3a0a89e41523a0fe2e8b9e7029dc232e4eb1bc78
[platform/adaptation/renesas_rcar/renesas_kernel.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include "builtin.h"
16
17 #include "util/util.h"
18
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/string.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
27
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35
36 static char             const *input_name = "perf.data";
37 static char             const *output_name = "output.svg";
38
39
40 static u64              sample_type;
41
42 static unsigned int     numcpus;
43 static u64              min_freq;       /* Lowest CPU frequency seen */
44 static u64              max_freq;       /* Highest CPU frequency seen */
45 static u64              turbo_frequency;
46
47 static u64              first_time, last_time;
48
49 static int              power_only;
50
51
52 struct per_pid;
53 struct per_pidcomm;
54
55 struct cpu_sample;
56 struct power_event;
57 struct wake_event;
58
59 struct sample_wrapper;
60
61 /*
62  * Datastructure layout:
63  * We keep an list of "pid"s, matching the kernels notion of a task struct.
64  * Each "pid" entry, has a list of "comm"s.
65  *      this is because we want to track different programs different, while
66  *      exec will reuse the original pid (by design).
67  * Each comm has a list of samples that will be used to draw
68  * final graph.
69  */
70
71 struct per_pid {
72         struct per_pid *next;
73
74         int             pid;
75         int             ppid;
76
77         u64             start_time;
78         u64             end_time;
79         u64             total_time;
80         int             display;
81
82         struct per_pidcomm *all;
83         struct per_pidcomm *current;
84
85         int painted;
86 };
87
88
89 struct per_pidcomm {
90         struct per_pidcomm *next;
91
92         u64             start_time;
93         u64             end_time;
94         u64             total_time;
95
96         int             Y;
97         int             display;
98
99         long            state;
100         u64             state_since;
101
102         char            *comm;
103
104         struct cpu_sample *samples;
105 };
106
107 struct sample_wrapper {
108         struct sample_wrapper *next;
109
110         u64             timestamp;
111         unsigned char   data[0];
112 };
113
114 #define TYPE_NONE       0
115 #define TYPE_RUNNING    1
116 #define TYPE_WAITING    2
117 #define TYPE_BLOCKED    3
118
119 struct cpu_sample {
120         struct cpu_sample *next;
121
122         u64 start_time;
123         u64 end_time;
124         int type;
125         int cpu;
126 };
127
128 static struct per_pid *all_data;
129
130 #define CSTATE 1
131 #define PSTATE 2
132
133 struct power_event {
134         struct power_event *next;
135         int type;
136         int state;
137         u64 start_time;
138         u64 end_time;
139         int cpu;
140 };
141
142 struct wake_event {
143         struct wake_event *next;
144         int waker;
145         int wakee;
146         u64 time;
147 };
148
149 static struct power_event    *power_events;
150 static struct wake_event     *wake_events;
151
152 struct sample_wrapper *all_samples;
153
154
155 struct process_filter;
156 struct process_filter {
157         char                    *name;
158         int                     pid;
159         struct process_filter   *next;
160 };
161
162 static struct process_filter *process_filter;
163
164
165 static struct per_pid *find_create_pid(int pid)
166 {
167         struct per_pid *cursor = all_data;
168
169         while (cursor) {
170                 if (cursor->pid == pid)
171                         return cursor;
172                 cursor = cursor->next;
173         }
174         cursor = malloc(sizeof(struct per_pid));
175         assert(cursor != NULL);
176         memset(cursor, 0, sizeof(struct per_pid));
177         cursor->pid = pid;
178         cursor->next = all_data;
179         all_data = cursor;
180         return cursor;
181 }
182
183 static void pid_set_comm(int pid, char *comm)
184 {
185         struct per_pid *p;
186         struct per_pidcomm *c;
187         p = find_create_pid(pid);
188         c = p->all;
189         while (c) {
190                 if (c->comm && strcmp(c->comm, comm) == 0) {
191                         p->current = c;
