Merge tag 'hyperv-fixes-signed-20221125' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / tools / perf / builtin-timechart.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * builtin-timechart.c - make an svg timechart of system activity
4  *
5  * (C) Copyright 2009 Intel Corporation
6  *
7  * Authors:
8  *     Arjan van de Ven <arjan@linux.intel.com>
9  */
10
11 #include <errno.h>
12 #include <inttypes.h>
13
14 #include "builtin.h"
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
26
27 #include "perf.h"
28 #include "util/header.h"
29 #include <subcmd/pager.h>
30 #include <subcmd/parse-options.h>
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36 #include "util/data.h"
37 #include "util/debug.h"
38 #include "util/string2.h"
39 #include "util/tracepoint.h"
40 #include <linux/err.h>
41
42 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
43 FILE *open_memstream(char **ptr, size_t *sizeloc);
44 #endif
45
46 #define SUPPORT_OLD_POWER_EVENTS 1
47 #define PWR_EVENT_EXIT -1
48
49 struct per_pid;
50 struct power_event;
51 struct wake_event;
52
53 struct timechart {
54         struct perf_tool        tool;
55         struct per_pid          *all_data;
56         struct power_event      *power_events;
57         struct wake_event       *wake_events;
58         int                     proc_num;
59         unsigned int            numcpus;
60         u64                     min_freq,       /* Lowest CPU frequency seen */
61                                 max_freq,       /* Highest CPU frequency seen */
62                                 turbo_frequency,
63                                 first_time, last_time;
64         bool                    power_only,
65                                 tasks_only,
66                                 with_backtrace,
67                                 topology;
68         bool                    force;
69         /* IO related settings */
70         bool                    io_only,
71                                 skip_eagain;
72         u64                     io_events;
73         u64                     min_time,
74                                 merge_dist;
75 };
76
77 struct per_pidcomm;
78 struct cpu_sample;
79 struct io_sample;
80
81 /*
82  * Datastructure layout:
83  * We keep an list of "pid"s, matching the kernels notion of a task struct.
84  * Each "pid" entry, has a list of "comm"s.
85  *      this is because we want to track different programs different, while
86  *      exec will reuse the original pid (by design).
87  * Each comm has a list of samples that will be used to draw
88  * final graph.
89  */
90
91 struct per_pid {
92         struct per_pid *next;
93
94         int             pid;
95         int             ppid;
96
97         u64             start_time;
98         u64             end_time;
99         u64             total_time;
100         u64             total_bytes;
101         int             display;
102
103         struct per_pidcomm *all;
104         struct per_pidcomm *current;
105 };
106
107
108 struct per_pidcomm {
109         struct per_pidcomm *next;
110
111         u64             start_time;
112         u64             end_time;
113         u64             total_time;
114         u64             max_bytes;
115         u64             total_bytes;
116
117         int             Y;
118         int             display;
119
120         long            state;
121         u64             state_since;
122
123         char            *comm;
124
125         struct cpu_sample *samples;
126         struct io_sample  *io_samples;
127 };
128
129 struct sample_wrapper {
130         struct sample_wrapper *next;
131
132         u64             timestamp;
133         unsigned char   data[];
134 };
135
136 #define TYPE_NONE       0
137 #define TYPE_RUNNING    1
138 #define TYPE_WAITING    2
139 #define TYPE_BLOCKED    3
140
141 struct cpu_sample {
142         struct cpu_sample *next;
143
144         u64 start_time;
145         u64 end_time;
146         int type;
147         int cpu;
148         const char *backtrace;
149 };
150
151 enum {
152         IOTYPE_READ,
153         IOTYPE_WRITE,
154         IOTYPE_SYNC,
155         IOTYPE_TX,
156         IOTYPE_RX,
157         IOTYPE_POLL,
158 };
159
160 struct io_sample {
161         struct io_sample *next;
162
163         u64 start_time;
164         u64 end_time;
165         u64 bytes;
166         int type;
167         int fd;
168         int err;
169         int merges;
170 };
171
172 #define CSTATE 1
173 #define PSTATE 2
174
175 struct power_event {
176         struct power_event *next;
177         int type;
178         int state;
179         u64 start_time;
180         u64 end_time;
181         int cpu;
182 };
183
184 struct wake_event {
185         struct wake_event *next;
186         int waker;
187         int wakee;
188         u64 time;
189         const char *backtrace;
190 };
191
192 struct process_filter {
193         char                    *name;
194         int                     pid;
195         struct process_filter   *next;
196 };
197
198 static struct process_filter *process_filter;
199
200
201 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
202 {
203         struct per_pid *cursor = tchart->all_data;
204
205         while (cursor) {
206                 if (cursor->pid == pid)
207                         return cursor;
208                 cursor = cursor->next;
209         }
210         cursor = zalloc(sizeof(*cursor));
211         assert(cursor != NULL);
212         cursor->pid = pid;
213         cursor->next = tchart->all_data;
214         tchart->all_data = cursor;
215         return cursor;
216 }
217
218 static struct per_pidcomm *create_pidcomm(struct per_pid *p)
219 {
220         struct per_pidcomm *c;
221
222         c = zalloc(sizeof(*c));
223         if (!c)
224                 return NULL;
225         p->current = c;
226         c->next = p->all;
227         p->all = c;
228         return c;
229 }
230
231 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
232 {
233         struct per_pid *p;
234         struct per_pidcomm *c;
235         p = find_create_pid(tchart, pid);
236         c = p->all;
237         while (c) {
238                 if (c->comm && strcmp(c->comm, comm) == 0) {
239                         p->current = c;
240                         return;
241                 }
242                 if (!c->comm) {
243                         c->comm = strdup(comm);
244                         p->current = c;
245                         return;
246                 }
247                 c = c->next;
248         }
249         c = create_pidcomm(p);
250         assert(c != NULL);
251         c->comm = strdup(comm);
252 }
253
254 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
255 {
256         struct per_pid *p, *pp;
257         p = find_create_pid(tchart, pid);
258         pp = find_create_pid(tchart, ppid);
259         p->ppid = ppid;
260         if (pp->current && pp->current->comm && !p->current)
261                 pid_set_comm(tchart, pid, pp->current->comm);
262
263         p->start_time = timestamp;
264         if (p->current && !p->current->start_time) {
265                 p->current->start_time = timestamp;
266                 p->current->state_since = timestamp;
267         }
268 }
269
270 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
271 {
272         struct per_pid *p;
273         p = find_create_pid(tchart, pid);
274         p->end_time = timestamp;
275         if (p->current)
276                 p->current->end_time = timestamp;
277 }
278
279 static void pid_put_sample(struct timechart *tchart, int pid, int type,
280                            unsigned int cpu, u64 start, u64 end,
281                            const char *backtrace)
282 {
283         struct per_pid *p;
284         struct per_pidcomm *c;
285         struct cpu_sample *sample;
286
287         p = find_create_pid(tchart, pid);
288         c = p->current;
289         if (!c) {
290                 c = create_pidcomm(p);
291                 assert(c != NULL);
292         }
293
294         sample = zalloc(sizeof(*sample));
295         assert(sample != NULL);
296         sample->start_time = start;
297         sample->end_time = end;
298         sample->type = type;
299         sample->next = c->samples;
300         sample->cpu = cpu;
301         sample->backtrace = backtrace;
302         c->samples = sample;
303
304         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
305                 c->total_time += (end-start);
306                 p->total_time += (end-start);
307         }
308
309         if (c->start_time == 0 || c->start_time > start)
310                 c->start_time = start;
