2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
15 #include <traceevent/event-parse.h>
19 #include "util/util.h"
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include <linux/time64.h>
28 #include "util/symbol.h"
29 #include "util/callchain.h"
30 #include "util/strlist.h"
33 #include "util/header.h"
34 #include <subcmd/parse-options.h>
35 #include "util/parse-events.h"
36 #include "util/event.h"
37 #include "util/session.h"
38 #include "util/svghelper.h"
39 #include "util/tool.h"
40 #include "util/data.h"
41 #include "util/debug.h"
43 #define SUPPORT_OLD_POWER_EVENTS 1
44 #define PWR_EVENT_EXIT -1
51 struct perf_tool tool;
52 struct per_pid *all_data;
53 struct power_event *power_events;
54 struct wake_event *wake_events;
57 u64 min_freq, /* Lowest CPU frequency seen */
58 max_freq, /* Highest CPU frequency seen */
60 first_time, last_time;
66 /* IO related settings */
79 * Datastructure layout:
80 * We keep an list of "pid"s, matching the kernels notion of a task struct.
81 * Each "pid" entry, has a list of "comm"s.
82 * this is because we want to track different programs different, while
83 * exec will reuse the original pid (by design).
84 * Each comm has a list of samples that will be used to draw
100 struct per_pidcomm *all;
101 struct per_pidcomm *current;
106 struct per_pidcomm *next;
122 struct cpu_sample *samples;
123 struct io_sample *io_samples;
126 struct sample_wrapper {
127 struct sample_wrapper *next;
130 unsigned char data[0];
134 #define TYPE_RUNNING 1
135 #define TYPE_WAITING 2
136 #define TYPE_BLOCKED 3
139 struct cpu_sample *next;
145 const char *backtrace;
158 struct io_sample *next;
173 struct power_event *next;
182 struct wake_event *next;
186 const char *backtrace;
189 struct process_filter {
192 struct process_filter *next;
195 static struct process_filter *process_filter;
198 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
200 struct per_pid *cursor = tchart->all_data;
203 if (cursor->pid == pid)
205 cursor = cursor->next;
207 cursor = zalloc(sizeof(*cursor));
208 assert(cursor != NULL);
210 cursor->next = tchart->all_data;
211 tchart->all_data = cursor;
215 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
218 struct per_pidcomm *c;
219 p = find_create_pid(tchart, pid);
222 if (c->comm && strcmp(c->comm, comm) == 0) {
227 c->comm = strdup(comm);
233 c = zalloc(sizeof(*c));
235 c->comm = strdup(comm);
241 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
243 struct per_pid *p, *pp;
244 p = find_create_pid(tchart, pid);
245 pp = find_create_pid(tchart, ppid);
247 if (pp->current && pp->current->comm && !p->current)
248 pid_set_comm(tchart, pid, pp->current->comm);
250 p->start_time = timestamp;
251 if (p->current && !p->current->start_time) {
252 p->current->start_time = timestamp;
253 p->current->state_since = timestamp;
257 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
260 p = find_create_pid(tchart, pid);
261 p->end_time = timestamp;
263 p->current->end_time = timestamp;
266 static void pid_put_sample(struct timechart *tchart, int pid, int type,
267 unsigned int cpu, u64 start, u64 end,
268 const char *backtrace)
271 struct per_pidcomm *c;
272 struct cpu_sample *sample;
274 p = find_create_pid(tchart, pid);
277 c = zalloc(sizeof(*c));
284 sample = zalloc(sizeof(*sample));
285 assert(sample != NULL);
286 sample->start_time = start;
287 sample->end_time = end;
289 sample->next = c->samples;
291 sample->backtrace = backtrace;
294 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
295 c->total_time += (end-start);
296 p->total_time += (end-start);
299 if (c->start_time == 0 || c->start_time > start)
300 c->start_time = start;
301 if (p->start_time == 0 || p->start_time > start)
302 p->start_time = start;
305 #define MAX_CPUS 4096
307 static u64 cpus_cstate_start_times[MAX_CPUS];
308 static int cpus_cstate_state[MAX_CPUS];
309 static u64 cpus_pstate_start_times[MAX_CPUS];
310 static u64 cpus_pstate_state[MAX_CPUS];
312 static int process_comm_event(struct perf_tool *tool,
313 union perf_event *event,
314 struct perf_sample *sample __maybe_unused,
315 struct machine *machine __maybe_unused)
317 struct timechart *tchart = container_of(tool, struct timechart, tool);
318 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
322 static int process_fork_event(struct perf_tool *tool,
323 union perf_event *event,
324 struct perf_sample *sample __maybe_unused,