192                         return;
193                 }
194                 if (!c->comm) {
195                         c->comm = strdup(comm);
196                         p->current = c;
197                         return;
198                 }
199                 c = c->next;
200         }
201         c = malloc(sizeof(struct per_pidcomm));
202         assert(c != NULL);
203         memset(c, 0, sizeof(struct per_pidcomm));
204         c->comm = strdup(comm);
205         p->current = c;
206         c->next = p->all;
207         p->all = c;
208 }
209
210 static void pid_fork(int pid, int ppid, u64 timestamp)
211 {
212         struct per_pid *p, *pp;
213         p = find_create_pid(pid);
214         pp = find_create_pid(ppid);
215         p->ppid = ppid;
216         if (pp->current && pp->current->comm && !p->current)
217                 pid_set_comm(pid, pp->current->comm);
218
219         p->start_time = timestamp;
220         if (p->current) {
221                 p->current->start_time = timestamp;
222                 p->current->state_since = timestamp;
223         }
224 }
225
226 static void pid_exit(int pid, u64 timestamp)
227 {
228         struct per_pid *p;
229         p = find_create_pid(pid);
230         p->end_time = timestamp;
231         if (p->current)
232                 p->current->end_time = timestamp;
233 }
234
235 static void
236 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
237 {
238         struct per_pid *p;
239         struct per_pidcomm *c;
240         struct cpu_sample *sample;
241
242         p = find_create_pid(pid);
243         c = p->current;
244         if (!c) {
245                 c = malloc(sizeof(struct per_pidcomm));
246                 assert(c != NULL);
247                 memset(c, 0, sizeof(struct per_pidcomm));
248                 p->current = c;
249                 c->next = p->all;
250                 p->all = c;
251         }
252
253         sample = malloc(sizeof(struct cpu_sample));
254         assert(sample != NULL);
255         memset(sample, 0, sizeof(struct cpu_sample));
256         sample->start_time = start;
257         sample->end_time = end;
258         sample->type = type;
259         sample->next = c->samples;
260         sample->cpu = cpu;
261         c->samples = sample;
262
263         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
264                 c->total_time += (end-start);
265                 p->total_time += (end-start);
266         }
267
268         if (c->start_time == 0 || c->start_time > start)
269                 c->start_time = start;
270         if (p->start_time == 0 || p->start_time > start)
271                 p->start_time = start;
272
273         if (cpu > numcpus)
274                 numcpus = cpu;
275 }
276
277 #define MAX_CPUS 4096
278
279 static u64 cpus_cstate_start_times[MAX_CPUS];
280 static int cpus_cstate_state[MAX_CPUS];
281 static u64 cpus_pstate_start_times[MAX_CPUS];
282 static u64 cpus_pstate_state[MAX_CPUS];
283
284 static int process_comm_event(event_t *event, struct perf_session *session __used)
285 {
286         pid_set_comm(event->comm.pid, event->comm.comm);
287         return 0;
288 }
289
290 static int process_fork_event(event_t *event, struct perf_session *session __used)
291 {
292         pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
293         return 0;
294 }
295
296 static int process_exit_event(event_t *event, struct perf_session *session __used)
297 {
298         pid_exit(event->fork.pid, event->fork.time);
299         return 0;
300 }
301
302 struct trace_entry {
303         unsigned short          type;
304         unsigned char           flags;
305         unsigned char           preempt_count;
306         int                     pid;
307         int                     lock_depth;
308 };
309
310 struct power_entry {
311         struct trace_entry te;
312         s64     type;
313         s64     value;
314 };
315
316 #define TASK_COMM_LEN 16
317 struct wakeup_entry {
318         struct trace_entry te;
319         char comm[TASK_COMM_LEN];
320         int   pid;
321         int   prio;
322         int   success;
323 };
324
325 /*
326  * trace_flag_type is an enumeration that holds different
327  * states when a trace occurs. These are:
328  *  IRQS_OFF            - interrupts were disabled
329  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
330  *  NEED_RESCED         - reschedule is requested