311         if (p->start_time == 0 || p->start_time > start)
312                 p->start_time = start;
313 }
314
315 #define MAX_CPUS 4096
316
317 static u64 cpus_cstate_start_times[MAX_CPUS];
318 static int cpus_cstate_state[MAX_CPUS];
319 static u64 cpus_pstate_start_times[MAX_CPUS];
320 static u64 cpus_pstate_state[MAX_CPUS];
321
322 static int process_comm_event(struct perf_tool *tool,
323                               union perf_event *event,
324                               struct perf_sample *sample __maybe_unused,
325                               struct machine *machine __maybe_unused)
326 {
327         struct timechart *tchart = container_of(tool, struct timechart, tool);
328         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
329         return 0;
330 }
331
332 static int process_fork_event(struct perf_tool *tool,
333                               union perf_event *event,
334                               struct perf_sample *sample __maybe_unused,
335                               struct machine *machine __maybe_unused)
336 {
337         struct timechart *tchart = container_of(tool, struct timechart, tool);
338         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
339         return 0;
340 }
341
342 static int process_exit_event(struct perf_tool *tool,
343                               union perf_event *event,
344                               struct perf_sample *sample __maybe_unused,
345                               struct machine *machine __maybe_unused)
346 {
347         struct timechart *tchart = container_of(tool, struct timechart, tool);
348         pid_exit(tchart, event->fork.pid, event->fork.time);
349         return 0;
350 }
351
352 #ifdef SUPPORT_OLD_POWER_EVENTS
353 static int use_old_power_events;
354 #endif
355
356 static void c_state_start(int cpu, u64 timestamp, int state)
357 {
358         cpus_cstate_start_times[cpu] = timestamp;
359         cpus_cstate_state[cpu] = state;
360 }
361
362 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
363 {
364         struct power_event *pwr = zalloc(sizeof(*pwr));
365
366         if (!pwr)
367                 return;
368
369         pwr->state = cpus_cstate_state[cpu];
370         pwr->start_time = cpus_cstate_start_times[cpu];
371         pwr->end_time = timestamp;
372         pwr->cpu = cpu;
373         pwr->type = CSTATE;
374         pwr->next = tchart->power_events;
375
376         tchart->power_events = pwr;
377 }
378
379 static struct power_event *p_state_end(struct timechart *tchart, int cpu,
380                                         u64 timestamp)
381 {
382         struct power_event *pwr = zalloc(sizeof(*pwr));
383
384         if (!pwr)
385                 return NULL;
386
387         pwr->state = cpus_pstate_state[cpu];
388         pwr->start_time = cpus_pstate_start_times[cpu];
389         pwr->end_time = timestamp;
390         pwr->cpu = cpu;
391         pwr->type = PSTATE;
392         pwr->next = tchart->power_events;
393         if (!pwr->start_time)
394                 pwr->start_time = tchart->first_time;
395
396         tchart->power_events = pwr;
397         return pwr;
398 }
399
400 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
401 {
402         struct power_event *pwr;
403
404         if (new_freq > 8000000) /* detect invalid data */
405                 return;
406
407         pwr = p_state_end(tchart, cpu, timestamp);
408         if (!pwr)
409                 return;
410
411         cpus_pstate_state[cpu] = new_freq;
412         cpus_pstate_start_times[cpu] = timestamp;
413
414         if ((u64)new_freq > tchart->max_freq)
415                 tchart->max_freq = new_freq;
416
417         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
418                 tchart->min_freq = new_freq;
419
420         if (new_freq == tchart->max_freq - 1000)
421                 tchart->turbo_frequency = tchart->max_freq;
422 }
423
424 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
425                          int waker, int wakee, u8 flags, const char *backtrace)
426 {
427         struct per_pid *p;
428         struct wake_event *we = zalloc(sizeof(*we));
429
430         if (!we)
431                 return;
432
433         we->time = timestamp;
434         we->waker = waker;
435         we->backtrace = backtrace;
436
437         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
438                 we->waker = -1;
439
440         we->wakee = wakee;
441         we->next = tchart->wake_events;
442         tchart->wake_events = we;
443         p = find_create_pid(tchart, we->wakee);
444
445         if (p && p->current && p->current->state == TYPE_NONE) {
446                 p->current->state_since = timestamp;
447                 p->current->state = TYPE_WAITING;
448         }
449         if (p && p->current && p->current->state == TYPE_BLOCKED) {
450                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
451                                p->current->state_since, timestamp, NULL);
452                 p->current->state_since = timestamp;
453                 p->current->state = TYPE_WAITING;
454         }
455 }
456
457 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
458                          int prev_pid, int next_pid, u64 prev_state,
459                          const char *backtrace)
460 {
461         struct per_pid *p = NULL, *prev_p;
462
463         prev_p = find_create_pid(tchart, prev_pid);
464
465         p = find_create_pid(tchart, next_pid);
466
467         if (prev_p->current && prev_p->current->state != TYPE_NONE)
468                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
469                                prev_p->current->state_since, timestamp,
470                                backtrace);
471         if (p && p->current) {
472                 if (p->current->state != TYPE_NONE)
473                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
474                                        p->current->state_since, timestamp,
475                                        backtrace);
476
477                 p->current->state_since = timestamp;
478                 p->current->state = TYPE_RUNNING;
479         }
480
481         if (prev_p->current) {
482                 prev_p->current->state = TYPE_NONE;
483                 prev_p->current->state_since = timestamp;
484                 if (prev_state & 2)
485                         prev_p->current->state = TYPE_BLOCKED;
486                 if (prev_state == 0)
487                         prev_p->current->state = TYPE_WAITING;
488         }
489 }
490
491 static const char *cat_backtrace(union perf_event *event,
492                                  struct perf_sample *sample,
493                                  struct machine *machine)
494 {
495         struct addr_location al;
496         unsigned int i;
497         char *p = NULL;
498         size_t p_len;
499         u8 cpumode = PERF_RECORD_MISC_USER;
500         struct addr_location tal;
501         struct ip_callchain *chain = sample->callchain;
502         FILE *f = open_memstream(&p, &p_len);
503
504         if (!f) {
505                 perror("open_memstream error");
506                 return NULL;
507         }
508
509         if (!chain)
510                 goto exit;
511
512         if (machine__resolve(machine, &al, sample) < 0) {
513                 fprintf(stderr, "problem processing %d event, skipping it.\n",
514                         event->header.type);
515                 goto exit;
516         }
517
518         for (i = 0; i < chain->nr; i++) {
519                 u64 ip;
520
521                 if (callchain_param.order == ORDER_CALLEE)
522                         ip = chain->ips[i];
523                 else
524                         ip = chain->ips[chain->nr - i - 1];
525
526                 if (ip >= PERF_CONTEXT_MAX) {
527                         switch (ip) {
528                         case PERF_CONTEXT_HV:
529                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
530                                 break;
531                         case PERF_CONTEXT_KERNEL:
532                                 cpumode = PERF_RECORD_MISC_KERNEL;
533                                 break;
534                         case PERF_CONTEXT_USER:
535                                 cpumode = PERF_RECORD_MISC_USER;
536                                 break;
537                         default:
538                                 pr_debug("invalid callchain context: "
539                                          "%"PRId64"\n", (s64) ip);
540
541                                 /*
542                                  * It seems the callchain is corrupted.
