Merge tag 'linux-kselftest-next-6.6-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / tools / perf / util / bpf_counter.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2019 Facebook */
4
5 #include <assert.h>
6 #include <limits.h>
7 #include <unistd.h>
8 #include <sys/file.h>
9 #include <sys/time.h>
10 #include <linux/err.h>
11 #include <linux/zalloc.h>
12 #include <api/fs/fs.h>
13 #include <perf/bpf_perf.h>
14
15 #include "bpf_counter.h"
16 #include "bpf-utils.h"
17 #include "counts.h"
18 #include "debug.h"
19 #include "evsel.h"
20 #include "evlist.h"
21 #include "target.h"
22 #include "cgroup.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25
26 #include "bpf_skel/bpf_prog_profiler.skel.h"
27 #include "bpf_skel/bperf_u.h"
28 #include "bpf_skel/bperf_leader.skel.h"
29 #include "bpf_skel/bperf_follower.skel.h"
30
31 #define ATTR_MAP_SIZE 16
32
33 static inline void *u64_to_ptr(__u64 ptr)
34 {
35         return (void *)(unsigned long)ptr;
36 }
37
38 static struct bpf_counter *bpf_counter_alloc(void)
39 {
40         struct bpf_counter *counter;
41
42         counter = zalloc(sizeof(*counter));
43         if (counter)
44                 INIT_LIST_HEAD(&counter->list);
45         return counter;
46 }
47
48 static int bpf_program_profiler__destroy(struct evsel *evsel)
49 {
50         struct bpf_counter *counter, *tmp;
51
52         list_for_each_entry_safe(counter, tmp,
53                                  &evsel->bpf_counter_list, list) {
54                 list_del_init(&counter->list);
55                 bpf_prog_profiler_bpf__destroy(counter->skel);
56                 free(counter);
57         }
58         assert(list_empty(&evsel->bpf_counter_list));
59
60         return 0;
61 }
62
63 static char *bpf_target_prog_name(int tgt_fd)
64 {
65         struct bpf_func_info *func_info;
66         struct perf_bpil *info_linear;
67         const struct btf_type *t;
68         struct btf *btf = NULL;
69         char *name = NULL;
70
71         info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
72         if (IS_ERR_OR_NULL(info_linear)) {
73                 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
74                 return NULL;
75         }
76
77         if (info_linear->info.btf_id == 0) {
78                 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
79                 goto out;
80         }
81
82         btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
83         if (libbpf_get_error(btf)) {
84                 pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
85                 goto out;
86         }
87
88         func_info = u64_to_ptr(info_linear->info.func_info);
89         t = btf__type_by_id(btf, func_info[0].type_id);
90         if (!t) {
91                 pr_debug("btf %d doesn't have type %d\n",
92                          info_linear->info.btf_id, func_info[0].type_id);
93                 goto out;
94         }
95         name = strdup(btf__name_by_offset(btf, t->name_off));
96 out:
97         btf__free(btf);
98         free(info_linear);
99         return name;
100 }
101
102 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
103 {
104         struct bpf_prog_profiler_bpf *skel;
105         struct bpf_counter *counter;
106         struct bpf_program *prog;
107         char *prog_name;
108         int prog_fd;
109         int err;
110
111         prog_fd = bpf_prog_get_fd_by_id(prog_id);
112         if (prog_fd < 0) {
113                 pr_err("Failed to open fd for bpf prog %u\n", prog_id);
114                 return -1;
115         }
116         counter = bpf_counter_alloc();
117         if (!counter) {
118                 close(prog_fd);
119                 return -1;
120         }
121
122         skel = bpf_prog_profiler_bpf__open();
123         if (!skel) {
124                 pr_err("Failed to open bpf skeleton\n");
125                 goto err_out;
126         }
127
128         skel->rodata->num_cpu = evsel__nr_cpus(evsel);
129
130         bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
131         bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
132         bpf_map__set_max_entries(skel->maps.accum_readings, 1);
133
134         prog_name = bpf_target_prog_name(prog_fd);
135         if (!prog_name) {
136                 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
137                 goto err_out;
138         }
139
140         bpf_object__for_each_program(prog, skel->obj) {
141                 err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
142                 if (err) {
143                         pr_err("bpf_program__set_attach_target failed.\n"
144                                "Does bpf prog %u have BTF?\n", prog_id);
145                         goto err_out;
146                 }
147         }
148         set_max_rlimit();
149         err = bpf_prog_profiler_bpf__load(skel);
150         if (err) {
151                 pr_err("bpf_prog_profiler_bpf__load failed\n");
152                 goto err_out;
153         }
154
155         assert(skel != NULL);
156         counter->skel = skel;
157         list_add(&counter->list, &evsel->bpf_counter_list);
158         close(prog_fd);
159         return 0;
160 err_out:
161         bpf_prog_profiler_bpf__destroy(skel);
162         free(counter);
163         close(prog_fd);
164         return -1;
165 }
166
167 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
168 {
169         char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
170         u32 prog_id;
171         int ret;
172
173         bpf_str_ = bpf_str = strdup(target->bpf_str);
