1 // SPDX-License-Identifier: GPL-2.0-only
3 * builtin-timechart.c - make an svg timechart of system activity
5 * (C) Copyright 2009 Intel Corporation
8 * Arjan van de Ven <arjan@linux.intel.com>
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
27 #include "util/header.h"
28 #include <subcmd/pager.h>
29 #include <subcmd/parse-options.h>
30 #include "util/parse-events.h"
31 #include "util/event.h"
32 #include "util/session.h"
33 #include "util/svghelper.h"
34 #include "util/tool.h"
35 #include "util/data.h"
36 #include "util/debug.h"
37 #include "util/string2.h"
38 #include "util/tracepoint.h"
39 #include "util/util.h"
40 #include <linux/err.h>
41 #include <traceevent/event-parse.h>
43 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
44 FILE *open_memstream(char **ptr, size_t *sizeloc);
47 #define SUPPORT_OLD_POWER_EVENTS 1
48 #define PWR_EVENT_EXIT -1
55 struct perf_tool tool;
56 struct per_pid *all_data;
57 struct power_event *power_events;
58 struct wake_event *wake_events;
61 u64 min_freq, /* Lowest CPU frequency seen */
62 max_freq, /* Highest CPU frequency seen */
64 first_time, last_time;
70 /* IO related settings */
83 * Datastructure layout:
84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
85 * Each "pid" entry, has a list of "comm"s.
86 * this is because we want to track different programs different, while
87 * exec will reuse the original pid (by design).
88 * Each comm has a list of samples that will be used to draw
104 struct per_pidcomm *all;
105 struct per_pidcomm *current;
110 struct per_pidcomm *next;
126 struct cpu_sample *samples;
127 struct io_sample *io_samples;
130 struct sample_wrapper {
131 struct sample_wrapper *next;
134 unsigned char data[];
138 #define TYPE_RUNNING 1
139 #define TYPE_WAITING 2
140 #define TYPE_BLOCKED 3
143 struct cpu_sample *next;
149 const char *backtrace;
162 struct io_sample *next;
177 struct power_event *next;
186 struct wake_event *next;
190 const char *backtrace;
193 struct process_filter {
196 struct process_filter *next;
199 static struct process_filter *process_filter;
202 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
204 struct per_pid *cursor = tchart->all_data;
207 if (cursor->pid == pid)
209 cursor = cursor->next;
211 cursor = zalloc(sizeof(*cursor));
212 assert(cursor != NULL);
214 cursor->next = tchart->all_data;
215 tchart->all_data = cursor;
219 static struct per_pidcomm *create_pidcomm(struct per_pid *p)
221 struct per_pidcomm *c;
223 c = zalloc(sizeof(*c));
232 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
235 struct per_pidcomm *c;
236 p = find_create_pid(tchart, pid);
239 if (c->comm && strcmp(c->comm, comm) == 0) {
244 c->comm = strdup(comm);
250 c = create_pidcomm(p);
252 c->comm = strdup(comm);
255 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
257 struct per_pid *p, *pp;
258 p = find_create_pid(tchart, pid);
259 pp = find_create_pid(tchart, ppid);
261 if (pp->current && pp->current->comm && !p->current)
262 pid_set_comm(tchart, pid, pp->current->comm);
264 p->start_time = timestamp;
265 if (p->current && !p->current->start_time) {
266 p->current->start_time = timestamp;
267 p->current->state_since = timestamp;
271 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
274 p = find_create_pid(tchart, pid);
275 p->end_time = timestamp;
277 p->current->end_time = timestamp;
280 static void pid_put_sample(struct timechart *tchart, int pid, int type,
281 unsigned int cpu, u64 start, u64 end,
282 const char *backtrace)
285 struct per_pidcomm *c;
286 struct cpu_sample *sample;
288 p = find_create_pid(tchart, pid);
291 c = create_pidcomm(p);
295 sample = zalloc(sizeof(*sample));
296 assert(sample != NULL);
297 sample->start_time = start;
298 sample->end_time = end;
300 sample->next = c->samples;
302 sample->backtrace = backtrace;
305 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
306 c->total_time += (end-start);
307 p->total_time += (end-start);
310 if (c->start_time == 0 || c->start_time > start)
311 c->start_time = start;
312 if (p->start_time == 0 || p->start_time > start)
313 p->start_time = start;
316 #define MAX_CPUS 4096
318 static u64 *cpus_cstate_start_times;
319 static int *cpus_cstate_state;
320 static u64 *cpus_pstate_start_times;
321 static u64 *cpus_pstate_state;
323 static int process_comm_event(struct perf_tool *tool,
324 union perf_event *event,
325 struct perf_sample *sample __maybe_unused,
326 struct machine *machine __maybe_unused)
328 struct timechart *tchart = container_of(tool, struct timechart, tool);
329 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
333 static int process_fork_event(struct perf_tool *tool,
