Merge tag 'm68k-for-v4.9-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[platform/kernel/linux-exynos.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include <linux/time64.h>
28 #include "util/symbol.h"
29 #include "util/callchain.h"
30 #include "util/strlist.h"
31
32 #include "perf.h"
33 #include "util/header.h"
34 #include <subcmd/parse-options.h>
35 #include "util/parse-events.h"
36 #include "util/event.h"
37 #include "util/session.h"
38 #include "util/svghelper.h"
39 #include "util/tool.h"
40 #include "util/data.h"
41 #include "util/debug.h"
42
43 #define SUPPORT_OLD_POWER_EVENTS 1
44 #define PWR_EVENT_EXIT -1
45
46 struct per_pid;
47 struct power_event;
48 struct wake_event;
49
50 struct timechart {
51         struct perf_tool        tool;
52         struct per_pid          *all_data;
53         struct power_event      *power_events;
54         struct wake_event       *wake_events;
55         int                     proc_num;
56         unsigned int            numcpus;
57         u64                     min_freq,       /* Lowest CPU frequency seen */
58                                 max_freq,       /* Highest CPU frequency seen */
59                                 turbo_frequency,
60                                 first_time, last_time;
61         bool                    power_only,
62                                 tasks_only,
63                                 with_backtrace,
64                                 topology;
65         bool                    force;
66         /* IO related settings */
67         bool                    io_only,
68                                 skip_eagain;
69         u64                     io_events;
70         u64                     min_time,
71                                 merge_dist;
72 };
73
74 struct per_pidcomm;
75 struct cpu_sample;
76 struct io_sample;
77
78 /*
79  * Datastructure layout:
80  * We keep an list of "pid"s, matching the kernels notion of a task struct.
81  * Each "pid" entry, has a list of "comm"s.
82  *      this is because we want to track different programs different, while
83  *      exec will reuse the original pid (by design).
84  * Each comm has a list of samples that will be used to draw
85  * final graph.
86  */
87
88 struct per_pid {
89         struct per_pid *next;
90
91         int             pid;
92         int             ppid;
93
94         u64             start_time;
95         u64             end_time;
96         u64             total_time;
97         u64             total_bytes;
98         int             display;
99
100         struct per_pidcomm *all;
101         struct per_pidcomm *current;
102 };
103
104
105 struct per_pidcomm {
106         struct per_pidcomm *next;
107
108         u64             start_time;
109         u64             end_time;
110         u64             total_time;
111         u64             max_bytes;
112         u64             total_bytes;
113
114         int             Y;
115         int             display;
116
117         long            state;
118         u64             state_since;
119
120         char            *comm;
121
122         struct cpu_sample *samples;
123         struct io_sample  *io_samples;
124 };
125
126 struct sample_wrapper {
127         struct sample_wrapper *next;
128
129         u64             timestamp;
130         unsigned char   data[0];
131 };
132
133 #define TYPE_NONE       0
134 #define TYPE_RUNNING    1
135 #define TYPE_WAITING    2
136 #define TYPE_BLOCKED    3
137
138 struct cpu_sample {
139         struct cpu_sample *next;
140
141         u64 start_time;
142         u64 end_time;
143         int type;
144         int cpu;
145         const char *backtrace;
146 };
147
148 enum {
149         IOTYPE_READ,
150         IOTYPE_WRITE,
151         IOTYPE_SYNC,
152         IOTYPE_TX,
153         IOTYPE_RX,
154         IOTYPE_POLL,
155 };
156
157 struct io_sample {
158         struct io_sample *next;
159
160         u64 start_time;
161         u64 end_time;
162         u64 bytes;
163         int type;
164         int fd;
165         int err;
166         int merges;
167 };
168
169 #define CSTATE 1
170 #define PSTATE 2
171
172 struct power_event {
173         struct power_event *next;
174         int type;
175         int state;
176         u64 start_time;
177         u64 end_time;
178         int cpu;
179 };
180
181 struct wake_event {
182         struct wake_event *next;
183         int waker;
184         int wakee;
185         u64 time;
186         const char *backtrace;
187 };
188
189 struct process_filter {
190         char                    *name;
191         int                     pid;
192         struct process_filter   *next;
193 };
194
195 static struct process_filter *process_filter;
196
197
198 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
199 {
200         struct per_pid *cursor = tchart->all_data;
201
202         while (cursor) {
203                 if (cursor->pid == pid)
204                         return cursor;
205                 cursor = cursor->next;
206         }
207         cursor = zalloc(sizeof(*cursor));
208         assert(cursor != NULL);
209         cursor->pid = pid;
210         cursor->next = tchart->all_data;
211         tchart->all_data = cursor;
212         return cursor;
213 }
214
215 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
216 {
217         struct per_pid *p;
218         struct per_pidcomm *c;
219         p = find_create_pid(tchart, pid);
220         c = p->all;
221         while (c) {
222                 if (c->comm && strcmp(c->comm, comm) == 0) {
223                         p->current = c;
224                         return;
225                 }
226                 if (!c->comm) {
227                         c->comm = strdup(comm);
228                         p->current = c;
229                         return;
230                 }
231                 c = c->next;
232         }
233         c = zalloc(sizeof(*c));
234         assert(c != NULL);
235         c->comm = strdup(comm);
236         p->current = c;
237         c->next = p->all;
238         p->all = c;
239 }
240
241 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
242 {
243         struct per_pid *p, *pp;
244         p = find_create_pid(tchart, pid);
245         pp = find_create_pid(tchart, ppid);
246         p->ppid = ppid;
247         if (pp->current && pp->current->comm && !p->current)
248                 pid_set_comm(tchart, pid, pp->current->comm);
249
250         p->start_time = timestamp;
251         if (p->current && !p->current->start_time) {
252                 p->current->start_time = timestamp;
253                 p->current->state_since = timestamp;
254         }
255 }
256
257 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
258 {
259         struct per_pid *p;
260         p = find_create_pid(tchart, pid);
261         p->end_time = timestamp;
262         if (p->current)
263                 p->current->end_time = timestamp;
264 }
265
266 static void pid_put_sample(struct timechart *tchart, int pid, int type,
267                            unsigned int cpu, u64 start, u64 end,
268                            const char *backtrace)
269 {
270         struct per_pid *p;
271         struct per_pidcomm *c;
272         struct cpu_sample *sample;
273
274         p = find_create_pid(tchart, pid);
275         c = p->current;
276         if (!c) {
277                 c = zalloc(sizeof(*c));
278                 assert(c != NULL);
279                 p->current = c;
280                 c->next = p->all;
281                 p->all = c;
282         }
283
284         sample = zalloc(sizeof(*sample));
285         assert(sample != NULL);
286         sample->start_time = start;
287         sample->end_time = end;
288         sample->type = type;
289         sample->next = c->samples;
290         sample->cpu = cpu;
291         sample->backtrace = backtrace;
292         c->samples = sample;
293
294         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
295                 c->total_time += (end-start);
296                 p->total_time += (end-start);
297         }
298
299         if (c->start_time == 0 || c->start_time > start)
300                 c->start_time = start;
301         if (p->start_time == 0 || p->start_time > start)
302                 p->start_time = start;
303 }
304