331  *  HARDIRQ             - inside an interrupt handler
332  *  SOFTIRQ             - inside a softirq handler
333  */
334 enum trace_flag_type {
335         TRACE_FLAG_IRQS_OFF             = 0x01,
336         TRACE_FLAG_IRQS_NOSUPPORT       = 0x02,
337         TRACE_FLAG_NEED_RESCHED         = 0x04,
338         TRACE_FLAG_HARDIRQ              = 0x08,
339         TRACE_FLAG_SOFTIRQ              = 0x10,
340 };
341
342
343
344 struct sched_switch {
345         struct trace_entry te;
346         char prev_comm[TASK_COMM_LEN];
347         int  prev_pid;
348         int  prev_prio;
349         long prev_state; /* Arjan weeps. */
350         char next_comm[TASK_COMM_LEN];
351         int  next_pid;
352         int  next_prio;
353 };
354
355 static void c_state_start(int cpu, u64 timestamp, int state)
356 {
357         cpus_cstate_start_times[cpu] = timestamp;
358         cpus_cstate_state[cpu] = state;
359 }
360
361 static void c_state_end(int cpu, u64 timestamp)
362 {
363         struct power_event *pwr;
364         pwr = malloc(sizeof(struct power_event));
365         if (!pwr)
366                 return;
367         memset(pwr, 0, sizeof(struct power_event));
368
369         pwr->state = cpus_cstate_state[cpu];
370         pwr->start_time = cpus_cstate_start_times[cpu];
371         pwr->end_time = timestamp;
372         pwr->cpu = cpu;
373         pwr->type = CSTATE;
374         pwr->next = power_events;
375
376         power_events = pwr;
377 }
378
379 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
380 {
381         struct power_event *pwr;
382         pwr = malloc(sizeof(struct power_event));
383
384         if (new_freq > 8000000) /* detect invalid data */
385                 return;
386
387         if (!pwr)
388                 return;
389         memset(pwr, 0, sizeof(struct power_event));
390
391         pwr->state = cpus_pstate_state[cpu];
392         pwr->start_time = cpus_pstate_start_times[cpu];
393         pwr->end_time = timestamp;
394         pwr->cpu = cpu;
395         pwr->type = PSTATE;
396         pwr->next = power_events;
397
398         if (!pwr->start_time)
399                 pwr->start_time = first_time;
400
401         power_events = pwr;
402
403         cpus_pstate_state[cpu] = new_freq;
404         cpus_pstate_start_times[cpu] = timestamp;
405
406         if ((u64)new_freq > max_freq)
407                 max_freq = new_freq;
408
409         if (new_freq < min_freq || min_freq == 0)
410                 min_freq = new_freq;
411
412         if (new_freq == max_freq - 1000)
413                         turbo_frequency = max_freq;
414 }
415
416 static void
417 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
418 {
419         struct wake_event *we;
420         struct per_pid *p;
421         struct wakeup_entry *wake = (void *)te;
422
423         we = malloc(sizeof(struct wake_event));
424         if (!we)
425                 return;
426
427         memset(we, 0, sizeof(struct wake_event));
428         we->time = timestamp;
429         we->waker = pid;
430
431         if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
432                 we->waker = -1;
433
434         we->wakee = wake->pid;
435         we->next = wake_events;
436         wake_events = we;
437         p = find_create_pid(we->wakee);
438
439         if (p && p->current && p->current->state == TYPE_NONE) {
440                 p->current->state_since = timestamp;
441                 p->current->state = TYPE_WAITING;
442         }
443         if (p && p->current && p->current->state == TYPE_BLOCKED) {
444                 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
445                 p->current->state_since = timestamp;
446                 p->current->state = TYPE_WAITING;
447         }
448 }
449
450 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
451 {
452         struct per_pid *p = NULL, *prev_p;
453         struct sched_switch *sw = (void *)te;
454
455
456         prev_p = find_create_pid(sw->prev_pid);
457
458         p = find_create_pid(sw->next_pid);
459
460         if (prev_p->current && prev_p->current->state != TYPE_NONE)
461                 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
462         if (p && p->current) {
463                 if (p->current->state != TYPE_NONE)
464                         pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