174         if (!bpf_str)
175                 return -1;
176
177         while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
178                 prog_id = strtoul(tok, &p, 10);
179                 if (prog_id == 0 || prog_id == UINT_MAX ||
180                     (*p != '\0' && *p != ',')) {
181                         pr_err("Failed to parse bpf prog ids %s\n",
182                                target->bpf_str);
183                         return -1;
184                 }
185
186                 ret = bpf_program_profiler_load_one(evsel, prog_id);
187                 if (ret) {
188                         bpf_program_profiler__destroy(evsel);
189                         free(bpf_str_);
190                         return -1;
191                 }
192                 bpf_str = NULL;
193         }
194         free(bpf_str_);
195         return 0;
196 }
197
198 static int bpf_program_profiler__enable(struct evsel *evsel)
199 {
200         struct bpf_counter *counter;
201         int ret;
202
203         list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
204                 assert(counter->skel != NULL);
205                 ret = bpf_prog_profiler_bpf__attach(counter->skel);
206                 if (ret) {
207                         bpf_program_profiler__destroy(evsel);
208                         return ret;
209                 }
210         }
211         return 0;
212 }
213
214 static int bpf_program_profiler__disable(struct evsel *evsel)
215 {
216         struct bpf_counter *counter;
217
218         list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
219                 assert(counter->skel != NULL);
220                 bpf_prog_profiler_bpf__detach(counter->skel);
221         }
222         return 0;
223 }
224
225 static int bpf_program_profiler__read(struct evsel *evsel)
226 {
227         // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
228         // Sometimes possible > online, like on a Ryzen 3900X that has 24
229         // threads but its possible showed 0-31 -acme
230         int num_cpu_bpf = libbpf_num_possible_cpus();
231         struct bpf_perf_event_value values[num_cpu_bpf];
232         struct bpf_counter *counter;
233         struct perf_counts_values *counts;
234         int reading_map_fd;
235         __u32 key = 0;
236         int err, idx, bpf_cpu;
237
238         if (list_empty(&evsel->bpf_counter_list))
239                 return -EAGAIN;
240
241         perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
242                 counts = perf_counts(evsel->counts, idx, 0);
243                 counts->val = 0;
244                 counts->ena = 0;
245                 counts->run = 0;
246         }
247         list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
248                 struct bpf_prog_profiler_bpf *skel = counter->skel;
249
250                 assert(skel != NULL);
251                 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
252
253                 err = bpf_map_lookup_elem(reading_map_fd, &key, values);
254                 if (err) {
255                         pr_err("failed to read value\n");
256                         return err;
257                 }
258
259                 for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
260                         idx = perf_cpu_map__idx(evsel__cpus(evsel),
261                                                 (struct perf_cpu){.cpu = bpf_cpu});
262                         if (idx == -1)
263                                 continue;
264                         counts = perf_counts(evsel->counts, idx, 0);
265                         counts->val += values[bpf_cpu].counter;
266                         counts->ena += values[bpf_cpu].enabled;
267                         counts->run += values[bpf_cpu].running;
268                 }
269         }
270         return 0;
271 }
272
273 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
274                                             int fd)
275 {
276         struct bpf_prog_profiler_bpf *skel;
277         struct bpf_counter *counter;
278         int ret;
279
280         list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
281                 skel = counter->skel;
282                 assert(skel != NULL);
283
284                 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
285                                           &cpu_map_idx, &fd, BPF_ANY);
286                 if (ret)
287                         return ret;
288         }
289         return 0;
290 }
291
292 struct bpf_counter_ops bpf_program_profiler_ops = {
293         .load       = bpf_program_profiler__load,
294         .enable     = bpf_program_profiler__enable,
295         .disable    = bpf_program_profiler__disable,
296         .read       = bpf_program_profiler__read,
297         .destroy    = bpf_program_profiler__destroy,
298         .install_pe = bpf_program_profiler__install_pe,
299 };
300
301 static bool bperf_attr_map_compatible(int attr_map_fd)
302 {
303         struct bpf_map_info map_info = {0};
304         __u32 map_info_len = sizeof(map_info);
305         int err;
306
307         err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
308
309         if (err)
310                 return false;
311         return (map_info.key_size == sizeof(struct perf_event_attr)) &&
312                 (map_info.value_size == sizeof(struct perf_event_attr_map_entry));
313 }
314
315 static int bperf_lock_attr_map(struct target *target)
316 {
317         char path[PATH_MAX];
318         int map_fd, err;
319
