
2183                 struct cs_etm_traceid_queue *tidq;
2184
2185                 if (!etmq)
2186                         continue;
2187
2188                 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2189                                                 CS_ETM_PER_THREAD_TRACEID);
2190
2191                 if (!tidq)
2192                         continue;
2193
2194                 if ((tid == -1) || (tidq->tid == tid)) {
2195                         cs_etm__set_pid_tid_cpu(etm, tidq);
2196                         cs_etm__run_decoder(etmq);
2197                 }
2198         }
2199
2200         return 0;
2201 }
2202
2203 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2204 {
2205         int ret = 0;
2206         unsigned int cs_queue_nr, queue_nr, i;
2207         u8 trace_chan_id;
2208         u64 cs_timestamp;
2209         struct auxtrace_queue *queue;
2210         struct cs_etm_queue *etmq;
2211         struct cs_etm_traceid_queue *tidq;
2212
2213         /*
2214          * Pre-populate the heap with one entry from each queue so that we can
2215          * start processing in time order across all queues.
2216          */
2217         for (i = 0; i < etm->queues.nr_queues; i++) {
2218                 etmq = etm->queues.queue_array[i].priv;
2219                 if (!etmq)
2220                         continue;
2221
2222                 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2223                 if (ret)
2224                         return ret;
2225         }
2226
2227         while (1) {
2228                 if (!etm->heap.heap_cnt)
2229                         goto out;
2230
2231                 /* Take the entry at the top of the min heap */
2232                 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2233                 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2234                 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2235                 queue = &etm->queues.queue_array[queue_nr];
2236                 etmq = queue->priv;
2237
2238                 /*
2239                  * Remove the top entry from the heap since we are about
2240                  * to process it.
2241                  */
2242                 auxtrace_heap__pop(&etm->heap);
2243
2244                 tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2245                 if (!tidq) {
2246                         /*
2247                          * No traceID queue has been allocated for this traceID,
2248                          * which means something somewhere went very wrong.  No
2249                          * other choice than simply exit.
2250                          */
2251                         ret = -EINVAL;
2252                         goto out;
2253                 }
2254
2255                 /*
2256                  * Packets associated with this timestamp are already in
2257                  * the etmq's traceID queue, so process them.
2258                  */
2259                 ret = cs_etm__process_traceid_queue(etmq, tidq);
2260                 if (ret < 0)
2261                         goto out;
2262
2263                 /*
2264                  * Packets for this timestamp have been processed, time to
2265                  * move on to the next timestamp, fetching a new auxtrace_buffer
2266                  * if need be.
2267                  */
2268 refetch:
2269                 ret = cs_etm__get_data_block(etmq);
2270                 if (ret < 0)
2271                         goto out;
2272
2273                 /*
2274                  * No more auxtrace_buffers to process in this etmq, simply
2275                  * move on to another entry in the auxtrace_heap.
2276                  */
2277                 if (!ret)
2278                         continue;
2279
2280                 ret = cs_etm__decode_data_block(etmq);
2281                 if (ret)
2282                         goto out;
2283
2284                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2285
2286                 if (!cs_timestamp) {
2287                         /*
2288                          * Function cs_etm__decode_data_block() returns when
2289                          * there is no more traces to decode in the current
2290                          * auxtrace_buffer OR when a timestamp has been
2291                          * encountered on any of the traceID queues.  Since we
2292                          * did not get a timestamp, there is no more traces to
2293                          * process in this auxtrace_buffer.  As such empty and
2294                          * flush all traceID queues.
2295                          */
2296                         cs_etm__clear_all_traceid_queues(etmq);
2297
2298                         /* Fetch another auxtrace_buffer for this etmq */
2299                         goto refetch;
2300                 }
2301
2302                 /*
2303                  * Add to the min heap the timestamp for packets that have
2304                  * just been decoded.  They will be processed and synthesized
2305                  * during the next call to cs_etm__process_traceid_queue() for
2306                  * this queue/traceID.