334 union perf_event *event,
335 struct perf_sample *sample __maybe_unused,
336 struct machine *machine __maybe_unused)
338 struct timechart *tchart = container_of(tool, struct timechart, tool);
339 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
343 static int process_exit_event(struct perf_tool *tool,
344 union perf_event *event,
345 struct perf_sample *sample __maybe_unused,
346 struct machine *machine __maybe_unused)
348 struct timechart *tchart = container_of(tool, struct timechart, tool);
349 pid_exit(tchart, event->fork.pid, event->fork.time);
353 #ifdef SUPPORT_OLD_POWER_EVENTS
354 static int use_old_power_events;
357 static void c_state_start(int cpu, u64 timestamp, int state)
359 cpus_cstate_start_times[cpu] = timestamp;
360 cpus_cstate_state[cpu] = state;
363 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
365 struct power_event *pwr = zalloc(sizeof(*pwr));
370 pwr->state = cpus_cstate_state[cpu];
371 pwr->start_time = cpus_cstate_start_times[cpu];
372 pwr->end_time = timestamp;
375 pwr->next = tchart->power_events;
377 tchart->power_events = pwr;
380 static struct power_event *p_state_end(struct timechart *tchart, int cpu,
383 struct power_event *pwr = zalloc(sizeof(*pwr));
388 pwr->state = cpus_pstate_state[cpu];
389 pwr->start_time = cpus_pstate_start_times[cpu];
390 pwr->end_time = timestamp;
393 pwr->next = tchart->power_events;
394 if (!pwr->start_time)
395 pwr->start_time = tchart->first_time;
397 tchart->power_events = pwr;
401 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
403 struct power_event *pwr;
405 if (new_freq > 8000000) /* detect invalid data */
408 pwr = p_state_end(tchart, cpu, timestamp);
412 cpus_pstate_state[cpu] = new_freq;
413 cpus_pstate_start_times[cpu] = timestamp;
415 if ((u64)new_freq > tchart->max_freq)
416 tchart->max_freq = new_freq;
418 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
419 tchart->min_freq = new_freq;
421 if (new_freq == tchart->max_freq - 1000)
422 tchart->turbo_frequency = tchart->max_freq;
425 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
426 int waker, int wakee, u8 flags, const char *backtrace)
429 struct wake_event *we = zalloc(sizeof(*we));
434 we->time = timestamp;
436 we->backtrace = backtrace;
438 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
442 we->next = tchart->wake_events;
443 tchart->wake_events = we;
444 p = find_create_pid(tchart, we->wakee);
446 if (p && p->current && p->current->state == TYPE_NONE) {
447 p->current->state_since = timestamp;
448 p->current->state = TYPE_WAITING;
450 if (p && p->current && p->current->state == TYPE_BLOCKED) {
451 pid_put_sample(tchart, p->pid, p->current->state, cpu,
452 p->current->state_since, timestamp, NULL);
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
458 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
459 int prev_pid, int next_pid, u64 prev_state,
460 const char *backtrace)
462 struct per_pid *p = NULL, *prev_p;
464 prev_p = find_create_pid(tchart, prev_pid);
466 p = find_create_pid(tchart, next_pid);
468 if (prev_p->current && prev_p->current->state != TYPE_NONE)
469 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
470 prev_p->current->state_since, timestamp,
472 if (p && p->current) {
473 if (p->current->state != TYPE_NONE)
474 pid_put_sample(tchart, next_pid, p->current->state, cpu,
475 p->current->state_since, timestamp,
478 p->current->state_since = timestamp;
479 p->current->state = TYPE_RUNNING;
482 if (prev_p->current) {
483 prev_p->current->state = TYPE_NONE;
484 prev_p->current->state_since = timestamp;
486 prev_p->current->state = TYPE_BLOCKED;
488 prev_p->current->state = TYPE_WAITING;
492 static const char *cat_backtrace(union perf_event *event,
493 struct perf_sample *sample,
494 struct machine *machine)
496 struct addr_location al;
500 u8 cpumode = PERF_RECORD_MISC_USER;
501 struct ip_callchain *chain = sample->callchain;
502 FILE *f = open_memstream(&p, &p_len);
505 perror("open_memstream error");
509 addr_location__init(&al);
513 if (machine__resolve(machine, &al, sample) < 0) {
514 fprintf(stderr, "problem processing %d event, skipping it.\n",
519 for (i = 0; i < chain->nr; i++) {
521 struct addr_location tal;
523 if (callchain_param.order == ORDER_CALLEE)
526 ip = chain->ips[chain->nr - i - 1];
528 if (ip >= PERF_CONTEXT_MAX) {
530 case PERF_CONTEXT_HV:
531 cpumode = PERF_RECORD_MISC_HYPERVISOR;
533 case PERF_CONTEXT_KERNEL:
534 cpumode = PERF_RECORD_MISC_KERNEL;
536 case PERF_CONTEXT_USER:
537 cpumode = PERF_RECORD_MISC_USER;
540 pr_debug("invalid callchain context: "
541 "%"PRId64"\n", (s64) ip);
544 * It seems the callchain is corrupted.