320         if (target->attr_map) {
321                 scnprintf(path, PATH_MAX, "%s", target->attr_map);
322         } else {
323                 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
324                           BPF_PERF_DEFAULT_ATTR_MAP_PATH);
325         }
326
327         if (access(path, F_OK)) {
328                 map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
329                                         sizeof(struct perf_event_attr),
330                                         sizeof(struct perf_event_attr_map_entry),
331                                         ATTR_MAP_SIZE, NULL);
332                 if (map_fd < 0)
333                         return -1;
334
335                 err = bpf_obj_pin(map_fd, path);
336                 if (err) {
337                         /* someone pinned the map in parallel? */
338                         close(map_fd);
339                         map_fd = bpf_obj_get(path);
340                         if (map_fd < 0)
341                                 return -1;
342                 }
343         } else {
344                 map_fd = bpf_obj_get(path);
345                 if (map_fd < 0)
346                         return -1;
347         }
348
349         if (!bperf_attr_map_compatible(map_fd)) {
350                 close(map_fd);
351                 return -1;
352
353         }
354         err = flock(map_fd, LOCK_EX);
355         if (err) {
356                 close(map_fd);
357                 return -1;
358         }
359         return map_fd;
360 }
361
362 static int bperf_check_target(struct evsel *evsel,
363                               struct target *target,
364                               enum bperf_filter_type *filter_type,
365                               __u32 *filter_entry_cnt)
366 {
367         if (evsel->core.leader->nr_members > 1) {
368                 pr_err("bpf managed perf events do not yet support groups.\n");
369                 return -1;
370         }
371
372         /* determine filter type based on target */
373         if (target->system_wide) {
374                 *filter_type = BPERF_FILTER_GLOBAL;
375                 *filter_entry_cnt = 1;
376         } else if (target->cpu_list) {
377                 *filter_type = BPERF_FILTER_CPU;
378                 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
379         } else if (target->tid) {
380                 *filter_type = BPERF_FILTER_PID;
381                 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
382         } else if (target->pid || evsel->evlist->workload.pid != -1) {
383                 *filter_type = BPERF_FILTER_TGID;
384                 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
385         } else {
386                 pr_err("bpf managed perf events do not yet support these targets.\n");
387                 return -1;
388         }
389
390         return 0;
391 }
392
393 static  struct perf_cpu_map *all_cpu_map;
394
395 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
396                                        struct perf_event_attr_map_entry *entry)
397 {
398         struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
399         int link_fd, diff_map_fd, err;
400         struct bpf_link *link = NULL;
401
402         if (!skel) {
403                 pr_err("Failed to open leader skeleton\n");
404                 return -1;
405         }
406
407         bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
408         err = bperf_leader_bpf__load(skel);
409         if (err) {
410                 pr_err("Failed to load leader skeleton\n");
411                 goto out;
412         }
413
414         link = bpf_program__attach(skel->progs.on_switch);
415         if (IS_ERR(link)) {
416                 pr_err("Failed to attach leader program\n");
417                 err = PTR_ERR(link);
418                 goto out;
419         }
420
421         link_fd = bpf_link__fd(link);
422         diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
423         entry->link_id = bpf_link_get_id(link_fd);
424         entry->diff_map_id = bpf_map_get_id(diff_map_fd);
425         err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
426         assert(err == 0);
427
428         evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
429         assert(evsel->bperf_leader_link_fd >= 0);
430
431         /*
432          * save leader_skel for install_pe, which is called within
433          * following evsel__open_per_cpu call
434          */
435         evsel->leader_skel = skel;
436         evsel__open_per_cpu(evsel, all_cpu_map, -1);
437
438 out:
439         bperf_leader_bpf__destroy(skel);
440         bpf_link__destroy(link);
441         return err;
442 }
443
444 static int bperf__load(struct evsel *evsel, struct target *target)
445 {
446         struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
447         int attr_map_fd, diff_map_fd = -1, err;
448         enum bperf_filter_type filter_type;
449         __u32 filter_entry_cnt, i;
450
451         if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
452                 return -1;
453
454         if (!all_cpu_map) {
455                 all_cpu_map = perf_cpu_map__new(NULL);
456                 if (!all_cpu_map)
457                         return -1;
458         }
459
460         evsel->bperf_leader_prog_fd = -1;
461         evsel->bperf_leader_link_fd = -1;
462
463         /*
464          * Step 1: hold a fd on the leader program and the bpf_link, if
465          * the program is not already gone, reload the program.