325 struct machine *machine __maybe_unused)
327 struct timechart *tchart = container_of(tool, struct timechart, tool);
328 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
332 static int process_exit_event(struct perf_tool *tool,
333 union perf_event *event,
334 struct perf_sample *sample __maybe_unused,
335 struct machine *machine __maybe_unused)
337 struct timechart *tchart = container_of(tool, struct timechart, tool);
338 pid_exit(tchart, event->fork.pid, event->fork.time);
342 #ifdef SUPPORT_OLD_POWER_EVENTS
343 static int use_old_power_events;
346 static void c_state_start(int cpu, u64 timestamp, int state)
348 cpus_cstate_start_times[cpu] = timestamp;
349 cpus_cstate_state[cpu] = state;
352 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
354 struct power_event *pwr = zalloc(sizeof(*pwr));
359 pwr->state = cpus_cstate_state[cpu];
360 pwr->start_time = cpus_cstate_start_times[cpu];
361 pwr->end_time = timestamp;
364 pwr->next = tchart->power_events;
366 tchart->power_events = pwr;
369 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
371 struct power_event *pwr;
373 if (new_freq > 8000000) /* detect invalid data */
376 pwr = zalloc(sizeof(*pwr));
380 pwr->state = cpus_pstate_state[cpu];
381 pwr->start_time = cpus_pstate_start_times[cpu];
382 pwr->end_time = timestamp;
385 pwr->next = tchart->power_events;
387 if (!pwr->start_time)
388 pwr->start_time = tchart->first_time;
390 tchart->power_events = pwr;
392 cpus_pstate_state[cpu] = new_freq;
393 cpus_pstate_start_times[cpu] = timestamp;
395 if ((u64)new_freq > tchart->max_freq)
396 tchart->max_freq = new_freq;
398 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
399 tchart->min_freq = new_freq;
401 if (new_freq == tchart->max_freq - 1000)
402 tchart->turbo_frequency = tchart->max_freq;
405 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
406 int waker, int wakee, u8 flags, const char *backtrace)
409 struct wake_event *we = zalloc(sizeof(*we));
414 we->time = timestamp;
416 we->backtrace = backtrace;
418 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
422 we->next = tchart->wake_events;
423 tchart->wake_events = we;
424 p = find_create_pid(tchart, we->wakee);
426 if (p && p->current && p->current->state == TYPE_NONE) {
427 p->current->state_since = timestamp;
428 p->current->state = TYPE_WAITING;
430 if (p && p->current && p->current->state == TYPE_BLOCKED) {
431 pid_put_sample(tchart, p->pid, p->current->state, cpu,
432 p->current->state_since, timestamp, NULL);
433 p->current->state_since = timestamp;
434 p->current->state = TYPE_WAITING;
438 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
439 int prev_pid, int next_pid, u64 prev_state,
440 const char *backtrace)
442 struct per_pid *p = NULL, *prev_p;
444 prev_p = find_create_pid(tchart, prev_pid);
446 p = find_create_pid(tchart, next_pid);
448 if (prev_p->current && prev_p->current->state != TYPE_NONE)
449 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
450 prev_p->current->state_since, timestamp,
452 if (p && p->current) {
453 if (p->current->state != TYPE_NONE)
454 pid_put_sample(tchart, next_pid, p->current->state, cpu,
455 p->current->state_since, timestamp,
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_RUNNING;
462 if (prev_p->current) {
463 prev_p->current->state = TYPE_NONE;
464 prev_p->current->state_since = timestamp;
466 prev_p->current->state = TYPE_BLOCKED;
468 prev_p->current->state = TYPE_WAITING;
472 static const char *cat_backtrace(union perf_event *event,
473 struct perf_sample *sample,
474 struct machine *machine)
476 struct addr_location al;
480 u8 cpumode = PERF_RECORD_MISC_USER;
481 struct addr_location tal;
482 struct ip_callchain *chain = sample->callchain;
483 FILE *f = open_memstream(&p, &p_len);
486 perror("open_memstream error");
493 if (machine__resolve(machine, &al, sample) < 0) {
494 fprintf(stderr, "problem processing %d event, skipping it.\n",
499 for (i = 0; i < chain->nr; i++) {
502 if (callchain_param.order == ORDER_CALLEE)
505 ip = chain->ips[chain->nr - i - 1];
507 if (ip >= PERF_CONTEXT_MAX) {
509 case PERF_CONTEXT_HV:
510 cpumode = PERF_RECORD_MISC_HYPERVISOR;
512 case PERF_CONTEXT_KERNEL:
513 cpumode = PERF_RECORD_MISC_KERNEL;
515 case PERF_CONTEXT_USER:
516 cpumode = PERF_RECORD_MISC_USER;
519 pr_debug("invalid callchain context: "
520 "%"PRId64"\n", (s64) ip);
523 * It seems the callchain is corrupted.