2307                  */
2308                 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2309                 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2310         }
2311
2312 out:
2313         return ret;
2314 }
2315
2316 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2317                                         union perf_event *event)
2318 {
2319         struct thread *th;
2320
2321         if (etm->timeless_decoding)
2322                 return 0;
2323
2324         /*
2325          * Add the tid/pid to the log so that we can get a match when
2326          * we get a contextID from the decoder.
2327          */
2328         th = machine__findnew_thread(etm->machine,
2329                                      event->itrace_start.pid,
2330                                      event->itrace_start.tid);
2331         if (!th)
2332                 return -ENOMEM;
2333
2334         thread__put(th);
2335
2336         return 0;
2337 }
2338
2339 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2340                                            union perf_event *event)
2341 {
2342         struct thread *th;
2343         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2344
2345         /*
2346          * Context switch in per-thread mode are irrelevant since perf
2347          * will start/stop tracing as the process is scheduled.
2348          */
2349         if (etm->timeless_decoding)
2350                 return 0;
2351
2352         /*
2353          * SWITCH_IN events carry the next process to be switched out while
2354          * SWITCH_OUT events carry the process to be switched in.  As such
2355          * we don't care about IN events.
2356          */
2357         if (!out)
2358                 return 0;
2359
2360         /*
2361          * Add the tid/pid to the log so that we can get a match when
2362          * we get a contextID from the decoder.
2363          */
2364         th = machine__findnew_thread(etm->machine,
2365                                      event->context_switch.next_prev_pid,
2366                                      event->context_switch.next_prev_tid);
2367         if (!th)
2368                 return -ENOMEM;
2369
2370         thread__put(th);
2371
2372         return 0;
2373 }
2374
2375 static int cs_etm__process_event(struct perf_session *session,
2376                                  union perf_event *event,
2377                                  struct perf_sample *sample,
2378                                  struct perf_tool *tool)
2379 {
2380         u64 sample_kernel_timestamp;
2381         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2382                                                    struct cs_etm_auxtrace,
2383                                                    auxtrace);
2384
2385         if (dump_trace)
2386                 return 0;
2387
2388         if (!tool->ordered_events) {
2389                 pr_err("CoreSight ETM Trace requires ordered events\n");
2390                 return -EINVAL;
2391         }
2392
2393         if (sample->time && (sample->time != (u64) -1))
2394                 sample_kernel_timestamp = sample->time;
2395         else
2396                 sample_kernel_timestamp = 0;
2397
2398         /*
2399          * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2400          * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2401          * ETM_OPT_CTXTID is not enabled.
2402          */
2403         if (etm->timeless_decoding &&
2404             event->header.type == PERF_RECORD_EXIT)
2405                 return cs_etm__process_timeless_queues(etm,
2406                                                        event->fork.tid);
2407
2408         if (event->header.type == PERF_RECORD_ITRACE_START)
2409                 return cs_etm__process_itrace_start(etm, event);
2410         else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2411                 return cs_etm__process_switch_cpu_wide(etm, event);
2412
2413         if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2414                 /*
2415                  * Record the latest kernel timestamp available in the header
2416                  * for samples so that synthesised samples occur from this point
2417                  * onwards.
2418                  */
2419                 etm->latest_kernel_timestamp = sample_kernel_timestamp;
2420         }
2421
2422         return 0;
2423 }
2424
2425 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2426                              struct perf_record_auxtrace *event)
2427 {
2428         struct auxtrace_buffer *buf;
2429         unsigned int i;
2430         /*
2431          * Find all buffers with same reference in the queues and dump them.
2432          * This is because the queues can contain multiple entries of the same
2433          * buffer that were split on aux records.