553 addr_location__init(&tal);
555 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
556 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
558 fprintf(f, "..... %016" PRIx64 "\n", ip);
560 addr_location__exit(&tal);
563 addr_location__exit(&al);
569 typedef int (*tracepoint_handler)(struct timechart *tchart,
571 struct perf_sample *sample,
572 const char *backtrace);
574 static int process_sample_event(struct perf_tool *tool,
575 union perf_event *event,
576 struct perf_sample *sample,
578 struct machine *machine)
580 struct timechart *tchart = container_of(tool, struct timechart, tool);
582 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
583 if (!tchart->first_time || tchart->first_time > sample->time)
584 tchart->first_time = sample->time;
585 if (tchart->last_time < sample->time)
586 tchart->last_time = sample->time;
589 if (evsel->handler != NULL) {
590 tracepoint_handler f = evsel->handler;
591 return f(tchart, evsel, sample,
592 cat_backtrace(event, sample, machine));
599 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
601 struct perf_sample *sample,
602 const char *backtrace __maybe_unused)
604 u32 state = evsel__intval(evsel, sample, "state");
605 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
607 if (state == (u32)PWR_EVENT_EXIT)
608 c_state_end(tchart, cpu_id, sample->time);
610 c_state_start(cpu_id, sample->time, state);
615 process_sample_cpu_frequency(struct timechart *tchart,
617 struct perf_sample *sample,
618 const char *backtrace __maybe_unused)
620 u32 state = evsel__intval(evsel, sample, "state");
621 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
623 p_state_change(tchart, cpu_id, sample->time, state);
628 process_sample_sched_wakeup(struct timechart *tchart,
630 struct perf_sample *sample,
631 const char *backtrace)
633 u8 flags = evsel__intval(evsel, sample, "common_flags");
634 int waker = evsel__intval(evsel, sample, "common_pid");
635 int wakee = evsel__intval(evsel, sample, "pid");
637 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
642 process_sample_sched_switch(struct timechart *tchart,
644 struct perf_sample *sample,
645 const char *backtrace)
647 int prev_pid = evsel__intval(evsel, sample, "prev_pid");
648 int next_pid = evsel__intval(evsel, sample, "next_pid");
649 u64 prev_state = evsel__intval(evsel, sample, "prev_state");
651 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
652 prev_state, backtrace);
656 #ifdef SUPPORT_OLD_POWER_EVENTS
658 process_sample_power_start(struct timechart *tchart __maybe_unused,
660 struct perf_sample *sample,
661 const char *backtrace __maybe_unused)
663 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
664 u64 value = evsel__intval(evsel, sample, "value");
666 c_state_start(cpu_id, sample->time, value);
671 process_sample_power_end(struct timechart *tchart,
672 struct evsel *evsel __maybe_unused,
673 struct perf_sample *sample,
674 const char *backtrace __maybe_unused)
676 c_state_end(tchart, sample->cpu, sample->time);
681 process_sample_power_frequency(struct timechart *tchart,
683 struct perf_sample *sample,
684 const char *backtrace __maybe_unused)
686 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
687 u64 value = evsel__intval(evsel, sample, "value");
689 p_state_change(tchart, cpu_id, sample->time, value);
692 #endif /* SUPPORT_OLD_POWER_EVENTS */
695 * After the last sample we need to wrap up the current C/P state
696 * and close out each CPU for these.
698 static void end_sample_processing(struct timechart *tchart)
701 struct power_event *pwr;
703 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
706 pwr = zalloc(sizeof(*pwr));
710 pwr->state = cpus_cstate_state[cpu];
711 pwr->start_time = cpus_cstate_start_times[cpu];
712 pwr->end_time = tchart->last_time;
715 pwr->next = tchart->power_events;
717 tchart->power_events = pwr;
721 pwr = p_state_end(tchart, cpu, tchart->last_time);
726 pwr->state = tchart->min_freq;
730 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
733 struct per_pid *p = find_create_pid(tchart, pid);
734 struct per_pidcomm *c = p->current;
735 struct io_sample *sample;
736 struct io_sample *prev;
739 c = create_pidcomm(p);
744 prev = c->io_samples;
746 if (prev && prev->start_time && !prev->end_time) {
747 pr_warning("Skip invalid start event: "
748 "previous event already started!\n");
750 /* remove previous event that has been started,
751 * we are not sure we will ever get an end for it */
752 c->io_samples = prev->next;
757 sample = zalloc(sizeof(*sample));
760 sample->start_time = start;
763 sample->next = c->io_samples;
764 c->io_samples = sample;
766 if (c->start_time == 0 || c->start_time > start)
767 c->start_time = start;
772 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
775 struct per_pid *p = find_create_pid(tchart, pid);
776 struct per_pidcomm *c = p->current;
777 struct io_sample *sample, *prev;
780 pr_warning("Invalid pidcomm!\n");