533 thread__find_addr_location(al.thread, cpumode,
534 MAP__FUNCTION, ip, &tal);
537 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
540 fprintf(f, "..... %016" PRIx64 "\n", ip);
543 addr_location__put(&al);
550 typedef int (*tracepoint_handler)(struct timechart *tchart,
551 struct perf_evsel *evsel,
552 struct perf_sample *sample,
553 const char *backtrace);
555 static int process_sample_event(struct perf_tool *tool,
556 union perf_event *event,
557 struct perf_sample *sample,
558 struct perf_evsel *evsel,
559 struct machine *machine)
561 struct timechart *tchart = container_of(tool, struct timechart, tool);
563 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
564 if (!tchart->first_time || tchart->first_time > sample->time)
565 tchart->first_time = sample->time;
566 if (tchart->last_time < sample->time)
567 tchart->last_time = sample->time;
570 if (evsel->handler != NULL) {
571 tracepoint_handler f = evsel->handler;
572 return f(tchart, evsel, sample,
573 cat_backtrace(event, sample, machine));
580 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
581 struct perf_evsel *evsel,
582 struct perf_sample *sample,
583 const char *backtrace __maybe_unused)
585 u32 state = perf_evsel__intval(evsel, sample, "state");
586 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
588 if (state == (u32)PWR_EVENT_EXIT)
589 c_state_end(tchart, cpu_id, sample->time);
591 c_state_start(cpu_id, sample->time, state);
596 process_sample_cpu_frequency(struct timechart *tchart,
597 struct perf_evsel *evsel,
598 struct perf_sample *sample,
599 const char *backtrace __maybe_unused)
601 u32 state = perf_evsel__intval(evsel, sample, "state");
602 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
604 p_state_change(tchart, cpu_id, sample->time, state);
609 process_sample_sched_wakeup(struct timechart *tchart,
610 struct perf_evsel *evsel,
611 struct perf_sample *sample,
612 const char *backtrace)
614 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
615 int waker = perf_evsel__intval(evsel, sample, "common_pid");
616 int wakee = perf_evsel__intval(evsel, sample, "pid");
618 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
623 process_sample_sched_switch(struct timechart *tchart,
624 struct perf_evsel *evsel,
625 struct perf_sample *sample,
626 const char *backtrace)
628 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
629 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
630 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
632 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
633 prev_state, backtrace);
637 #ifdef SUPPORT_OLD_POWER_EVENTS
639 process_sample_power_start(struct timechart *tchart __maybe_unused,
640 struct perf_evsel *evsel,
641 struct perf_sample *sample,
642 const char *backtrace __maybe_unused)
644 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
645 u64 value = perf_evsel__intval(evsel, sample, "value");
647 c_state_start(cpu_id, sample->time, value);
652 process_sample_power_end(struct timechart *tchart,
653 struct perf_evsel *evsel __maybe_unused,
654 struct perf_sample *sample,
655 const char *backtrace __maybe_unused)
657 c_state_end(tchart, sample->cpu, sample->time);
662 process_sample_power_frequency(struct timechart *tchart,
663 struct perf_evsel *evsel,
664 struct perf_sample *sample,
665 const char *backtrace __maybe_unused)
667 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
668 u64 value = perf_evsel__intval(evsel, sample, "value");
670 p_state_change(tchart, cpu_id, sample->time, value);
673 #endif /* SUPPORT_OLD_POWER_EVENTS */
676 * After the last sample we need to wrap up the current C/P state
677 * and close out each CPU for these.
679 static void end_sample_processing(struct timechart *tchart)
682 struct power_event *pwr;
684 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
687 pwr = zalloc(sizeof(*pwr));
691 pwr->state = cpus_cstate_state[cpu];
692 pwr->start_time = cpus_cstate_start_times[cpu];
693 pwr->end_time = tchart->last_time;
696 pwr->next = tchart->power_events;
698 tchart->power_events = pwr;
702 pwr = zalloc(sizeof(*pwr));
706 pwr->state = cpus_pstate_state[cpu];
707 pwr->start_time = cpus_pstate_start_times[cpu];
708 pwr->end_time = tchart->last_time;
711 pwr->next = tchart->power_events;
713 if (!pwr->start_time)
714 pwr->start_time = tchart->first_time;
716 pwr->state = tchart->min_freq;
717 tchart->power_events = pwr;
721 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
724 struct per_pid *p = find_create_pid(tchart, pid);
725 struct per_pidcomm *c = p->current;
726 struct io_sample *sample;
727 struct io_sample *prev;
730 c = zalloc(sizeof(*c));
738 prev = c->io_samples;
740 if (prev && prev->start_time && !prev->end_time) {
741 pr_warning("Skip invalid start event: "
742 "previous event already started!\n");
744 /* remove previous event that has been started,
745 * we are not sure we will ever get an end for it */
746 c->io_samples = prev->next;