2434          */
2435         for (i = 0; i < etm->queues.nr_queues; ++i)
2436                 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2437                         if (buf->reference == event->reference)
2438                                 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2439 }
2440
2441 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2442                                           union perf_event *event,
2443                                           struct perf_tool *tool __maybe_unused)
2444 {
2445         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2446                                                    struct cs_etm_auxtrace,
2447                                                    auxtrace);
2448         if (!etm->data_queued) {
2449                 struct auxtrace_buffer *buffer;
2450                 off_t  data_offset;
2451                 int fd = perf_data__fd(session->data);
2452                 bool is_pipe = perf_data__is_pipe(session->data);
2453                 int err;
2454                 int idx = event->auxtrace.idx;
2455
2456                 if (is_pipe)
2457                         data_offset = 0;
2458                 else {
2459                         data_offset = lseek(fd, 0, SEEK_CUR);
2460                         if (data_offset == -1)
2461                                 return -errno;
2462                 }
2463
2464                 err = auxtrace_queues__add_event(&etm->queues, session,
2465                                                  event, data_offset, &buffer);
2466                 if (err)
2467                         return err;
2468
2469                 /*
2470                  * Knowing if the trace is formatted or not requires a lookup of
2471                  * the aux record so only works in non-piped mode where data is
2472                  * queued in cs_etm__queue_aux_records(). Always assume
2473                  * formatted in piped mode (true).
2474                  */
2475                 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2476                                           idx, true);
2477                 if (err)
2478                         return err;
2479
2480                 if (dump_trace)
2481                         if (auxtrace_buffer__get_data(buffer, fd)) {
2482                                 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2483                                 auxtrace_buffer__put_data(buffer);
2484                         }
2485         } else if (dump_trace)
2486                 dump_queued_data(etm, &event->auxtrace);
2487
2488         return 0;
2489 }
2490
2491 static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm)
2492 {
2493         struct evsel *evsel;
2494         struct evlist *evlist = etm->session->evlist;
2495
2496         /* Override timeless mode with user input from --itrace=Z */
2497         if (etm->synth_opts.timeless_decoding) {
2498                 etm->timeless_decoding = true;
2499                 return 0;
2500         }
2501
2502         /*
2503          * Find the cs_etm evsel and look at what its timestamp setting was
2504          */
2505         evlist__for_each_entry(evlist, evsel)
2506                 if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) {
2507                         etm->timeless_decoding =
2508                                 !(evsel->core.attr.config & BIT(ETM_OPT_TS));
2509                         return 0;
2510                 }
2511
2512         pr_err("CS ETM: Couldn't find ETM evsel\n");
2513         return -EINVAL;
2514 }
2515
2516 static const char * const cs_etm_global_header_fmts[] = {
2517         [CS_HEADER_VERSION]     = "     Header version                 %llx\n",
2518         [CS_PMU_TYPE_CPUS]      = "     PMU type/num cpus              %llx\n",
2519         [CS_ETM_SNAPSHOT]       = "     Snapshot                       %llx\n",
2520 };
2521
2522 static const char * const cs_etm_priv_fmts[] = {
2523         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2524         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2525         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2526         [CS_ETM_ETMCR]          = "     ETMCR                          %llx\n",
2527         [CS_ETM_ETMTRACEIDR]    = "     ETMTRACEIDR                    %llx\n",
2528         [CS_ETM_ETMCCER]        = "     ETMCCER                        %llx\n",
2529         [CS_ETM_ETMIDR]         = "     ETMIDR                         %llx\n",
2530 };
2531
2532 static const char * const cs_etmv4_priv_fmts[] = {
2533         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2534         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2535         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2536         [CS_ETMV4_TRCCONFIGR]   = "     TRCCONFIGR                     %llx\n",
2537         [CS_ETMV4_TRCTRACEIDR]  = "     TRCTRACEIDR                    %llx\n",
2538         [CS_ETMV4_TRCIDR0]      = "     TRCIDR0                        %llx\n",
2539         [CS_ETMV4_TRCIDR1]      = "     TRCIDR1                        %llx\n",
