perf timechart: Add --highlight option
[platform/adaptation/renesas_rcar/renesas_kernel.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40
41 #define SUPPORT_OLD_POWER_EVENTS 1
42 #define PWR_EVENT_EXIT -1
43
44 struct per_pid;
45 struct power_event;
46 struct wake_event;
47
48 struct timechart {
49         struct perf_tool        tool;
50         struct per_pid          *all_data;
51         struct power_event      *power_events;
52         struct wake_event       *wake_events;
53         int                     proc_num;
54         unsigned int            numcpus;
55         u64                     min_freq,       /* Lowest CPU frequency seen */
56                                 max_freq,       /* Highest CPU frequency seen */
57                                 turbo_frequency,
58                                 first_time, last_time;
59         bool                    power_only,
60                                 tasks_only,
61                                 with_backtrace,
62                                 topology;
63 };
64
65 struct per_pidcomm;
66 struct cpu_sample;
67
68 /*
69  * Datastructure layout:
70  * We keep an list of "pid"s, matching the kernels notion of a task struct.
71  * Each "pid" entry, has a list of "comm"s.
72  *      this is because we want to track different programs different, while
73  *      exec will reuse the original pid (by design).
74  * Each comm has a list of samples that will be used to draw
75  * final graph.
76  */
77
78 struct per_pid {
79         struct per_pid *next;
80
81         int             pid;
82         int             ppid;
83
84         u64             start_time;
85         u64             end_time;
86         u64             total_time;
87         int             display;
88
89         struct per_pidcomm *all;
90         struct per_pidcomm *current;
91 };
92
93
94 struct per_pidcomm {
95         struct per_pidcomm *next;
96
97         u64             start_time;
98         u64             end_time;
99         u64             total_time;
100
101         int             Y;
102         int             display;
103
104         long            state;
105         u64             state_since;
106
107         char            *comm;
108
109         struct cpu_sample *samples;
110 };
111
112 struct sample_wrapper {
113         struct sample_wrapper *next;
114
115         u64             timestamp;
116         unsigned char   data[0];
117 };
118
119 #define TYPE_NONE       0
120 #define TYPE_RUNNING    1
121 #define TYPE_WAITING    2
122 #define TYPE_BLOCKED    3
123
124 struct cpu_sample {
125         struct cpu_sample *next;
126
127         u64 start_time;
128         u64 end_time;
129         int type;
130         int cpu;
131         const char *backtrace;
132 };
133
134 #define CSTATE 1
135 #define PSTATE 2
136
137 struct power_event {
138         struct power_event *next;
139         int type;
140         int state;
141         u64 start_time;
142         u64 end_time;
143         int cpu;
144 };
145
146 struct wake_event {
147         struct wake_event *next;
148         int waker;
149         int wakee;
150         u64 time;
151         const char *backtrace;
152 };
153
154 struct process_filter {
155         char                    *name;
156         int                     pid;
157         struct process_filter   *next;
158 };
159
160 static struct process_filter *process_filter;
161
162
163 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
164 {
165         struct per_pid *cursor = tchart->all_data;
166
167         while (cursor) {
168                 if (cursor->pid == pid)
169                         return cursor;
170                 cursor = cursor->next;
171         }
172         cursor = zalloc(sizeof(*cursor));
173         assert(cursor != NULL);
174         cursor->pid = pid;
175         cursor->next = tchart->all_data;
176         tchart->all_data = cursor;
177         return cursor;
178 }
179
180 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
181 {
182         struct per_pid *p;
183         struct per_pidcomm *c;
184         p = find_create_pid(tchart, pid);
185         c = p->all;
186         while (c) {
187                 if (c->comm && strcmp(c->comm, comm) == 0) {
188                         p->current = c;
189                         return;
190                 }
191                 if (!c->comm) {
192                         c->comm = strdup(comm);
193                         p->current = c;
194                         return;
195                 }
196                 c = c->next;
197         }
198         c = zalloc(sizeof(*c));
199         assert(c != NULL);
200         c->comm = strdup(comm);
201         p->current = c;
202         c->next = p->all;
203         p->all = c;
204 }
205
206 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
207 {
208         struct per_pid *p, *pp;
209         p = find_create_pid(tchart, pid);
210         pp = find_create_pid(tchart, ppid);
211         p->ppid = ppid;
212         if (pp->current && pp->current->comm && !p->current)
213                 pid_set_comm(tchart, pid, pp->current->comm);
