Merge branch 'i2c-embedded/for-next' of git://git.pengutronix.de/git/wsa/linux
[profile/ivi/kernel-adaptation-intel-automotive.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
16
17 #include "util/debug.h"
18
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
21
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
25
26 #define PR_SET_NAME             15               /* Set process name */
27 #define MAX_CPUS                4096
28 #define COMM_LEN                20
29 #define SYM_LEN                 129
30 #define MAX_PID                 65536
31
32 struct sched_atom;
33
34 struct task_desc {
35         unsigned long           nr;
36         unsigned long           pid;
37         char                    comm[COMM_LEN];
38
39         unsigned long           nr_events;
40         unsigned long           curr_event;
41         struct sched_atom       **atoms;
42
43         pthread_t               thread;
44         sem_t                   sleep_sem;
45
46         sem_t                   ready_for_work;
47         sem_t                   work_done_sem;
48
49         u64                     cpu_usage;
50 };
51
52 enum sched_event_type {
53         SCHED_EVENT_RUN,
54         SCHED_EVENT_SLEEP,
55         SCHED_EVENT_WAKEUP,
56         SCHED_EVENT_MIGRATION,
57 };
58
59 struct sched_atom {
60         enum sched_event_type   type;
61         int                     specific_wait;
62         u64                     timestamp;
63         u64                     duration;
64         unsigned long           nr;
65         sem_t                   *wait_sem;
66         struct task_desc        *wakee;
67 };
68
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
70
71 enum thread_state {
72         THREAD_SLEEPING = 0,
73         THREAD_WAIT_CPU,
74         THREAD_SCHED_IN,
75         THREAD_IGNORE
76 };
77
78 struct work_atom {
79         struct list_head        list;
80         enum thread_state       state;
81         u64                     sched_out_time;
82         u64                     wake_up_time;
83         u64                     sched_in_time;
84         u64                     runtime;
85 };
86
87 struct work_atoms {
88         struct list_head        work_list;
89         struct thread           *thread;
90         struct rb_node          node;
91         u64                     max_lat;
92         u64                     max_lat_at;
93         u64                     total_lat;
94         u64                     nb_atoms;
95         u64                     total_runtime;
96 };
97
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99
100 struct perf_sched;
101
102 struct trace_sched_handler {
103         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104                             struct perf_sample *sample, struct machine *machine);
105
106         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107                              struct perf_sample *sample, struct machine *machine);
108
109         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110                             struct perf_sample *sample, struct machine *machine);
111
112         int (*fork_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113                           struct perf_sample *sample);
114
115         int (*migrate_task_event)(struct perf_sched *sched,
116                                   struct perf_evsel *evsel,
117                                   struct perf_sample *sample,
118                                   struct machine *machine);
119 };
120
121 struct perf_sched {
122         struct perf_tool tool;
123         const char       *sort_order;
124         unsigned long    nr_tasks;
125         struct task_desc *pid_to_task[MAX_PID];
126         struct task_desc **tasks;
127         const struct trace_sched_handler *tp_handler;
128         pthread_mutex_t  start_work_mutex;
129         pthread_mutex_t  work_done_wait_mutex;
130         int              profile_cpu;
131 /*
132  * Track the current task - that way we can know whether there's any
133  * weird events, such as a task being switched away that is not current.
134  */
135         int              max_cpu;
136         u32              curr_pid[MAX_CPUS];
137         struct thread    *curr_thread[MAX_CPUS];
138         char             next_shortname1;
139         char             next_shortname2;
140         unsigned int     replay_repeat;
141         unsigned long    nr_run_events;
142         unsigned long    nr_sleep_events;
143         unsigned long    nr_wakeup_events;
144         unsigned long    nr_sleep_corrections;
145         unsigned long    nr_run_events_optimized;
146         unsigned long    targetless_wakeups;
147         unsigned long    multitarget_wakeups;
148         unsigned long    nr_runs;
149         unsigned long    nr_timestamps;
150         unsigned long    nr_unordered_timestamps;
151         unsigned long    nr_state_machine_bugs;
152         unsigned long    nr_context_switch_bugs;
153         unsigned long    nr_events;
154         unsigned long    nr_lost_chunks;
155         unsigned long    nr_lost_events;
156         u64              run_measurement_overhead;
157         u64              sleep_measurement_overhead;
158         u64              start_time;
159         u64              cpu_usage;
160         u64              runavg_cpu_usage;
161         u64              parent_cpu_usage;
162         u64              runavg_parent_cpu_usage;
163         u64              sum_runtime;
164         u64              sum_fluct;
165         u64              run_avg;
166         u64              all_runtime;
167         u64              all_count;
168         u64              cpu_last_switched[MAX_CPUS];
169         struct rb_root   atom_root, sorted_atom_root;
170         struct list_head sort_list, cmp_pid;
171 };
172
173 static u64 get_nsecs(void)
174 {
175         struct timespec ts;
176
177         clock_gettime(CLOCK_MONOTONIC, &ts);
178
179         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
180 }
181
182 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
183 {
184         u64 T0 = get_nsecs(), T1;
185
186         do {
187                 T1 = get_nsecs();
188         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
189 }
190
191 static void sleep_nsecs(u64 nsecs)
192 {
193         struct timespec ts;
194
195         ts.tv_nsec = nsecs % 999999999;
196         ts.tv_sec = nsecs / 999999999;
197
198         nanosleep(&ts, NULL);
199 }
200
201 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
202 {
203         u64 T0, T1, delta, min_delta = 1000000000ULL;
204         int i;
205
206         for (i = 0; i < 10; i++) {