784 sample = c->io_samples;
786 if (!sample) /* skip partially captured events */
789 if (sample->end_time) {
790 pr_warning("Skip invalid end event: "
791 "previous event already ended!\n");
795 if (sample->type != type) {
796 pr_warning("Skip invalid end event: invalid event type!\n");
800 sample->end_time = end;
803 /* we want to be able to see small and fast transfers, so make them
804 * at least min_time long, but don't overlap them */
805 if (sample->end_time - sample->start_time < tchart->min_time)
806 sample->end_time = sample->start_time + tchart->min_time;
807 if (prev && sample->start_time < prev->end_time) {
808 if (prev->err) /* try to make errors more visible */
809 sample->start_time = prev->end_time;
811 prev->end_time = sample->start_time;
816 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
817 type == IOTYPE_TX || type == IOTYPE_RX) {
819 if ((u64)ret > c->max_bytes)
822 c->total_bytes += ret;
823 p->total_bytes += ret;
827 /* merge two requests to make svg smaller and render-friendly */
829 prev->type == sample->type &&
830 prev->err == sample->err &&
831 prev->fd == sample->fd &&
832 prev->end_time + tchart->merge_dist >= sample->start_time) {
834 sample->bytes += prev->bytes;
835 sample->merges += prev->merges + 1;
837 sample->start_time = prev->start_time;
838 sample->next = prev->next;
841 if (!sample->err && sample->bytes > c->max_bytes)
842 c->max_bytes = sample->bytes;
851 process_enter_read(struct timechart *tchart,
853 struct perf_sample *sample)
855 long fd = evsel__intval(evsel, sample, "fd");
856 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
861 process_exit_read(struct timechart *tchart,
863 struct perf_sample *sample)
865 long ret = evsel__intval(evsel, sample, "ret");
866 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
871 process_enter_write(struct timechart *tchart,
873 struct perf_sample *sample)
875 long fd = evsel__intval(evsel, sample, "fd");
876 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
881 process_exit_write(struct timechart *tchart,
883 struct perf_sample *sample)
885 long ret = evsel__intval(evsel, sample, "ret");
886 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
891 process_enter_sync(struct timechart *tchart,
893 struct perf_sample *sample)
895 long fd = evsel__intval(evsel, sample, "fd");
896 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
901 process_exit_sync(struct timechart *tchart,
903 struct perf_sample *sample)
905 long ret = evsel__intval(evsel, sample, "ret");
906 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
911 process_enter_tx(struct timechart *tchart,
913 struct perf_sample *sample)
915 long fd = evsel__intval(evsel, sample, "fd");
916 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
921 process_exit_tx(struct timechart *tchart,
923 struct perf_sample *sample)
925 long ret = evsel__intval(evsel, sample, "ret");
926 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
931 process_enter_rx(struct timechart *tchart,
933 struct perf_sample *sample)
935 long fd = evsel__intval(evsel, sample, "fd");
936 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
941 process_exit_rx(struct timechart *tchart,
943 struct perf_sample *sample)
945 long ret = evsel__intval(evsel, sample, "ret");
946 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
951 process_enter_poll(struct timechart *tchart,
953 struct perf_sample *sample)
955 long fd = evsel__intval(evsel, sample, "fd");
956 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
961 process_exit_poll(struct timechart *tchart,
963 struct perf_sample *sample)
965 long ret = evsel__intval(evsel, sample, "ret");
966 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
971 * Sort the pid datastructure
973 static void sort_pids(struct timechart *tchart)
975 struct per_pid *new_list, *p, *cursor, *prev;
976 /* sort by ppid first, then by pid, lowest to highest */
980 while (tchart->all_data) {
981 p = tchart->all_data;
982 tchart->all_data = p->next;
985 if (new_list == NULL) {
993 if (cursor->ppid > p->ppid ||
994 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
995 /* must insert before */
997 p->next = prev->next;
1010 cursor = cursor->next;
1015 tchart->all_data = new_list;
1019 static void draw_c_p_states(struct timechart *tchart)
1021 struct power_event *pwr;
1022 pwr = tchart->power_events;
1025 * two pass drawing so that the P state bars are on top of the C state blocks
1028 if (pwr->type == CSTATE)
1029 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1033 pwr = tchart->power_events;
1035 if (pwr->type == PSTATE) {
1037 pwr->state = tchart->min_freq;
1038 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1044 static void draw_wakeups(struct timechart *tchart)
1046 struct wake_event *we;
1048 struct per_pidcomm *c;
1050 we = tchart->wake_events;
1052 int from = 0, to = 0;
1053 char *task_from = NULL, *task_to = NULL;
1055 /* locate the column of the waker and wakee */