214
215         p->start_time = timestamp;
216         if (p->current) {
217                 p->current->start_time = timestamp;
218                 p->current->state_since = timestamp;
219         }
220 }
221
222 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
223 {
224         struct per_pid *p;
225         p = find_create_pid(tchart, pid);
226         p->end_time = timestamp;
227         if (p->current)
228                 p->current->end_time = timestamp;
229 }
230
231 static void pid_put_sample(struct timechart *tchart, int pid, int type,
232                            unsigned int cpu, u64 start, u64 end,
233                            const char *backtrace)
234 {
235         struct per_pid *p;
236         struct per_pidcomm *c;
237         struct cpu_sample *sample;
238
239         p = find_create_pid(tchart, pid);
240         c = p->current;
241         if (!c) {
242                 c = zalloc(sizeof(*c));
243                 assert(c != NULL);
244                 p->current = c;
245                 c->next = p->all;
246                 p->all = c;
247         }
248
249         sample = zalloc(sizeof(*sample));
250         assert(sample != NULL);
251         sample->start_time = start;
252         sample->end_time = end;
253         sample->type = type;
254         sample->next = c->samples;
255         sample->cpu = cpu;
256         sample->backtrace = backtrace;
257         c->samples = sample;
258
259         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260                 c->total_time += (end-start);
261                 p->total_time += (end-start);
262         }
263
264         if (c->start_time == 0 || c->start_time > start)
265                 c->start_time = start;
266         if (p->start_time == 0 || p->start_time > start)
267                 p->start_time = start;
268 }
269
270 #define MAX_CPUS 4096
271
272 static u64 cpus_cstate_start_times[MAX_CPUS];
273 static int cpus_cstate_state[MAX_CPUS];
274 static u64 cpus_pstate_start_times[MAX_CPUS];
275 static u64 cpus_pstate_state[MAX_CPUS];
276
277 static int process_comm_event(struct perf_tool *tool,
278                               union perf_event *event,
279                               struct perf_sample *sample __maybe_unused,
280                               struct machine *machine __maybe_unused)
281 {
282         struct timechart *tchart = container_of(tool, struct timechart, tool);
283         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
284         return 0;
285 }
286
287 static int process_fork_event(struct perf_tool *tool,
288                               union perf_event *event,
289                               struct perf_sample *sample __maybe_unused,
290                               struct machine *machine __maybe_unused)
291 {
292         struct timechart *tchart = container_of(tool, struct timechart, tool);
293         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
294         return 0;
295 }
296
297 static int process_exit_event(struct perf_tool *tool,
298                               union perf_event *event,
299                               struct perf_sample *sample __maybe_unused,
300                               struct machine *machine __maybe_unused)
301 {
302         struct timechart *tchart = container_of(tool, struct timechart, tool);
303         pid_exit(tchart, event->fork.pid, event->fork.time);
304         return 0;
305 }
306
307 #ifdef SUPPORT_OLD_POWER_EVENTS
308 static int use_old_power_events;
309 #endif
310
311 static void c_state_start(int cpu, u64 timestamp, int state)
312 {
313         cpus_cstate_start_times[cpu] = timestamp;
314         cpus_cstate_state[cpu] = state;
315 }
316
317 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
318 {
319         struct power_event *pwr = zalloc(sizeof(*pwr));
320
321         if (!pwr)
322                 return;
323
324         pwr->state = cpus_cstate_state[cpu];
325         pwr->start_time = cpus_cstate_start_times[cpu];
326         pwr->end_time = timestamp;
327         pwr->cpu = cpu;
328         pwr->type = CSTATE;
329         pwr->next = tchart->power_events;
330
331         tchart->power_events = pwr;
332 }
333
334 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
335 {
336         struct power_event *pwr;
337
338         if (new_freq > 8000000) /* detect invalid data */
339                 return;
340
341         pwr = zalloc(sizeof(*pwr));
342         if (!pwr)
343                 return;
344
345         pwr->state = cpus_pstate_state[cpu];
346         pwr->start_time = cpus_pstate_start_times[cpu];
347         pwr->end_time = timestamp;
348         pwr->cpu = cpu;
349         pwr->type = PSTATE;
350         pwr->next = tchart->power_events;
351
352         if (!pwr->start_time)
353                 pwr->start_time = tchart->first_time;
354
355         tchart->power_events = pwr;
356
357         cpus_pstate_state[cpu] = new_freq;
358         cpus_pstate_start_times[cpu] = timestamp;
359
360         if ((u64)new_freq > tchart->max_freq)
361                 tchart->max_freq = new_freq;