2540         [CS_ETMV4_TRCIDR2]      = "     TRCIDR2                        %llx\n",
2541         [CS_ETMV4_TRCIDR8]      = "     TRCIDR8                        %llx\n",
2542         [CS_ETMV4_TRCAUTHSTATUS] = "    TRCAUTHSTATUS                  %llx\n",
2543         [CS_ETE_TRCDEVARCH]     = "     TRCDEVARCH                     %llx\n"
2544 };
2545
2546 static const char * const param_unk_fmt =
2547         "       Unknown parameter [%d]         %llx\n";
2548 static const char * const magic_unk_fmt =
2549         "       Magic number Unknown           %llx\n";
2550
2551 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2552 {
2553         int i = *offset, j, nr_params = 0, fmt_offset;
2554         __u64 magic;
2555
2556         /* check magic value */
2557         magic = val[i + CS_ETM_MAGIC];
2558         if ((magic != __perf_cs_etmv3_magic) &&
2559             (magic != __perf_cs_etmv4_magic)) {
2560                 /* failure - note bad magic value */
2561                 fprintf(stdout, magic_unk_fmt, magic);
2562                 return -EINVAL;
2563         }
2564
2565         /* print common header block */
2566         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2567         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2568
2569         if (magic == __perf_cs_etmv3_magic) {
2570                 nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2571                 fmt_offset = CS_ETM_ETMCR;
2572                 /* after common block, offset format index past NR_PARAMS */
2573                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2574                         fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2575         } else if (magic == __perf_cs_etmv4_magic) {
2576                 nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2577                 fmt_offset = CS_ETMV4_TRCCONFIGR;
2578                 /* after common block, offset format index past NR_PARAMS */
2579                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2580                         fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2581         }
2582         *offset = i;
2583         return 0;
2584 }
2585
2586 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2587 {
2588         int i = *offset, j, total_params = 0;
2589         __u64 magic;
2590
2591         magic = val[i + CS_ETM_MAGIC];
2592         /* total params to print is NR_PARAMS + common block size for v1 */
2593         total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2594
2595         if (magic == __perf_cs_etmv3_magic) {
2596                 for (j = 0; j < total_params; j++, i++) {
2597                         /* if newer record - could be excess params */
2598                         if (j >= CS_ETM_PRIV_MAX)
2599                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2600                         else
2601                                 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2602                 }
2603         } else if (magic == __perf_cs_etmv4_magic || magic == __perf_cs_ete_magic) {
2604                 /*
2605                  * ETE and ETMv4 can be printed in the same block because the number of parameters
2606                  * is saved and they share the list of parameter names. ETE is also only supported
2607                  * in V1 files.
2608                  */
2609                 for (j = 0; j < total_params; j++, i++) {
2610                         /* if newer record - could be excess params */
2611                         if (j >= CS_ETE_PRIV_MAX)
2612                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2613                         else
2614                                 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2615                 }
2616         } else {
2617                 /* failure - note bad magic value and error out */
2618                 fprintf(stdout, magic_unk_fmt, magic);
2619                 return -EINVAL;
2620         }
2621         *offset = i;
2622         return 0;
2623 }
2624
2625 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2626 {
2627         int i, cpu = 0, version, err;
2628
2629         /* bail out early on bad header version */
2630         version = val[0];
2631         if (version > CS_HEADER_CURRENT_VERSION) {
2632                 /* failure.. return */
2633                 fprintf(stdout, "       Unknown Header Version = %x, ", version);
2634                 fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2635                 return;
2636         }
2637
2638         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2639                 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2640
2641         for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2642                 if (version == 0)
2643                         err = cs_etm__print_cpu_metadata_v0(val, &i);
2644                 else if (version == 1)
2645                         err = cs_etm__print_cpu_metadata_v1(val, &i);
2646                 if (err)
2647                         return;
2648         }
2649 }
2650
2651 /*
2652  * Read a single cpu parameter block from the auxtrace_info priv block.