466          * Use flock() to ensure exclusive access to the perf_event_attr
467          * map.
468          */
469         attr_map_fd = bperf_lock_attr_map(target);
470         if (attr_map_fd < 0) {
471                 pr_err("Failed to lock perf_event_attr map\n");
472                 return -1;
473         }
474
475         err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
476         if (err) {
477                 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
478                 if (err)
479                         goto out;
480         }
481
482         evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
483         if (evsel->bperf_leader_link_fd < 0 &&
484             bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
485                 err = -1;
486                 goto out;
487         }
488         /*
489          * The bpf_link holds reference to the leader program, and the
490          * leader program holds reference to the maps. Therefore, if
491          * link_id is valid, diff_map_id should also be valid.
492          */
493         evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
494                 bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
495         assert(evsel->bperf_leader_prog_fd >= 0);
496
497         diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
498         assert(diff_map_fd >= 0);
499
500         /*
501          * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
502          * whether the kernel support it
503          */
504         err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
505         if (err) {
506                 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
507                        "Therefore, --use-bpf might show inaccurate readings\n");
508                 goto out;
509         }
510
511         /* Step 2: load the follower skeleton */
512         evsel->follower_skel = bperf_follower_bpf__open();
513         if (!evsel->follower_skel) {
514                 err = -1;
515                 pr_err("Failed to open follower skeleton\n");
516                 goto out;
517         }
518
519         /* attach fexit program to the leader program */
520         bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
521                                        evsel->bperf_leader_prog_fd, "on_switch");
522
523         /* connect to leader diff_reading map */
524         bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
525
526         /* set up reading map */
527         bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
528                                  filter_entry_cnt);
529         /* set up follower filter based on target */
530         bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
531                                  filter_entry_cnt);
532         err = bperf_follower_bpf__load(evsel->follower_skel);
533         if (err) {
534                 pr_err("Failed to load follower skeleton\n");
535                 bperf_follower_bpf__destroy(evsel->follower_skel);
536                 evsel->follower_skel = NULL;
537                 goto out;
538         }
539
540         for (i = 0; i < filter_entry_cnt; i++) {
541                 int filter_map_fd;
542                 __u32 key;
543
544                 if (filter_type == BPERF_FILTER_PID ||
545                     filter_type == BPERF_FILTER_TGID)
546                         key = perf_thread_map__pid(evsel->core.threads, i);
547                 else if (filter_type == BPERF_FILTER_CPU)
548                         key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu;
549                 else
550                         break;
551
552                 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
553                 bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
554         }
555
556         evsel->follower_skel->bss->type = filter_type;
557
558         err = bperf_follower_bpf__attach(evsel->follower_skel);
559
560 out:
561         if (err && evsel->bperf_leader_link_fd >= 0)
562                 close(evsel->bperf_leader_link_fd);
563         if (err && evsel->bperf_leader_prog_fd >= 0)
564                 close(evsel->bperf_leader_prog_fd);
565         if (diff_map_fd >= 0)
566                 close(diff_map_fd);
567
568         flock(attr_map_fd, LOCK_UN);
569         close(attr_map_fd);
570
571         return err;
572 }
573
574 static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
575 {
576         struct bperf_leader_bpf *skel = evsel->leader_skel;
577
578         return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
579                                    &cpu_map_idx, &fd, BPF_ANY);
580 }
581
582 /*
583  * trigger the leader prog on each cpu, so the accum_reading map could get
584  * the latest readings.