465
466                         p->current->state_since = timestamp;
467                         p->current->state = TYPE_RUNNING;
468         }
469
470         if (prev_p->current) {
471                 prev_p->current->state = TYPE_NONE;
472                 prev_p->current->state_since = timestamp;
473                 if (sw->prev_state & 2)
474                         prev_p->current->state = TYPE_BLOCKED;
475                 if (sw->prev_state == 0)
476                         prev_p->current->state = TYPE_WAITING;
477         }
478 }
479
480
481 static int
482 process_sample_event(event_t *event)
483 {
484         struct sample_data data;
485         struct trace_entry *te;
486
487         memset(&data, 0, sizeof(data));
488
489         event__parse_sample(event, sample_type, &data);
490
491         if (sample_type & PERF_SAMPLE_TIME) {
492                 if (!first_time || first_time > data.time)
493                         first_time = data.time;
494                 if (last_time < data.time)
495                         last_time = data.time;
496         }
497
498         te = (void *)data.raw_data;
499         if (sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) {
500                 char *event_str;
501                 struct power_entry *pe;
502
503                 pe = (void *)te;
504
505                 event_str = perf_header__find_event(te->type);
506
507                 if (!event_str)
508                         return 0;
509
510                 if (strcmp(event_str, "power:power_start") == 0)
511                         c_state_start(data.cpu, data.time, pe->value);
512
513                 if (strcmp(event_str, "power:power_end") == 0)
514                         c_state_end(data.cpu, data.time);
515
516                 if (strcmp(event_str, "power:power_frequency") == 0)
517                         p_state_change(data.cpu, data.time, pe->value);
518
519                 if (strcmp(event_str, "sched:sched_wakeup") == 0)
520                         sched_wakeup(data.cpu, data.time, data.pid, te);
521
522                 if (strcmp(event_str, "sched:sched_switch") == 0)
523                         sched_switch(data.cpu, data.time, te);
524         }
525         return 0;
526 }
527
528 /*
529  * After the last sample we need to wrap up the current C/P state
530  * and close out each CPU for these.
531  */
532 static void end_sample_processing(void)
533 {
534         u64 cpu;
535         struct power_event *pwr;
536
537         for (cpu = 0; cpu <= numcpus; cpu++) {
538                 pwr = malloc(sizeof(struct power_event));
539                 if (!pwr)
540                         return;
541                 memset(pwr, 0, sizeof(struct power_event));
542
543                 /* C state */
544 #if 0
545                 pwr->state = cpus_cstate_state[cpu];
546                 pwr->start_time = cpus_cstate_start_times[cpu];
547                 pwr->end_time = last_time;
548                 pwr->cpu = cpu;
549                 pwr->type = CSTATE;
550                 pwr->next = power_events;
551
552                 power_events = pwr;
553 #endif
554                 /* P state */
555
556                 pwr = malloc(sizeof(struct power_event));
557                 if (!pwr)
558                         return;
559                 memset(pwr, 0, sizeof(struct power_event));
560
561                 pwr->state = cpus_pstate_state[cpu];
562                 pwr->start_time = cpus_pstate_start_times[cpu];
563                 pwr->end_time = last_time;
564                 pwr->cpu = cpu;
565                 pwr->type = PSTATE;
566                 pwr->next = power_events;
567
568                 if (!pwr->start_time)
569                         pwr->start_time = first_time;
570                 if (!pwr->state)
571                         pwr->state = min_freq;
572                 power_events = pwr;
573         }
574 }
575
576 static u64 sample_time(event_t *event)
577 {
578         int cursor;
579
580         cursor = 0;
581         if (sample_type & PERF_SAMPLE_IP)
582                 cursor++;
583         if (sample_type & PERF_SAMPLE_TID)
584                 cursor++;
585         if (sample_type & PERF_SAMPLE_TIME)
586                 return event->sample.array[cursor];
587         return 0;
588 }
589
590
591 /*
592  * We first queue all events, sorted backwards by insertion.