2653  *
2654  * For version 1 there is a per cpu nr_params entry. If we are handling
2655  * version 1 file, then there may be less, the same, or more params
2656  * indicated by this value than the compile time number we understand.
2657  *
2658  * For a version 0 info block, there are a fixed number, and we need to
2659  * fill out the nr_param value in the metadata we create.
2660  */
2661 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2662                                     int out_blk_size, int nr_params_v0)
2663 {
2664         u64 *metadata = NULL;
2665         int hdr_version;
2666         int nr_in_params, nr_out_params, nr_cmn_params;
2667         int i, k;
2668
2669         metadata = zalloc(sizeof(*metadata) * out_blk_size);
2670         if (!metadata)
2671                 return NULL;
2672
2673         /* read block current index & version */
2674         i = *buff_in_offset;
2675         hdr_version = buff_in[CS_HEADER_VERSION];
2676
2677         if (!hdr_version) {
2678         /* read version 0 info block into a version 1 metadata block  */
2679                 nr_in_params = nr_params_v0;
2680                 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2681                 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2682                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2683                 /* remaining block params at offset +1 from source */
2684                 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2685                         metadata[k + 1] = buff_in[i + k];
2686                 /* version 0 has 2 common params */
2687                 nr_cmn_params = 2;
2688         } else {
2689         /* read version 1 info block - input and output nr_params may differ */
2690                 /* version 1 has 3 common params */
2691                 nr_cmn_params = 3;
2692                 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2693
2694                 /* if input has more params than output - skip excess */
2695                 nr_out_params = nr_in_params + nr_cmn_params;
2696                 if (nr_out_params > out_blk_size)
2697                         nr_out_params = out_blk_size;
2698
2699                 for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2700                         metadata[k] = buff_in[i + k];
2701
2702                 /* record the actual nr params we copied */
2703                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2704         }
2705
2706         /* adjust in offset by number of in params used */
2707         i += nr_in_params + nr_cmn_params;
2708         *buff_in_offset = i;
2709         return metadata;
2710 }
2711
2712 /**
2713  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2714  * on the bounds of aux_event, if it matches with the buffer that's at
2715  * file_offset.
2716  *
2717  * Normally, whole auxtrace buffers would be added to the queue. But we
2718  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2719  * is reset across each buffer, so splitting the buffers up in advance has
2720  * the same effect.
2721  */
2722 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2723                                       struct perf_record_aux *aux_event, struct perf_sample *sample)
2724 {
2725         int err;
2726         char buf[PERF_SAMPLE_MAX_SIZE];
2727         union perf_event *auxtrace_event_union;
2728         struct perf_record_auxtrace *auxtrace_event;
2729         union perf_event auxtrace_fragment;
2730         __u64 aux_offset, aux_size;
2731         __u32 idx;
2732         bool formatted;
2733
2734         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2735                                                    struct cs_etm_auxtrace,
2736                                                    auxtrace);
2737
2738         /*
2739          * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2740          * from looping through the auxtrace index.
2741          */
2742         err = perf_session__peek_event(session, file_offset, buf,
2743                                        PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2744         if (err)
2745                 return err;
2746         auxtrace_event = &auxtrace_event_union->auxtrace;
2747         if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2748                 return -EINVAL;
2749
2750         if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2751                 auxtrace_event->header.size != sz) {
2752                 return -EINVAL;
2753         }
2754
2755         /*
2756          * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2757          * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2758          */
2759         if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2760                         auxtrace_event->cpu != sample->cpu)
2761                 return 1;
2762
2763         if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2764                 /*
2765                  * Clamp size in snapshot mode. The buffer size is clamped in
2766                  * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2767                  * the buffer size.