362
363         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
364                 tchart->min_freq = new_freq;
365
366         if (new_freq == tchart->max_freq - 1000)
367                 tchart->turbo_frequency = tchart->max_freq;
368 }
369
370 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
371                          int waker, int wakee, u8 flags, const char *backtrace)
372 {
373         struct per_pid *p;
374         struct wake_event *we = zalloc(sizeof(*we));
375
376         if (!we)
377                 return;
378
379         we->time = timestamp;
380         we->waker = waker;
381         we->backtrace = backtrace;
382
383         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
384                 we->waker = -1;
385
386         we->wakee = wakee;
387         we->next = tchart->wake_events;
388         tchart->wake_events = we;
389         p = find_create_pid(tchart, we->wakee);
390
391         if (p && p->current && p->current->state == TYPE_NONE) {
392                 p->current->state_since = timestamp;
393                 p->current->state = TYPE_WAITING;
394         }
395         if (p && p->current && p->current->state == TYPE_BLOCKED) {
396                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
397                                p->current->state_since, timestamp, NULL);
398                 p->current->state_since = timestamp;
399                 p->current->state = TYPE_WAITING;
400         }
401 }
402
403 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
404                          int prev_pid, int next_pid, u64 prev_state,
405                          const char *backtrace)
406 {
407         struct per_pid *p = NULL, *prev_p;
408
409         prev_p = find_create_pid(tchart, prev_pid);
410
411         p = find_create_pid(tchart, next_pid);
412
413         if (prev_p->current && prev_p->current->state != TYPE_NONE)
414                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
415                                prev_p->current->state_since, timestamp,
416                                backtrace);
417         if (p && p->current) {
418                 if (p->current->state != TYPE_NONE)
419                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
420                                        p->current->state_since, timestamp,
421                                        backtrace);
422
423                 p->current->state_since = timestamp;
424                 p->current->state = TYPE_RUNNING;
425         }
426
427         if (prev_p->current) {
428                 prev_p->current->state = TYPE_NONE;
429                 prev_p->current->state_since = timestamp;
430                 if (prev_state & 2)
431                         prev_p->current->state = TYPE_BLOCKED;
432                 if (prev_state == 0)
433                         prev_p->current->state = TYPE_WAITING;
434         }
435 }
436
437 static const char *cat_backtrace(union perf_event *event,
438                                  struct perf_sample *sample,
439                                  struct machine *machine)
440 {
441         struct addr_location al;
442         unsigned int i;
443         char *p = NULL;
444         size_t p_len;
445         u8 cpumode = PERF_RECORD_MISC_USER;
446         struct addr_location tal;
447         struct ip_callchain *chain = sample->callchain;
448         FILE *f = open_memstream(&p, &p_len);
449
450         if (!f) {
451                 perror("open_memstream error");
452                 return NULL;
453         }
454
455         if (!chain)
456                 goto exit;
457
458         if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
459                 fprintf(stderr, "problem processing %d event, skipping it.\n",
460                         event->header.type);
461                 goto exit;
462         }
463
464         for (i = 0; i < chain->nr; i++) {
465                 u64 ip;
466
467                 if (callchain_param.order == ORDER_CALLEE)
468                         ip = chain->ips[i];
469                 else
470                         ip = chain->ips[chain->nr - i - 1];
471
472                 if (ip >= PERF_CONTEXT_MAX) {
473                         switch (ip) {
474                         case PERF_CONTEXT_HV:
475                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
476                                 break;
477                         case PERF_CONTEXT_KERNEL:
478                                 cpumode = PERF_RECORD_MISC_KERNEL;
479                                 break;
480                         case PERF_CONTEXT_USER:
481                                 cpumode = PERF_RECORD_MISC_USER;
482                                 break;
483                         default:
484                                 pr_debug("invalid callchain context: "
485                                          "%"PRId64"\n", (s64) ip);
486
487                                 /*
488                                  * It seems the callchain is corrupted.
489                                  * Discard all.