593  * The order will get flipped later.
594  */
595 static int queue_sample_event(event_t *event, struct perf_session *session __used)
596 {
597         struct sample_wrapper *copy, *prev;
598         int size;
599
600         size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
601
602         copy = malloc(size);
603         if (!copy)
604                 return 1;
605
606         memset(copy, 0, size);
607
608         copy->next = NULL;
609         copy->timestamp = sample_time(event);
610
611         memcpy(&copy->data, event, event->sample.header.size);
612
613         /* insert in the right place in the list */
614
615         if (!all_samples) {
616                 /* first sample ever */
617                 all_samples = copy;
618                 return 0;
619         }
620
621         if (all_samples->timestamp < copy->timestamp) {
622                 /* insert at the head of the list */
623                 copy->next = all_samples;
624                 all_samples = copy;
625                 return 0;
626         }
627
628         prev = all_samples;
629         while (prev->next) {
630                 if (prev->next->timestamp < copy->timestamp) {
631                         copy->next = prev->next;
632                         prev->next = copy;
633                         return 0;
634                 }
635                 prev = prev->next;
636         }
637         /* insert at the end of the list */
638         prev->next = copy;
639
640         return 0;
641 }
642
643 static void sort_queued_samples(void)
644 {
645         struct sample_wrapper *cursor, *next;
646
647         cursor = all_samples;
648         all_samples = NULL;
649
650         while (cursor) {
651                 next = cursor->next;
652                 cursor->next = all_samples;
653                 all_samples = cursor;
654                 cursor = next;
655         }
656 }
657
658 /*
659  * Sort the pid datastructure
660  */
661 static void sort_pids(void)
662 {
663         struct per_pid *new_list, *p, *cursor, *prev;
664         /* sort by ppid first, then by pid, lowest to highest */
665
666         new_list = NULL;
667
668         while (all_data) {
669                 p = all_data;
670                 all_data = p->next;
671                 p->next = NULL;
672
673                 if (new_list == NULL) {
674                         new_list = p;
675                         p->next = NULL;
676                         continue;
677                 }
678                 prev = NULL;
679                 cursor = new_list;
680                 while (cursor) {
681                         if (cursor->ppid > p->ppid ||
682                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
683                                 /* must insert before */
684                                 if (prev) {
685                                         p->next = prev->next;
686                                         prev->next = p;
687                                         cursor = NULL;
688                                         continue;
689                                 } else {
690                                         p->next = new_list;
691                                         new_list = p;
692                                         cursor = NULL;
693                                         continue;
694                                 }
695                         }
696
697                         prev = cursor;
698                         cursor = cursor->next;
699                         if (!cursor)
700                                 prev->next = p;
701                 }
702         }
703         all_data = new_list;
704 }
705
706
707 static void draw_c_p_states(void)
708 {
709         struct power_event *pwr;
710         pwr = power_events;
711
712         /*
713          * two pass drawing so that the P state bars are on top of the C state blocks
714          */
715         while (pwr) {
716                 if (pwr->type == CSTATE)
717                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
718                 pwr = pwr->next;
719         }
720
721         pwr = power_events;
722         while (pwr) {
723                 if (pwr->type == PSTATE) {
724                         if (!pwr->state)
725                                 pwr->state = min_freq;
726                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
727                 }
728                 pwr = pwr->next;
729         }
730 }
731
732 static void draw_wakeups(void)
733 {
734         struct wake_event *we;
735         struct per_pid *p;
736         struct per_pidcomm *c;
737
738         we = wake_events;
739         while (we) {
740                 int from = 0, to = 0;
741                 char *task_from = NULL, *task_to = NULL;
742