2768                  */
2769                 aux_size = min(aux_event->aux_size, auxtrace_event->size);
2770
2771                 /*
2772                  * In this mode, the head also points to the end of the buffer so aux_offset
2773                  * needs to have the size subtracted so it points to the beginning as in normal mode
2774                  */
2775                 aux_offset = aux_event->aux_offset - aux_size;
2776         } else {
2777                 aux_size = aux_event->aux_size;
2778                 aux_offset = aux_event->aux_offset;
2779         }
2780
2781         if (aux_offset >= auxtrace_event->offset &&
2782             aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2783                 /*
2784                  * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2785                  * based on the sizes of the aux event, and queue that fragment.
2786                  */
2787                 auxtrace_fragment.auxtrace = *auxtrace_event;
2788                 auxtrace_fragment.auxtrace.size = aux_size;
2789                 auxtrace_fragment.auxtrace.offset = aux_offset;
2790                 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2791
2792                 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2793                           " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2794                 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2795                                                  file_offset, NULL);
2796                 if (err)
2797                         return err;
2798
2799                 idx = auxtrace_event->idx;
2800                 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2801                 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2802                                            idx, formatted);
2803         }
2804
2805         /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2806         return 1;
2807 }
2808
2809 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2810                                         u64 offset __maybe_unused, void *data __maybe_unused)
2811 {
2812         struct perf_sample sample;
2813         int ret;
2814         struct auxtrace_index_entry *ent;
2815         struct auxtrace_index *auxtrace_index;
2816         struct evsel *evsel;
2817         size_t i;
2818
2819         /* Don't care about any other events, we're only queuing buffers for AUX events */
2820         if (event->header.type != PERF_RECORD_AUX)
2821                 return 0;
2822
2823         if (event->header.size < sizeof(struct perf_record_aux))
2824                 return -EINVAL;
2825
2826         /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2827         if (!event->aux.aux_size)
2828                 return 0;
2829
2830         /*
2831          * Parse the sample, we need the sample_id_all data that comes after the event so that the
2832          * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2833          */
2834         evsel = evlist__event2evsel(session->evlist, event);
2835         if (!evsel)
2836                 return -EINVAL;
2837         ret = evsel__parse_sample(evsel, event, &sample);
2838         if (ret)
2839                 return ret;
2840
2841         /*
2842          * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2843          */
2844         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2845                 for (i = 0; i < auxtrace_index->nr; i++) {
2846                         ent = &auxtrace_index->entries[i];
2847                         ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2848                                                          ent->sz, &event->aux, &sample);
2849                         /*
2850                          * Stop search on error or successful values. Continue search on
2851                          * 1 ('not found')
2852                          */
2853                         if (ret != 1)
2854                                 return ret;
2855                 }
2856         }
2857
2858         /*
2859          * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2860          * don't exit with an error because it will still be possible to decode other aux records.
2861          */
2862         pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2863                " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2864         return 0;
2865 }
2866
2867 static int cs_etm__queue_aux_records(struct perf_session *session)
2868 {
2869         struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2870                                                                 struct auxtrace_index, list);
2871         if (index && index->nr > 0)
2872                 return perf_session__peek_events(session, session->header.data_offset,
2873                                                  session->header.data_size,
2874                                                  cs_etm__queue_aux_records_cb, NULL);
2875
2876         /*
2877          * We would get here if there are no entries in the index (either no auxtrace
2878          * buffers or no index at all). Fail silently as there is the possibility of
2879          * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2880          * false.
2881          *
2882          * In that scenario, buffers will not be split by AUX records.