1056 p = tchart->all_data;
1058 if (p->pid == we->waker || p->pid == we->wakee) {
1061 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1062 if (p->pid == we->waker && !from) {
1064 task_from = strdup(c->comm);
1066 if (p->pid == we->wakee && !to) {
1068 task_to = strdup(c->comm);
1075 if (p->pid == we->waker && !from) {
1077 task_from = strdup(c->comm);
1079 if (p->pid == we->wakee && !to) {
1081 task_to = strdup(c->comm);
1090 task_from = malloc(40);
1091 sprintf(task_from, "[%i]", we->waker);
1094 task_to = malloc(40);
1095 sprintf(task_to, "[%i]", we->wakee);
1098 if (we->waker == -1)
1099 svg_interrupt(we->time, to, we->backtrace);
1100 else if (from && to && abs(from - to) == 1)
1101 svg_wakeline(we->time, from, to, we->backtrace);
1103 svg_partial_wakeline(we->time, from, task_from, to,
1104 task_to, we->backtrace);
1112 static void draw_cpu_usage(struct timechart *tchart)
1115 struct per_pidcomm *c;
1116 struct cpu_sample *sample;
1117 p = tchart->all_data;
1121 sample = c->samples;
1123 if (sample->type == TYPE_RUNNING) {
1124 svg_process(sample->cpu,
1132 sample = sample->next;
1140 static void draw_io_bars(struct timechart *tchart)
1146 struct per_pidcomm *c;
1147 struct io_sample *sample;
1150 p = tchart->all_data;
1160 svg_box(Y, c->start_time, c->end_time, "process3");
1161 sample = c->io_samples;
1162 for (sample = c->io_samples; sample; sample = sample->next) {
1163 double h = (double)sample->bytes / c->max_bytes;
1165 if (tchart->skip_eagain &&
1166 sample->err == -EAGAIN)
1172 if (sample->type == IOTYPE_SYNC)
1177 sample->err ? "error" : "sync",
1181 else if (sample->type == IOTYPE_POLL)
1186 sample->err ? "error" : "poll",
1190 else if (sample->type == IOTYPE_READ)
1195 sample->err ? "error" : "disk",
1199 else if (sample->type == IOTYPE_WRITE)
1204 sample->err ? "error" : "disk",
1208 else if (sample->type == IOTYPE_RX)
1213 sample->err ? "error" : "net",
1217 else if (sample->type == IOTYPE_TX)
1222 sample->err ? "error" : "net",
1229 bytes = c->total_bytes;
1231 bytes = bytes / 1024;
1235 bytes = bytes / 1024;
1239 bytes = bytes / 1024;
1244 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1245 svg_text(Y, c->start_time, comm);
1255 static void draw_process_bars(struct timechart *tchart)
1258 struct per_pidcomm *c;
1259 struct cpu_sample *sample;
1262 Y = 2 * tchart->numcpus + 2;
1264 p = tchart->all_data;
1274 svg_box(Y, c->start_time, c->end_time, "process");
1275 sample = c->samples;
1277 if (sample->type == TYPE_RUNNING)
1278 svg_running(Y, sample->cpu,
1282 if (sample->type == TYPE_BLOCKED)
1283 svg_blocked(Y, sample->cpu,
1287 if (sample->type == TYPE_WAITING)
1288 svg_waiting(Y, sample->cpu,
1292 sample = sample->next;
1297 if (c->total_time > 5000000000) /* 5 seconds */
1298 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1300 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1302 svg_text(Y, c->start_time, comm);
1312 static void add_process_filter(const char *string)
1314 int pid = strtoull(string, NULL, 10);
1315 struct process_filter *filt = malloc(sizeof(*filt));
1320 filt->name = strdup(string);
1322 filt->next = process_filter;
1324 process_filter = filt;
1327 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1329 struct process_filter *filt;
1330 if (!process_filter)
1333 filt = process_filter;
1335 if (filt->pid && p->pid == filt->pid)
1337 if (strcmp(filt->name, c->comm) == 0)
1344 static int determine_display_tasks_filtered(struct timechart *tchart)
1347 struct per_pidcomm *c;
1350 p = tchart->all_data;
1353 if (p->start_time == 1)
1354 p->start_time = tchart->first_time;
1356 /* no exit marker, task kept running to the end */
1357 if (p->end_time == 0)
1358 p->end_time = tchart->last_time;
1365 if (c->start_time == 1)
1366 c->start_time = tchart->first_time;
1368 if (passes_filter(p, c)) {
1374 if (c->end_time == 0)
1375 c->end_time = tchart->last_time;
1384 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1387 struct per_pidcomm *c;
1390 p = tchart->all_data;
1393 if (p->start_time == 1)
1394 p->start_time = tchart->first_time;
1396 /* no exit marker, task kept running to the end */
1397 if (p->end_time == 0)
1398 p->end_time = tchart->last_time;
1399 if (p->total_time >= threshold)
1407 if (c->start_time == 1)
1408 c->start_time = tchart->first_time;
1410 if (c->total_time >= threshold) {
1415 if (c->end_time == 0)
1416 c->end_time = tchart->last_time;
1425 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1428 struct per_pidcomm *c;
1431 p = timechart->all_data;
1433 /* no exit marker, task kept running to the end */
1434 if (p->end_time == 0)
1435 p->end_time = timechart->last_time;
1442 if (c->total_bytes >= threshold) {
1447 if (c->end_time == 0)
1448 c->end_time = timechart->last_time;
1457 #define BYTES_THRESH (1 * 1024 * 1024)
1458 #define TIME_THRESH 10000000
1460 static void write_svg_file(struct timechart *tchart, const char *filename)