751 sample = zalloc(sizeof(*sample));
754 sample->start_time = start;
757 sample->next = c->io_samples;
758 c->io_samples = sample;
760 if (c->start_time == 0 || c->start_time > start)
761 c->start_time = start;
766 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
769 struct per_pid *p = find_create_pid(tchart, pid);
770 struct per_pidcomm *c = p->current;
771 struct io_sample *sample, *prev;
774 pr_warning("Invalid pidcomm!\n");
778 sample = c->io_samples;
780 if (!sample) /* skip partially captured events */
783 if (sample->end_time) {
784 pr_warning("Skip invalid end event: "
785 "previous event already ended!\n");
789 if (sample->type != type) {
790 pr_warning("Skip invalid end event: invalid event type!\n");
794 sample->end_time = end;
797 /* we want to be able to see small and fast transfers, so make them
798 * at least min_time long, but don't overlap them */
799 if (sample->end_time - sample->start_time < tchart->min_time)
800 sample->end_time = sample->start_time + tchart->min_time;
801 if (prev && sample->start_time < prev->end_time) {
802 if (prev->err) /* try to make errors more visible */
803 sample->start_time = prev->end_time;
805 prev->end_time = sample->start_time;
810 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
811 type == IOTYPE_TX || type == IOTYPE_RX) {
813 if ((u64)ret > c->max_bytes)
816 c->total_bytes += ret;
817 p->total_bytes += ret;
821 /* merge two requests to make svg smaller and render-friendly */
823 prev->type == sample->type &&
824 prev->err == sample->err &&
825 prev->fd == sample->fd &&
826 prev->end_time + tchart->merge_dist >= sample->start_time) {
828 sample->bytes += prev->bytes;
829 sample->merges += prev->merges + 1;
831 sample->start_time = prev->start_time;
832 sample->next = prev->next;
835 if (!sample->err && sample->bytes > c->max_bytes)
836 c->max_bytes = sample->bytes;
845 process_enter_read(struct timechart *tchart,
846 struct perf_evsel *evsel,
847 struct perf_sample *sample)
849 long fd = perf_evsel__intval(evsel, sample, "fd");
850 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
855 process_exit_read(struct timechart *tchart,
856 struct perf_evsel *evsel,
857 struct perf_sample *sample)
859 long ret = perf_evsel__intval(evsel, sample, "ret");
860 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
865 process_enter_write(struct timechart *tchart,
866 struct perf_evsel *evsel,
867 struct perf_sample *sample)
869 long fd = perf_evsel__intval(evsel, sample, "fd");
870 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
875 process_exit_write(struct timechart *tchart,
876 struct perf_evsel *evsel,
877 struct perf_sample *sample)
879 long ret = perf_evsel__intval(evsel, sample, "ret");
880 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
885 process_enter_sync(struct timechart *tchart,
886 struct perf_evsel *evsel,
887 struct perf_sample *sample)
889 long fd = perf_evsel__intval(evsel, sample, "fd");
890 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
895 process_exit_sync(struct timechart *tchart,
896 struct perf_evsel *evsel,
897 struct perf_sample *sample)
899 long ret = perf_evsel__intval(evsel, sample, "ret");
900 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
905 process_enter_tx(struct timechart *tchart,
906 struct perf_evsel *evsel,
907 struct perf_sample *sample)
909 long fd = perf_evsel__intval(evsel, sample, "fd");
910 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
915 process_exit_tx(struct timechart *tchart,
916 struct perf_evsel *evsel,
917 struct perf_sample *sample)
919 long ret = perf_evsel__intval(evsel, sample, "ret");
920 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
925 process_enter_rx(struct timechart *tchart,
926 struct perf_evsel *evsel,
927 struct perf_sample *sample)
929 long fd = perf_evsel__intval(evsel, sample, "fd");
930 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
935 process_exit_rx(struct timechart *tchart,
936 struct perf_evsel *evsel,
937 struct perf_sample *sample)
939 long ret = perf_evsel__intval(evsel, sample, "ret");
940 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
945 process_enter_poll(struct timechart *tchart,
946 struct perf_evsel *evsel,
947 struct perf_sample *sample)
949 long fd = perf_evsel__intval(evsel, sample, "fd");
950 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
955 process_exit_poll(struct timechart *tchart,
956 struct perf_evsel *evsel,
957 struct perf_sample *sample)
959 long ret = perf_evsel__intval(evsel, sample, "ret");
960 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
965 * Sort the pid datastructure
967 static void sort_pids(struct timechart *tchart)
969 struct per_pid *new_list, *p, *cursor, *prev;
970 /* sort by ppid first, then by pid, lowest to highest */
974 while (tchart->all_data) {
975 p = tchart->all_data;
976 tchart->all_data = p->next;
979 if (new_list == NULL) {
987 if (cursor->ppid > p->ppid ||
988 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