543                                  * Discard all.
544                                  */
545                                 zfree(&p);
546                                 goto exit_put;
547                         }
548                         continue;
549                 }
550
551                 tal.filtered = 0;
552                 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
553                         fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
554                 else
555                         fprintf(f, "..... %016" PRIx64 "\n", ip);
556         }
557 exit_put:
558         addr_location__put(&al);
559 exit:
560         fclose(f);
561
562         return p;
563 }
564
565 typedef int (*tracepoint_handler)(struct timechart *tchart,
566                                   struct evsel *evsel,
567                                   struct perf_sample *sample,
568                                   const char *backtrace);
569
570 static int process_sample_event(struct perf_tool *tool,
571                                 union perf_event *event,
572                                 struct perf_sample *sample,
573                                 struct evsel *evsel,
574                                 struct machine *machine)
575 {
576         struct timechart *tchart = container_of(tool, struct timechart, tool);
577
578         if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
579                 if (!tchart->first_time || tchart->first_time > sample->time)
580                         tchart->first_time = sample->time;
581                 if (tchart->last_time < sample->time)
582                         tchart->last_time = sample->time;
583         }
584
585         if (evsel->handler != NULL) {
586                 tracepoint_handler f = evsel->handler;
587                 return f(tchart, evsel, sample,
588                          cat_backtrace(event, sample, machine));
589         }
590
591         return 0;
592 }
593
594 static int
595 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
596                         struct evsel *evsel,
597                         struct perf_sample *sample,
598                         const char *backtrace __maybe_unused)
599 {
600         u32 state  = evsel__intval(evsel, sample, "state");
601         u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
602
603         if (state == (u32)PWR_EVENT_EXIT)
604                 c_state_end(tchart, cpu_id, sample->time);
605         else
606                 c_state_start(cpu_id, sample->time, state);
607         return 0;
608 }
609
610 static int
611 process_sample_cpu_frequency(struct timechart *tchart,
612                              struct evsel *evsel,
613                              struct perf_sample *sample,
614                              const char *backtrace __maybe_unused)
615 {
616         u32 state  = evsel__intval(evsel, sample, "state");
617         u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
618
619         p_state_change(tchart, cpu_id, sample->time, state);
620         return 0;
621 }
622
623 static int
624 process_sample_sched_wakeup(struct timechart *tchart,
625                             struct evsel *evsel,
626                             struct perf_sample *sample,
627                             const char *backtrace)
628 {
629         u8 flags  = evsel__intval(evsel, sample, "common_flags");
630         int waker = evsel__intval(evsel, sample, "common_pid");
631         int wakee = evsel__intval(evsel, sample, "pid");
632
633         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
634         return 0;
635 }
636
637 static int
638 process_sample_sched_switch(struct timechart *tchart,
639                             struct evsel *evsel,
640                             struct perf_sample *sample,
641                             const char *backtrace)
642 {
643         int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
644         int next_pid   = evsel__intval(evsel, sample, "next_pid");
645         u64 prev_state = evsel__intval(evsel, sample, "prev_state");
646
647         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
648                      prev_state, backtrace);
649         return 0;
650 }
651
652 #ifdef SUPPORT_OLD_POWER_EVENTS
653 static int
654 process_sample_power_start(struct timechart *tchart __maybe_unused,
655                            struct evsel *evsel,
656                            struct perf_sample *sample,
657                            const char *backtrace __maybe_unused)
658 {
659         u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
660         u64 value  = evsel__intval(evsel, sample, "value");
661
662         c_state_start(cpu_id, sample->time, value);
663         return 0;
664 }
665
666 static int
667 process_sample_power_end(struct timechart *tchart,
668                          struct evsel *evsel __maybe_unused,
669                          struct perf_sample *sample,
670                          const char *backtrace __maybe_unused)
671 {
672         c_state_end(tchart, sample->cpu, sample->time);
673         return 0;
674 }
675
676 static int
677 process_sample_power_frequency(struct timechart *tchart,
678                                struct evsel *evsel,
679                                struct perf_sample *sample,
680                                const char *backtrace __maybe_unused)
681 {
682         u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
683         u64 value  = evsel__intval(evsel, sample, "value");
684
685         p_state_change(tchart, cpu_id, sample->time, value);
686         return 0;
687 }
688 #endif /* SUPPORT_OLD_POWER_EVENTS */
689
690 /*
691  * After the last sample we need to wrap up the current C/P state
692  * and close out each CPU for these.
693  */
694 static void end_sample_processing(struct timechart *tchart)
695 {
696         u64 cpu;
697         struct power_event *pwr;
698
699         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
700                 /* C state */
701 #if 0
702                 pwr = zalloc(sizeof(*pwr));
703                 if (!pwr)
704                         return;
705
706                 pwr->state = cpus_cstate_state[cpu];
707                 pwr->start_time = cpus_cstate_start_times[cpu];
708                 pwr->end_time = tchart->last_time;
709                 pwr->cpu = cpu;
710                 pwr->type = CSTATE;
711                 pwr->next = tchart->power_events;
712
713                 tchart->power_events = pwr;
714 #endif
715                 /* P state */
716
717                 pwr = p_state_end(tchart, cpu, tchart->last_time);
718                 if (!pwr)
719                         return;
720
721                 if (!pwr->state)
722                         pwr->state = tchart->min_freq;
723         }
724 }
725
726 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
727                                u64 start, int fd)
728 {
729         struct per_pid *p = find_create_pid(tchart, pid);
730         struct per_pidcomm *c = p->current;
731         struct io_sample *sample;
732         struct io_sample *prev;
733
734         if (!c) {
735                 c = create_pidcomm(p);
736                 if (!c)
737                         return -ENOMEM;
738         }
739
740         prev = c->io_samples;
741
742         if (prev && prev->start_time && !prev->end_time) {
743                 pr_warning("Skip invalid start event: "
744                            "previous event already started!\n");
745
746                 /* remove previous event that has been started,
747                  * we are not sure we will ever get an end for it */
748                 c->io_samples = prev->next;
749                 free(prev);
750                 return 0;
751         }
752
753         sample = zalloc(sizeof(*sample));
754         if (!sample)
755                 return -ENOMEM;
756         sample->start_time = start;
757         sample->type = type;
758         sample->fd = fd;
759         sample->next = c->io_samples;
760         c->io_samples = sample;
761
762         if (c->start_time == 0 || c->start_time > start)
763                 c->start_time = start;
764
765         return 0;
766 }
767
768 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
769                              u64 end, long ret)
770 {
771         struct per_pid *p = find_create_pid(tchart, pid);
772         struct per_pidcomm *c = p->current;
773         struct io_sample *sample, *prev;
774
775         if (!c) {
776                 pr_warning("Invalid pidcomm!\n");
777                 return -1;
778         }
779
780         sample = c->io_samples;
781
782         if (!sample) /* skip partially captured events */
783                 return 0;
784
785         if (sample->end_time) {
786                 pr_warning("Skip invalid end event: "
787                            "previous event already ended!\n");
788                 return 0;
789         }
790
791         if (sample->type != type) {
792                 pr_warning("Skip invalid end event: invalid event type!\n");
793                 return 0;
794         }
795
796         sample->end_time = end;
797         prev = sample->next;
798
799         /* we want to be able to see small and fast transfers, so make them
800          * at least min_time long, but don't overlap them */
801         if (sample->end_time - sample->start_time < tchart->min_time)
802                 sample->end_time = sample->start_time + tchart->min_time;
803         if (prev && sample->start_time < prev->end_time) {
804                 if (prev->err) /* try to make errors more visible */
805                         sample->start_time = prev->end_time;
806                 else
807                         prev->end_time = sample->start_time;
808         }
809
810         if (ret < 0) {