1464 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1466 if (tchart->power_only)
1467 tchart->proc_num = 0;
1469 /* We'd like to show at least proc_num tasks;
1470 * be less picky if we have fewer */
1473 count = determine_display_tasks_filtered(tchart);
1474 else if (tchart->io_events)
1475 count = determine_display_io_tasks(tchart, thresh);
1477 count = determine_display_tasks(tchart, thresh);
1479 } while (!process_filter && thresh && count < tchart->proc_num);
1481 if (!tchart->proc_num)
1484 if (tchart->io_events) {
1485 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1490 draw_io_bars(tchart);
1492 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1498 for (i = 0; i < tchart->numcpus; i++)
1499 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1501 draw_cpu_usage(tchart);
1502 if (tchart->proc_num)
1503 draw_process_bars(tchart);
1504 if (!tchart->tasks_only)
1505 draw_c_p_states(tchart);
1506 if (tchart->proc_num)
1507 draw_wakeups(tchart);
1513 static int process_header(struct perf_file_section *section __maybe_unused,
1514 struct perf_header *ph,
1516 int fd __maybe_unused,
1519 struct timechart *tchart = data;
1523 tchart->numcpus = ph->env.nr_cpus_avail;
1526 case HEADER_CPU_TOPOLOGY:
1527 if (!tchart->topology)
1530 if (svg_build_topology_map(&ph->env))
1531 fprintf(stderr, "problem building topology\n");
1541 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1543 const struct evsel_str_handler power_tracepoints[] = {
1544 { "power:cpu_idle", process_sample_cpu_idle },
1545 { "power:cpu_frequency", process_sample_cpu_frequency },
1546 { "sched:sched_wakeup", process_sample_sched_wakeup },
1547 { "sched:sched_switch", process_sample_sched_switch },
1548 #ifdef SUPPORT_OLD_POWER_EVENTS
1549 { "power:power_start", process_sample_power_start },
1550 { "power:power_end", process_sample_power_end },
1551 { "power:power_frequency", process_sample_power_frequency },
1554 { "syscalls:sys_enter_read", process_enter_read },
1555 { "syscalls:sys_enter_pread64", process_enter_read },
1556 { "syscalls:sys_enter_readv", process_enter_read },
1557 { "syscalls:sys_enter_preadv", process_enter_read },
1558 { "syscalls:sys_enter_write", process_enter_write },
1559 { "syscalls:sys_enter_pwrite64", process_enter_write },
1560 { "syscalls:sys_enter_writev", process_enter_write },
1561 { "syscalls:sys_enter_pwritev", process_enter_write },
1562 { "syscalls:sys_enter_sync", process_enter_sync },
1563 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1564 { "syscalls:sys_enter_fsync", process_enter_sync },
1565 { "syscalls:sys_enter_msync", process_enter_sync },
1566 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1567 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1568 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1569 { "syscalls:sys_enter_sendto", process_enter_tx },
1570 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1571 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1572 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1573 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1574 { "syscalls:sys_enter_poll", process_enter_poll },
1575 { "syscalls:sys_enter_ppoll", process_enter_poll },
1576 { "syscalls:sys_enter_pselect6", process_enter_poll },
1577 { "syscalls:sys_enter_select", process_enter_poll },
1579 { "syscalls:sys_exit_read", process_exit_read },
1580 { "syscalls:sys_exit_pread64", process_exit_read },
1581 { "syscalls:sys_exit_readv", process_exit_read },
1582 { "syscalls:sys_exit_preadv", process_exit_read },
1583 { "syscalls:sys_exit_write", process_exit_write },
1584 { "syscalls:sys_exit_pwrite64", process_exit_write },
1585 { "syscalls:sys_exit_writev", process_exit_write },
1586 { "syscalls:sys_exit_pwritev", process_exit_write },
1587 { "syscalls:sys_exit_sync", process_exit_sync },
1588 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1589 { "syscalls:sys_exit_fsync", process_exit_sync },
1590 { "syscalls:sys_exit_msync", process_exit_sync },
1591 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1592 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1593 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1594 { "syscalls:sys_exit_sendto", process_exit_tx },
1595 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1596 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1597 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1598 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1599 { "syscalls:sys_exit_poll", process_exit_poll },
1600 { "syscalls:sys_exit_ppoll", process_exit_poll },
1601 { "syscalls:sys_exit_pselect6", process_exit_poll },
1602 { "syscalls:sys_exit_select", process_exit_poll },
1604 struct perf_data data = {
1606 .mode = PERF_DATA_MODE_READ,
1607 .force = tchart->force,
1610 struct perf_session *session = perf_session__new(&data, &tchart->tool);
1613 if (IS_ERR(session))
1614 return PTR_ERR(session);