989 /* must insert before */
991 p->next = prev->next;
1004 cursor = cursor->next;
1009 tchart->all_data = new_list;
1013 static void draw_c_p_states(struct timechart *tchart)
1015 struct power_event *pwr;
1016 pwr = tchart->power_events;
1019 * two pass drawing so that the P state bars are on top of the C state blocks
1022 if (pwr->type == CSTATE)
1023 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1027 pwr = tchart->power_events;
1029 if (pwr->type == PSTATE) {
1031 pwr->state = tchart->min_freq;
1032 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1038 static void draw_wakeups(struct timechart *tchart)
1040 struct wake_event *we;
1042 struct per_pidcomm *c;
1044 we = tchart->wake_events;
1046 int from = 0, to = 0;
1047 char *task_from = NULL, *task_to = NULL;
1049 /* locate the column of the waker and wakee */
1050 p = tchart->all_data;
1052 if (p->pid == we->waker || p->pid == we->wakee) {
1055 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1056 if (p->pid == we->waker && !from) {
1058 task_from = strdup(c->comm);
1060 if (p->pid == we->wakee && !to) {
1062 task_to = strdup(c->comm);
1069 if (p->pid == we->waker && !from) {
1071 task_from = strdup(c->comm);
1073 if (p->pid == we->wakee && !to) {
1075 task_to = strdup(c->comm);
1084 task_from = malloc(40);
1085 sprintf(task_from, "[%i]", we->waker);
1088 task_to = malloc(40);
1089 sprintf(task_to, "[%i]", we->wakee);
1092 if (we->waker == -1)
1093 svg_interrupt(we->time, to, we->backtrace);
1094 else if (from && to && abs(from - to) == 1)
1095 svg_wakeline(we->time, from, to, we->backtrace);
1097 svg_partial_wakeline(we->time, from, task_from, to,
1098 task_to, we->backtrace);
1106 static void draw_cpu_usage(struct timechart *tchart)
1109 struct per_pidcomm *c;
1110 struct cpu_sample *sample;
1111 p = tchart->all_data;
1115 sample = c->samples;
1117 if (sample->type == TYPE_RUNNING) {
1118 svg_process(sample->cpu,
1126 sample = sample->next;
1134 static void draw_io_bars(struct timechart *tchart)
1140 struct per_pidcomm *c;
1141 struct io_sample *sample;
1144 p = tchart->all_data;
1154 svg_box(Y, c->start_time, c->end_time, "process3");
1155 sample = c->io_samples;
1156 for (sample = c->io_samples; sample; sample = sample->next) {
1157 double h = (double)sample->bytes / c->max_bytes;
1159 if (tchart->skip_eagain &&
1160 sample->err == -EAGAIN)
1166 if (sample->type == IOTYPE_SYNC)
1171 sample->err ? "error" : "sync",
1175 else if (sample->type == IOTYPE_POLL)
1180 sample->err ? "error" : "poll",
1184 else if (sample->type == IOTYPE_READ)
1189 sample->err ? "error" : "disk",
1193 else if (sample->type == IOTYPE_WRITE)
1198 sample->err ? "error" : "disk",
1202 else if (sample->type == IOTYPE_RX)
1207 sample->err ? "error" : "net",
1211 else if (sample->type == IOTYPE_TX)
1216 sample->err ? "error" : "net",
1223 bytes = c->total_bytes;
1225 bytes = bytes / 1024;
1229 bytes = bytes / 1024;
1233 bytes = bytes / 1024;
1238 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1239 svg_text(Y, c->start_time, comm);
1249 static void draw_process_bars(struct timechart *tchart)
1252 struct per_pidcomm *c;
1253 struct cpu_sample *sample;
1256 Y = 2 * tchart->numcpus + 2;
1258 p = tchart->all_data;
1268 svg_box(Y, c->start_time, c->end_time, "process");
1269 sample = c->samples;
1271 if (sample->type == TYPE_RUNNING)
1272 svg_running(Y, sample->cpu,
1276 if (sample->type == TYPE_BLOCKED)
1277 svg_blocked(Y, sample->cpu,
1281 if (sample->type == TYPE_WAITING)
1282 svg_waiting(Y, sample->cpu,
1286 sample = sample->next;
1291 if (c->total_time > 5000000000) /* 5 seconds */
1292 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1294 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1296 svg_text(Y, c->start_time, comm);
1306 static void add_process_filter(const char *string)
1308 int pid = strtoull(string, NULL, 10);
1309 struct process_filter *filt = malloc(sizeof(*filt));
1314 filt->name = strdup(string);
1316 filt->next = process_filter;
1318 process_filter = filt;
1321 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1323 struct process_filter *filt;
1324 if (!process_filter)
1327 filt = process_filter;
1329 if (filt->pid && p->pid == filt->pid)
1331 if (strcmp(filt->name, c->comm) == 0)
1338 static int determine_display_tasks_filtered(struct timechart *tchart)
1341 struct per_pidcomm *c;
1344 p = tchart->all_data;
1347 if (p->start_time == 1)
1348 p->start_time = tchart->first_time;
1350 /* no exit marker, task kept running to the end */
1351 if (p->end_time == 0)
1352 p->end_time = tchart->last_time;
1359 if (c->start_time == 1)
1360 c->start_time = tchart->first_time;
1362 if (passes_filter(p, c)) {
1368 if (c->end_time == 0)
1369 c->end_time = tchart->last_time;
1378 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1381 struct per_pidcomm *c;
1384 p = tchart->all_data;
1387 if (p->start_time == 1)
1388 p->start_time = tchart->first_time;
1390 /* no exit marker, task kept running to the end */