207                 T0 = get_nsecs();
208                 burn_nsecs(sched, 0);
209                 T1 = get_nsecs();
210                 delta = T1-T0;
211                 min_delta = min(min_delta, delta);
212         }
213         sched->run_measurement_overhead = min_delta;
214
215         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
216 }
217
218 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
219 {
220         u64 T0, T1, delta, min_delta = 1000000000ULL;
221         int i;
222
223         for (i = 0; i < 10; i++) {
224                 T0 = get_nsecs();
225                 sleep_nsecs(10000);
226                 T1 = get_nsecs();
227                 delta = T1-T0;
228                 min_delta = min(min_delta, delta);
229         }
230         min_delta -= 10000;
231         sched->sleep_measurement_overhead = min_delta;
232
233         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
234 }
235
236 static struct sched_atom *
237 get_new_event(struct task_desc *task, u64 timestamp)
238 {
239         struct sched_atom *event = zalloc(sizeof(*event));
240         unsigned long idx = task->nr_events;
241         size_t size;
242
243         event->timestamp = timestamp;
244         event->nr = idx;
245
246         task->nr_events++;
247         size = sizeof(struct sched_atom *) * task->nr_events;
248         task->atoms = realloc(task->atoms, size);
249         BUG_ON(!task->atoms);
250
251         task->atoms[idx] = event;
252
253         return event;
254 }
255
256 static struct sched_atom *last_event(struct task_desc *task)
257 {
258         if (!task->nr_events)
259                 return NULL;
260
261         return task->atoms[task->nr_events - 1];
262 }
263
264 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
265                                 u64 timestamp, u64 duration)
266 {
267         struct sched_atom *event, *curr_event = last_event(task);
268
269         /*
270          * optimize an existing RUN event by merging this one
271          * to it:
272          */
273         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
274                 sched->nr_run_events_optimized++;
275                 curr_event->duration += duration;
276                 return;
277         }
278
279         event = get_new_event(task, timestamp);
280
281         event->type = SCHED_EVENT_RUN;
282         event->duration = duration;
283
284         sched->nr_run_events++;
285 }
286
287 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
288                                    u64 timestamp, struct task_desc *wakee)
289 {
290         struct sched_atom *event, *wakee_event;
291
292         event = get_new_event(task, timestamp);
293         event->type = SCHED_EVENT_WAKEUP;
294         event->wakee = wakee;
295
296         wakee_event = last_event(wakee);
297         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
298                 sched->targetless_wakeups++;
299                 return;
300         }
301         if (wakee_event->wait_sem) {
302                 sched->multitarget_wakeups++;
303                 return;
304         }
305
306         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
307         sem_init(wakee_event->wait_sem, 0, 0);
308         wakee_event->specific_wait = 1;
309         event->wait_sem = wakee_event->wait_sem;
310
311         sched->nr_wakeup_events++;
312 }
313
314 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
315                                   u64 timestamp, u64 task_state __maybe_unused)
316 {
317         struct sched_atom *event = get_new_event(task, timestamp);
318
319         event->type = SCHED_EVENT_SLEEP;
320
321         sched->nr_sleep_events++;
322 }
323
324 static struct task_desc *register_pid(struct perf_sched *sched,
325                                       unsigned long pid, const char *comm)
326 {
327         struct task_desc *task;
328
329         BUG_ON(pid >= MAX_PID);
330
331         task = sched->pid_to_task[pid];
332
333         if (task)
334                 return task;
335
336         task = zalloc(sizeof(*task));
337         task->pid = pid;
338         task->nr = sched->nr_tasks;
339         strcpy(task->comm, comm);
340         /*
341          * every task starts in sleeping state - this gets ignored
342          * if there's no wakeup pointing to this sleep state:
343          */
344         add_sched_event_sleep(sched, task, 0, 0);
345
346         sched->pid_to_task[pid] = task;
347         sched->nr_tasks++;
348         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
349         BUG_ON(!sched->tasks);
350         sched->tasks[task->nr] = task;
351
352         if (verbose)
353                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
354
355         return task;
356 }
357
358
359 static void print_task_traces(struct perf_sched *sched)
360 {
361         struct task_desc *task;
362         unsigned long i;
363
364         for (i = 0; i < sched->nr_tasks; i++) {
365                 task = sched->tasks[i];
366                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
367                         task->nr, task->comm, task->pid, task->nr_events);
368         }
369 }
370
371 static void add_cross_task_wakeups(struct perf_sched *sched)
372 {
373         struct task_desc *task1, *task2;
374         unsigned long i, j;
375
376         for (i = 0; i < sched->nr_tasks; i++) {
377                 task1 = sched->tasks[i];
378                 j = i + 1;
379                 if (j == sched->nr_tasks)
380                         j = 0;
381                 task2 = sched->tasks[j];
382                 add_sched_event_wakeup(sched, task1, 0, task2);
383         }
384 }
385
386 static void perf_sched__process_event(struct perf_sched *sched,
387                                       struct sched_atom *atom)
388 {
389         int ret = 0;
390
391         switch (atom->type) {
392                 case SCHED_EVENT_RUN:
393                         burn_nsecs(sched, atom->duration);
394                         break;
395                 case SCHED_EVENT_SLEEP:
396                         if (atom->wait_sem)
397                                 ret = sem_wait(atom->wait_sem);
398                         BUG_ON(ret);
399                         break;
400                 case SCHED_EVENT_WAKEUP:
401                         if (atom->wait_sem)
402                                 ret = sem_post(atom->wait_sem);
403                         BUG_ON(ret);
404                         break;
405                 case SCHED_EVENT_MIGRATION:
406                         break;
407                 default:
408                         BUG_ON(1);