2883          */
2884         return 0;
2885 }
2886
2887 int cs_etm__process_auxtrace_info(union perf_event *event,
2888                                   struct perf_session *session)
2889 {
2890         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2891         struct cs_etm_auxtrace *etm = NULL;
2892         struct int_node *inode;
2893         unsigned int pmu_type;
2894         int event_header_size = sizeof(struct perf_event_header);
2895         int info_header_size;
2896         int total_size = auxtrace_info->header.size;
2897         int priv_size = 0;
2898         int num_cpu, trcidr_idx;
2899         int err = 0;
2900         int i, j;
2901         u64 *ptr, *hdr = NULL;
2902         u64 **metadata = NULL;
2903         u64 hdr_version;
2904
2905         /*
2906          * sizeof(auxtrace_info_event::type) +
2907          * sizeof(auxtrace_info_event::reserved) == 8
2908          */
2909         info_header_size = 8;
2910
2911         if (total_size < (event_header_size + info_header_size))
2912                 return -EINVAL;
2913
2914         priv_size = total_size - event_header_size - info_header_size;
2915
2916         /* First the global part */
2917         ptr = (u64 *) auxtrace_info->priv;
2918
2919         /* Look for version of the header */
2920         hdr_version = ptr[0];
2921         if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2922                 /* print routine will print an error on bad version */
2923                 if (dump_trace)
2924                         cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2925                 return -EINVAL;
2926         }
2927
2928         hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2929         if (!hdr)
2930                 return -ENOMEM;
2931
2932         /* Extract header information - see cs-etm.h for format */
2933         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2934                 hdr[i] = ptr[i];
2935         num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2936         pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2937                                     0xffffffff);
2938
2939         /*
2940          * Create an RB tree for traceID-metadata tuple.  Since the conversion
2941          * has to be made for each packet that gets decoded, optimizing access
2942          * in anything other than a sequential array is worth doing.
2943          */
2944         traceid_list = intlist__new(NULL);
2945         if (!traceid_list) {
2946                 err = -ENOMEM;
2947                 goto err_free_hdr;
2948         }
2949
2950         metadata = zalloc(sizeof(*metadata) * num_cpu);
2951         if (!metadata) {
2952                 err = -ENOMEM;
2953                 goto err_free_traceid_list;
2954         }
2955
2956         /*
2957          * The metadata is stored in the auxtrace_info section and encodes
2958          * the configuration of the ARM embedded trace macrocell which is
2959          * required by the trace decoder to properly decode the trace due
2960          * to its highly compressed nature.
2961          */
2962         for (j = 0; j < num_cpu; j++) {
2963                 if (ptr[i] == __perf_cs_etmv3_magic) {
2964                         metadata[j] =
2965                                 cs_etm__create_meta_blk(ptr, &i,
2966                                                         CS_ETM_PRIV_MAX,
2967                                                         CS_ETM_NR_TRC_PARAMS_V0);
2968
2969                         /* The traceID is our handle */
2970                         trcidr_idx = CS_ETM_ETMTRACEIDR;
2971
2972                 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2973                         metadata[j] =
2974                                 cs_etm__create_meta_blk(ptr, &i,
2975                                                         CS_ETMV4_PRIV_MAX,
2976                                                         CS_ETMV4_NR_TRC_PARAMS_V0);
2977
2978                         /* The traceID is our handle */
2979                         trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2980                 } else if (ptr[i] == __perf_cs_ete_magic) {
2981                         metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
2982
2983                         /* ETE shares first part of metadata with ETMv4 */
2984                         trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2985                 } else {
2986                         ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
2987                                   ptr[i]);
2988                         err = -EINVAL;
2989                         goto err_free_metadata;
2990                 }
2991
2992                 if (!metadata[j]) {
2993                         err = -ENOMEM;
2994                         goto err_free_metadata;
2995                 }
2996
2997                 /* Get an RB node for this CPU */
2998                 inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2999
3000                 /* Something went wrong, no need to continue */
3001                 if (!inode) {
3002                         err = -ENOMEM;
3003                         goto err_free_metadata;
3004                 }
3005
3006                 /*
3007                  * The node for that CPU should not be taken.
3008                  * Back out if that's the case.
3009                  */
3010                 if (inode->priv) {
3011                         err = -EINVAL;
3012                         goto err_free_metadata;
3013                 }
3014                 /* All good, associate the traceID with the metadata pointer */
3015                 inode->priv = metadata[j];
3016         }
3017
3018         /*
3019          * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
3020          * CS_ETMV4_PRIV_MAX mark how many double words are in the
3021          * global metadata, and each cpu's metadata respectively.