1391 if (p->end_time == 0)
1392 p->end_time = tchart->last_time;
1393 if (p->total_time >= threshold)
1401 if (c->start_time == 1)
1402 c->start_time = tchart->first_time;
1404 if (c->total_time >= threshold) {
1409 if (c->end_time == 0)
1410 c->end_time = tchart->last_time;
1419 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1422 struct per_pidcomm *c;
1425 p = timechart->all_data;
1427 /* no exit marker, task kept running to the end */
1428 if (p->end_time == 0)
1429 p->end_time = timechart->last_time;
1436 if (c->total_bytes >= threshold) {
1441 if (c->end_time == 0)
1442 c->end_time = timechart->last_time;
1451 #define BYTES_THRESH (1 * 1024 * 1024)
1452 #define TIME_THRESH 10000000
1454 static void write_svg_file(struct timechart *tchart, const char *filename)
1458 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1460 if (tchart->power_only)
1461 tchart->proc_num = 0;
1463 /* We'd like to show at least proc_num tasks;
1464 * be less picky if we have fewer */
1467 count = determine_display_tasks_filtered(tchart);
1468 else if (tchart->io_events)
1469 count = determine_display_io_tasks(tchart, thresh);
1471 count = determine_display_tasks(tchart, thresh);
1473 } while (!process_filter && thresh && count < tchart->proc_num);
1475 if (!tchart->proc_num)
1478 if (tchart->io_events) {
1479 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1484 draw_io_bars(tchart);
1486 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1492 for (i = 0; i < tchart->numcpus; i++)
1493 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1495 draw_cpu_usage(tchart);
1496 if (tchart->proc_num)
1497 draw_process_bars(tchart);
1498 if (!tchart->tasks_only)
1499 draw_c_p_states(tchart);
1500 if (tchart->proc_num)
1501 draw_wakeups(tchart);
1507 static int process_header(struct perf_file_section *section __maybe_unused,
1508 struct perf_header *ph,
1510 int fd __maybe_unused,
1513 struct timechart *tchart = data;
1517 tchart->numcpus = ph->env.nr_cpus_avail;
1520 case HEADER_CPU_TOPOLOGY:
1521 if (!tchart->topology)
1524 if (svg_build_topology_map(ph->env.sibling_cores,
1525 ph->env.nr_sibling_cores,
1526 ph->env.sibling_threads,
1527 ph->env.nr_sibling_threads))
1528 fprintf(stderr, "problem building topology\n");
1538 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1540 const struct perf_evsel_str_handler power_tracepoints[] = {
1541 { "power:cpu_idle", process_sample_cpu_idle },
1542 { "power:cpu_frequency", process_sample_cpu_frequency },
1543 { "sched:sched_wakeup", process_sample_sched_wakeup },
1544 { "sched:sched_switch", process_sample_sched_switch },
1545 #ifdef SUPPORT_OLD_POWER_EVENTS
1546 { "power:power_start", process_sample_power_start },
1547 { "power:power_end", process_sample_power_end },
1548 { "power:power_frequency", process_sample_power_frequency },
1551 { "syscalls:sys_enter_read", process_enter_read },
1552 { "syscalls:sys_enter_pread64", process_enter_read },
1553 { "syscalls:sys_enter_readv", process_enter_read },
1554 { "syscalls:sys_enter_preadv", process_enter_read },
1555 { "syscalls:sys_enter_write", process_enter_write },
1556 { "syscalls:sys_enter_pwrite64", process_enter_write },
1557 { "syscalls:sys_enter_writev", process_enter_write },
1558 { "syscalls:sys_enter_pwritev", process_enter_write },
1559 { "syscalls:sys_enter_sync", process_enter_sync },
1560 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1561 { "syscalls:sys_enter_fsync", process_enter_sync },
1562 { "syscalls:sys_enter_msync", process_enter_sync },
1563 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1564 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1565 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1566 { "syscalls:sys_enter_sendto", process_enter_tx },
1567 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1568 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1569 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1570 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1571 { "syscalls:sys_enter_poll", process_enter_poll },
1572 { "syscalls:sys_enter_ppoll", process_enter_poll },
1573 { "syscalls:sys_enter_pselect6", process_enter_poll },
1574 { "syscalls:sys_enter_select", process_enter_poll },
1576 { "syscalls:sys_exit_read", process_exit_read },
1577 { "syscalls:sys_exit_pread64", process_exit_read },
1578 { "syscalls:sys_exit_readv", process_exit_read },
1579 { "syscalls:sys_exit_preadv", process_exit_read },
1580 { "syscalls:sys_exit_write", process_exit_write },
1581 { "syscalls:sys_exit_pwrite64", process_exit_write },
1582 { "syscalls:sys_exit_writev", process_exit_write },
1583 { "syscalls:sys_exit_pwritev", process_exit_write },
1584 { "syscalls:sys_exit_sync", process_exit_sync },
1585 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1586 { "syscalls:sys_exit_fsync", process_exit_sync },
1587 { "syscalls:sys_exit_msync", process_exit_sync },