1616 symbol__init(&session->header.env);
1618 (void)perf_header__process_sections(&session->header,
1619 perf_data__fd(session->data),
1623 if (!perf_session__has_traces(session, "timechart record"))
1626 if (perf_session__set_tracepoints_handlers(session,
1627 power_tracepoints)) {
1628 pr_err("Initializing session tracepoint handlers failed\n");
1632 ret = perf_session__process_events(session);
1636 end_sample_processing(tchart);
1640 write_svg_file(tchart, output_name);
1642 pr_info("Written %2.1f seconds of trace to %s.\n",
1643 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1645 perf_session__delete(session);
1649 static int timechart__io_record(int argc, const char **argv)
1651 unsigned int rec_argc, i;
1652 const char **rec_argv;
1654 char *filter = NULL;
1656 const char * const common_args[] = {
1657 "record", "-a", "-R", "-c", "1",
1659 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1661 const char * const disk_events[] = {
1662 "syscalls:sys_enter_read",
1663 "syscalls:sys_enter_pread64",
1664 "syscalls:sys_enter_readv",
1665 "syscalls:sys_enter_preadv",
1666 "syscalls:sys_enter_write",
1667 "syscalls:sys_enter_pwrite64",
1668 "syscalls:sys_enter_writev",
1669 "syscalls:sys_enter_pwritev",
1670 "syscalls:sys_enter_sync",
1671 "syscalls:sys_enter_sync_file_range",
1672 "syscalls:sys_enter_fsync",
1673 "syscalls:sys_enter_msync",
1675 "syscalls:sys_exit_read",
1676 "syscalls:sys_exit_pread64",
1677 "syscalls:sys_exit_readv",
1678 "syscalls:sys_exit_preadv",
1679 "syscalls:sys_exit_write",
1680 "syscalls:sys_exit_pwrite64",
1681 "syscalls:sys_exit_writev",
1682 "syscalls:sys_exit_pwritev",
1683 "syscalls:sys_exit_sync",
1684 "syscalls:sys_exit_sync_file_range",
1685 "syscalls:sys_exit_fsync",
1686 "syscalls:sys_exit_msync",
1688 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1690 const char * const net_events[] = {
1691 "syscalls:sys_enter_recvfrom",
1692 "syscalls:sys_enter_recvmmsg",
1693 "syscalls:sys_enter_recvmsg",
1694 "syscalls:sys_enter_sendto",
1695 "syscalls:sys_enter_sendmsg",
1696 "syscalls:sys_enter_sendmmsg",
1698 "syscalls:sys_exit_recvfrom",
1699 "syscalls:sys_exit_recvmmsg",
1700 "syscalls:sys_exit_recvmsg",
1701 "syscalls:sys_exit_sendto",
1702 "syscalls:sys_exit_sendmsg",
1703 "syscalls:sys_exit_sendmmsg",
1705 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1707 const char * const poll_events[] = {
1708 "syscalls:sys_enter_epoll_pwait",
1709 "syscalls:sys_enter_epoll_wait",
1710 "syscalls:sys_enter_poll",
1711 "syscalls:sys_enter_ppoll",
1712 "syscalls:sys_enter_pselect6",
1713 "syscalls:sys_enter_select",
1715 "syscalls:sys_exit_epoll_pwait",
1716 "syscalls:sys_exit_epoll_wait",
1717 "syscalls:sys_exit_poll",
1718 "syscalls:sys_exit_ppoll",
1719 "syscalls:sys_exit_pselect6",
1720 "syscalls:sys_exit_select",
1722 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1724 rec_argc = common_args_nr +
1725 disk_events_nr * 4 +
1727 poll_events_nr * 4 +
1729 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1731 if (rec_argv == NULL)
1734 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1740 for (i = 0; i < common_args_nr; i++)
1741 *p++ = strdup(common_args[i]);
1743 for (i = 0; i < disk_events_nr; i++) {
1744 if (!is_valid_tracepoint(disk_events[i])) {
1750 *p++ = strdup(disk_events[i]);
1754 for (i = 0; i < net_events_nr; i++) {
1755 if (!is_valid_tracepoint(net_events[i])) {
1761 *p++ = strdup(net_events[i]);
1765 for (i = 0; i < poll_events_nr; i++) {
1766 if (!is_valid_tracepoint(poll_events[i])) {
1772 *p++ = strdup(poll_events[i]);
1777 for (i = 0; i < (unsigned int)argc; i++)
1780 return cmd_record(rec_argc, rec_argv);
1784 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1786 unsigned int rec_argc, i, j;
1787 const char **rec_argv;
1789 unsigned int record_elems;
1791 const char * const common_args[] = {
1792 "record", "-a", "-R", "-c", "1",
1794 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1796 const char * const backtrace_args[] = {
1799 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1801 const char * const power_args[] = {
1802 "-e", "power:cpu_frequency",
1803 "-e", "power:cpu_idle",
1805 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1807 const char * const old_power_args[] = {
1808 #ifdef SUPPORT_OLD_POWER_EVENTS
1809 "-e", "power:power_start",
1810 "-e", "power:power_end",
1811 "-e", "power:power_frequency",
1814 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1816 const char * const tasks_args[] = {
1817 "-e", "sched:sched_wakeup",
1818 "-e", "sched:sched_switch",
1820 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1822 #ifdef SUPPORT_OLD_POWER_EVENTS
1823 if (!is_valid_tracepoint("power:cpu_idle") &&
1824 is_valid_tracepoint("power:power_start")) {
1825 use_old_power_events = 1;
1828 old_power_args_nr = 0;
1832 if (tchart->power_only)
1835 if (tchart->tasks_only) {
1837 old_power_args_nr = 0;