743                 /* locate the column of the waker and wakee */
744                 p = all_data;
745                 while (p) {
746                         if (p->pid == we->waker || p->pid == we->wakee) {
747                                 c = p->all;
748                                 while (c) {
749                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
750                                                 if (p->pid == we->waker && !from) {
751                                                         from = c->Y;
752                                                         task_from = strdup(c->comm);
753                                                 }
754                                                 if (p->pid == we->wakee && !to) {
755                                                         to = c->Y;
756                                                         task_to = strdup(c->comm);
757                                                 }
758                                         }
759                                         c = c->next;
760                                 }
761                                 c = p->all;
762                                 while (c) {
763                                         if (p->pid == we->waker && !from) {
764                                                 from = c->Y;
765                                                 task_from = strdup(c->comm);
766                                         }
767                                         if (p->pid == we->wakee && !to) {
768                                                 to = c->Y;
769                                                 task_to = strdup(c->comm);
770                                         }
771                                         c = c->next;
772                                 }
773                         }
774                         p = p->next;
775                 }
776
777                 if (!task_from) {
778                         task_from = malloc(40);
779                         sprintf(task_from, "[%i]", we->waker);
780                 }
781                 if (!task_to) {
782                         task_to = malloc(40);
783                         sprintf(task_to, "[%i]", we->wakee);
784                 }
785
786                 if (we->waker == -1)
787                         svg_interrupt(we->time, to);
788                 else if (from && to && abs(from - to) == 1)
789                         svg_wakeline(we->time, from, to);
790                 else
791                         svg_partial_wakeline(we->time, from, task_from, to, task_to);
792                 we = we->next;
793
794                 free(task_from);
795                 free(task_to);
796         }
797 }
798
799 static void draw_cpu_usage(void)
800 {
801         struct per_pid *p;
802         struct per_pidcomm *c;
803         struct cpu_sample *sample;
804         p = all_data;
805         while (p) {
806                 c = p->all;
807                 while (c) {
808                         sample = c->samples;
809                         while (sample) {
810                                 if (sample->type == TYPE_RUNNING)
811                                         svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
812
813                                 sample = sample->next;
814                         }
815                         c = c->next;
816                 }
817                 p = p->next;
818         }
819 }
820
821 static void draw_process_bars(void)
822 {
823         struct per_pid *p;
824         struct per_pidcomm *c;
825         struct cpu_sample *sample;
826         int Y = 0;
827
828         Y = 2 * numcpus + 2;
829
830         p = all_data;
831         while (p) {
832                 c = p->all;
833                 while (c) {
834                         if (!c->display) {
835                                 c->Y = 0;
836                                 c = c->next;
837                                 continue;
838                         }
839
840                         svg_box(Y, c->start_time, c->end_time, "process");
841                         sample = c->samples;
842                         while (sample) {
843                                 if (sample->type == TYPE_RUNNING)
844                                         svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
845                                 if (sample->type == TYPE_BLOCKED)
846                                         svg_box(Y, sample->start_time, sample->end_time, "blocked");
847                                 if (sample->type == TYPE_WAITING)
848                                         svg_waiting(Y, sample->start_time, sample->end_time);
849                                 sample = sample->next;
850                         }
851