490                                  */
491                                 free(p);
492                                 p = NULL;
493                                 goto exit;
494                         }
495                         continue;
496                 }
497
498                 tal.filtered = false;
499                 thread__find_addr_location(al.thread, machine, cpumode,
500                                            MAP__FUNCTION, ip, &tal);
501
502                 if (tal.sym)
503                         fprintf(f, "..... %016" PRIx64 " %s\n", ip,
504                                 tal.sym->name);
505                 else
506                         fprintf(f, "..... %016" PRIx64 "\n", ip);
507         }
508
509 exit:
510         fclose(f);
511
512         return p;
513 }
514
515 typedef int (*tracepoint_handler)(struct timechart *tchart,
516                                   struct perf_evsel *evsel,
517                                   struct perf_sample *sample,
518                                   const char *backtrace);
519
520 static int process_sample_event(struct perf_tool *tool,
521                                 union perf_event *event,
522                                 struct perf_sample *sample,
523                                 struct perf_evsel *evsel,
524                                 struct machine *machine)
525 {
526         struct timechart *tchart = container_of(tool, struct timechart, tool);
527
528         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
529                 if (!tchart->first_time || tchart->first_time > sample->time)
530                         tchart->first_time = sample->time;
531                 if (tchart->last_time < sample->time)
532                         tchart->last_time = sample->time;
533         }
534
535         if (evsel->handler != NULL) {
536                 tracepoint_handler f = evsel->handler;
537                 return f(tchart, evsel, sample,
538                          cat_backtrace(event, sample, machine));
539         }
540
541         return 0;
542 }
543
544 static int
545 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
546                         struct perf_evsel *evsel,
547                         struct perf_sample *sample,
548                         const char *backtrace __maybe_unused)
549 {
550         u32 state = perf_evsel__intval(evsel, sample, "state");
551         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
552
553         if (state == (u32)PWR_EVENT_EXIT)
554                 c_state_end(tchart, cpu_id, sample->time);
555         else
556                 c_state_start(cpu_id, sample->time, state);
557         return 0;
558 }
559
560 static int
561 process_sample_cpu_frequency(struct timechart *tchart,
562                              struct perf_evsel *evsel,
563                              struct perf_sample *sample,
564                              const char *backtrace __maybe_unused)
565 {
566         u32 state = perf_evsel__intval(evsel, sample, "state");
567         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
568
569         p_state_change(tchart, cpu_id, sample->time, state);
570         return 0;
571 }
572
573 static int
574 process_sample_sched_wakeup(struct timechart *tchart,
575                             struct perf_evsel *evsel,
576                             struct perf_sample *sample,
577                             const char *backtrace)
578 {
579         u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
580         int waker = perf_evsel__intval(evsel, sample, "common_pid");
581         int wakee = perf_evsel__intval(evsel, sample, "pid");
582
583         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
584         return 0;
585 }
586
587 static int
588 process_sample_sched_switch(struct timechart *tchart,
589                             struct perf_evsel *evsel,
590                             struct perf_sample *sample,
591                             const char *backtrace)
592 {
593         int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
594         int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
595         u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
596
597         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
598                      prev_state, backtrace);
599         return 0;
600 }
601
602 #ifdef SUPPORT_OLD_POWER_EVENTS
603 static int
604 process_sample_power_start(struct timechart *tchart __maybe_unused,
605                            struct perf_evsel *evsel,
606                            struct perf_sample *sample,
607                            const char *backtrace __maybe_unused)
608 {
609         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
610         u64 value = perf_evsel__intval(evsel, sample, "value");
611
612         c_state_start(cpu_id, sample->time, value);
613         return 0;
614 }
615
616 static int
617 process_sample_power_end(struct timechart *tchart,
618                          struct perf_evsel *evsel __maybe_unused,
619                          struct perf_sample *sample,
620                          const char *backtrace __maybe_unused)
621 {
622         c_state_end(tchart, sample->cpu, sample->time);
623         return 0;
624 }
625
626 static int
627 process_sample_power_frequency(struct timechart *tchart,
628                                struct perf_evsel *evsel,
629                                struct perf_sample *sample,
630                                const char *backtrace __maybe_unused)
631 {
632         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
633         u64 value = perf_evsel__intval(evsel, sample, "value");
634
635         p_state_change(tchart, cpu_id, sample->time, value);
636         return 0;
637 }
638 #endif /* SUPPORT_OLD_POWER_EVENTS */
639
640 /*
641  * After the last sample we need to wrap up the current C/P state
642  * and close out each CPU for these.
643  */
644 static void end_sample_processing(struct timechart *tchart)
645 {
646         u64 cpu;
647         struct power_event *pwr;
648
649         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
650                 /* C state */
651 #if 0
652                 pwr = zalloc(sizeof(*pwr));
653                 if (!pwr)
654                         return;
655
656                 pwr->state = cpus_cstate_state[cpu];
657                 pwr->start_time = cpus_cstate_start_times[cpu];
658                 pwr->end_time = tchart->last_time;
659                 pwr->cpu = cpu;
660                 pwr->type = CSTATE;