1588 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1589 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1590 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1591 { "syscalls:sys_exit_sendto", process_exit_tx },
1592 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1593 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1594 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1595 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1596 { "syscalls:sys_exit_poll", process_exit_poll },
1597 { "syscalls:sys_exit_ppoll", process_exit_poll },
1598 { "syscalls:sys_exit_pselect6", process_exit_poll },
1599 { "syscalls:sys_exit_select", process_exit_poll },
1601 struct perf_data_file file = {
1603 .mode = PERF_DATA_MODE_READ,
1604 .force = tchart->force,
1607 struct perf_session *session = perf_session__new(&file, false,
1611 if (session == NULL)
1614 symbol__init(&session->header.env);
1616 (void)perf_header__process_sections(&session->header,
1617 perf_data_file__fd(session->file),
1621 if (!perf_session__has_traces(session, "timechart record"))
1624 if (perf_session__set_tracepoints_handlers(session,
1625 power_tracepoints)) {
1626 pr_err("Initializing session tracepoint handlers failed\n");
1630 ret = perf_session__process_events(session);
1634 end_sample_processing(tchart);
1638 write_svg_file(tchart, output_name);
1640 pr_info("Written %2.1f seconds of trace to %s.\n",
1641 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1643 perf_session__delete(session);
1647 static int timechart__io_record(int argc, const char **argv)
1649 unsigned int rec_argc, i;
1650 const char **rec_argv;
1652 char *filter = NULL;
1654 const char * const common_args[] = {
1655 "record", "-a", "-R", "-c", "1",
1657 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1659 const char * const disk_events[] = {
1660 "syscalls:sys_enter_read",
1661 "syscalls:sys_enter_pread64",
1662 "syscalls:sys_enter_readv",
1663 "syscalls:sys_enter_preadv",
1664 "syscalls:sys_enter_write",
1665 "syscalls:sys_enter_pwrite64",
1666 "syscalls:sys_enter_writev",
1667 "syscalls:sys_enter_pwritev",
1668 "syscalls:sys_enter_sync",
1669 "syscalls:sys_enter_sync_file_range",
1670 "syscalls:sys_enter_fsync",
1671 "syscalls:sys_enter_msync",
1673 "syscalls:sys_exit_read",
1674 "syscalls:sys_exit_pread64",
1675 "syscalls:sys_exit_readv",
1676 "syscalls:sys_exit_preadv",
1677 "syscalls:sys_exit_write",
1678 "syscalls:sys_exit_pwrite64",
1679 "syscalls:sys_exit_writev",
1680 "syscalls:sys_exit_pwritev",
1681 "syscalls:sys_exit_sync",
1682 "syscalls:sys_exit_sync_file_range",
1683 "syscalls:sys_exit_fsync",
1684 "syscalls:sys_exit_msync",
1686 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1688 const char * const net_events[] = {
1689 "syscalls:sys_enter_recvfrom",
1690 "syscalls:sys_enter_recvmmsg",
1691 "syscalls:sys_enter_recvmsg",
1692 "syscalls:sys_enter_sendto",
1693 "syscalls:sys_enter_sendmsg",
1694 "syscalls:sys_enter_sendmmsg",
1696 "syscalls:sys_exit_recvfrom",
1697 "syscalls:sys_exit_recvmmsg",
1698 "syscalls:sys_exit_recvmsg",
1699 "syscalls:sys_exit_sendto",
1700 "syscalls:sys_exit_sendmsg",
1701 "syscalls:sys_exit_sendmmsg",
1703 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1705 const char * const poll_events[] = {
1706 "syscalls:sys_enter_epoll_pwait",
1707 "syscalls:sys_enter_epoll_wait",
1708 "syscalls:sys_enter_poll",
1709 "syscalls:sys_enter_ppoll",
1710 "syscalls:sys_enter_pselect6",
1711 "syscalls:sys_enter_select",
1713 "syscalls:sys_exit_epoll_pwait",
1714 "syscalls:sys_exit_epoll_wait",
1715 "syscalls:sys_exit_poll",
1716 "syscalls:sys_exit_ppoll",
1717 "syscalls:sys_exit_pselect6",
1718 "syscalls:sys_exit_select",
1720 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1722 rec_argc = common_args_nr +
1723 disk_events_nr * 4 +
1725 poll_events_nr * 4 +
1727 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1729 if (rec_argv == NULL)
1732 if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1736 for (i = 0; i < common_args_nr; i++)
1737 *p++ = strdup(common_args[i]);
1739 for (i = 0; i < disk_events_nr; i++) {
1740 if (!is_valid_tracepoint(disk_events[i])) {
1746 *p++ = strdup(disk_events[i]);
1750 for (i = 0; i < net_events_nr; i++) {
1751 if (!is_valid_tracepoint(net_events[i])) {
1757 *p++ = strdup(net_events[i]);
1761 for (i = 0; i < poll_events_nr; i++) {
1762 if (!is_valid_tracepoint(poll_events[i])) {
1768 *p++ = strdup(poll_events[i]);
1773 for (i = 0; i < (unsigned int)argc; i++)
1776 return cmd_record(rec_argc, rec_argv, NULL);
1780 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1782 unsigned int rec_argc, i, j;
1783 const char **rec_argv;
1785 unsigned int record_elems;
1787 const char * const common_args[] = {
1788 "record", "-a", "-R", "-c", "1",
1790 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1792 const char * const backtrace_args[] = {
1795 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1797 const char * const power_args[] = {
1798 "-e", "power:cpu_frequency",