409         }
410 }
411
412 static u64 get_cpu_usage_nsec_parent(void)
413 {
414         struct rusage ru;
415         u64 sum;
416         int err;
417
418         err = getrusage(RUSAGE_SELF, &ru);
419         BUG_ON(err);
420
421         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
422         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
423
424         return sum;
425 }
426
427 static int self_open_counters(void)
428 {
429         struct perf_event_attr attr;
430         int fd;
431
432         memset(&attr, 0, sizeof(attr));
433
434         attr.type = PERF_TYPE_SOFTWARE;
435         attr.config = PERF_COUNT_SW_TASK_CLOCK;
436
437         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
438
439         if (fd < 0)
440                 pr_err("Error: sys_perf_event_open() syscall returned "
441                        "with %d (%s)\n", fd, strerror(errno));
442         return fd;
443 }
444
445 static u64 get_cpu_usage_nsec_self(int fd)
446 {
447         u64 runtime;
448         int ret;
449
450         ret = read(fd, &runtime, sizeof(runtime));
451         BUG_ON(ret != sizeof(runtime));
452
453         return runtime;
454 }
455
456 struct sched_thread_parms {
457         struct task_desc  *task;
458         struct perf_sched *sched;
459 };
460
461 static void *thread_func(void *ctx)
462 {
463         struct sched_thread_parms *parms = ctx;
464         struct task_desc *this_task = parms->task;
465         struct perf_sched *sched = parms->sched;
466         u64 cpu_usage_0, cpu_usage_1;
467         unsigned long i, ret;
468         char comm2[22];
469         int fd;
470
471         free(parms);
472
473         sprintf(comm2, ":%s", this_task->comm);
474         prctl(PR_SET_NAME, comm2);
475         fd = self_open_counters();
476         if (fd < 0)
477                 return NULL;
478 again:
479         ret = sem_post(&this_task->ready_for_work);
480         BUG_ON(ret);
481         ret = pthread_mutex_lock(&sched->start_work_mutex);
482         BUG_ON(ret);
483         ret = pthread_mutex_unlock(&sched->start_work_mutex);
484         BUG_ON(ret);
485
486         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
487
488         for (i = 0; i < this_task->nr_events; i++) {
489                 this_task->curr_event = i;
490                 perf_sched__process_event(sched, this_task->atoms[i]);
491         }
492
493         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
494         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
495         ret = sem_post(&this_task->work_done_sem);
496         BUG_ON(ret);
497
498         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
499         BUG_ON(ret);
500         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
501         BUG_ON(ret);
502
503         goto again;
504 }
505
506 static void create_tasks(struct perf_sched *sched)
507 {
508         struct task_desc *task;
509         pthread_attr_t attr;
510         unsigned long i;
511         int err;
512
513         err = pthread_attr_init(&attr);
514         BUG_ON(err);
515         err = pthread_attr_setstacksize(&attr,
516                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
517         BUG_ON(err);
518         err = pthread_mutex_lock(&sched->start_work_mutex);
519         BUG_ON(err);
520         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
521         BUG_ON(err);
522         for (i = 0; i < sched->nr_tasks; i++) {
523                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
524                 BUG_ON(parms == NULL);
525                 parms->task = task = sched->tasks[i];
526                 parms->sched = sched;
527                 sem_init(&task->sleep_sem, 0, 0);
528                 sem_init(&task->ready_for_work, 0, 0);
529                 sem_init(&task->work_done_sem, 0, 0);
530                 task->curr_event = 0;
531                 err = pthread_create(&task->thread, &attr, thread_func, parms);
532                 BUG_ON(err);
533         }
534 }
535
536 static void wait_for_tasks(struct perf_sched *sched)
537 {
538         u64 cpu_usage_0, cpu_usage_1;
539         struct task_desc *task;
540         unsigned long i, ret;
541
542         sched->start_time = get_nsecs();
543         sched->cpu_usage = 0;
544         pthread_mutex_unlock(&sched->work_done_wait_mutex);
545
546         for (i = 0; i < sched->nr_tasks; i++) {
547                 task = sched->tasks[i];
548                 ret = sem_wait(&task->ready_for_work);
549                 BUG_ON(ret);
550                 sem_init(&task->ready_for_work, 0, 0);
551         }
552         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
553         BUG_ON(ret);
554
555         cpu_usage_0 = get_cpu_usage_nsec_parent();
556
557         pthread_mutex_unlock(&sched->start_work_mutex);
558
559         for (i = 0; i < sched->nr_tasks; i++) {
560                 task = sched->tasks[i];
561                 ret = sem_wait(&task->work_done_sem);
562                 BUG_ON(ret);
563                 sem_init(&task->work_done_sem, 0, 0);
564                 sched->cpu_usage += task->cpu_usage;
565                 task->cpu_usage = 0;
566         }
567
568         cpu_usage_1 = get_cpu_usage_nsec_parent();
569         if (!sched->runavg_cpu_usage)
570                 sched->runavg_cpu_usage = sched->cpu_usage;
571         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
572
573         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
574         if (!sched->runavg_parent_cpu_usage)
575                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
576         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
577                                          sched->parent_cpu_usage)/10;
578
579         ret = pthread_mutex_lock(&sched->start_work_mutex);
580         BUG_ON(ret);
581
582         for (i = 0; i < sched->nr_tasks; i++) {
583                 task = sched->tasks[i];
584                 sem_init(&task->sleep_sem, 0, 0);
585                 task->curr_event = 0;
586         }
587 }
588
589 static void run_one_test(struct perf_sched *sched)
590 {
591         u64 T0, T1, delta, avg_delta, fluct;
592
593         T0 = get_nsecs();
594         wait_for_tasks(sched);
595         T1 = get_nsecs();
596
597         delta = T1 - T0;
598         sched->sum_runtime += delta;
599         sched->nr_runs++;
600
601         avg_delta = sched->sum_runtime / sched->nr_runs;
602         if (delta < avg_delta)
603                 fluct = avg_delta - delta;
604         else
605                 fluct = delta - avg_delta;
606         sched->sum_fluct += fluct;
607         if (!sched->run_avg)