305 #define MAX_CPUS 4096
306
307 static u64 cpus_cstate_start_times[MAX_CPUS];
308 static int cpus_cstate_state[MAX_CPUS];
309 static u64 cpus_pstate_start_times[MAX_CPUS];
310 static u64 cpus_pstate_state[MAX_CPUS];
311
312 static int process_comm_event(struct perf_tool *tool,
313                               union perf_event *event,
314                               struct perf_sample *sample __maybe_unused,
315                               struct machine *machine __maybe_unused)
316 {
317         struct timechart *tchart = container_of(tool, struct timechart, tool);
318         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
319         return 0;
320 }
321
322 static int process_fork_event(struct perf_tool *tool,
323                               union perf_event *event,
324                               struct perf_sample *sample __maybe_unused,
325                               struct machine *machine __maybe_unused)
326 {
327         struct timechart *tchart = container_of(tool, struct timechart, tool);
328         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
329         return 0;
330 }
331
332 static int process_exit_event(struct perf_tool *tool,
333                               union perf_event *event,
334                               struct perf_sample *sample __maybe_unused,
335                               struct machine *machine __maybe_unused)
336 {
337         struct timechart *tchart = container_of(tool, struct timechart, tool);
338         pid_exit(tchart, event->fork.pid, event->fork.time);
339         return 0;
340 }
341
342 #ifdef SUPPORT_OLD_POWER_EVENTS
343 static int use_old_power_events;
344 #endif
345
346 static void c_state_start(int cpu, u64 timestamp, int state)
347 {
348         cpus_cstate_start_times[cpu] = timestamp;
349         cpus_cstate_state[cpu] = state;
350 }
351
352 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
353 {
354         struct power_event *pwr = zalloc(sizeof(*pwr));
355
356         if (!pwr)
357                 return;
358
359         pwr->state = cpus_cstate_state[cpu];
360         pwr->start_time = cpus_cstate_start_times[cpu];
361         pwr->end_time = timestamp;
362         pwr->cpu = cpu;
363         pwr->type = CSTATE;
364         pwr->next = tchart->power_events;
365
366         tchart->power_events = pwr;
367 }
368
369 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
370 {
371         struct power_event *pwr;
372
373         if (new_freq > 8000000) /* detect invalid data */
374                 return;
375
376         pwr = zalloc(sizeof(*pwr));
377         if (!pwr)
378                 return;
379
380         pwr->state = cpus_pstate_state[cpu];
381         pwr->start_time = cpus_pstate_start_times[cpu];
382         pwr->end_time = timestamp;
383         pwr->cpu = cpu;
384         pwr->type = PSTATE;
385         pwr->next = tchart->power_events;
386
387         if (!pwr->start_time)
388                 pwr->start_time = tchart->first_time;
389
390         tchart->power_events = pwr;
391
392         cpus_pstate_state[cpu] = new_freq;
393         cpus_pstate_start_times[cpu] = timestamp;
394
395         if ((u64)new_freq > tchart->max_freq)
396                 tchart->max_freq = new_freq;
397
398         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
399                 tchart->min_freq = new_freq;
400
401         if (new_freq == tchart->max_freq - 1000)
402                 tchart->turbo_frequency = tchart->max_freq;
403 }
404
405 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
406                          int waker, int wakee, u8 flags, const char *backtrace)
407 {
408         struct per_pid *p;
409         struct wake_event *we = zalloc(sizeof(*we));
410
411         if (!we)
412                 return;
413
414         we->time = timestamp;
415         we->waker = waker;
416         we->backtrace = backtrace;
417
418         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
419                 we->waker = -1;
420
421         we->wakee = wakee;
422         we->next = tchart->wake_events;
423         tchart->wake_events = we;
424         p = find_create_pid(tchart, we->wakee);
425
426         if (p && p->current && p->current->state == TYPE_NONE) {
427                 p->current->state_since = timestamp;
428                 p->current->state = TYPE_WAITING;
429         }
430         if (p && p->current && p->current->state == TYPE_BLOCKED) {
431                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
432                                p->current->state_since, timestamp, NULL);
433                 p->current->state_since = timestamp;
434                 p->current->state = TYPE_WAITING;
435         }
436 }
437
438 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
439                          int prev_pid, int next_pid, u64 prev_state,
440                          const char *backtrace)
441 {
442         struct per_pid *p = NULL, *prev_p;
443
444         prev_p = find_create_pid(tchart, prev_pid);
445
446         p = find_create_pid(tchart, next_pid);
447
448         if (prev_p->current && prev_p->current->state != TYPE_NONE)
449                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
450                                prev_p->current->state_since, timestamp,
451                                backtrace);
452         if (p && p->current) {
453                 if (p->current->state != TYPE_NONE)
454                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
455                                        p->current->state_since, timestamp,
456                                        backtrace);
457
458                 p->current->state_since = timestamp;
459                 p->current->state = TYPE_RUNNING;
460         }
461
462         if (prev_p->current) {
463                 prev_p->current->state = TYPE_NONE;
464                 prev_p->current->state_since = timestamp;
465                 if (prev_state & 2)
466                         prev_p->current->state = TYPE_BLOCKED;
467                 if (prev_state == 0)
468                         prev_p->current->state = TYPE_WAITING;
469         }
470 }
471
472 static const char *cat_backtrace(union perf_event *event,
473                                  struct perf_sample *sample,
474                                  struct machine *machine)
475 {
476         struct addr_location al;
477         unsigned int i;
478         char *p = NULL;
479         size_t p_len;
480         u8 cpumode = PERF_RECORD_MISC_USER;
481         struct addr_location tal;
482         struct ip_callchain *chain = sample->callchain;
483         FILE *f = open_memstream(&p, &p_len);
484
485         if (!f) {
486                 perror("open_memstream error");
487                 return NULL;
488         }
489
490         if (!chain)
491                 goto exit;
492
493         if (machine__resolve(machine, &al, sample) < 0) {
494                 fprintf(stderr, "problem processing %d event, skipping it.\n",
495                         event->header.type);
496                 goto exit;
497         }
498
499         for (i = 0; i < chain->nr; i++) {
500                 u64 ip;
501
502                 if (callchain_param.order == ORDER_CALLEE)
503                         ip = chain->ips[i];
504                 else
505                         ip = chain->ips[chain->nr - i - 1];
506
507                 if (ip >= PERF_CONTEXT_MAX) {
508                         switch (ip) {
509                         case PERF_CONTEXT_HV:
510                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
511                                 break;
512                         case PERF_CONTEXT_KERNEL:
513                                 cpumode = PERF_RECORD_MISC_KERNEL;
514                                 break;
515                         case PERF_CONTEXT_USER:
516                                 cpumode = PERF_RECORD_MISC_USER;
517                                 break;
518                         default:
519                                 pr_debug("invalid callchain context: "
520                                          "%"PRId64"\n", (s64) ip);
521
522                                 /*
523                                  * It seems the callchain is corrupted.
524                                  * Discard all.