852                         if (c->comm) {
853                                 char comm[256];
854                                 if (c->total_time > 5000000000) /* 5 seconds */
855                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
856                                 else
857                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
858
859                                 svg_text(Y, c->start_time, comm);
860                         }
861                         c->Y = Y;
862                         Y++;
863                         c = c->next;
864                 }
865                 p = p->next;
866         }
867 }
868
869 static void add_process_filter(const char *string)
870 {
871         struct process_filter *filt;
872         int pid;
873
874         pid = strtoull(string, NULL, 10);
875         filt = malloc(sizeof(struct process_filter));
876         if (!filt)
877                 return;
878
879         filt->name = strdup(string);
880         filt->pid  = pid;
881         filt->next = process_filter;
882
883         process_filter = filt;
884 }
885
886 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
887 {
888         struct process_filter *filt;
889         if (!process_filter)
890                 return 1;
891
892         filt = process_filter;
893         while (filt) {
894                 if (filt->pid && p->pid == filt->pid)
895                         return 1;
896                 if (strcmp(filt->name, c->comm) == 0)
897                         return 1;
898                 filt = filt->next;
899         }
900         return 0;
901 }
902
903 static int determine_display_tasks_filtered(void)
904 {
905         struct per_pid *p;
906         struct per_pidcomm *c;
907         int count = 0;
908
909         p = all_data;
910         while (p) {
911                 p->display = 0;
912                 if (p->start_time == 1)
913                         p->start_time = first_time;
914
915                 /* no exit marker, task kept running to the end */
916                 if (p->end_time == 0)
917                         p->end_time = last_time;
918
919                 c = p->all;
920
921                 while (c) {
922                         c->display = 0;
923
924                         if (c->start_time == 1)
925                                 c->start_time = first_time;
926
927                         if (passes_filter(p, c)) {
928                                 c->display = 1;
929                                 p->display = 1;
930                                 count++;
931                         }
932
933                         if (c->end_time == 0)
934                                 c->end_time = last_time;
935
936                         c = c->next;
937                 }
938                 p = p->next;
939         }
940         return count;
941 }
942
943 static int determine_display_tasks(u64 threshold)
944 {
945         struct per_pid *p;
946         struct per_pidcomm *c;
947         int count = 0;
948
949         if (process_filter)
950                 return determine_display_tasks_filtered();
951
952         p = all_data;
953         while (p) {
954                 p->display = 0;
955                 if (p->start_time == 1)
956                         p->start_time = first_time;
957
958                 /* no exit marker, task kept running to the end */
959                 if (p->end_time == 0)
960                         p->end_time = last_time;
961                 if (p->total_time >= threshold && !power_only)
962                         p->display = 1;
963
964                 c = p->all;
965
966                 while (c) {
967                         c->display = 0;
968
969                         if (c->start_time == 1)
970                                 c->start_time = first_time;
971
972                         if (c->total_time >= threshold && !power_only) {
973                                 c->display = 1;
974                                 count++;
975                         }
976
977                         if (c->end_time == 0)
978                                 c->end_time = last_time;
979
980                         c = c->next;
981                 }
982                 p = p->next;
983         }
984         return count;
985 }
986
987
988
989 #define TIME_THRESH 10000000
990
991 static void write_svg_file(const char *filename)
992 {
993         u64 i;
994         int count;
995
996         numcpus++;
997
998
999         count = determine_display_tasks(TIME_THRESH);
1000
1001         /* We'd like to show at least 15 tasks; be less picky if we have fewer */
1002         if (count < 15)
1003                 count = determine_display_tasks(TIME_THRESH / 10);
1004
1005         open_svg(filename, numcpus, count, first_time, last_time);
1006
1007         svg_time_grid();