811                 sample->err = ret;
812         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
813                    type == IOTYPE_TX || type == IOTYPE_RX) {
814
815                 if ((u64)ret > c->max_bytes)
816                         c->max_bytes = ret;
817
818                 c->total_bytes += ret;
819                 p->total_bytes += ret;
820                 sample->bytes = ret;
821         }
822
823         /* merge two requests to make svg smaller and render-friendly */
824         if (prev &&
825             prev->type == sample->type &&
826             prev->err == sample->err &&
827             prev->fd == sample->fd &&
828             prev->end_time + tchart->merge_dist >= sample->start_time) {
829
830                 sample->bytes += prev->bytes;
831                 sample->merges += prev->merges + 1;
832
833                 sample->start_time = prev->start_time;
834                 sample->next = prev->next;
835                 free(prev);
836
837                 if (!sample->err && sample->bytes > c->max_bytes)
838                         c->max_bytes = sample->bytes;
839         }
840
841         tchart->io_events++;
842
843         return 0;
844 }
845
846 static int
847 process_enter_read(struct timechart *tchart,
848                    struct evsel *evsel,
849                    struct perf_sample *sample)
850 {
851         long fd = evsel__intval(evsel, sample, "fd");
852         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
853                                    sample->time, fd);
854 }
855
856 static int
857 process_exit_read(struct timechart *tchart,
858                   struct evsel *evsel,
859                   struct perf_sample *sample)
860 {
861         long ret = evsel__intval(evsel, sample, "ret");
862         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
863                                  sample->time, ret);
864 }
865
866 static int
867 process_enter_write(struct timechart *tchart,
868                     struct evsel *evsel,
869                     struct perf_sample *sample)
870 {
871         long fd = evsel__intval(evsel, sample, "fd");
872         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
873                                    sample->time, fd);
874 }
875
876 static int
877 process_exit_write(struct timechart *tchart,
878                    struct evsel *evsel,
879                    struct perf_sample *sample)
880 {
881         long ret = evsel__intval(evsel, sample, "ret");
882         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
883                                  sample->time, ret);
884 }
885
886 static int
887 process_enter_sync(struct timechart *tchart,
888                    struct evsel *evsel,
889                    struct perf_sample *sample)
890 {
891         long fd = evsel__intval(evsel, sample, "fd");
892         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
893                                    sample->time, fd);
894 }
895
896 static int
897 process_exit_sync(struct timechart *tchart,
898                   struct evsel *evsel,
899                   struct perf_sample *sample)
900 {
901         long ret = evsel__intval(evsel, sample, "ret");
902         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
903                                  sample->time, ret);
904 }
905
906 static int
907 process_enter_tx(struct timechart *tchart,
908                  struct evsel *evsel,
909                  struct perf_sample *sample)
910 {
911         long fd = evsel__intval(evsel, sample, "fd");
912         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
913                                    sample->time, fd);
914 }
915
916 static int
917 process_exit_tx(struct timechart *tchart,
918                 struct evsel *evsel,
919                 struct perf_sample *sample)
920 {
921         long ret = evsel__intval(evsel, sample, "ret");
922         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
923                                  sample->time, ret);
924 }
925
926 static int
927 process_enter_rx(struct timechart *tchart,
928                  struct evsel *evsel,
929                  struct perf_sample *sample)
930 {
931         long fd = evsel__intval(evsel, sample, "fd");
932         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
933                                    sample->time, fd);
934 }
935
936 static int
937 process_exit_rx(struct timechart *tchart,
938                 struct evsel *evsel,
939                 struct perf_sample *sample)
940 {
941         long ret = evsel__intval(evsel, sample, "ret");
942         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
943                                  sample->time, ret);
944 }
945
946 static int
947 process_enter_poll(struct timechart *tchart,
948                    struct evsel *evsel,
949                    struct perf_sample *sample)
950 {
951         long fd = evsel__intval(evsel, sample, "fd");
952         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
953                                    sample->time, fd);
954 }
955
956 static int
957 process_exit_poll(struct timechart *tchart,
958                   struct evsel *evsel,
959                   struct perf_sample *sample)
960 {
961         long ret = evsel__intval(evsel, sample, "ret");
962         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
963                                  sample->time, ret);
964 }
965
966 /*
967  * Sort the pid datastructure
968  */
969 static void sort_pids(struct timechart *tchart)
970 {
971         struct per_pid *new_list, *p, *cursor, *prev;
972         /* sort by ppid first, then by pid, lowest to highest */
973
974         new_list = NULL;
975
976         while (tchart->all_data) {
977                 p = tchart->all_data;
978                 tchart->all_data = p->next;
979                 p->next = NULL;
980
981                 if (new_list == NULL) {
982                         new_list = p;
983                         p->next = NULL;
984                         continue;
985                 }
986                 prev = NULL;
987                 cursor = new_list;
988                 while (cursor) {
989                         if (cursor->ppid > p->ppid ||
990                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
991                                 /* must insert before */
992                                 if (prev) {
993                                         p->next = prev->next;
994                                         prev->next = p;
995                                         cursor = NULL;
996                                         continue;
997                                 } else {
998                                         p->next = new_list;
999                                         new_list = p;
1000                                         cursor = NULL;
1001                                         continue;
1002                                 }
1003                         }
1004
1005                         prev = cursor;
1006                         cursor = cursor->next;
1007                         if (!cursor)
1008                                 prev->next = p;
1009                 }
1010         }
1011         tchart->all_data = new_list;
1012 }
1013
1014
1015 static void draw_c_p_states(struct timechart *tchart)
1016 {
1017         struct power_event *pwr;
1018         pwr = tchart->power_events;
1019
1020         /*
1021          * two pass drawing so that the P state bars are on top of the C state blocks
1022          */
1023         while (pwr) {
1024                 if (pwr->type == CSTATE)
1025                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1026                 pwr = pwr->next;
1027         }
1028
1029         pwr = tchart->power_events;
1030         while (pwr) {
1031                 if (pwr->type == PSTATE) {
1032                         if (!pwr->state)
1033                                 pwr->state = tchart->min_freq;
1034                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1035                 }
1036                 pwr = pwr->next;
1037         }
1038 }
1039
1040 static void draw_wakeups(struct timechart *tchart)
1041 {
1042         struct wake_event *we;
1043         struct per_pid *p;
1044         struct per_pidcomm *c;
1045
1046         we = tchart->wake_events;
1047         while (we) {
1048                 int from = 0, to = 0;
1049                 char *task_from = NULL, *task_to = NULL;
1050
1051                 /* locate the column of the waker and wakee */
1052                 p = tchart->all_data;
1053                 while (p) {
1054                         if (p->pid == we->waker || p->pid == we->wakee) {
1055                                 c = p->all;
1056                                 while (c) {
1057                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1058                                                 if (p->pid == we->waker && !from) {
1059                                                         from = c->Y;
1060                                                         task_from = strdup(c->comm);
1061                                                 }
1062                                                 if (p->pid == we->wakee && !to) {
1063                                                         to = c->Y;
1064                                                         task_to = strdup(c->comm);
1065                                                 }
1066                                         }
1067                                         c = c->next;
1068                                 }
1069                                 c = p->all;
1070                                 while (c) {
1071                                         if (p->pid == we->waker && !from) {