608                 sched->run_avg = delta;
609         sched->run_avg = (sched->run_avg * 9 + delta) / 10;
610
611         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
612
613         printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
614
615         printf("cpu: %0.2f / %0.2f",
616                 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
617
618 #if 0
619         /*
620          * rusage statistics done by the parent, these are less
621          * accurate than the sched->sum_exec_runtime based statistics:
622          */
623         printf(" [%0.2f / %0.2f]",
624                 (double)sched->parent_cpu_usage/1e6,
625                 (double)sched->runavg_parent_cpu_usage/1e6);
626 #endif
627
628         printf("\n");
629
630         if (sched->nr_sleep_corrections)
631                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
632         sched->nr_sleep_corrections = 0;
633 }
634
635 static void test_calibrations(struct perf_sched *sched)
636 {
637         u64 T0, T1;
638
639         T0 = get_nsecs();
640         burn_nsecs(sched, 1e6);
641         T1 = get_nsecs();
642
643         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
644
645         T0 = get_nsecs();
646         sleep_nsecs(1e6);
647         T1 = get_nsecs();
648
649         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
650 }
651
652 static int
653 replay_wakeup_event(struct perf_sched *sched,
654                     struct perf_evsel *evsel, struct perf_sample *sample,
655                     struct machine *machine __maybe_unused)
656 {
657         const char *comm = perf_evsel__strval(evsel, sample, "comm");
658         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
659         struct task_desc *waker, *wakee;
660
661         if (verbose) {
662                 printf("sched_wakeup event %p\n", evsel);
663
664                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
665         }
666
667         waker = register_pid(sched, sample->tid, "<unknown>");
668         wakee = register_pid(sched, pid, comm);
669
670         add_sched_event_wakeup(sched, waker, sample->time, wakee);
671         return 0;
672 }
673
674 static int replay_switch_event(struct perf_sched *sched,
675                                struct perf_evsel *evsel,
676                                struct perf_sample *sample,
677                                struct machine *machine __maybe_unused)
678 {
679         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
680                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
681         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
682                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
683         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
684         struct task_desc *prev, __maybe_unused *next;
685         u64 timestamp0, timestamp = sample->time;
686         int cpu = sample->cpu;
687         s64 delta;
688
689         if (verbose)
690                 printf("sched_switch event %p\n", evsel);
691
692         if (cpu >= MAX_CPUS || cpu < 0)
693                 return 0;
694
695         timestamp0 = sched->cpu_last_switched[cpu];
696         if (timestamp0)
697                 delta = timestamp - timestamp0;
698         else
699                 delta = 0;
700
701         if (delta < 0) {
702                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
703                 return -1;
704         }
705
706         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
707                  prev_comm, prev_pid, next_comm, next_pid, delta);
708
709         prev = register_pid(sched, prev_pid, prev_comm);
710         next = register_pid(sched, next_pid, next_comm);
711
712         sched->cpu_last_switched[cpu] = timestamp;
713
714         add_sched_event_run(sched, prev, timestamp, delta);
715         add_sched_event_sleep(sched, prev, timestamp, prev_state);
716
717         return 0;
718 }
719
720 static int replay_fork_event(struct perf_sched *sched, struct perf_evsel *evsel,
721                              struct perf_sample *sample)
722 {
723         const char *parent_comm = perf_evsel__strval(evsel, sample, "parent_comm"),
724                    *child_comm  = perf_evsel__strval(evsel, sample, "child_comm");
725         const u32 parent_pid  = perf_evsel__intval(evsel, sample, "parent_pid"),
726                   child_pid  = perf_evsel__intval(evsel, sample, "child_pid");
727
728         if (verbose) {
729                 printf("sched_fork event %p\n", evsel);
730                 printf("... parent: %s/%d\n", parent_comm, parent_pid);
731                 printf("...  child: %s/%d\n", child_comm, child_pid);
732         }
733
734         register_pid(sched, parent_pid, parent_comm);
735         register_pid(sched, child_pid, child_comm);
736         return 0;
737 }
738
739 struct sort_dimension {
740         const char              *name;
741         sort_fn_t               cmp;
742         struct list_head        list;
743 };
744
745 static int
746 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
747 {
748         struct sort_dimension *sort;
749         int ret = 0;
750
751         BUG_ON(list_empty(list));
752
753         list_for_each_entry(sort, list, list) {
754                 ret = sort->cmp(l, r);
755                 if (ret)
756                         return ret;
757         }
758
759         return ret;
760 }
761
762 static struct work_atoms *
763 thread_atoms_search(struct rb_root *root, struct thread *thread,
764                          struct list_head *sort_list)
765 {
766         struct rb_node *node = root->rb_node;
767         struct work_atoms key = { .thread = thread };
768
769         while (node) {
770                 struct work_atoms *atoms;
771                 int cmp;
772
773                 atoms = container_of(node, struct work_atoms, node);
774
775                 cmp = thread_lat_cmp(sort_list, &key, atoms);
776                 if (cmp > 0)
777                         node = node->rb_left;
778                 else if (cmp < 0)
779                         node = node->rb_right;
780                 else {
781                         BUG_ON(thread != atoms->thread);
782                         return atoms;
783                 }
784         }
785         return NULL;
786 }
787
788 static void
789 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
790                          struct list_head *sort_list)
791 {
792         struct rb_node **new = &(root->rb_node), *parent = NULL;
793
794         while (*new) {
795                 struct work_atoms *this;
796                 int cmp;
797