1840 if (!tchart->with_backtrace)
1841 backtrace_args_no = 0;
1843 record_elems = common_args_nr + tasks_args_nr +
1844 power_args_nr + old_power_args_nr + backtrace_args_no;
1846 rec_argc = record_elems + argc;
1847 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1849 if (rec_argv == NULL)
1853 for (i = 0; i < common_args_nr; i++)
1854 *p++ = strdup(common_args[i]);
1856 for (i = 0; i < backtrace_args_no; i++)
1857 *p++ = strdup(backtrace_args[i]);
1859 for (i = 0; i < tasks_args_nr; i++)
1860 *p++ = strdup(tasks_args[i]);
1862 for (i = 0; i < power_args_nr; i++)
1863 *p++ = strdup(power_args[i]);
1865 for (i = 0; i < old_power_args_nr; i++)
1866 *p++ = strdup(old_power_args[i]);
1868 for (j = 0; j < (unsigned int)argc; j++)
1871 return cmd_record(rec_argc, rec_argv);
1875 parse_process(const struct option *opt __maybe_unused, const char *arg,
1876 int __maybe_unused unset)
1879 add_process_filter(arg);
1884 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1885 int __maybe_unused unset)
1887 unsigned long duration = strtoul(arg, NULL, 0);
1889 if (svg_highlight || svg_highlight_name)
1893 svg_highlight = duration;
1895 svg_highlight_name = strdup(arg);
1901 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1904 u64 *value = opt->value;
1906 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1909 *value *= NSEC_PER_MSEC;
1912 *value *= NSEC_PER_USEC;
1924 int cmd_timechart(int argc, const char **argv)
1926 struct timechart tchart = {
1928 .comm = process_comm_event,
1929 .fork = process_fork_event,
1930 .exit = process_exit_event,
1931 .sample = process_sample_event,
1932 .ordered_events = true,
1935 .min_time = NSEC_PER_MSEC,
1938 const char *output_name = "output.svg";
1939 const struct option timechart_common_options[] = {
1940 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1941 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1944 const struct option timechart_options[] = {
1945 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1946 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1947 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1948 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1949 "highlight tasks. Pass duration in ns or process name.",
1951 OPT_CALLBACK('p', "process", NULL, "process",
1952 "process selector. Pass a pid or process name.",
1954 OPT_CALLBACK(0, "symfs", NULL, "directory",
1955 "Look for files with symbols relative to this directory",
1956 symbol__config_symfs),
1957 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1958 "min. number of tasks to print"),
1959 OPT_BOOLEAN('t', "topology", &tchart.topology,
1960 "sort CPUs according to topology"),
1961 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1962 "skip EAGAIN errors"),
1963 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1964 "all IO faster than min-time will visually appear longer",
1966 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1967 "merge events that are merge-dist us apart",
1969 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1970 OPT_PARENT(timechart_common_options),
1972 const char * const timechart_subcommands[] = { "record", NULL };
1973 const char *timechart_usage[] = {
1974 "perf timechart [<options>] {record}",
1977 const struct option timechart_record_options[] = {
1978 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1979 "record only IO data"),
1980 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1981 OPT_PARENT(timechart_common_options),
1983 const char * const timechart_record_usage[] = {
1984 "perf timechart record [<options>]",
1989 cpus_cstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_cstate_start_times));
1990 if (!cpus_cstate_start_times)
1992 cpus_cstate_state = calloc(MAX_CPUS, sizeof(*cpus_cstate_state));
1993 if (!cpus_cstate_state) {
1997 cpus_pstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_pstate_start_times));
1998 if (!cpus_pstate_start_times) {
2002 cpus_pstate_state = calloc(MAX_CPUS, sizeof(*cpus_pstate_state));
2003 if (!cpus_pstate_state) {
2008 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
2009 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2011 if (tchart.power_only && tchart.tasks_only) {
2012 pr_err("-P and -T options cannot be used at the same time.\n");
2017 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2018 argc = parse_options(argc, argv, timechart_record_options,
2019 timechart_record_usage,
2020 PARSE_OPT_STOP_AT_NON_OPTION);
2022 if (tchart.power_only && tchart.tasks_only) {
2023 pr_err("-P and -T options cannot be used at the same time.\n");
2029 ret = timechart__io_record(argc, argv);
2031 ret = timechart__record(&tchart, argc, argv);
2034 usage_with_options(timechart_usage, timechart_options);
2038 ret = __cmd_timechart(&tchart, output_name);
2040 zfree(&cpus_cstate_start_times);
2041 zfree(&cpus_cstate_state);
2042 zfree(&cpus_pstate_start_times);
2043 zfree(&cpus_pstate_state);