1072                                                 from = c->Y;
1073                                                 task_from = strdup(c->comm);
1074                                         }
1075                                         if (p->pid == we->wakee && !to) {
1076                                                 to = c->Y;
1077                                                 task_to = strdup(c->comm);
1078                                         }
1079                                         c = c->next;
1080                                 }
1081                         }
1082                         p = p->next;
1083                 }
1084
1085                 if (!task_from) {
1086                         task_from = malloc(40);
1087                         sprintf(task_from, "[%i]", we->waker);
1088                 }
1089                 if (!task_to) {
1090                         task_to = malloc(40);
1091                         sprintf(task_to, "[%i]", we->wakee);
1092                 }
1093
1094                 if (we->waker == -1)
1095                         svg_interrupt(we->time, to, we->backtrace);
1096                 else if (from && to && abs(from - to) == 1)
1097                         svg_wakeline(we->time, from, to, we->backtrace);
1098                 else
1099                         svg_partial_wakeline(we->time, from, task_from, to,
1100                                              task_to, we->backtrace);
1101                 we = we->next;
1102
1103                 free(task_from);
1104                 free(task_to);
1105         }
1106 }
1107
1108 static void draw_cpu_usage(struct timechart *tchart)
1109 {
1110         struct per_pid *p;
1111         struct per_pidcomm *c;
1112         struct cpu_sample *sample;
1113         p = tchart->all_data;
1114         while (p) {
1115                 c = p->all;
1116                 while (c) {
1117                         sample = c->samples;
1118                         while (sample) {
1119                                 if (sample->type == TYPE_RUNNING) {
1120                                         svg_process(sample->cpu,
1121                                                     sample->start_time,
1122                                                     sample->end_time,
1123                                                     p->pid,
1124                                                     c->comm,
1125                                                     sample->backtrace);
1126                                 }
1127
1128                                 sample = sample->next;
1129                         }
1130                         c = c->next;
1131                 }
1132                 p = p->next;
1133         }
1134 }
1135
1136 static void draw_io_bars(struct timechart *tchart)
1137 {
1138         const char *suf;
1139         double bytes;
1140         char comm[256];
1141         struct per_pid *p;
1142         struct per_pidcomm *c;
1143         struct io_sample *sample;
1144         int Y = 1;
1145
1146         p = tchart->all_data;
1147         while (p) {
1148                 c = p->all;
1149                 while (c) {
1150                         if (!c->display) {
1151                                 c->Y = 0;
1152                                 c = c->next;
1153                                 continue;
1154                         }
1155
1156                         svg_box(Y, c->start_time, c->end_time, "process3");
1157                         sample = c->io_samples;
1158                         for (sample = c->io_samples; sample; sample = sample->next) {
1159                                 double h = (double)sample->bytes / c->max_bytes;
1160
1161                                 if (tchart->skip_eagain &&
1162                                     sample->err == -EAGAIN)
1163                                         continue;
1164
1165                                 if (sample->err)
1166                                         h = 1;
1167
1168                                 if (sample->type == IOTYPE_SYNC)
1169                                         svg_fbox(Y,
1170                                                 sample->start_time,
1171                                                 sample->end_time,
1172                                                 1,
1173                                                 sample->err ? "error" : "sync",
1174                                                 sample->fd,
1175                                                 sample->err,
1176                                                 sample->merges);
1177                                 else if (sample->type == IOTYPE_POLL)
1178                                         svg_fbox(Y,
1179                                                 sample->start_time,
1180                                                 sample->end_time,
1181                                                 1,
1182                                                 sample->err ? "error" : "poll",
1183                                                 sample->fd,
1184                                                 sample->err,
1185                                                 sample->merges);
1186                                 else if (sample->type == IOTYPE_READ)
1187                                         svg_ubox(Y,
1188                                                 sample->start_time,
1189                                                 sample->end_time,
1190                                                 h,
1191                                                 sample->err ? "error" : "disk",
1192                                                 sample->fd,
1193                                                 sample->err,
1194                                                 sample->merges);
1195                                 else if (sample->type == IOTYPE_WRITE)
1196                                         svg_lbox(Y,
1197                                                 sample->start_time,
1198                                                 sample->end_time,
1199                                                 h,
1200                                                 sample->err ? "error" : "disk",
1201                                                 sample->fd,
1202                                                 sample->err,
1203                                                 sample->merges);
1204                                 else if (sample->type == IOTYPE_RX)
1205                                         svg_ubox(Y,
1206                                                 sample->start_time,
1207                                                 sample->end_time,
1208                                                 h,
1209                                                 sample->err ? "error" : "net",
1210                                                 sample->fd,
1211                                                 sample->err,
1212                                                 sample->merges);
1213                                 else if (sample->type == IOTYPE_TX)
1214                                         svg_lbox(Y,
1215                                                 sample->start_time,
1216                                                 sample->end_time,
1217                                                 h,
1218                                                 sample->err ? "error" : "net",
1219                                                 sample->fd,
1220                                                 sample->err,
1221                                                 sample->merges);
1222                         }
1223
1224                         suf = "";
1225                         bytes = c->total_bytes;
1226                         if (bytes > 1024) {
1227                                 bytes = bytes / 1024;
1228                                 suf = "K";
1229                         }
1230                         if (bytes > 1024) {
1231                                 bytes = bytes / 1024;
1232                                 suf = "M";
1233                         }
1234                         if (bytes > 1024) {
1235                                 bytes = bytes / 1024;
1236                                 suf = "G";
1237                         }
1238
1239
1240                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1241                         svg_text(Y, c->start_time, comm);
1242
1243                         c->Y = Y;
1244                         Y++;
1245                         c = c->next;
1246                 }
1247                 p = p->next;
1248         }
1249 }
1250
1251 static void draw_process_bars(struct timechart *tchart)
1252 {
1253         struct per_pid *p;
1254         struct per_pidcomm *c;
1255         struct cpu_sample *sample;
1256         int Y = 0;
1257
1258         Y = 2 * tchart->numcpus + 2;
1259
1260         p = tchart->all_data;
1261         while (p) {
1262                 c = p->all;
1263                 while (c) {
1264                         if (!c->display) {
1265                                 c->Y = 0;
1266                                 c = c->next;
1267                                 continue;
1268                         }
1269
1270                         svg_box(Y, c->start_time, c->end_time, "process");
1271                         sample = c->samples;
1272                         while (sample) {
1273                                 if (sample->type == TYPE_RUNNING)
1274                                         svg_running(Y, sample->cpu,
1275                                                     sample->start_time,
1276                                                     sample->end_time,
1277                                                     sample->backtrace);