798                 this = container_of(*new, struct work_atoms, node);
799                 parent = *new;
800
801                 cmp = thread_lat_cmp(sort_list, data, this);
802
803                 if (cmp > 0)
804                         new = &((*new)->rb_left);
805                 else
806                         new = &((*new)->rb_right);
807         }
808
809         rb_link_node(&data->node, parent, new);
810         rb_insert_color(&data->node, root);
811 }
812
813 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
814 {
815         struct work_atoms *atoms = zalloc(sizeof(*atoms));
816         if (!atoms) {
817                 pr_err("No memory at %s\n", __func__);
818                 return -1;
819         }
820
821         atoms->thread = thread;
822         INIT_LIST_HEAD(&atoms->work_list);
823         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
824         return 0;
825 }
826
827 static int latency_fork_event(struct perf_sched *sched __maybe_unused,
828                               struct perf_evsel *evsel __maybe_unused,
829                               struct perf_sample *sample __maybe_unused)
830 {
831         /* should insert the newcomer */
832         return 0;
833 }
834
835 static char sched_out_state(u64 prev_state)
836 {
837         const char *str = TASK_STATE_TO_CHAR_STR;
838
839         return str[prev_state];
840 }
841
842 static int
843 add_sched_out_event(struct work_atoms *atoms,
844                     char run_state,
845                     u64 timestamp)
846 {
847         struct work_atom *atom = zalloc(sizeof(*atom));
848         if (!atom) {
849                 pr_err("Non memory at %s", __func__);
850                 return -1;
851         }
852
853         atom->sched_out_time = timestamp;
854
855         if (run_state == 'R') {
856                 atom->state = THREAD_WAIT_CPU;
857                 atom->wake_up_time = atom->sched_out_time;
858         }
859
860         list_add_tail(&atom->list, &atoms->work_list);
861         return 0;
862 }
863
864 static void
865 add_runtime_event(struct work_atoms *atoms, u64 delta,
866                   u64 timestamp __maybe_unused)
867 {
868         struct work_atom *atom;
869
870         BUG_ON(list_empty(&atoms->work_list));
871
872         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
873
874         atom->runtime += delta;
875         atoms->total_runtime += delta;
876 }
877
878 static void
879 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
880 {
881         struct work_atom *atom;
882         u64 delta;
883
884         if (list_empty(&atoms->work_list))
885                 return;
886
887         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
888
889         if (atom->state != THREAD_WAIT_CPU)
890                 return;
891
892         if (timestamp < atom->wake_up_time) {
893                 atom->state = THREAD_IGNORE;
894                 return;
895         }
896
897         atom->state = THREAD_SCHED_IN;
898         atom->sched_in_time = timestamp;
899
900         delta = atom->sched_in_time - atom->wake_up_time;
901         atoms->total_lat += delta;
902         if (delta > atoms->max_lat) {
903                 atoms->max_lat = delta;
904                 atoms->max_lat_at = timestamp;
905         }
906         atoms->nb_atoms++;
907 }
908
909 static int latency_switch_event(struct perf_sched *sched,
910                                 struct perf_evsel *evsel,
911                                 struct perf_sample *sample,
912                                 struct machine *machine)
913 {
914         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
915                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
916         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
917         struct work_atoms *out_events, *in_events;
918         struct thread *sched_out, *sched_in;
919         u64 timestamp0, timestamp = sample->time;
920         int cpu = sample->cpu;
921         s64 delta;
922
923         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
924
925         timestamp0 = sched->cpu_last_switched[cpu];
926         sched->cpu_last_switched[cpu] = timestamp;
927         if (timestamp0)
928                 delta = timestamp - timestamp0;
929         else
930                 delta = 0;
931
932         if (delta < 0) {
933                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
934                 return -1;
935         }
936
937         sched_out = machine__findnew_thread(machine, prev_pid);
938         sched_in = machine__findnew_thread(machine, next_pid);
939
940         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
941         if (!out_events) {
942                 if (thread_atoms_insert(sched, sched_out))
943                         return -1;
944                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
945                 if (!out_events) {
946                         pr_err("out-event: Internal tree error");
947                         return -1;
948                 }
949         }
950         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
951                 return -1;
952
953         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
954         if (!in_events) {
955                 if (thread_atoms_insert(sched, sched_in))
956                         return -1;
957                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
958                 if (!in_events) {
959                         pr_err("in-event: Internal tree error");
960                         return -1;
961                 }
962                 /*
963                  * Take came in we have not heard about yet,
964                  * add in an initial atom in runnable state:
965                  */
966                 if (add_sched_out_event(in_events, 'R', timestamp))
967                         return -1;
968         }
969         add_sched_in_event(in_events, timestamp);
970
971         return 0;
972 }
973
974 static int latency_runtime_event(struct perf_sched *sched,
975                                  struct perf_evsel *evsel,
976                                  struct perf_sample *sample,
977                                  struct machine *machine)
978 {
979         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
980         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
981         struct thread *thread = machine__findnew_thread(machine, pid);
982         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
983         u64 timestamp = sample->time;
984         int cpu = sample->cpu;
985
986         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
987         if (!atoms) {