525                                  */
526                                 zfree(&p);
527                                 goto exit_put;
528                         }
529                         continue;
530                 }
531
532                 tal.filtered = 0;
533                 thread__find_addr_location(al.thread, cpumode,
534                                            MAP__FUNCTION, ip, &tal);
535
536                 if (tal.sym)
537                         fprintf(f, "..... %016" PRIx64 " %s\n", ip,
538                                 tal.sym->name);
539                 else
540                         fprintf(f, "..... %016" PRIx64 "\n", ip);
541         }
542 exit_put:
543         addr_location__put(&al);
544 exit:
545         fclose(f);
546
547         return p;
548 }
549
550 typedef int (*tracepoint_handler)(struct timechart *tchart,
551                                   struct perf_evsel *evsel,
552                                   struct perf_sample *sample,
553                                   const char *backtrace);
554
555 static int process_sample_event(struct perf_tool *tool,
556                                 union perf_event *event,
557                                 struct perf_sample *sample,
558                                 struct perf_evsel *evsel,
559                                 struct machine *machine)
560 {
561         struct timechart *tchart = container_of(tool, struct timechart, tool);
562
563         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
564                 if (!tchart->first_time || tchart->first_time > sample->time)
565                         tchart->first_time = sample->time;
566                 if (tchart->last_time < sample->time)
567                         tchart->last_time = sample->time;
568         }
569
570         if (evsel->handler != NULL) {
571                 tracepoint_handler f = evsel->handler;
572                 return f(tchart, evsel, sample,
573                          cat_backtrace(event, sample, machine));
574         }
575
576         return 0;
577 }
578
579 static int
580 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
581                         struct perf_evsel *evsel,
582                         struct perf_sample *sample,
583                         const char *backtrace __maybe_unused)
584 {
585         u32 state = perf_evsel__intval(evsel, sample, "state");
586         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
587
588         if (state == (u32)PWR_EVENT_EXIT)
589                 c_state_end(tchart, cpu_id, sample->time);
590         else
591                 c_state_start(cpu_id, sample->time, state);
592         return 0;
593 }
594
595 static int
596 process_sample_cpu_frequency(struct timechart *tchart,
597                              struct perf_evsel *evsel,
598                              struct perf_sample *sample,
599                              const char *backtrace __maybe_unused)
600 {
601         u32 state = perf_evsel__intval(evsel, sample, "state");
602         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
603
604         p_state_change(tchart, cpu_id, sample->time, state);
605         return 0;
606 }
607
608 static int
609 process_sample_sched_wakeup(struct timechart *tchart,
610                             struct perf_evsel *evsel,
611                             struct perf_sample *sample,
612                             const char *backtrace)
613 {
614         u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
615         int waker = perf_evsel__intval(evsel, sample, "common_pid");
616         int wakee = perf_evsel__intval(evsel, sample, "pid");
617
618         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
619         return 0;
620 }
621
622 static int
623 process_sample_sched_switch(struct timechart *tchart,
624                             struct perf_evsel *evsel,
625                             struct perf_sample *sample,
626                             const char *backtrace)
627 {
628         int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
629         int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
630         u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
631
632         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
633                      prev_state, backtrace);
634         return 0;
635 }
636
637 #ifdef SUPPORT_OLD_POWER_EVENTS
638 static int
639 process_sample_power_start(struct timechart *tchart __maybe_unused,
640                            struct perf_evsel *evsel,
641                            struct perf_sample *sample,
642                            const char *backtrace __maybe_unused)
643 {
644         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
645         u64 value = perf_evsel__intval(evsel, sample, "value");
646
647         c_state_start(cpu_id, sample->time, value);
648         return 0;
649 }
650
651 static int
652 process_sample_power_end(struct timechart *tchart,
653                          struct perf_evsel *evsel __maybe_unused,
654                          struct perf_sample *sample,
655                          const char *backtrace __maybe_unused)
656 {
657         c_state_end(tchart, sample->cpu, sample->time);
658         return 0;
659 }
660
661 static int
662 process_sample_power_frequency(struct timechart *tchart,
663                                struct perf_evsel *evsel,
664                                struct perf_sample *sample,
665                                const char *backtrace __maybe_unused)
666 {
667         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
668         u64 value = perf_evsel__intval(evsel, sample, "value");
669
670         p_state_change(tchart, cpu_id, sample->time, value);
671         return 0;
672 }
673 #endif /* SUPPORT_OLD_POWER_EVENTS */
674
675 /*
676  * After the last sample we need to wrap up the current C/P state
677  * and close out each CPU for these.
678  */
679 static void end_sample_processing(struct timechart *tchart)
680 {
681         u64 cpu;
682         struct power_event *pwr;
683
684         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
685                 /* C state */
686 #if 0
687                 pwr = zalloc(sizeof(*pwr));
688                 if (!pwr)
689                         return;
690
691                 pwr->state = cpus_cstate_state[cpu];
692                 pwr->start_time = cpus_cstate_start_times[cpu];
693                 pwr->end_time = tchart->last_time;
694                 pwr->cpu = cpu;
695                 pwr->type = CSTATE;
696                 pwr->next = tchart->power_events;
697
698                 tchart->power_events = pwr;
699 #endif
700                 /* P state */
701
702                 pwr = zalloc(sizeof(*pwr));
703                 if (!pwr)
704                         return;
705
706                 pwr->state = cpus_pstate_state[cpu];
707                 pwr->start_time = cpus_pstate_start_times[cpu];
708                 pwr->end_time = tchart->last_time;
709                 pwr->cpu = cpu;
710                 pwr->type = PSTATE;
711                 pwr->next = tchart->power_events;
712
713                 if (!pwr->start_time)
714                         pwr->start_time = tchart->first_time;
715                 if (!pwr->state)
716                         pwr->state = tchart->min_freq;
717                 tchart->power_events = pwr;
718         }
719 }
720
721 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
722                                u64 start, int fd)
723 {
724         struct per_pid *p = find_create_pid(tchart, pid);
725         struct per_pidcomm *c = p->current;
726         struct io_sample *sample;
727         struct io_sample *prev;
728
729         if (!c) {
730                 c = zalloc(sizeof(*c));
731                 if (!c)
732                         return -ENOMEM;
733                 p->current = c;
734                 c->next = p->all;
735                 p->all = c;
736         }
737
738         prev = c->io_samples;
739
740         if (prev && prev->start_time && !prev->end_time) {
741                 pr_warning("Skip invalid start event: "
742                            "previous event already started!\n");
743
744                 /* remove previous event that has been started,
745                  * we are not sure we will ever get an end for it */
746                 c->io_samples = prev->next;
747                 free(prev);
748                 return 0;
749         }
750
751         sample = zalloc(sizeof(*sample));
752         if (!sample)
753                 return -ENOMEM;
754         sample->start_time = start;
755         sample->type = type;
756         sample->fd = fd;
757         sample->next = c->io_samples;
758         c->io_samples = sample;
759
760         if (c->start_time == 0 || c->start_time > start)
761                 c->start_time = start;
762
763         return 0;
764 }
765
766 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
767                              u64 end, long ret)
768 {
769         struct per_pid *p = find_create_pid(tchart, pid);
770         struct per_pidcomm *c = p->current;
771         struct io_sample *sample, *prev;
772
773         if (!c) {
774                 pr_warning("Invalid pidcomm!\n");
775                 return -1;
776         }
777
778         sample = c->io_samples;
779
780         if (!sample) /* skip partially captured events */
781                 return 0;
782
783         if (sample->end_time) {
784                 pr_warning("Skip invalid end event: "
785                            "previous event already ended!\n");
786                 return 0;
787         }
788
789         if (sample->type != type) {
790                 pr_warning("Skip invalid end event: invalid event type!\n");
791                 return 0;
792         }
793
794         sample->end_time = end;
795         prev = sample->next;
796
797         /* we want to be able to see small and fast transfers, so make them