661                 pwr->next = tchart->power_events;
662
663                 tchart->power_events = pwr;
664 #endif
665                 /* P state */
666
667                 pwr = zalloc(sizeof(*pwr));
668                 if (!pwr)
669                         return;
670
671                 pwr->state = cpus_pstate_state[cpu];
672                 pwr->start_time = cpus_pstate_start_times[cpu];
673                 pwr->end_time = tchart->last_time;
674                 pwr->cpu = cpu;
675                 pwr->type = PSTATE;
676                 pwr->next = tchart->power_events;
677
678                 if (!pwr->start_time)
679                         pwr->start_time = tchart->first_time;
680                 if (!pwr->state)
681                         pwr->state = tchart->min_freq;
682                 tchart->power_events = pwr;
683         }
684 }
685
686 /*
687  * Sort the pid datastructure
688  */
689 static void sort_pids(struct timechart *tchart)
690 {
691         struct per_pid *new_list, *p, *cursor, *prev;
692         /* sort by ppid first, then by pid, lowest to highest */
693
694         new_list = NULL;
695
696         while (tchart->all_data) {
697                 p = tchart->all_data;
698                 tchart->all_data = p->next;
699                 p->next = NULL;
700
701                 if (new_list == NULL) {
702                         new_list = p;
703                         p->next = NULL;
704                         continue;
705                 }
706                 prev = NULL;
707                 cursor = new_list;
708                 while (cursor) {
709                         if (cursor->ppid > p->ppid ||
710                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
711                                 /* must insert before */
712                                 if (prev) {
713                                         p->next = prev->next;
714                                         prev->next = p;
715                                         cursor = NULL;
716                                         continue;
717                                 } else {
718                                         p->next = new_list;
719                                         new_list = p;
720                                         cursor = NULL;
721                                         continue;
722                                 }
723                         }
724
725                         prev = cursor;
726                         cursor = cursor->next;
727                         if (!cursor)
728                                 prev->next = p;
729                 }
730         }
731         tchart->all_data = new_list;
732 }
733
734
735 static void draw_c_p_states(struct timechart *tchart)
736 {
737         struct power_event *pwr;
738         pwr = tchart->power_events;
739
740         /*
741          * two pass drawing so that the P state bars are on top of the C state blocks
742          */
743         while (pwr) {
744                 if (pwr->type == CSTATE)
745                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
746                 pwr = pwr->next;
747         }
748
749         pwr = tchart->power_events;
750         while (pwr) {
751                 if (pwr->type == PSTATE) {
752                         if (!pwr->state)
753                                 pwr->state = tchart->min_freq;
754                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
755                 }
756                 pwr = pwr->next;
757         }
758 }
759
760 static void draw_wakeups(struct timechart *tchart)
761 {
762         struct wake_event *we;
763         struct per_pid *p;
764         struct per_pidcomm *c;
765
766         we = tchart->wake_events;
767         while (we) {
768                 int from = 0, to = 0;
769                 char *task_from = NULL, *task_to = NULL;
770
771                 /* locate the column of the waker and wakee */
772                 p = tchart->all_data;
773                 while (p) {
774                         if (p->pid == we->waker || p->pid == we->wakee) {
775                                 c = p->all;
776                                 while (c) {
777                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
778                                                 if (p->pid == we->waker && !from) {
779                                                         from = c->Y;
780                                                         task_from = strdup(c->comm);
781                                                 }
782                                                 if (p->pid == we->wakee && !to) {
783                                                         to = c->Y;
784                                                         task_to = strdup(c->comm);
785                                                 }
786                                         }
787                                         c = c->next;
788                                 }
789                                 c = p->all;
790                                 while (c) {
791                                         if (p->pid == we->waker && !from) {
792                                                 from = c->Y;
793                                                 task_from = strdup(c->comm);
794                                         }
795                                         if (p->pid == we->wakee && !to) {
796                                                 to = c->Y;
797                                                 task_to = strdup(c->comm);
798                                         }
799                                         c = c->next;
800                                 }
801                         }
802                         p = p->next;
803                 }
804
805                 if (!task_from) {
806                         task_from = malloc(40);
807                         sprintf(task_from, "[%i]", we->waker);
808                 }
809                 if (!task_to) {
810                         task_to = malloc(40);
811                         sprintf(task_to, "[%i]", we->wakee);
812                 }
813
814                 if (we->waker == -1)
815                         svg_interrupt(we->time, to, we->backtrace);
816                 else if (from && to && abs(from - to) == 1)
817                         svg_wakeline(we->time, from, to, we->backtrace);
818                 else
819                         svg_partial_wakeline(we->time, from, task_from, to,
820                                              task_to, we->backtrace);