1008         svg_legenda();
1009
1010         for (i = 0; i < numcpus; i++)
1011                 svg_cpu_box(i, max_freq, turbo_frequency);
1012
1013         draw_cpu_usage();
1014         draw_process_bars();
1015         draw_c_p_states();
1016         draw_wakeups();
1017
1018         svg_close();
1019 }
1020
1021 static void process_samples(void)
1022 {
1023         struct sample_wrapper *cursor;
1024         event_t *event;
1025
1026         sort_queued_samples();
1027
1028         cursor = all_samples;
1029         while (cursor) {
1030                 event = (void *)&cursor->data;
1031                 cursor = cursor->next;
1032                 process_sample_event(event);
1033         }
1034 }
1035
1036 static int sample_type_check(u64 type, struct perf_session *session __used)
1037 {
1038         sample_type = type;
1039
1040         if (!(sample_type & PERF_SAMPLE_RAW)) {
1041                 fprintf(stderr, "No trace samples found in the file.\n"
1042                                 "Have you used 'perf timechart record' to record it?\n");
1043                 return -1;
1044         }
1045
1046         return 0;
1047 }
1048
1049 static struct perf_event_ops event_ops = {
1050         .process_comm_event     = process_comm_event,
1051         .process_fork_event     = process_fork_event,
1052         .process_exit_event     = process_exit_event,
1053         .process_sample_event   = queue_sample_event,
1054         .sample_type_check      = sample_type_check,
1055 };
1056
1057 static int __cmd_timechart(void)
1058 {
1059         struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1060                                                          0, NULL);
1061         int ret;
1062
1063         if (session == NULL)
1064                 return -ENOMEM;
1065
1066         ret = perf_session__process_events(session, &event_ops);
1067         if (ret)
1068                 goto out_delete;
1069
1070         process_samples();
1071
1072         end_sample_processing();
1073
1074         sort_pids();
1075
1076         write_svg_file(output_name);
1077
1078         pr_info("Written %2.1f seconds of trace to %s.\n",
1079                 (last_time - first_time) / 1000000000.0, output_name);
1080 out_delete:
1081         perf_session__delete(session);
1082         return ret;
1083 }
1084
1085 static const char * const timechart_usage[] = {
1086         "perf timechart [<options>] {record}",
1087         NULL
1088 };
1089
1090 static const char *record_args[] = {
1091         "record",
1092         "-a",
1093         "-R",
1094         "-M",
1095         "-f",
1096         "-c", "1",
1097         "-e", "power:power_start",
1098         "-e", "power:power_end",
1099         "-e", "power:power_frequency",
1100         "-e", "sched:sched_wakeup",
1101         "-e", "sched:sched_switch",
1102 };
1103
1104 static int __cmd_record(int argc, const char **argv)
1105 {
1106         unsigned int rec_argc, i, j;
1107         const char **rec_argv;
1108
1109         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1110         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1111
1112         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1113                 rec_argv[i] = strdup(record_args[i]);
1114
1115         for (j = 1; j < (unsigned int)argc; j++, i++)
1116                 rec_argv[i] = argv[j];
1117
1118         return cmd_record(i, rec_argv, NULL);
1119 }
1120
1121 static int
1122 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1123 {
1124         if (arg)
1125                 add_process_filter(arg);
1126         return 0;
1127 }
1128
1129 static const struct option options[] = {
1130         OPT_STRING('i', "input", &input_name, "file",
1131                     "input file name"),
1132         OPT_STRING('o', "output", &output_name, "file",
1133                     "output file name"),
1134         OPT_INTEGER('w', "width", &svg_page_width,
1135                     "page width"),
1136         OPT_BOOLEAN('P', "power-only", &power_only,
1137                     "output power data only"),
1138         OPT_CALLBACK('p', "process", NULL, "process",
1139                       "process selector. Pass a pid or process name.",
1140                        parse_process),
1141         OPT_END()
1142 };
1143
1144
1145 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1146 {
1147         symbol__init(0);
1148
1149         argc = parse_options(argc, argv, options, timechart_usage,
1150                         PARSE_OPT_STOP_AT_NON_OPTION);
1151
1152         if (argc && !strncmp(argv[0], "rec", 3))
1153                 return __cmd_record(argc, argv);
1154         else if (argc)
1155                 usage_with_options(timechart_usage, options);
1156
1157         setup_pager();
1158
1159         return __cmd_timechart();
1160 }