585  */
586 static int bperf_sync_counters(struct evsel *evsel)
587 {
588         int num_cpu, i, cpu;
589
590         num_cpu = perf_cpu_map__nr(all_cpu_map);
591         for (i = 0; i < num_cpu; i++) {
592                 cpu = perf_cpu_map__cpu(all_cpu_map, i).cpu;
593                 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
594         }
595         return 0;
596 }
597
598 static int bperf__enable(struct evsel *evsel)
599 {
600         evsel->follower_skel->bss->enabled = 1;
601         return 0;
602 }
603
604 static int bperf__disable(struct evsel *evsel)
605 {
606         evsel->follower_skel->bss->enabled = 0;
607         return 0;
608 }
609
610 static int bperf__read(struct evsel *evsel)
611 {
612         struct bperf_follower_bpf *skel = evsel->follower_skel;
613         __u32 num_cpu_bpf = cpu__max_cpu().cpu;
614         struct bpf_perf_event_value values[num_cpu_bpf];
615         struct perf_counts_values *counts;
616         int reading_map_fd, err = 0;
617         __u32 i;
618         int j;
619
620         bperf_sync_counters(evsel);
621         reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
622
623         for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
624                 struct perf_cpu entry;
625                 __u32 cpu;
626
627                 err = bpf_map_lookup_elem(reading_map_fd, &i, values);
628                 if (err)
629                         goto out;
630                 switch (evsel->follower_skel->bss->type) {
631                 case BPERF_FILTER_GLOBAL:
632                         assert(i == 0);
633
634                         perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
635                                 counts = perf_counts(evsel->counts, j, 0);
636                                 counts->val = values[entry.cpu].counter;
637                                 counts->ena = values[entry.cpu].enabled;
638                                 counts->run = values[entry.cpu].running;
639                         }
640                         break;
641                 case BPERF_FILTER_CPU:
642                         cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
643                         assert(cpu >= 0);
644                         counts = perf_counts(evsel->counts, i, 0);
645                         counts->val = values[cpu].counter;
646                         counts->ena = values[cpu].enabled;
647                         counts->run = values[cpu].running;
648                         break;
649                 case BPERF_FILTER_PID:
650                 case BPERF_FILTER_TGID:
651                         counts = perf_counts(evsel->counts, 0, i);
652                         counts->val = 0;
653                         counts->ena = 0;
654                         counts->run = 0;
655
656                         for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
657                                 counts->val += values[cpu].counter;
658                                 counts->ena += values[cpu].enabled;
659                                 counts->run += values[cpu].running;
660                         }
661                         break;
662                 default:
663                         break;
664                 }
665         }
666 out:
667         return err;
668 }
669
670 static int bperf__destroy(struct evsel *evsel)
671 {
672         bperf_follower_bpf__destroy(evsel->follower_skel);
673         close(evsel->bperf_leader_prog_fd);
674         close(evsel->bperf_leader_link_fd);
675         return 0;
676 }
677
678 /*
679  * bperf: share hardware PMCs with BPF
680  *
681  * perf uses performance monitoring counters (PMC) to monitor system
682  * performance. The PMCs are limited hardware resources. For example,
683  * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
684  *
685  * Modern data center systems use these PMCs in many different ways:
686  * system level monitoring, (maybe nested) container level monitoring, per
687  * process monitoring, profiling (in sample mode), etc. In some cases,
688  * there are more active perf_events than available hardware PMCs. To allow
689  * all perf_events to have a chance to run, it is necessary to do expensive
690  * time multiplexing of events.
691  *
692  * On the other hand, many monitoring tools count the common metrics
693  * (cycles, instructions). It is a waste to have multiple tools create
694  * multiple perf_events of "cycles" and occupy multiple PMCs.
695  *
696  * bperf tries to reduce such wastes by allowing multiple perf_events of
697  * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
698  * of having each perf-stat session to read its own perf_events, bperf uses
699  * BPF programs to read the perf_events and aggregate readings to BPF maps.
700  * Then, the perf-stat session(s) reads the values from these BPF maps.