1278                                 if (sample->type == TYPE_BLOCKED)
1279                                         svg_blocked(Y, sample->cpu,
1280                                                     sample->start_time,
1281                                                     sample->end_time,
1282                                                     sample->backtrace);
1283                                 if (sample->type == TYPE_WAITING)
1284                                         svg_waiting(Y, sample->cpu,
1285                                                     sample->start_time,
1286                                                     sample->end_time,
1287                                                     sample->backtrace);
1288                                 sample = sample->next;
1289                         }
1290
1291                         if (c->comm) {
1292                                 char comm[256];
1293                                 if (c->total_time > 5000000000) /* 5 seconds */
1294                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1295                                 else
1296                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1297
1298                                 svg_text(Y, c->start_time, comm);
1299                         }
1300                         c->Y = Y;
1301                         Y++;
1302                         c = c->next;
1303                 }
1304                 p = p->next;
1305         }
1306 }
1307
1308 static void add_process_filter(const char *string)
1309 {
1310         int pid = strtoull(string, NULL, 10);
1311         struct process_filter *filt = malloc(sizeof(*filt));
1312
1313         if (!filt)
1314                 return;
1315
1316         filt->name = strdup(string);
1317         filt->pid  = pid;
1318         filt->next = process_filter;
1319
1320         process_filter = filt;
1321 }
1322
1323 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1324 {
1325         struct process_filter *filt;
1326         if (!process_filter)
1327                 return 1;
1328
1329         filt = process_filter;
1330         while (filt) {
1331                 if (filt->pid && p->pid == filt->pid)
1332                         return 1;
1333                 if (strcmp(filt->name, c->comm) == 0)
1334                         return 1;
1335                 filt = filt->next;
1336         }
1337         return 0;
1338 }
1339
1340 static int determine_display_tasks_filtered(struct timechart *tchart)
1341 {
1342         struct per_pid *p;
1343         struct per_pidcomm *c;
1344         int count = 0;
1345
1346         p = tchart->all_data;
1347         while (p) {
1348                 p->display = 0;
1349                 if (p->start_time == 1)
1350                         p->start_time = tchart->first_time;
1351
1352                 /* no exit marker, task kept running to the end */
1353                 if (p->end_time == 0)
1354                         p->end_time = tchart->last_time;
1355
1356                 c = p->all;
1357
1358                 while (c) {
1359                         c->display = 0;
1360
1361                         if (c->start_time == 1)
1362                                 c->start_time = tchart->first_time;
1363
1364                         if (passes_filter(p, c)) {
1365                                 c->display = 1;
1366                                 p->display = 1;
1367                                 count++;
1368                         }
1369
1370                         if (c->end_time == 0)
1371                                 c->end_time = tchart->last_time;
1372
1373                         c = c->next;
1374                 }
1375                 p = p->next;
1376         }
1377         return count;
1378 }
1379
1380 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1381 {
1382         struct per_pid *p;
1383         struct per_pidcomm *c;
1384         int count = 0;
1385
1386         p = tchart->all_data;
1387         while (p) {
1388                 p->display = 0;
1389                 if (p->start_time == 1)
1390                         p->start_time = tchart->first_time;
1391
1392                 /* no exit marker, task kept running to the end */
1393                 if (p->end_time == 0)
1394                         p->end_time = tchart->last_time;
1395                 if (p->total_time >= threshold)
1396                         p->display = 1;
1397
1398                 c = p->all;
1399
1400                 while (c) {
1401                         c->display = 0;
1402
1403                         if (c->start_time == 1)
1404                                 c->start_time = tchart->first_time;
1405
1406                         if (c->total_time >= threshold) {
1407                                 c->display = 1;
1408                                 count++;
1409                         }
1410
1411                         if (c->end_time == 0)
1412                                 c->end_time = tchart->last_time;
1413
1414                         c = c->next;
1415                 }
1416                 p = p->next;
1417         }
1418         return count;
1419 }
1420
1421 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1422 {
1423         struct per_pid *p;
1424         struct per_pidcomm *c;
1425         int count = 0;
1426
1427         p = timechart->all_data;
1428         while (p) {
1429                 /* no exit marker, task kept running to the end */
1430                 if (p->end_time == 0)
1431                         p->end_time = timechart->last_time;
1432
1433                 c = p->all;
1434
1435                 while (c) {
1436                         c->display = 0;
1437
1438                         if (c->total_bytes >= threshold) {
1439                                 c->display = 1;
1440                                 count++;
1441                         }
1442
1443                         if (c->end_time == 0)
1444                                 c->end_time = timechart->last_time;
1445
1446                         c = c->next;
1447                 }
1448                 p = p->next;
1449         }
1450         return count;
1451 }
1452
1453 #define BYTES_THRESH (1 * 1024 * 1024)
1454 #define TIME_THRESH 10000000
1455
1456 static void write_svg_file(struct timechart *tchart, const char *filename)
1457 {
1458         u64 i;
1459         int count;
1460         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1461
1462         if (tchart->power_only)
1463                 tchart->proc_num = 0;
1464
1465         /* We'd like to show at least proc_num tasks;
1466          * be less picky if we have fewer */
1467         do {
1468                 if (process_filter)
1469                         count = determine_display_tasks_filtered(tchart);
1470                 else if (tchart->io_events)
1471                         count = determine_display_io_tasks(tchart, thresh);
1472                 else
1473                         count = determine_display_tasks(tchart, thresh);
1474                 thresh /= 10;
1475         } while (!process_filter && thresh && count < tchart->proc_num);
1476
1477         if (!tchart->proc_num)
1478                 count = 0;
1479
1480         if (tchart->io_events) {
1481                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1482
1483                 svg_time_grid(0.5);
1484                 svg_io_legenda();
1485
1486                 draw_io_bars(tchart);
1487         } else {
1488                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1489
1490                 svg_time_grid(0);
1491
1492                 svg_legenda();
1493
1494                 for (i = 0; i < tchart->numcpus; i++)
1495                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1496
1497                 draw_cpu_usage(tchart);
1498                 if (tchart->proc_num)
1499                         draw_process_bars(tchart);
1500                 if (!tchart->tasks_only)
1501                         draw_c_p_states(tchart);
1502                 if (tchart->proc_num)
1503                         draw_wakeups(tchart);
1504         }
1505
1506         svg_close();
1507 }
1508
1509 static int process_header(struct perf_file_section *section __maybe_unused,
1510                           struct perf_header *ph,
1511                           int feat,
1512                           int fd __maybe_unused,
1513                           void *data)
1514 {
1515         struct timechart *tchart = data;
1516
1517         switch (feat) {
1518         case HEADER_NRCPUS:
1519                 tchart->numcpus = ph->env.nr_cpus_avail;
1520                 break;
1521
1522         case HEADER_CPU_TOPOLOGY:
1523                 if (!tchart->topology)
1524                         break;
1525
1526                 if (svg_build_topology_map(&ph->env))
1527                         fprintf(stderr, "problem building topology\n");
1528                 break;
1529
1530         default:
1531                 break;
1532         }
1533
1534         return 0;
1535 }
1536
1537 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1538 {
1539         const struct evsel_str_handler power_tracepoints[] = {
1540                 { "power:cpu_idle",             process_sample_cpu_idle },
1541                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1542                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1543                 { "sched:sched_switch",         process_sample_sched_switch },
1544 #ifdef SUPPORT_OLD_POWER_EVENTS
1545                 { "power:power_start",          process_sample_power_start },
1546                 { "power:power_end",            process_sample_power_end },
1547                 { "power:power_frequency",      process_sample_power_frequency },
1548 #endif
1549