821                 we = we->next;
822
823                 free(task_from);
824                 free(task_to);
825         }
826 }
827
828 static void draw_cpu_usage(struct timechart *tchart)
829 {
830         struct per_pid *p;
831         struct per_pidcomm *c;
832         struct cpu_sample *sample;
833         p = tchart->all_data;
834         while (p) {
835                 c = p->all;
836                 while (c) {
837                         sample = c->samples;
838                         while (sample) {
839                                 if (sample->type == TYPE_RUNNING) {
840                                         svg_process(sample->cpu,
841                                                     sample->start_time,
842                                                     sample->end_time,
843                                                     p->pid,
844                                                     c->comm,
845                                                     sample->backtrace);
846                                 }
847
848                                 sample = sample->next;
849                         }
850                         c = c->next;
851                 }
852                 p = p->next;
853         }
854 }
855
856 static void draw_process_bars(struct timechart *tchart)
857 {
858         struct per_pid *p;
859         struct per_pidcomm *c;
860         struct cpu_sample *sample;
861         int Y = 0;
862
863         Y = 2 * tchart->numcpus + 2;
864
865         p = tchart->all_data;
866         while (p) {
867                 c = p->all;
868                 while (c) {
869                         if (!c->display) {
870                                 c->Y = 0;
871                                 c = c->next;
872                                 continue;
873                         }
874
875                         svg_box(Y, c->start_time, c->end_time, "process");
876                         sample = c->samples;
877                         while (sample) {
878                                 if (sample->type == TYPE_RUNNING)
879                                         svg_running(Y, sample->cpu,
880                                                     sample->start_time,
881                                                     sample->end_time,
882                                                     sample->backtrace);
883                                 if (sample->type == TYPE_BLOCKED)
884                                         svg_blocked(Y, sample->cpu,
885                                                     sample->start_time,
886                                                     sample->end_time,
887                                                     sample->backtrace);
888                                 if (sample->type == TYPE_WAITING)
889                                         svg_waiting(Y, sample->cpu,
890                                                     sample->start_time,
891                                                     sample->end_time,
892                                                     sample->backtrace);
893                                 sample = sample->next;
894                         }
895
896                         if (c->comm) {
897                                 char comm[256];
898                                 if (c->total_time > 5000000000) /* 5 seconds */
899                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
900                                 else
901                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
902
903                                 svg_text(Y, c->start_time, comm);
904                         }
905                         c->Y = Y;
906                         Y++;
907                         c = c->next;
908                 }
909                 p = p->next;
910         }
911 }
912
913 static void add_process_filter(const char *string)
914 {
915         int pid = strtoull(string, NULL, 10);
916         struct process_filter *filt = malloc(sizeof(*filt));
917
918         if (!filt)
919                 return;
920
921         filt->name = strdup(string);
922         filt->pid  = pid;
923         filt->next = process_filter;
924
925         process_filter = filt;
926 }
927
928 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
929 {
930         struct process_filter *filt;
931         if (!process_filter)
932                 return 1;
933
934         filt = process_filter;
935         while (filt) {
936                 if (filt->pid && p->pid == filt->pid)
937                         return 1;
938                 if (strcmp(filt->name, c->comm) == 0)
939                         return 1;
940                 filt = filt->next;
941         }
942         return 0;
943 }
944
945 static int determine_display_tasks_filtered(struct timechart *tchart)
946 {
947         struct per_pid *p;
948         struct per_pidcomm *c;
949         int count = 0;
950
951         p = tchart->all_data;
952         while (p) {
953                 p->display = 0;
954                 if (p->start_time == 1)
955                         p->start_time = tchart->first_time;
956
957                 /* no exit marker, task kept running to the end */
958                 if (p->end_time == 0)
959                         p->end_time = tchart->last_time;
960
961                 c = p->all;
962
963                 while (c) {
964                         c->display = 0;
965
966                         if (c->start_time == 1)
967                                 c->start_time = tchart->first_time;
968
969                         if (passes_filter(p, c)) {
970                                 c->display = 1;
971                                 p->display = 1;
972                                 count++;
973                         }
974
975                         if (c->end_time == 0)
976                                 c->end_time = tchart->last_time;
977
978                         c = c->next;
979                 }
980                 p = p->next;
981         }
982         return count;
983 }
984
985 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
986 {
987         struct per_pid *p;
988         struct per_pidcomm *c;
989         int count = 0;
990
991         if (process_filter)
992                 return determine_display_tasks_filtered(tchart);
993
994         p = tchart->all_data;
995         while (p) {
996                 p->display = 0;
997                 if (p->start_time == 1)
998                         p->start_time = tchart->first_time;
999