988                 if (thread_atoms_insert(sched, thread))
989                         return -1;
990                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
991                 if (!atoms) {
992                         pr_err("in-event: Internal tree error");
993                         return -1;
994                 }
995                 if (add_sched_out_event(atoms, 'R', timestamp))
996                         return -1;
997         }
998
999         add_runtime_event(atoms, runtime, timestamp);
1000         return 0;
1001 }
1002
1003 static int latency_wakeup_event(struct perf_sched *sched,
1004                                 struct perf_evsel *evsel,
1005                                 struct perf_sample *sample,
1006                                 struct machine *machine)
1007 {
1008         const u32 pid     = perf_evsel__intval(evsel, sample, "pid"),
1009                   success = perf_evsel__intval(evsel, sample, "success");
1010         struct work_atoms *atoms;
1011         struct work_atom *atom;
1012         struct thread *wakee;
1013         u64 timestamp = sample->time;
1014
1015         /* Note for later, it may be interesting to observe the failing cases */
1016         if (!success)
1017                 return 0;
1018
1019         wakee = machine__findnew_thread(machine, pid);
1020         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1021         if (!atoms) {
1022                 if (thread_atoms_insert(sched, wakee))
1023                         return -1;
1024                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1025                 if (!atoms) {
1026                         pr_err("wakeup-event: Internal tree error");
1027                         return -1;
1028                 }
1029                 if (add_sched_out_event(atoms, 'S', timestamp))
1030                         return -1;
1031         }
1032
1033         BUG_ON(list_empty(&atoms->work_list));
1034
1035         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1036
1037         /*
1038          * You WILL be missing events if you've recorded only
1039          * one CPU, or are only looking at only one, so don't
1040          * make useless noise.
1041          */
1042         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1043                 sched->nr_state_machine_bugs++;
1044
1045         sched->nr_timestamps++;
1046         if (atom->sched_out_time > timestamp) {
1047                 sched->nr_unordered_timestamps++;
1048                 return 0;
1049         }
1050
1051         atom->state = THREAD_WAIT_CPU;
1052         atom->wake_up_time = timestamp;
1053         return 0;
1054 }
1055
1056 static int latency_migrate_task_event(struct perf_sched *sched,
1057                                       struct perf_evsel *evsel,
1058                                       struct perf_sample *sample,
1059                                       struct machine *machine)
1060 {
1061         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1062         u64 timestamp = sample->time;
1063         struct work_atoms *atoms;
1064         struct work_atom *atom;
1065         struct thread *migrant;
1066
1067         /*
1068          * Only need to worry about migration when profiling one CPU.
1069          */
1070         if (sched->profile_cpu == -1)
1071                 return 0;
1072
1073         migrant = machine__findnew_thread(machine, pid);
1074         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1075         if (!atoms) {
1076                 if (thread_atoms_insert(sched, migrant))
1077                         return -1;
1078                 register_pid(sched, migrant->pid, migrant->comm);
1079                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1080                 if (!atoms) {
1081                         pr_err("migration-event: Internal tree error");
1082                         return -1;
1083                 }
1084                 if (add_sched_out_event(atoms, 'R', timestamp))
1085                         return -1;
1086         }
1087
1088         BUG_ON(list_empty(&atoms->work_list));
1089
1090         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1092
1093         sched->nr_timestamps++;
1094
1095         if (atom->sched_out_time > timestamp)
1096                 sched->nr_unordered_timestamps++;
1097
1098         return 0;
1099 }
1100
1101 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1102 {
1103         int i;
1104         int ret;
1105         u64 avg;
1106
1107         if (!work_list->nb_atoms)
1108                 return;
1109         /*
1110          * Ignore idle threads:
1111          */
1112         if (!strcmp(work_list->thread->comm, "swapper"))
1113                 return;
1114
1115         sched->all_runtime += work_list->total_runtime;
1116         sched->all_count   += work_list->nb_atoms;
1117
1118         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1119
1120         for (i = 0; i < 24 - ret; i++)
1121                 printf(" ");
1122
1123         avg = work_list->total_lat / work_list->nb_atoms;
1124
1125         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1126               (double)work_list->total_runtime / 1e6,
1127                  work_list->nb_atoms, (double)avg / 1e6,
1128                  (double)work_list->max_lat / 1e6,
1129                  (double)work_list->max_lat_at / 1e9);
1130 }
1131
1132 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1133 {
1134         if (l->thread->pid < r->thread->pid)
1135                 return -1;
1136         if (l->thread->pid > r->thread->pid)
1137                 return 1;
1138
1139         return 0;
1140 }
1141
1142 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1143 {
1144         u64 avgl, avgr;
1145
1146         if (!l->nb_atoms)
1147                 return -1;
1148
1149         if (!r->nb_atoms)
1150                 return 1;
1151
1152         avgl = l->total_lat / l->nb_atoms;
1153         avgr = r->total_lat / r->nb_atoms;
1154
1155         if (avgl < avgr)
1156                 return -1;
1157         if (avgl > avgr)
1158                 return 1;
1159
1160         return 0;
1161 }
1162
1163 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1164 {
1165         if (l->max_lat < r->max_lat)
1166                 return -1;
1167         if (l->max_lat > r->max_lat)
1168                 return 1;
1169
1170         return 0;
1171 }
1172
1173 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1174 {
1175         if (l->nb_atoms < r->nb_atoms)
1176                 return -1;
1177         if (l->nb_atoms > r->nb_atoms)
1178                 return 1;