1799 "-e", "power:cpu_idle",
1801 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1803 const char * const old_power_args[] = {
1804 #ifdef SUPPORT_OLD_POWER_EVENTS
1805 "-e", "power:power_start",
1806 "-e", "power:power_end",
1807 "-e", "power:power_frequency",
1810 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1812 const char * const tasks_args[] = {
1813 "-e", "sched:sched_wakeup",
1814 "-e", "sched:sched_switch",
1816 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1818 #ifdef SUPPORT_OLD_POWER_EVENTS
1819 if (!is_valid_tracepoint("power:cpu_idle") &&
1820 is_valid_tracepoint("power:power_start")) {
1821 use_old_power_events = 1;
1824 old_power_args_nr = 0;
1828 if (tchart->power_only)
1831 if (tchart->tasks_only) {
1833 old_power_args_nr = 0;
1836 if (!tchart->with_backtrace)
1837 backtrace_args_no = 0;
1839 record_elems = common_args_nr + tasks_args_nr +
1840 power_args_nr + old_power_args_nr + backtrace_args_no;
1842 rec_argc = record_elems + argc;
1843 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1845 if (rec_argv == NULL)
1849 for (i = 0; i < common_args_nr; i++)
1850 *p++ = strdup(common_args[i]);
1852 for (i = 0; i < backtrace_args_no; i++)
1853 *p++ = strdup(backtrace_args[i]);
1855 for (i = 0; i < tasks_args_nr; i++)
1856 *p++ = strdup(tasks_args[i]);
1858 for (i = 0; i < power_args_nr; i++)
1859 *p++ = strdup(power_args[i]);
1861 for (i = 0; i < old_power_args_nr; i++)
1862 *p++ = strdup(old_power_args[i]);
1864 for (j = 0; j < (unsigned int)argc; j++)
1867 return cmd_record(rec_argc, rec_argv, NULL);
1871 parse_process(const struct option *opt __maybe_unused, const char *arg,
1872 int __maybe_unused unset)
1875 add_process_filter(arg);
1880 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1881 int __maybe_unused unset)
1883 unsigned long duration = strtoul(arg, NULL, 0);
1885 if (svg_highlight || svg_highlight_name)
1889 svg_highlight = duration;
1891 svg_highlight_name = strdup(arg);
1897 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1900 u64 *value = opt->value;
1902 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1905 *value *= NSEC_PER_MSEC;
1908 *value *= NSEC_PER_USEC;
1920 int cmd_timechart(int argc, const char **argv,
1921 const char *prefix __maybe_unused)
1923 struct timechart tchart = {
1925 .comm = process_comm_event,
1926 .fork = process_fork_event,
1927 .exit = process_exit_event,
1928 .sample = process_sample_event,
1929 .ordered_events = true,
1932 .min_time = NSEC_PER_MSEC,
1935 const char *output_name = "output.svg";
1936 const struct option timechart_options[] = {
1937 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941 "highlight tasks. Pass duration in ns or process name.",
1943 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1945 "output processes data only"),
1946 OPT_CALLBACK('p', "process", NULL, "process",
1947 "process selector. Pass a pid or process name.",
1949 OPT_CALLBACK(0, "symfs", NULL, "directory",
1950 "Look for files with symbols relative to this directory",
1951 symbol__config_symfs),
1952 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1953 "min. number of tasks to print"),
1954 OPT_BOOLEAN('t', "topology", &tchart.topology,
1955 "sort CPUs according to topology"),
1956 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1957 "skip EAGAIN errors"),
1958 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1959 "all IO faster than min-time will visually appear longer",
1961 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1962 "merge events that are merge-dist us apart",
1964 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1967 const char * const timechart_subcommands[] = { "record", NULL };
1968 const char *timechart_usage[] = {
1969 "perf timechart [<options>] {record}",
1973 const struct option timechart_record_options[] = {
1974 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1975 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1976 "output processes data only"),
1977 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1978 "record only IO data"),
1979 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1982 const char * const timechart_record_usage[] = {
1983 "perf timechart record [<options>]",
1986 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1987 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1989 if (tchart.power_only && tchart.tasks_only) {
1990 pr_err("-P and -T options cannot be used at the same time.\n");
1994 if (argc && !strncmp(argv[0], "rec", 3)) {
1995 argc = parse_options(argc, argv, timechart_record_options,
1996 timechart_record_usage,
1997 PARSE_OPT_STOP_AT_NON_OPTION);
1999 if (tchart.power_only && tchart.tasks_only) {
2000 pr_err("-P and -T options cannot be used at the same time.\n");
2005 return timechart__io_record(argc, argv);
2007 return timechart__record(&tchart, argc, argv);
2009 usage_with_options(timechart_usage, timechart_options);
2013 return __cmd_timechart(&tchart, output_name);