798          * at least min_time long, but don't overlap them */
799         if (sample->end_time - sample->start_time < tchart->min_time)
800                 sample->end_time = sample->start_time + tchart->min_time;
801         if (prev && sample->start_time < prev->end_time) {
802                 if (prev->err) /* try to make errors more visible */
803                         sample->start_time = prev->end_time;
804                 else
805                         prev->end_time = sample->start_time;
806         }
807
808         if (ret < 0) {
809                 sample->err = ret;
810         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
811                    type == IOTYPE_TX || type == IOTYPE_RX) {
812
813                 if ((u64)ret > c->max_bytes)
814                         c->max_bytes = ret;
815
816                 c->total_bytes += ret;
817                 p->total_bytes += ret;
818                 sample->bytes = ret;
819         }
820
821         /* merge two requests to make svg smaller and render-friendly */
822         if (prev &&
823             prev->type == sample->type &&
824             prev->err == sample->err &&
825             prev->fd == sample->fd &&
826             prev->end_time + tchart->merge_dist >= sample->start_time) {
827
828                 sample->bytes += prev->bytes;
829                 sample->merges += prev->merges + 1;
830
831                 sample->start_time = prev->start_time;
832                 sample->next = prev->next;
833                 free(prev);
834
835                 if (!sample->err && sample->bytes > c->max_bytes)
836                         c->max_bytes = sample->bytes;
837         }
838
839         tchart->io_events++;
840
841         return 0;
842 }
843
844 static int
845 process_enter_read(struct timechart *tchart,
846                    struct perf_evsel *evsel,
847                    struct perf_sample *sample)
848 {
849         long fd = perf_evsel__intval(evsel, sample, "fd");
850         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
851                                    sample->time, fd);
852 }
853
854 static int
855 process_exit_read(struct timechart *tchart,
856                   struct perf_evsel *evsel,
857                   struct perf_sample *sample)
858 {
859         long ret = perf_evsel__intval(evsel, sample, "ret");
860         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
861                                  sample->time, ret);
862 }
863
864 static int
865 process_enter_write(struct timechart *tchart,
866                     struct perf_evsel *evsel,
867                     struct perf_sample *sample)
868 {
869         long fd = perf_evsel__intval(evsel, sample, "fd");
870         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
871                                    sample->time, fd);
872 }
873
874 static int
875 process_exit_write(struct timechart *tchart,
876                    struct perf_evsel *evsel,
877                    struct perf_sample *sample)
878 {
879         long ret = perf_evsel__intval(evsel, sample, "ret");
880         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
881                                  sample->time, ret);
882 }
883
884 static int
885 process_enter_sync(struct timechart *tchart,
886                    struct perf_evsel *evsel,
887                    struct perf_sample *sample)
888 {
889         long fd = perf_evsel__intval(evsel, sample, "fd");
890         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
891                                    sample->time, fd);
892 }
893
894 static int
895 process_exit_sync(struct timechart *tchart,
896                   struct perf_evsel *evsel,
897                   struct perf_sample *sample)
898 {
899         long ret = perf_evsel__intval(evsel, sample, "ret");
900         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
901                                  sample->time, ret);
902 }
903
904 static int
905 process_enter_tx(struct timechart *tchart,
906                  struct perf_evsel *evsel,
907                  struct perf_sample *sample)
908 {
909         long fd = perf_evsel__intval(evsel, sample, "fd");
910         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
911                                    sample->time, fd);
912 }
913
914 static int
915 process_exit_tx(struct timechart *tchart,
916                 struct perf_evsel *evsel,
917                 struct perf_sample *sample)
918 {
919         long ret = perf_evsel__intval(evsel, sample, "ret");
920         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
921                                  sample->time, ret);
922 }
923
924 static int
925 process_enter_rx(struct timechart *tchart,
926                  struct perf_evsel *evsel,
927                  struct perf_sample *sample)
928 {
929         long fd = perf_evsel__intval(evsel, sample, "fd");
930         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
931                                    sample->time, fd);
932 }
933
934 static int
935 process_exit_rx(struct timechart *tchart,
936                 struct perf_evsel *evsel,
937                 struct perf_sample *sample)
938 {
939         long ret = perf_evsel__intval(evsel, sample, "ret");
940         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
941                                  sample->time, ret);
942 }
943
944 static int
945 process_enter_poll(struct timechart *tchart,
946                    struct perf_evsel *evsel,
947                    struct perf_sample *sample)
948 {
949         long fd = perf_evsel__intval(evsel, sample, "fd");
950         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
951                                    sample->time, fd);
952 }
953
954 static int
955 process_exit_poll(struct timechart *tchart,
956                   struct perf_evsel *evsel,
957                   struct perf_sample *sample)
958 {
959         long ret = perf_evsel__intval(evsel, sample, "ret");
960         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
961                                  sample->time, ret);
962 }
963
964 /*
965  * Sort the pid datastructure
966  */
967 static void sort_pids(struct timechart *tchart)
968 {
969         struct per_pid *new_list, *p, *cursor, *prev;
970         /* sort by ppid first, then by pid, lowest to highest */
971
972         new_list = NULL;
973
974         while (tchart->all_data) {
975                 p = tchart->all_data;
976                 tchart->all_data = p->next;
977                 p->next = NULL;
978
979                 if (new_list == NULL) {
980                         new_list = p;
981                         p->next = NULL;
982                         continue;
983                 }
984                 prev = NULL;
985                 cursor = new_list;
986                 while (cursor) {
987                         if (cursor->ppid > p->ppid ||
988                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
989                                 /* must insert before */
990                                 if (prev) {
991                                         p->next = prev->next;
992                                         prev->next = p;
993                                         cursor = NULL;
994                                         continue;
995                                 } else {
996                                         p->next = new_list;
997                                         new_list = p;
998                                         cursor = NULL;
999                                         continue;
1000                                 }
1001                         }
1002
1003                         prev = cursor;
1004                         cursor = cursor->next;
1005                         if (!cursor)
1006                                 prev->next = p;
1007                 }
1008         }
1009         tchart->all_data = new_list;
1010 }
1011
1012
1013 static void draw_c_p_states(struct timechart *tchart)
1014 {
1015         struct power_event *pwr;
1016         pwr = tchart->power_events;
1017
1018         /*
1019          * two pass drawing so that the P state bars are on top of the C state blocks
1020          */
1021         while (pwr) {
1022                 if (pwr->type == CSTATE)
1023                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1024                 pwr = pwr->next;
1025         }
1026
1027         pwr = tchart->power_events;
1028         while (pwr) {
1029                 if (pwr->type == PSTATE) {
1030                         if (!pwr->state)
1031                                 pwr->state = tchart->min_freq;
1032                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1033                 }
1034                 pwr = pwr->next;
1035         }
1036 }
1037
1038 static void draw_wakeups(struct timechart *tchart)
1039 {
1040         struct wake_event *we;
1041         struct per_pid *p;
1042         struct per_pidcomm *c;
1043
1044         we = tchart->wake_events;
1045         while (we) {
1046                 int from = 0, to = 0;
1047                 char *task_from = NULL, *task_to = NULL;
1048
1049                 /* locate the column of the waker and wakee */
1050                 p = tchart->all_data;
1051                 while (p) {
1052                         if (p->pid == we->waker || p->pid == we->wakee) {
1053                                 c = p->all;
1054                                 while (c) {
1055                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1056                                                 if (p->pid == we->waker && !from) {
1057                                                         from = c->Y;
1058                                                         task_from = strdup(c->comm);
1059                                                 }
1060                                                 if (p->pid == we->wakee && !to) {
1061                                                         to = c->Y;