1550                 { "syscalls:sys_enter_read",            process_enter_read },
1551                 { "syscalls:sys_enter_pread64",         process_enter_read },
1552                 { "syscalls:sys_enter_readv",           process_enter_read },
1553                 { "syscalls:sys_enter_preadv",          process_enter_read },
1554                 { "syscalls:sys_enter_write",           process_enter_write },
1555                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1556                 { "syscalls:sys_enter_writev",          process_enter_write },
1557                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1558                 { "syscalls:sys_enter_sync",            process_enter_sync },
1559                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1560                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1561                 { "syscalls:sys_enter_msync",           process_enter_sync },
1562                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1563                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1564                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1565                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1566                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1567                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1568                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1569                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1570                 { "syscalls:sys_enter_poll",            process_enter_poll },
1571                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1572                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1573                 { "syscalls:sys_enter_select",          process_enter_poll },
1574
1575                 { "syscalls:sys_exit_read",             process_exit_read },
1576                 { "syscalls:sys_exit_pread64",          process_exit_read },
1577                 { "syscalls:sys_exit_readv",            process_exit_read },
1578                 { "syscalls:sys_exit_preadv",           process_exit_read },
1579                 { "syscalls:sys_exit_write",            process_exit_write },
1580                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1581                 { "syscalls:sys_exit_writev",           process_exit_write },
1582                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1583                 { "syscalls:sys_exit_sync",             process_exit_sync },
1584                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1585                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1586                 { "syscalls:sys_exit_msync",            process_exit_sync },
1587                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1588                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1589                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1590                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1591                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1592                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1593                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1594                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1595                 { "syscalls:sys_exit_poll",             process_exit_poll },
1596                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1597                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1598                 { "syscalls:sys_exit_select",           process_exit_poll },
1599         };
1600         struct perf_data data = {
1601                 .path  = input_name,
1602                 .mode  = PERF_DATA_MODE_READ,
1603                 .force = tchart->force,
1604         };
1605
1606         struct perf_session *session = perf_session__new(&data, &tchart->tool);
1607         int ret = -EINVAL;
1608
1609         if (IS_ERR(session))
1610                 return PTR_ERR(session);
1611
1612         symbol__init(&session->header.env);
1613
1614         (void)perf_header__process_sections(&session->header,
1615                                             perf_data__fd(session->data),
1616                                             tchart,
1617                                             process_header);
1618
1619         if (!perf_session__has_traces(session, "timechart record"))
1620                 goto out_delete;
1621
1622         if (perf_session__set_tracepoints_handlers(session,
1623                                                    power_tracepoints)) {
1624                 pr_err("Initializing session tracepoint handlers failed\n");
1625                 goto out_delete;
1626         }
1627
1628         ret = perf_session__process_events(session);
1629         if (ret)
1630                 goto out_delete;
1631
1632         end_sample_processing(tchart);
1633
1634         sort_pids(tchart);
1635
1636         write_svg_file(tchart, output_name);
1637
1638         pr_info("Written %2.1f seconds of trace to %s.\n",
1639                 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1640 out_delete:
1641         perf_session__delete(session);
1642         return ret;
1643 }
1644
1645 static int timechart__io_record(int argc, const char **argv)
1646 {
1647         unsigned int rec_argc, i;
1648         const char **rec_argv;
1649         const char **p;
1650         char *filter = NULL;
1651
1652         const char * const common_args[] = {
1653                 "record", "-a", "-R", "-c", "1",
1654         };
1655         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1656
1657         const char * const disk_events[] = {
1658                 "syscalls:sys_enter_read",
1659                 "syscalls:sys_enter_pread64",
1660                 "syscalls:sys_enter_readv",
1661                 "syscalls:sys_enter_preadv",
1662                 "syscalls:sys_enter_write",
1663                 "syscalls:sys_enter_pwrite64",
1664                 "syscalls:sys_enter_writev",
1665                 "syscalls:sys_enter_pwritev",
1666                 "syscalls:sys_enter_sync",
1667                 "syscalls:sys_enter_sync_file_range",
1668                 "syscalls:sys_enter_fsync",
1669                 "syscalls:sys_enter_msync",
1670
1671                 "syscalls:sys_exit_read",
1672                 "syscalls:sys_exit_pread64",
1673                 "syscalls:sys_exit_readv",
1674                 "syscalls:sys_exit_preadv",
1675                 "syscalls:sys_exit_write",
1676                 "syscalls:sys_exit_pwrite64",
1677                 "syscalls:sys_exit_writev",
1678                 "syscalls:sys_exit_pwritev",
1679                 "syscalls:sys_exit_sync",
1680                 "syscalls:sys_exit_sync_file_range",
1681                 "syscalls:sys_exit_fsync",
1682                 "syscalls:sys_exit_msync",
1683         };
1684         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1685
1686         const char * const net_events[] = {
1687                 "syscalls:sys_enter_recvfrom",
1688                 "syscalls:sys_enter_recvmmsg",
1689                 "syscalls:sys_enter_recvmsg",
1690                 "syscalls:sys_enter_sendto",
1691                 "syscalls:sys_enter_sendmsg",
1692                 "syscalls:sys_enter_sendmmsg",
1693
1694                 "syscalls:sys_exit_recvfrom",
1695                 "syscalls:sys_exit_recvmmsg",
1696                 "syscalls:sys_exit_recvmsg",
1697                 "syscalls:sys_exit_sendto",
1698                 "syscalls:sys_exit_sendmsg",
1699                 "syscalls:sys_exit_sendmmsg",
1700         };
1701         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1702
1703         const char * const poll_events[] = {
1704                 "syscalls:sys_enter_epoll_pwait",
1705                 "syscalls:sys_enter_epoll_wait",
1706                 "syscalls:sys_enter_poll",
1707                 "syscalls:sys_enter_ppoll",
1708                 "syscalls:sys_enter_pselect6",
1709                 "syscalls:sys_enter_select",
1710
1711                 "syscalls:sys_exit_epoll_pwait",
1712                 "syscalls:sys_exit_epoll_wait",
1713                 "syscalls:sys_exit_poll",
1714                 "syscalls:sys_exit_ppoll",
1715                 "syscalls:sys_exit_pselect6",
1716                 "syscalls:sys_exit_select",
1717         };
1718         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1719
1720         rec_argc = common_args_nr +
1721                 disk_events_nr * 4 +
1722                 net_events_nr * 4 +
1723                 poll_events_nr * 4 +
1724                 argc;
1725         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1726
1727         if (rec_argv == NULL)
1728                 return -ENOMEM;
1729
1730         if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1731                 free(rec_argv);
1732                 return -ENOMEM;
1733         }
1734
1735         p = rec_argv;
1736         for (i = 0; i < common_args_nr; i++)
1737                 *p++ = strdup(common_args[i]);
1738
1739         for (i = 0; i < disk_events_nr; i++) {
1740                 if (!is_valid_tracepoint(disk_events[i])) {
1741                         rec_argc -= 4;
1742                         continue;
1743                 }
1744
1745                 *p++ = "-e";
1746                 *p++ = strdup(disk_events[i]);
1747                 *p++ = "--filter";
1748                 *p++ = filter;
1749         }
1750         for (i = 0; i < net_events_nr; i++) {
1751                 if (!is_valid_tracepoint(net_events[i])) {
1752                         rec_argc -= 4;
1753                         continue;
1754                 }
1755