1179
1180         return 0;
1181 }
1182
1183 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1184 {
1185         if (l->total_runtime < r->total_runtime)
1186                 return -1;
1187         if (l->total_runtime > r->total_runtime)
1188                 return 1;
1189
1190         return 0;
1191 }
1192
1193 static int sort_dimension__add(const char *tok, struct list_head *list)
1194 {
1195         size_t i;
1196         static struct sort_dimension avg_sort_dimension = {
1197                 .name = "avg",
1198                 .cmp  = avg_cmp,
1199         };
1200         static struct sort_dimension max_sort_dimension = {
1201                 .name = "max",
1202                 .cmp  = max_cmp,
1203         };
1204         static struct sort_dimension pid_sort_dimension = {
1205                 .name = "pid",
1206                 .cmp  = pid_cmp,
1207         };
1208         static struct sort_dimension runtime_sort_dimension = {
1209                 .name = "runtime",
1210                 .cmp  = runtime_cmp,
1211         };
1212         static struct sort_dimension switch_sort_dimension = {
1213                 .name = "switch",
1214                 .cmp  = switch_cmp,
1215         };
1216         struct sort_dimension *available_sorts[] = {
1217                 &pid_sort_dimension,
1218                 &avg_sort_dimension,
1219                 &max_sort_dimension,
1220                 &switch_sort_dimension,
1221                 &runtime_sort_dimension,
1222         };
1223
1224         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1225                 if (!strcmp(available_sorts[i]->name, tok)) {
1226                         list_add_tail(&available_sorts[i]->list, list);
1227
1228                         return 0;
1229                 }
1230         }
1231
1232         return -1;
1233 }
1234
1235 static void perf_sched__sort_lat(struct perf_sched *sched)
1236 {
1237         struct rb_node *node;
1238
1239         for (;;) {
1240                 struct work_atoms *data;
1241                 node = rb_first(&sched->atom_root);
1242                 if (!node)
1243                         break;
1244
1245                 rb_erase(node, &sched->atom_root);
1246                 data = rb_entry(node, struct work_atoms, node);
1247                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1248         }
1249 }
1250
1251 static int process_sched_wakeup_event(struct perf_tool *tool,
1252                                       struct perf_evsel *evsel,
1253                                       struct perf_sample *sample,
1254                                       struct machine *machine)
1255 {
1256         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1257
1258         if (sched->tp_handler->wakeup_event)
1259                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1260
1261         return 0;
1262 }
1263
1264 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1265                             struct perf_sample *sample, struct machine *machine)
1266 {
1267         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1268                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1269         struct thread *sched_out __maybe_unused, *sched_in;
1270         int new_shortname;
1271         u64 timestamp0, timestamp = sample->time;
1272         s64 delta;
1273         int cpu, this_cpu = sample->cpu;
1274
1275         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1276
1277         if (this_cpu > sched->max_cpu)
1278                 sched->max_cpu = this_cpu;
1279
1280         timestamp0 = sched->cpu_last_switched[this_cpu];
1281         sched->cpu_last_switched[this_cpu] = timestamp;
1282         if (timestamp0)
1283                 delta = timestamp - timestamp0;
1284         else
1285                 delta = 0;
1286
1287         if (delta < 0) {
1288                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1289                 return -1;
1290         }
1291
1292         sched_out = machine__findnew_thread(machine, prev_pid);
1293         sched_in = machine__findnew_thread(machine, next_pid);
1294
1295         sched->curr_thread[this_cpu] = sched_in;
1296
1297         printf("  ");
1298
1299         new_shortname = 0;
1300         if (!sched_in->shortname[0]) {
1301                 sched_in->shortname[0] = sched->next_shortname1;
1302                 sched_in->shortname[1] = sched->next_shortname2;
1303
1304                 if (sched->next_shortname1 < 'Z') {
1305                         sched->next_shortname1++;
1306                 } else {
1307                         sched->next_shortname1='A';
1308                         if (sched->next_shortname2 < '9') {
1309                                 sched->next_shortname2++;
1310                         } else {
1311                                 sched->next_shortname2='0';
1312                         }
1313                 }
1314                 new_shortname = 1;
1315         }
1316
1317         for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1318                 if (cpu != this_cpu)
1319                         printf(" ");
1320                 else
1321                         printf("*");
1322
1323                 if (sched->curr_thread[cpu]) {
1324                         if (sched->curr_thread[cpu]->pid)
1325                                 printf("%2s ", sched->curr_thread[cpu]->shortname);
1326                         else
1327                                 printf(".  ");
1328                 } else
1329                         printf("   ");
1330         }
1331
1332         printf("  %12.6f secs ", (double)timestamp/1e9);
1333         if (new_shortname) {
1334                 printf("%s => %s:%d\n",
1335                         sched_in->shortname, sched_in->comm, sched_in->pid);
1336         } else {
1337                 printf("\n");
1338         }
1339
1340         return 0;
1341 }
1342
1343 static int process_sched_switch_event(struct perf_tool *tool,
1344                                       struct perf_evsel *evsel,
1345                                       struct perf_sample *sample,
1346                                       struct machine *machine)
1347 {
1348         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1349         int this_cpu = sample->cpu, err = 0;
1350         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1351             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1352
1353         if (sched->curr_pid[this_cpu] != (u32)-1) {
1354                 /*
1355                  * Are we trying to switch away a PID that is
1356                  * not current?