1062                                                         task_to = strdup(c->comm);
1063                                                 }
1064                                         }
1065                                         c = c->next;
1066                                 }
1067                                 c = p->all;
1068                                 while (c) {
1069                                         if (p->pid == we->waker && !from) {
1070                                                 from = c->Y;
1071                                                 task_from = strdup(c->comm);
1072                                         }
1073                                         if (p->pid == we->wakee && !to) {
1074                                                 to = c->Y;
1075                                                 task_to = strdup(c->comm);
1076                                         }
1077                                         c = c->next;
1078                                 }
1079                         }
1080                         p = p->next;
1081                 }
1082
1083                 if (!task_from) {
1084                         task_from = malloc(40);
1085                         sprintf(task_from, "[%i]", we->waker);
1086                 }
1087                 if (!task_to) {
1088                         task_to = malloc(40);
1089                         sprintf(task_to, "[%i]", we->wakee);
1090                 }
1091
1092                 if (we->waker == -1)
1093                         svg_interrupt(we->time, to, we->backtrace);
1094                 else if (from && to && abs(from - to) == 1)
1095                         svg_wakeline(we->time, from, to, we->backtrace);
1096                 else
1097                         svg_partial_wakeline(we->time, from, task_from, to,
1098                                              task_to, we->backtrace);
1099                 we = we->next;
1100
1101                 free(task_from);
1102                 free(task_to);
1103         }
1104 }
1105
1106 static void draw_cpu_usage(struct timechart *tchart)
1107 {
1108         struct per_pid *p;
1109         struct per_pidcomm *c;
1110         struct cpu_sample *sample;
1111         p = tchart->all_data;
1112         while (p) {
1113                 c = p->all;
1114                 while (c) {
1115                         sample = c->samples;
1116                         while (sample) {
1117                                 if (sample->type == TYPE_RUNNING) {
1118                                         svg_process(sample->cpu,
1119                                                     sample->start_time,
1120                                                     sample->end_time,
1121                                                     p->pid,
1122                                                     c->comm,
1123                                                     sample->backtrace);
1124                                 }
1125
1126                                 sample = sample->next;
1127                         }
1128                         c = c->next;
1129                 }
1130                 p = p->next;
1131         }
1132 }
1133
1134 static void draw_io_bars(struct timechart *tchart)
1135 {
1136         const char *suf;
1137         double bytes;
1138         char comm[256];
1139         struct per_pid *p;
1140         struct per_pidcomm *c;
1141         struct io_sample *sample;
1142         int Y = 1;
1143
1144         p = tchart->all_data;
1145         while (p) {
1146                 c = p->all;
1147                 while (c) {
1148                         if (!c->display) {
1149                                 c->Y = 0;
1150                                 c = c->next;
1151                                 continue;
1152                         }
1153
1154                         svg_box(Y, c->start_time, c->end_time, "process3");
1155                         sample = c->io_samples;
1156                         for (sample = c->io_samples; sample; sample = sample->next) {
1157                                 double h = (double)sample->bytes / c->max_bytes;
1158
1159                                 if (tchart->skip_eagain &&
1160                                     sample->err == -EAGAIN)
1161                                         continue;
1162
1163                                 if (sample->err)
1164                                         h = 1;
1165
1166                                 if (sample->type == IOTYPE_SYNC)
1167                                         svg_fbox(Y,
1168                                                 sample->start_time,
1169                                                 sample->end_time,
1170                                                 1,
1171                                                 sample->err ? "error" : "sync",
1172                                                 sample->fd,
1173                                                 sample->err,
1174                                                 sample->merges);
1175                                 else if (sample->type == IOTYPE_POLL)
1176                                         svg_fbox(Y,
1177                                                 sample->start_time,
1178                                                 sample->end_time,
1179                                                 1,
1180                                                 sample->err ? "error" : "poll",
1181                                                 sample->fd,
1182                                                 sample->err,
1183                                                 sample->merges);
1184                                 else if (sample->type == IOTYPE_READ)
1185                                         svg_ubox(Y,
1186                                                 sample->start_time,
1187                                                 sample->end_time,
1188                                                 h,
1189                                                 sample->err ? "error" : "disk",
1190                                                 sample->fd,
1191                                                 sample->err,
1192                                                 sample->merges);
1193                                 else if (sample->type == IOTYPE_WRITE)
1194                                         svg_lbox(Y,
1195                                                 sample->start_time,
1196                                                 sample->end_time,
1197                                                 h,
1198                                                 sample->err ? "error" : "disk",
1199                                                 sample->fd,
1200                                                 sample->err,
1201                                                 sample->merges);
1202                                 else if (sample->type == IOTYPE_RX)
1203                                         svg_ubox(Y,
1204                                                 sample->start_time,
1205                                                 sample->end_time,
1206                                                 h,
1207                                                 sample->err ? "error" : "net",
1208                                                 sample->fd,
1209                                                 sample->err,
1210                                                 sample->merges);
1211                                 else if (sample->type == IOTYPE_TX)
1212                                         svg_lbox(Y,
1213                                                 sample->start_time,
1214                                                 sample->end_time,
1215                                                 h,
1216                                                 sample->err ? "error" : "net",
1217                                                 sample->fd,
1218                                                 sample->err,
1219                                                 sample->merges);
1220                         }
1221
1222                         suf = "";
1223                         bytes = c->total_bytes;
1224                         if (bytes > 1024) {
1225                                 bytes = bytes / 1024;
1226                                 suf = "K";
1227                         }
1228                         if (bytes > 1024) {
1229                                 bytes = bytes / 1024;
1230                                 suf = "M";
1231                         }
1232                         if (bytes > 1024) {
1233                                 bytes = bytes / 1024;
1234                                 suf = "G";
1235                         }
1236
1237
1238                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1239                         svg_text(Y, c->start_time, comm);
1240
1241                         c->Y = Y;
1242                         Y++;
1243                         c = c->next;
1244                 }
1245                 p = p->next;
1246         }
1247 }
1248
1249 static void draw_process_bars(struct timechart *tchart)
1250 {
1251         struct per_pid *p;
1252         struct per_pidcomm *c;
1253         struct cpu_sample *sample;
1254         int Y = 0;
1255
1256         Y = 2 * tchart->numcpus + 2;
1257
1258         p = tchart->all_data;
1259         while (p) {
1260                 c = p->all;
1261                 while (c) {
1262                         if (!c->display) {
1263                                 c->Y = 0;
1264                                 c = c->next;
1265                                 continue;
1266                         }
1267
1268                         svg_box(Y, c->start_time, c->end_time, "process");
1269                         sample = c->samples;
1270                         while (sample) {