701  *
702  *                                ||
703  *       shared progs and maps <- || -> per session progs and maps
704  *                                ||
705  *   ---------------              ||
706  *   | perf_events |              ||
707  *   ---------------       fexit  ||      -----------------
708  *          |             --------||----> | follower prog |
709  *       --------------- /        || ---  -----------------
710  * cs -> | leader prog |/         ||/        |         |
711  *   --> ---------------         /||  --------------  ------------------
712  *  /       |         |         / ||  | filter map |  | accum_readings |
713  * /  ------------  ------------  ||  --------------  ------------------
714  * |  | prev map |  | diff map |  ||                        |
715  * |  ------------  ------------  ||                        |
716  *  \                             ||                        |
717  * = \ ==================================================== | ============
718  *    \                                                    /   user space
719  *     \                                                  /
720  *      \                                                /
721  *    BPF_PROG_TEST_RUN                    BPF_MAP_LOOKUP_ELEM
722  *        \                                            /
723  *         \                                          /
724  *          \------  perf-stat ----------------------/
725  *
726  * The figure above shows the architecture of bperf. Note that the figure
727  * is divided into 3 regions: shared progs and maps (top left), per session
728  * progs and maps (top right), and user space (bottom).
729  *
730  * The leader prog is triggered on each context switch (cs). The leader
731  * prog reads perf_events and stores the difference (current_reading -
732  * previous_reading) to the diff map. For the same metric, e.g. "cycles",
733  * multiple perf-stat sessions share the same leader prog.
734  *
735  * Each perf-stat session creates a follower prog as fexit program to the
736  * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
737  * follower progs to the same leader prog. The follower prog checks current
738  * task and processor ID to decide whether to add the value from the diff
739  * map to its accumulated reading map (accum_readings).
740  *
741  * Finally, perf-stat user space reads the value from accum_reading map.
742  *
743  * Besides context switch, it is also necessary to trigger the leader prog
744  * before perf-stat reads the value. Otherwise, the accum_reading map may
745  * not have the latest reading from the perf_events. This is achieved by
746  * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
747  *
748  * Comment before the definition of struct perf_event_attr_map_entry
749  * describes how different sessions of perf-stat share information about
750  * the leader prog.
751  */
752
753 struct bpf_counter_ops bperf_ops = {
754         .load       = bperf__load,
755         .enable     = bperf__enable,
756         .disable    = bperf__disable,
757         .read       = bperf__read,
758         .install_pe = bperf__install_pe,
759         .destroy    = bperf__destroy,
760 };
761
762 extern struct bpf_counter_ops bperf_cgrp_ops;
763
764 static inline bool bpf_counter_skip(struct evsel *evsel)
765 {
766         return evsel->bpf_counter_ops == NULL;
767 }
768
769 int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
770 {
771         if (bpf_counter_skip(evsel))
772                 return 0;
773         return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
774 }
775
776 int bpf_counter__load(struct evsel *evsel, struct target *target)
777 {
778         if (target->bpf_str)
779                 evsel->bpf_counter_ops = &bpf_program_profiler_ops;
780         else if (cgrp_event_expanded && target->use_bpf)
781                 evsel->bpf_counter_ops = &bperf_cgrp_ops;
782         else if (target->use_bpf || evsel->bpf_counter ||
783                  evsel__match_bpf_counter_events(evsel->name))
784                 evsel->bpf_counter_ops = &bperf_ops;
785
786         if (evsel->bpf_counter_ops)
787                 return evsel->bpf_counter_ops->load(evsel, target);
788         return 0;
789 }
790
791 int bpf_counter__enable(struct evsel *evsel)
792 {
793         if (bpf_counter_skip(evsel))
794                 return 0;
795         return evsel->bpf_counter_ops->enable(evsel);
796 }
797
798 int bpf_counter__disable(struct evsel *evsel)
799 {
800         if (bpf_counter_skip(evsel))
801                 return 0;
802         return evsel->bpf_counter_ops->disable(evsel);
803 }
804
805 int bpf_counter__read(struct evsel *evsel)
806 {
807         if (bpf_counter_skip(evsel))
808                 return -EAGAIN;
809         return evsel->bpf_counter_ops->read(evsel);
810 }
811
812 void bpf_counter__destroy(struct evsel *evsel)
813 {
814         if (bpf_counter_skip(evsel))
815                 return;
816         evsel->bpf_counter_ops->destroy(evsel);
817         evsel->bpf_counter_ops = NULL;
818         evsel->bpf_skel = NULL;
819 }