1756                 *p++ = "-e";
1757                 *p++ = strdup(net_events[i]);
1758                 *p++ = "--filter";
1759                 *p++ = filter;
1760         }
1761         for (i = 0; i < poll_events_nr; i++) {
1762                 if (!is_valid_tracepoint(poll_events[i])) {
1763                         rec_argc -= 4;
1764                         continue;
1765                 }
1766
1767                 *p++ = "-e";
1768                 *p++ = strdup(poll_events[i]);
1769                 *p++ = "--filter";
1770                 *p++ = filter;
1771         }
1772
1773         for (i = 0; i < (unsigned int)argc; i++)
1774                 *p++ = argv[i];
1775
1776         return cmd_record(rec_argc, rec_argv);
1777 }
1778
1779
1780 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1781 {
1782         unsigned int rec_argc, i, j;
1783         const char **rec_argv;
1784         const char **p;
1785         unsigned int record_elems;
1786
1787         const char * const common_args[] = {
1788                 "record", "-a", "-R", "-c", "1",
1789         };
1790         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1791
1792         const char * const backtrace_args[] = {
1793                 "-g",
1794         };
1795         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1796
1797         const char * const power_args[] = {
1798                 "-e", "power:cpu_frequency",
1799                 "-e", "power:cpu_idle",
1800         };
1801         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1802
1803         const char * const old_power_args[] = {
1804 #ifdef SUPPORT_OLD_POWER_EVENTS
1805                 "-e", "power:power_start",
1806                 "-e", "power:power_end",
1807                 "-e", "power:power_frequency",
1808 #endif
1809         };
1810         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1811
1812         const char * const tasks_args[] = {
1813                 "-e", "sched:sched_wakeup",
1814                 "-e", "sched:sched_switch",
1815         };
1816         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1817
1818 #ifdef SUPPORT_OLD_POWER_EVENTS
1819         if (!is_valid_tracepoint("power:cpu_idle") &&
1820             is_valid_tracepoint("power:power_start")) {
1821                 use_old_power_events = 1;
1822                 power_args_nr = 0;
1823         } else {
1824                 old_power_args_nr = 0;
1825         }
1826 #endif
1827
1828         if (tchart->power_only)
1829                 tasks_args_nr = 0;
1830
1831         if (tchart->tasks_only) {
1832                 power_args_nr = 0;
1833                 old_power_args_nr = 0;
1834         }
1835
1836         if (!tchart->with_backtrace)
1837                 backtrace_args_no = 0;
1838
1839         record_elems = common_args_nr + tasks_args_nr +
1840                 power_args_nr + old_power_args_nr + backtrace_args_no;
1841
1842         rec_argc = record_elems + argc;
1843         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1844
1845         if (rec_argv == NULL)
1846                 return -ENOMEM;
1847
1848         p = rec_argv;
1849         for (i = 0; i < common_args_nr; i++)
1850                 *p++ = strdup(common_args[i]);
1851
1852         for (i = 0; i < backtrace_args_no; i++)
1853                 *p++ = strdup(backtrace_args[i]);
1854
1855         for (i = 0; i < tasks_args_nr; i++)
1856                 *p++ = strdup(tasks_args[i]);
1857
1858         for (i = 0; i < power_args_nr; i++)
1859                 *p++ = strdup(power_args[i]);
1860
1861         for (i = 0; i < old_power_args_nr; i++)
1862                 *p++ = strdup(old_power_args[i]);
1863
1864         for (j = 0; j < (unsigned int)argc; j++)
1865                 *p++ = argv[j];
1866
1867         return cmd_record(rec_argc, rec_argv);
1868 }
1869
1870 static int
1871 parse_process(const struct option *opt __maybe_unused, const char *arg,
1872               int __maybe_unused unset)
1873 {
1874         if (arg)
1875                 add_process_filter(arg);
1876         return 0;
1877 }
1878
1879 static int
1880 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1881                 int __maybe_unused unset)
1882 {
1883         unsigned long duration = strtoul(arg, NULL, 0);
1884
1885         if (svg_highlight || svg_highlight_name)
1886                 return -1;
1887
1888         if (duration)
1889                 svg_highlight = duration;
1890         else
1891                 svg_highlight_name = strdup(arg);
1892
1893         return 0;
1894 }
1895
1896 static int
1897 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1898 {
1899         char unit = 'n';
1900         u64 *value = opt->value;
1901
1902         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1903                 switch (unit) {
1904                 case 'm':
1905                         *value *= NSEC_PER_MSEC;
1906                         break;
1907                 case 'u':
1908                         *value *= NSEC_PER_USEC;
1909                         break;
1910                 case 'n':
1911                         break;
1912                 default:
1913                         return -1;
1914                 }
1915         }
1916
1917         return 0;
1918 }
1919
1920 int cmd_timechart(int argc, const char **argv)
1921 {
1922         struct timechart tchart = {
1923                 .tool = {
1924                         .comm            = process_comm_event,
1925                         .fork            = process_fork_event,
1926                         .exit            = process_exit_event,
1927                         .sample          = process_sample_event,
1928                         .ordered_events  = true,
1929                 },
1930                 .proc_num = 15,
1931                 .min_time = NSEC_PER_MSEC,
1932                 .merge_dist = 1000,
1933         };
1934         const char *output_name = "output.svg";
1935         const struct option timechart_common_options[] = {
1936         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1937         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1938         OPT_END()
1939         };
1940         const struct option timechart_options[] = {
1941         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1942         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1943         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1944         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1945                       "highlight tasks. Pass duration in ns or process name.",
1946                        parse_highlight),
1947         OPT_CALLBACK('p', "process", NULL, "process",
1948                       "process selector. Pass a pid or process name.",
1949                        parse_process),
1950         OPT_CALLBACK(0, "symfs", NULL, "directory",
1951                      "Look for files with symbols relative to this directory",
1952                      symbol__config_symfs),
1953         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1954                     "min. number of tasks to print"),
1955         OPT_BOOLEAN('t', "topology", &tchart.topology,
1956                     "sort CPUs according to topology"),
1957         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1958                     "skip EAGAIN errors"),
1959         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1960                      "all IO faster than min-time will visually appear longer",
1961                      parse_time),
1962         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1963                      "merge events that are merge-dist us apart",
1964                      parse_time),
1965         OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1966         OPT_PARENT(timechart_common_options),
1967         };
1968         const char * const timechart_subcommands[] = { "record", NULL };
1969         const char *timechart_usage[] = {
1970                 "perf timechart [<options>] {record}",
1971                 NULL
1972         };
1973         const struct option timechart_record_options[] = {
1974         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1975                     "record only IO data"),
1976         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1977         OPT_PARENT(timechart_common_options),
1978         };
1979         const char * const timechart_record_usage[] = {
1980                 "perf timechart record [<options>]",
1981                 NULL
1982         };
1983         argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1984                         timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1985
1986         if (tchart.power_only && tchart.tasks_only) {
1987                 pr_err("-P and -T options cannot be used at the same time.\n");
1988                 return -1;
1989         }
1990
1991         if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1992                 argc = parse_options(argc, argv, timechart_record_options,
1993                                      timechart_record_usage,
1994                                      PARSE_OPT_STOP_AT_NON_OPTION);
1995
1996                 if (tchart.power_only && tchart.tasks_only) {
1997                         pr_err("-P and -T options cannot be used at the same time.\n");
1998                         return -1;
1999                 }
2000
2001                 if (tchart.io_only)
2002                         return timechart__io_record(argc, argv);
2003                 else
2004                         return timechart__record(&tchart, argc, argv);
2005         } else if (argc)
2006                 usage_with_options(timechart_usage, timechart_options);
2007
2008         setup_pager();
2009
2010         return __cmd_timechart(&tchart, output_name);
2011 }