1271                                 if (sample->type == TYPE_RUNNING)
1272                                         svg_running(Y, sample->cpu,
1273                                                     sample->start_time,
1274                                                     sample->end_time,
1275                                                     sample->backtrace);
1276                                 if (sample->type == TYPE_BLOCKED)
1277                                         svg_blocked(Y, sample->cpu,
1278                                                     sample->start_time,
1279                                                     sample->end_time,
1280                                                     sample->backtrace);
1281                                 if (sample->type == TYPE_WAITING)
1282                                         svg_waiting(Y, sample->cpu,
1283                                                     sample->start_time,
1284                                                     sample->end_time,
1285                                                     sample->backtrace);
1286                                 sample = sample->next;
1287                         }
1288
1289                         if (c->comm) {
1290                                 char comm[256];
1291                                 if (c->total_time > 5000000000) /* 5 seconds */
1292                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1293                                 else
1294                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1295
1296                                 svg_text(Y, c->start_time, comm);
1297                         }
1298                         c->Y = Y;
1299                         Y++;
1300                         c = c->next;
1301                 }
1302                 p = p->next;
1303         }
1304 }
1305
1306 static void add_process_filter(const char *string)
1307 {
1308         int pid = strtoull(string, NULL, 10);
1309         struct process_filter *filt = malloc(sizeof(*filt));
1310
1311         if (!filt)
1312                 return;
1313
1314         filt->name = strdup(string);
1315         filt->pid  = pid;
1316         filt->next = process_filter;
1317
1318         process_filter = filt;
1319 }
1320
1321 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1322 {
1323         struct process_filter *filt;
1324         if (!process_filter)
1325                 return 1;
1326
1327         filt = process_filter;
1328         while (filt) {
1329                 if (filt->pid && p->pid == filt->pid)
1330                         return 1;
1331                 if (strcmp(filt->name, c->comm) == 0)
1332                         return 1;
1333                 filt = filt->next;
1334         }
1335         return 0;
1336 }
1337
1338 static int determine_display_tasks_filtered(struct timechart *tchart)
1339 {
1340         struct per_pid *p;
1341         struct per_pidcomm *c;
1342         int count = 0;
1343
1344         p = tchart->all_data;
1345         while (p) {
1346                 p->display = 0;
1347                 if (p->start_time == 1)
1348                         p->start_time = tchart->first_time;
1349
1350                 /* no exit marker, task kept running to the end */
1351                 if (p->end_time == 0)
1352                         p->end_time = tchart->last_time;
1353
1354                 c = p->all;
1355
1356                 while (c) {
1357                         c->display = 0;
1358
1359                         if (c->start_time == 1)
1360                                 c->start_time = tchart->first_time;
1361
1362                         if (passes_filter(p, c)) {
1363                                 c->display = 1;
1364                                 p->display = 1;
1365                                 count++;
1366                         }
1367
1368                         if (c->end_time == 0)
1369                                 c->end_time = tchart->last_time;
1370
1371                         c = c->next;
1372                 }
1373                 p = p->next;
1374         }
1375         return count;
1376 }
1377
1378 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1379 {
1380         struct per_pid *p;
1381         struct per_pidcomm *c;
1382         int count = 0;
1383
1384         p = tchart->all_data;
1385         while (p) {
1386                 p->display = 0;
1387                 if (p->start_time == 1)
1388                         p->start_time = tchart->first_time;
1389
1390                 /* no exit marker, task kept running to the end */
1391                 if (p->end_time == 0)
1392                         p->end_time = tchart->last_time;
1393                 if (p->total_time >= threshold)
1394                         p->display = 1;
1395
1396                 c = p->all;
1397
1398                 while (c) {
1399                         c->display = 0;
1400
1401                         if (c->start_time == 1)
1402                                 c->start_time = tchart->first_time;
1403
1404                         if (c->total_time >= threshold) {
1405                                 c->display = 1;
1406                                 count++;
1407                         }
1408
1409                         if (c->end_time == 0)
1410                                 c->end_time = tchart->last_time;
1411
1412                         c = c->next;
1413                 }
1414                 p = p->next;
1415         }
1416         return count;
1417 }
1418
1419 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1420 {
1421         struct per_pid *p;
1422         struct per_pidcomm *c;
1423         int count = 0;
1424
1425         p = timechart->all_data;
1426         while (p) {
1427                 /* no exit marker, task kept running to the end */
1428                 if (p->end_time == 0)
1429                         p->end_time = timechart->last_time;
1430
1431                 c = p->all;
1432
1433                 while (c) {
1434                         c->display = 0;
1435
1436                         if (c->total_bytes >= threshold) {
1437                                 c->display = 1;
1438                                 count++;
1439                         }
1440
1441                         if (c->end_time == 0)
1442                                 c->end_time = timechart->last_time;
1443
1444                         c = c->next;
1445                 }
1446                 p = p->next;
1447         }
1448         return count;
1449 }
1450
1451 #define BYTES_THRESH (1 * 1024 * 1024)
1452 #define TIME_THRESH 10000000
1453
1454 static void write_svg_file(struct timechart *tchart, const char *filename)
1455 {
1456         u64 i;
1457         int count;
1458         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1459
1460         if (tchart->power_only)
1461                 tchart->proc_num = 0;
1462
1463         /* We'd like to show at least proc_num tasks;
1464          * be less picky if we have fewer */
1465         do {
1466                 if (process_filter)
1467                         count = determine_display_tasks_filtered(tchart);
1468                 else if (tchart->io_events)
1469                         count = determine_display_io_tasks(tchart, thresh);
1470                 else
1471                         count = determine_display_tasks(tchart, thresh);
1472                 thresh /= 10;
1473         } while (!process_filter && thresh && count < tchart->proc_num);
1474
1475         if (!tchart->proc_num)
1476                 count = 0;
1477
1478         if (tchart->io_events) {
1479                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1480
1481                 svg_time_grid(0.5);
1482                 svg_io_legenda();
1483
1484                 draw_io_bars(tchart);
1485         } else {
1486                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1487
1488                 svg_time_grid(0);
1489
1490                 svg_legenda();
1491
1492                 for (i = 0; i < tchart->numcpus; i++)
1493                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1494
1495                 draw_cpu_usage(tchart);
1496                 if (tchart->proc_num)
1497                         draw_process_bars(tchart);
1498                 if (!tchart->tasks_only)
1499                         draw_c_p_states(tchart);
1500                 if (tchart->proc_num)
1501                         draw_wakeups(tchart);
1502         }
1503
1504         svg_close();
1505 }
1506
1507 static int process_header(struct perf_file_section *section __maybe_unused,
1508                           struct perf_header *ph,
1509                           int feat,
1510                           int fd __maybe_unused,
1511                           void *data)
1512 {
1513         struct timechart *tchart = data;
1514
1515         switch (feat) {
1516         case HEADER_NRCPUS:
1517                 tchart->numcpus = ph->env.nr_cpus_avail;
1518                 break;
1519
1520         case HEADER_CPU_TOPOLOGY:
1521                 if (!tchart->topology)
1522                         break;
1523
1524                 if (svg_build_topology_map(ph->env.sibling_cores,
1525                                            ph->env.nr_sibling_cores,
1526                                            ph->env.sibling_threads,
1527                                            ph->env.nr_sibling_threads))
1528                         fprintf(stderr, "problem building topology\n");
1529                 break;
1530
1531         default:
1532                 break;
1533         }
1534
1535         return 0;
1536 }
1537
1538 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1539 {
1540         const struct perf_evsel_str_handler power_tracepoints[] = {
1541                 { "power:cpu_idle",             process_sample_cpu_idle },