1000                 /* no exit marker, task kept running to the end */
1001                 if (p->end_time == 0)
1002                         p->end_time = tchart->last_time;
1003                 if (p->total_time >= threshold)
1004                         p->display = 1;
1005
1006                 c = p->all;
1007
1008                 while (c) {
1009                         c->display = 0;
1010
1011                         if (c->start_time == 1)
1012                                 c->start_time = tchart->first_time;
1013
1014                         if (c->total_time >= threshold) {
1015                                 c->display = 1;
1016                                 count++;
1017                         }
1018
1019                         if (c->end_time == 0)
1020                                 c->end_time = tchart->last_time;
1021
1022                         c = c->next;
1023                 }
1024                 p = p->next;
1025         }
1026         return count;
1027 }
1028
1029
1030
1031 #define TIME_THRESH 10000000
1032
1033 static void write_svg_file(struct timechart *tchart, const char *filename)
1034 {
1035         u64 i;
1036         int count;
1037         int thresh = TIME_THRESH;
1038
1039         if (tchart->power_only)
1040                 tchart->proc_num = 0;
1041
1042         /* We'd like to show at least proc_num tasks;
1043          * be less picky if we have fewer */
1044         do {
1045                 count = determine_display_tasks(tchart, thresh);
1046                 thresh /= 10;
1047         } while (!process_filter && thresh && count < tchart->proc_num);
1048
1049         open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1050
1051         svg_time_grid();
1052         svg_legenda();
1053
1054         for (i = 0; i < tchart->numcpus; i++)
1055                 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1056
1057         draw_cpu_usage(tchart);
1058         if (tchart->proc_num)
1059                 draw_process_bars(tchart);
1060         if (!tchart->tasks_only)
1061                 draw_c_p_states(tchart);
1062         if (tchart->proc_num)
1063                 draw_wakeups(tchart);
1064
1065         svg_close();
1066 }
1067
1068 static int process_header(struct perf_file_section *section __maybe_unused,
1069                           struct perf_header *ph,
1070                           int feat,
1071                           int fd __maybe_unused,
1072                           void *data)
1073 {
1074         struct timechart *tchart = data;
1075
1076         switch (feat) {
1077         case HEADER_NRCPUS:
1078                 tchart->numcpus = ph->env.nr_cpus_avail;
1079                 break;
1080
1081         case HEADER_CPU_TOPOLOGY:
1082                 if (!tchart->topology)
1083                         break;
1084
1085                 if (svg_build_topology_map(ph->env.sibling_cores,
1086                                            ph->env.nr_sibling_cores,
1087                                            ph->env.sibling_threads,
1088                                            ph->env.nr_sibling_threads))
1089                         fprintf(stderr, "problem building topology\n");
1090                 break;
1091
1092         default:
1093                 break;
1094         }
1095
1096         return 0;
1097 }
1098
1099 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1100 {
1101         const struct perf_evsel_str_handler power_tracepoints[] = {
1102                 { "power:cpu_idle",             process_sample_cpu_idle },
1103                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1104                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1105                 { "sched:sched_switch",         process_sample_sched_switch },
1106 #ifdef SUPPORT_OLD_POWER_EVENTS
1107                 { "power:power_start",          process_sample_power_start },
1108                 { "power:power_end",            process_sample_power_end },
1109                 { "power:power_frequency",      process_sample_power_frequency },
1110 #endif
1111         };
1112         struct perf_data_file file = {
1113                 .path = input_name,
1114                 .mode = PERF_DATA_MODE_READ,
1115         };
1116
1117         struct perf_session *session = perf_session__new(&file, false,
1118                                                          &tchart->tool);
1119         int ret = -EINVAL;
1120
1121         if (session == NULL)
1122                 return -ENOMEM;
1123
1124         (void)perf_header__process_sections(&session->header,
1125                                             perf_data_file__fd(session->file),
1126                                             tchart,
1127                                             process_header);
1128
1129         if (!perf_session__has_traces(session, "timechart record"))
1130                 goto out_delete;
1131
1132         if (perf_session__set_tracepoints_handlers(session,
1133                                                    power_tracepoints)) {
1134                 pr_err("Initializing session tracepoint handlers failed\n");
1135                 goto out_delete;
1136         }
1137
1138         ret = perf_session__process_events(session, &tchart->tool);
1139         if (ret)
1140                 goto out_delete;
1141
1142         end_sample_processing(tchart);
1143
1144         sort_pids(tchart);
1145
1146         write_svg_file(tchart, output_name);
1147
1148         pr_info("Written %2.1f seconds of trace to %s.\n",
1149                 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1150 out_delete:
1151         perf_session__delete(session);
1152         return ret;
1153 }
1154
1155 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1156 {
1157         unsigned int rec_argc, i, j;
1158         const char **rec_argv;
1159         const char **p;
1160         unsigned int record_elems;
1161
1162         const char * const common_args[] = {
1163                 "record", "-a", "-R", "-c", "1",
1164         };
1165         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1166
1167         const char * const backtrace_args[] = {
1168                 "-g",
1169         };
1170         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1171
1172         const char * const power_args[] = {
1173                 "-e", "power:cpu_frequency",
1174                 "-e", "power:cpu_idle",
1175         };
1176         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1177
1178         const char * const old_power_args[] = {
1179 #ifdef SUPPORT_OLD_POWER_EVENTS