3022          * The following tests if the correct number of double words was
3023          * present in the auxtrace info section.
3024          */
3025         if (i * 8 != priv_size) {
3026                 err = -EINVAL;
3027                 goto err_free_metadata;
3028         }
3029
3030         etm = zalloc(sizeof(*etm));
3031
3032         if (!etm) {
3033                 err = -ENOMEM;
3034                 goto err_free_metadata;
3035         }
3036
3037         err = auxtrace_queues__init(&etm->queues);
3038         if (err)
3039                 goto err_free_etm;
3040
3041         if (session->itrace_synth_opts->set) {
3042                 etm->synth_opts = *session->itrace_synth_opts;
3043         } else {
3044                 itrace_synth_opts__set_default(&etm->synth_opts,
3045                                 session->itrace_synth_opts->default_no_sample);
3046                 etm->synth_opts.callchain = false;
3047         }
3048
3049         etm->session = session;
3050         etm->machine = &session->machines.host;
3051
3052         etm->num_cpu = num_cpu;
3053         etm->pmu_type = pmu_type;
3054         etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3055         etm->metadata = metadata;
3056         etm->auxtrace_type = auxtrace_info->type;
3057
3058         etm->auxtrace.process_event = cs_etm__process_event;
3059         etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3060         etm->auxtrace.flush_events = cs_etm__flush_events;
3061         etm->auxtrace.free_events = cs_etm__free_events;
3062         etm->auxtrace.free = cs_etm__free;
3063         etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3064         session->auxtrace = &etm->auxtrace;
3065
3066         err = cs_etm__setup_timeless_decoding(etm);
3067         if (err)
3068                 return err;
3069
3070         etm->unknown_thread = thread__new(999999999, 999999999);
3071         if (!etm->unknown_thread) {
3072                 err = -ENOMEM;
3073                 goto err_free_queues;
3074         }
3075
3076         /*
3077          * Initialize list node so that at thread__zput() we can avoid
3078          * segmentation fault at list_del_init().
3079          */
3080         INIT_LIST_HEAD(&etm->unknown_thread->node);
3081
3082         err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3083         if (err)
3084                 goto err_delete_thread;
3085
3086         if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3087                 err = -ENOMEM;
3088                 goto err_delete_thread;
3089         }
3090
3091         if (dump_trace) {
3092                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3093         }
3094
3095         err = cs_etm__synth_events(etm, session);
3096         if (err)
3097                 goto err_delete_thread;
3098
3099         err = cs_etm__queue_aux_records(session);
3100         if (err)
3101                 goto err_delete_thread;
3102
3103         etm->data_queued = etm->queues.populated;
3104         /*
3105          * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
3106          * cs_etm__queue_aux_fragment() for details relating to limitations.
3107          */
3108         if (!etm->data_queued)
3109                 pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
3110                            "Continuing with best effort decoding in piped mode.\n\n");
3111
3112         return 0;
3113
3114 err_delete_thread:
3115         thread__zput(etm->unknown_thread);
3116 err_free_queues:
3117         auxtrace_queues__free(&etm->queues);
3118         session->auxtrace = NULL;
3119 err_free_etm:
3120         zfree(&etm);
3121 err_free_metadata:
3122         /* No need to check @metadata[j], free(NULL) is supported */
3123         for (j = 0; j < num_cpu; j++)
3124                 zfree(&metadata[j]);
3125         zfree(&metadata);
3126 err_free_traceid_list:
3127         intlist__delete(traceid_list);
3128 err_free_hdr:
3129         zfree(&hdr);
3130         /*
3131          * At this point, as a minimum we have valid header. Dump the rest of
3132          * the info section - the print routines will error out on structural
3133          * issues.
3134          */
3135         if (dump_trace)
3136                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3137         return err;
3138 }