1542                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1543                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1544                 { "sched:sched_switch",         process_sample_sched_switch },
1545 #ifdef SUPPORT_OLD_POWER_EVENTS
1546                 { "power:power_start",          process_sample_power_start },
1547                 { "power:power_end",            process_sample_power_end },
1548                 { "power:power_frequency",      process_sample_power_frequency },
1549 #endif
1550
1551                 { "syscalls:sys_enter_read",            process_enter_read },
1552                 { "syscalls:sys_enter_pread64",         process_enter_read },
1553                 { "syscalls:sys_enter_readv",           process_enter_read },
1554                 { "syscalls:sys_enter_preadv",          process_enter_read },
1555                 { "syscalls:sys_enter_write",           process_enter_write },
1556                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1557                 { "syscalls:sys_enter_writev",          process_enter_write },
1558                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1559                 { "syscalls:sys_enter_sync",            process_enter_sync },
1560                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1561                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1562                 { "syscalls:sys_enter_msync",           process_enter_sync },
1563                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1564                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1565                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1566                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1567                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1568                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1569                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1570                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1571                 { "syscalls:sys_enter_poll",            process_enter_poll },
1572                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1573                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1574                 { "syscalls:sys_enter_select",          process_enter_poll },
1575
1576                 { "syscalls:sys_exit_read",             process_exit_read },
1577                 { "syscalls:sys_exit_pread64",          process_exit_read },
1578                 { "syscalls:sys_exit_readv",            process_exit_read },
1579                 { "syscalls:sys_exit_preadv",           process_exit_read },
1580                 { "syscalls:sys_exit_write",            process_exit_write },
1581                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1582                 { "syscalls:sys_exit_writev",           process_exit_write },
1583                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1584                 { "syscalls:sys_exit_sync",             process_exit_sync },
1585                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1586                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1587                 { "syscalls:sys_exit_msync",            process_exit_sync },
1588                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1589                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1590                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1591                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1592                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1593                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1594                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1595                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1596                 { "syscalls:sys_exit_poll",             process_exit_poll },
1597                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1598                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1599                 { "syscalls:sys_exit_select",           process_exit_poll },
1600         };
1601         struct perf_data_file file = {
1602                 .path = input_name,
1603                 .mode = PERF_DATA_MODE_READ,
1604                 .force = tchart->force,
1605         };
1606
1607         struct perf_session *session = perf_session__new(&file, false,
1608                                                          &tchart->tool);
1609         int ret = -EINVAL;
1610
1611         if (session == NULL)
1612                 return -1;
1613
1614         symbol__init(&session->header.env);
1615
1616         (void)perf_header__process_sections(&session->header,
1617                                             perf_data_file__fd(session->file),
1618                                             tchart,
1619                                             process_header);
1620
1621         if (!perf_session__has_traces(session, "timechart record"))
1622                 goto out_delete;
1623
1624         if (perf_session__set_tracepoints_handlers(session,
1625                                                    power_tracepoints)) {
1626                 pr_err("Initializing session tracepoint handlers failed\n");
1627                 goto out_delete;
1628         }
1629
1630         ret = perf_session__process_events(session);
1631         if (ret)
1632                 goto out_delete;
1633
1634         end_sample_processing(tchart);
1635
1636         sort_pids(tchart);
1637
1638         write_svg_file(tchart, output_name);
1639
1640         pr_info("Written %2.1f seconds of trace to %s.\n",
1641                 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1642 out_delete:
1643         perf_session__delete(session);
1644         return ret;
1645 }
1646
1647 static int timechart__io_record(int argc, const char **argv)
1648 {
1649         unsigned int rec_argc, i;
1650         const char **rec_argv;
1651         const char **p;
1652         char *filter = NULL;
1653
1654         const char * const common_args[] = {
1655                 "record", "-a", "-R", "-c", "1",
1656         };
1657         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1658
1659         const char * const disk_events[] = {
1660                 "syscalls:sys_enter_read",
1661                 "syscalls:sys_enter_pread64",
1662                 "syscalls:sys_enter_readv",
1663                 "syscalls:sys_enter_preadv",
1664                 "syscalls:sys_enter_write",
1665                 "syscalls:sys_enter_pwrite64",
1666                 "syscalls:sys_enter_writev",
1667                 "syscalls:sys_enter_pwritev",
1668                 "syscalls:sys_enter_sync",
1669                 "syscalls:sys_enter_sync_file_range",
1670                 "syscalls:sys_enter_fsync",
1671                 "syscalls:sys_enter_msync",
1672
1673                 "syscalls:sys_exit_read",
1674                 "syscalls:sys_exit_pread64",
1675                 "syscalls:sys_exit_readv",
1676                 "syscalls:sys_exit_preadv",
1677                 "syscalls:sys_exit_write",
1678                 "syscalls:sys_exit_pwrite64",
1679                 "syscalls:sys_exit_writev",
1680                 "syscalls:sys_exit_pwritev",
1681                 "syscalls:sys_exit_sync",
1682                 "syscalls:sys_exit_sync_file_range",
1683                 "syscalls:sys_exit_fsync",
1684                 "syscalls:sys_exit_msync",
1685         };
1686         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1687
1688         const char * const net_events[] = {
1689                 "syscalls:sys_enter_recvfrom",
1690                 "syscalls:sys_enter_recvmmsg",
1691                 "syscalls:sys_enter_recvmsg",
1692                 "syscalls:sys_enter_sendto",
1693                 "syscalls:sys_enter_sendmsg",
1694                 "syscalls:sys_enter_sendmmsg",
1695
1696                 "syscalls:sys_exit_recvfrom",
1697                 "syscalls:sys_exit_recvmmsg",
1698                 "syscalls:sys_exit_recvmsg",
1699                 "syscalls:sys_exit_sendto",
1700                 "syscalls:sys_exit_sendmsg",
1701                 "syscalls:sys_exit_sendmmsg",
1702         };
1703         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1704
1705         const char * const poll_events[] = {
1706                 "syscalls:sys_enter_epoll_pwait",
1707                 "syscalls:sys_enter_epoll_wait",
1708                 "syscalls:sys_enter_poll",
1709                 "syscalls:sys_enter_ppoll",
1710                 "syscalls:sys_enter_pselect6",
1711                 "syscalls:sys_enter_select",
1712
1713                 "syscalls:sys_exit_epoll_pwait",
1714                 "syscalls:sys_exit_epoll_wait",
1715                 "syscalls:sys_exit_poll",
1716                 "syscalls:sys_exit_ppoll",
1717                 "syscalls:sys_exit_pselect6",
1718                 "syscalls:sys_exit_select",
1719         };
1720         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1721
1722         rec_argc = common_args_nr +
1723                 disk_events_nr * 4 +
1724                 net_events_nr * 4 +
1725                 poll_events_nr * 4 +
1726                 argc;
1727         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1728
1729         if (rec_argv == NULL)
1730                 return -ENOMEM;
1731
1732         if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1733                 return -ENOMEM;
1734
1735         p = rec_argv;
1736         for (i = 0; i < common_args_nr; i++)
1737                 *p++ = strdup(common_args[i]);
1738
1739         for (i = 0; i < disk_events_nr; i++) {
1740                 if (!is_valid_tracepoint(disk_events[i])) {
1741                         rec_argc -= 4;
1742                         continue;
1743                 }
1744
1745                 *p++ = "-e";
1746                 *p++ = strdup(disk_events[i]);
1747                 *p++ = "--filter";