1180                 "-e", "power:power_start",
1181                 "-e", "power:power_end",
1182                 "-e", "power:power_frequency",
1183 #endif
1184         };
1185         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1186
1187         const char * const tasks_args[] = {
1188                 "-e", "sched:sched_wakeup",
1189                 "-e", "sched:sched_switch",
1190         };
1191         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1192
1193 #ifdef SUPPORT_OLD_POWER_EVENTS
1194         if (!is_valid_tracepoint("power:cpu_idle") &&
1195             is_valid_tracepoint("power:power_start")) {
1196                 use_old_power_events = 1;
1197                 power_args_nr = 0;
1198         } else {
1199                 old_power_args_nr = 0;
1200         }
1201 #endif
1202
1203         if (tchart->power_only)
1204                 tasks_args_nr = 0;
1205
1206         if (tchart->tasks_only) {
1207                 power_args_nr = 0;
1208                 old_power_args_nr = 0;
1209         }
1210
1211         if (!tchart->with_backtrace)
1212                 backtrace_args_no = 0;
1213
1214         record_elems = common_args_nr + tasks_args_nr +
1215                 power_args_nr + old_power_args_nr + backtrace_args_no;
1216
1217         rec_argc = record_elems + argc;
1218         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1219
1220         if (rec_argv == NULL)
1221                 return -ENOMEM;
1222
1223         p = rec_argv;
1224         for (i = 0; i < common_args_nr; i++)
1225                 *p++ = strdup(common_args[i]);
1226
1227         for (i = 0; i < backtrace_args_no; i++)
1228                 *p++ = strdup(backtrace_args[i]);
1229
1230         for (i = 0; i < tasks_args_nr; i++)
1231                 *p++ = strdup(tasks_args[i]);
1232
1233         for (i = 0; i < power_args_nr; i++)
1234                 *p++ = strdup(power_args[i]);
1235
1236         for (i = 0; i < old_power_args_nr; i++)
1237                 *p++ = strdup(old_power_args[i]);
1238
1239         for (j = 1; j < (unsigned int)argc; j++)
1240                 *p++ = argv[j];
1241
1242         return cmd_record(rec_argc, rec_argv, NULL);
1243 }
1244
1245 static int
1246 parse_process(const struct option *opt __maybe_unused, const char *arg,
1247               int __maybe_unused unset)
1248 {
1249         if (arg)
1250                 add_process_filter(arg);
1251         return 0;
1252 }
1253
1254 static int
1255 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1256                 int __maybe_unused unset)
1257 {
1258         unsigned long duration = strtoul(arg, NULL, 0);
1259
1260         if (svg_highlight || svg_highlight_name)
1261                 return -1;
1262
1263         if (duration)
1264                 svg_highlight = duration;
1265         else
1266                 svg_highlight_name = strdup(arg);
1267
1268         return 0;
1269 }
1270
1271 int cmd_timechart(int argc, const char **argv,
1272                   const char *prefix __maybe_unused)
1273 {
1274         struct timechart tchart = {
1275                 .tool = {
1276                         .comm            = process_comm_event,
1277                         .fork            = process_fork_event,
1278                         .exit            = process_exit_event,
1279                         .sample          = process_sample_event,
1280                         .ordered_samples = true,
1281                 },
1282                 .proc_num = 15,
1283         };
1284         const char *output_name = "output.svg";
1285         const struct option timechart_options[] = {
1286         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1287         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1288         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1289         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1290                       "highlight tasks. Pass duration in ns or process name.",
1291                        parse_highlight),
1292         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1293         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1294                     "output processes data only"),
1295         OPT_CALLBACK('p', "process", NULL, "process",
1296                       "process selector. Pass a pid or process name.",
1297                        parse_process),
1298         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1299                     "Look for files with symbols relative to this directory"),
1300         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1301                     "min. number of tasks to print"),
1302         OPT_BOOLEAN('t', "topology", &tchart.topology,
1303                     "sort CPUs according to topology"),
1304         OPT_END()
1305         };
1306         const char * const timechart_usage[] = {
1307                 "perf timechart [<options>] {record}",
1308                 NULL
1309         };
1310
1311         const struct option record_options[] = {
1312         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1313         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1314                     "output processes data only"),
1315         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1316         OPT_END()
1317         };
1318         const char * const record_usage[] = {
1319                 "perf timechart record [<options>]",
1320                 NULL
1321         };
1322         argc = parse_options(argc, argv, timechart_options, timechart_usage,
1323                         PARSE_OPT_STOP_AT_NON_OPTION);
1324
1325         if (tchart.power_only && tchart.tasks_only) {
1326                 pr_err("-P and -T options cannot be used at the same time.\n");
1327                 return -1;
1328         }
1329
1330         symbol__init();
1331
1332         if (argc && !strncmp(argv[0], "rec", 3)) {
1333                 argc = parse_options(argc, argv, record_options, record_usage,
1334                                      PARSE_OPT_STOP_AT_NON_OPTION);
1335
1336                 if (tchart.power_only && tchart.tasks_only) {
1337                         pr_err("-P and -T options cannot be used at the same time.\n");
1338                         return -1;
1339                 }
1340
1341                 return timechart__record(&tchart, argc, argv);
1342         } else if (argc)
1343                 usage_with_options(timechart_usage, timechart_options);
1344
1345         setup_pager();
1346
1347         return __cmd_timechart(&tchart, output_name);
1348 }