1748                 *p++ = filter;
1749         }
1750         for (i = 0; i < net_events_nr; i++) {
1751                 if (!is_valid_tracepoint(net_events[i])) {
1752                         rec_argc -= 4;
1753                         continue;
1754                 }
1755
1756                 *p++ = "-e";
1757                 *p++ = strdup(net_events[i]);
1758                 *p++ = "--filter";
1759                 *p++ = filter;
1760         }
1761         for (i = 0; i < poll_events_nr; i++) {
1762                 if (!is_valid_tracepoint(poll_events[i])) {
1763                         rec_argc -= 4;
1764                         continue;
1765                 }
1766
1767                 *p++ = "-e";
1768                 *p++ = strdup(poll_events[i]);
1769                 *p++ = "--filter";
1770                 *p++ = filter;
1771         }
1772
1773         for (i = 0; i < (unsigned int)argc; i++)
1774                 *p++ = argv[i];
1775
1776         return cmd_record(rec_argc, rec_argv, NULL);
1777 }
1778
1779
1780 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1781 {
1782         unsigned int rec_argc, i, j;
1783         const char **rec_argv;
1784         const char **p;
1785         unsigned int record_elems;
1786
1787         const char * const common_args[] = {
1788                 "record", "-a", "-R", "-c", "1",
1789         };
1790         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1791
1792         const char * const backtrace_args[] = {
1793                 "-g",
1794         };
1795         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1796
1797         const char * const power_args[] = {
1798                 "-e", "power:cpu_frequency",
1799                 "-e", "power:cpu_idle",
1800         };
1801         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1802
1803         const char * const old_power_args[] = {
1804 #ifdef SUPPORT_OLD_POWER_EVENTS
1805                 "-e", "power:power_start",
1806                 "-e", "power:power_end",
1807                 "-e", "power:power_frequency",
1808 #endif
1809         };
1810         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1811
1812         const char * const tasks_args[] = {
1813                 "-e", "sched:sched_wakeup",
1814                 "-e", "sched:sched_switch",
1815         };
1816         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1817
1818 #ifdef SUPPORT_OLD_POWER_EVENTS
1819         if (!is_valid_tracepoint("power:cpu_idle") &&
1820             is_valid_tracepoint("power:power_start")) {
1821                 use_old_power_events = 1;
1822                 power_args_nr = 0;
1823         } else {
1824                 old_power_args_nr = 0;
1825         }
1826 #endif
1827
1828         if (tchart->power_only)
1829                 tasks_args_nr = 0;
1830
1831         if (tchart->tasks_only) {
1832                 power_args_nr = 0;
1833                 old_power_args_nr = 0;
1834         }
1835
1836         if (!tchart->with_backtrace)
1837                 backtrace_args_no = 0;
1838
1839         record_elems = common_args_nr + tasks_args_nr +
1840                 power_args_nr + old_power_args_nr + backtrace_args_no;
1841
1842         rec_argc = record_elems + argc;
1843         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1844
1845         if (rec_argv == NULL)
1846                 return -ENOMEM;
1847
1848         p = rec_argv;
1849         for (i = 0; i < common_args_nr; i++)
1850                 *p++ = strdup(common_args[i]);
1851
1852         for (i = 0; i < backtrace_args_no; i++)
1853                 *p++ = strdup(backtrace_args[i]);
1854
1855         for (i = 0; i < tasks_args_nr; i++)
1856                 *p++ = strdup(tasks_args[i]);
1857
1858         for (i = 0; i < power_args_nr; i++)
1859                 *p++ = strdup(power_args[i]);
1860
1861         for (i = 0; i < old_power_args_nr; i++)
1862                 *p++ = strdup(old_power_args[i]);
1863
1864         for (j = 0; j < (unsigned int)argc; j++)
1865                 *p++ = argv[j];
1866
1867         return cmd_record(rec_argc, rec_argv, NULL);
1868 }
1869
1870 static int
1871 parse_process(const struct option *opt __maybe_unused, const char *arg,
1872               int __maybe_unused unset)
1873 {
1874         if (arg)
1875                 add_process_filter(arg);
1876         return 0;
1877 }
1878
1879 static int
1880 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1881                 int __maybe_unused unset)
1882 {
1883         unsigned long duration = strtoul(arg, NULL, 0);
1884
1885         if (svg_highlight || svg_highlight_name)
1886                 return -1;
1887
1888         if (duration)
1889                 svg_highlight = duration;
1890         else
1891                 svg_highlight_name = strdup(arg);
1892
1893         return 0;
1894 }
1895
1896 static int
1897 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1898 {
1899         char unit = 'n';
1900         u64 *value = opt->value;
1901
1902         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1903                 switch (unit) {
1904                 case 'm':
1905                         *value *= NSEC_PER_MSEC;
1906                         break;
1907                 case 'u':
1908                         *value *= NSEC_PER_USEC;
1909                         break;
1910                 case 'n':
1911                         break;
1912                 default:
1913                         return -1;
1914                 }
1915         }
1916
1917         return 0;
1918 }
1919
1920 int cmd_timechart(int argc, const char **argv,
1921                   const char *prefix __maybe_unused)
1922 {
1923         struct timechart tchart = {
1924                 .tool = {
1925                         .comm            = process_comm_event,
1926                         .fork            = process_fork_event,
1927                         .exit            = process_exit_event,
1928                         .sample          = process_sample_event,
1929                         .ordered_events  = true,
1930                 },
1931                 .proc_num = 15,
1932                 .min_time = NSEC_PER_MSEC,
1933                 .merge_dist = 1000,
1934         };
1935         const char *output_name = "output.svg";
1936         const struct option timechart_options[] = {
1937         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941                       "highlight tasks. Pass duration in ns or process name.",
1942                        parse_highlight),
1943         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1945                     "output processes data only"),
1946         OPT_CALLBACK('p', "process", NULL, "process",
1947                       "process selector. Pass a pid or process name.",
1948                        parse_process),
1949         OPT_CALLBACK(0, "symfs", NULL, "directory",
1950                      "Look for files with symbols relative to this directory",
1951                      symbol__config_symfs),
1952         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1953                     "min. number of tasks to print"),
1954         OPT_BOOLEAN('t', "topology", &tchart.topology,
1955                     "sort CPUs according to topology"),
1956         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1957                     "skip EAGAIN errors"),
1958         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1959                      "all IO faster than min-time will visually appear longer",
1960                      parse_time),
1961         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1962                      "merge events that are merge-dist us apart",
1963                      parse_time),
1964         OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1965         OPT_END()
1966         };
1967         const char * const timechart_subcommands[] = { "record", NULL };
1968         const char *timechart_usage[] = {
1969                 "perf timechart [<options>] {record}",
1970                 NULL
1971         };
1972
1973         const struct option timechart_record_options[] = {
1974         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1975         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1976                     "output processes data only"),
1977         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1978                     "record only IO data"),
1979         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1980         OPT_END()
1981         };
1982         const char * const timechart_record_usage[] = {
1983                 "perf timechart record [<options>]",
1984                 NULL
1985         };
1986         argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1987                         timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1988
1989         if (tchart.power_only && tchart.tasks_only) {
1990                 pr_err("-P and -T options cannot be used at the same time.\n");
1991                 return -1;
1992         }
1993
1994         if (argc && !strncmp(argv[0], "rec", 3)) {
1995                 argc = parse_options(argc, argv, timechart_record_options,
1996                                      timechart_record_usage,
1997                                      PARSE_OPT_STOP_AT_NON_OPTION);
1998
1999                 if (tchart.power_only && tchart.tasks_only) {
2000                         pr_err("-P and -T options cannot be used at the same time.\n");
2001                         return -1;
2002                 }
2003
2004                 if (tchart.io_only)
2005                         return timechart__io_record(argc, argv);
2006                 else
2007                         return timechart__record(&tchart, argc, argv);
2008         } else if (argc)
2009                 usage_with_options(timechart_usage, timechart_options);
2010
2011         setup_pager();
2012
2013         return __cmd_timechart(&tchart, output_name);
2014 }