1357                  */
1358                 if (sched->curr_pid[this_cpu] != prev_pid)
1359                         sched->nr_context_switch_bugs++;
1360         }
1361
1362         if (sched->tp_handler->switch_event)
1363                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1364
1365         sched->curr_pid[this_cpu] = next_pid;
1366         return err;
1367 }
1368
1369 static int process_sched_runtime_event(struct perf_tool *tool,
1370                                        struct perf_evsel *evsel,
1371                                        struct perf_sample *sample,
1372                                        struct machine *machine)
1373 {
1374         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1375
1376         if (sched->tp_handler->runtime_event)
1377                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1378
1379         return 0;
1380 }
1381
1382 static int process_sched_fork_event(struct perf_tool *tool,
1383                                     struct perf_evsel *evsel,
1384                                     struct perf_sample *sample,
1385                                     struct machine *machine __maybe_unused)
1386 {
1387         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1388
1389         if (sched->tp_handler->fork_event)
1390                 return sched->tp_handler->fork_event(sched, evsel, sample);
1391
1392         return 0;
1393 }
1394
1395 static int process_sched_exit_event(struct perf_tool *tool __maybe_unused,
1396                                     struct perf_evsel *evsel,
1397                                     struct perf_sample *sample __maybe_unused,
1398                                     struct machine *machine __maybe_unused)
1399 {
1400         pr_debug("sched_exit event %p\n", evsel);
1401         return 0;
1402 }
1403
1404 static int process_sched_migrate_task_event(struct perf_tool *tool,
1405                                             struct perf_evsel *evsel,
1406                                             struct perf_sample *sample,
1407                                             struct machine *machine)
1408 {
1409         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1410
1411         if (sched->tp_handler->migrate_task_event)
1412                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1413
1414         return 0;
1415 }
1416
1417 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1418                                   struct perf_evsel *evsel,
1419                                   struct perf_sample *sample,
1420                                   struct machine *machine);
1421
1422 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1423                                                  union perf_event *event __maybe_unused,
1424                                                  struct perf_sample *sample,
1425                                                  struct perf_evsel *evsel,
1426                                                  struct machine *machine)
1427 {
1428         struct thread *thread = machine__findnew_thread(machine, sample->tid);
1429         int err = 0;
1430
1431         if (thread == NULL) {
1432                 pr_debug("problem processing %s event, skipping it.\n",
1433                          perf_evsel__name(evsel));
1434                 return -1;
1435         }
1436
1437         evsel->hists.stats.total_period += sample->period;
1438         hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1439
1440         if (evsel->handler.func != NULL) {
1441                 tracepoint_handler f = evsel->handler.func;
1442                 err = f(tool, evsel, sample, machine);
1443         }
1444
1445         return err;
1446 }
1447
1448 static int perf_sched__read_events(struct perf_sched *sched, bool destroy,
1449                                    struct perf_session **psession)
1450 {
1451         const struct perf_evsel_str_handler handlers[] = {
1452                 { "sched:sched_switch",       process_sched_switch_event, },
1453                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1454                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1455                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1456                 { "sched:sched_process_fork", process_sched_fork_event, },
1457                 { "sched:sched_process_exit", process_sched_exit_event, },
1458                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1459         };
1460         struct perf_session *session;
1461
1462         session = perf_session__new(input_name, O_RDONLY, 0, false, &sched->tool);
1463         if (session == NULL) {
1464                 pr_debug("No Memory for session\n");
1465                 return -1;
1466         }
1467
1468         if (perf_session__set_tracepoints_handlers(session, handlers))
1469                 goto out_delete;
1470
1471         if (perf_session__has_traces(session, "record -R")) {
1472                 int err = perf_session__process_events(session, &sched->tool);
1473                 if (err) {
1474                         pr_err("Failed to process events, error %d", err);
1475                         goto out_delete;
1476                 }
1477
1478                 sched->nr_events      = session->hists.stats.nr_events[0];
1479                 sched->nr_lost_events = session->hists.stats.total_lost;
1480                 sched->nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1481         }
1482
1483         if (destroy)
1484                 perf_session__delete(session);
1485
1486         if (psession)
1487                 *psession = session;
1488
1489         return 0;
1490
1491 out_delete:
1492         perf_session__delete(session);
1493         return -1;
1494 }
1495
1496 static void print_bad_events(struct perf_sched *sched)
1497 {
1498         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1499                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1500                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1501                         sched->nr_unordered_timestamps, sched->nr_timestamps);
1502         }
1503         if (sched->nr_lost_events && sched->nr_events) {
1504                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1505                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1506                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1507         }
1508         if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1509                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1510                         (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1511                         sched->nr_state_machine_bugs, sched->nr_timestamps);
1512                 if (sched->nr_lost_events)
1513                         printf(" (due to lost events?)");
1514                 printf("\n");
1515         }
1516         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1517                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1518                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1519                         sched->nr_context_switch_bugs, sched->nr_timestamps);
1520                 if (sched->nr_lost_events)
1521                         printf(" (due to lost events?)");
1522                 printf("\n");
1523         }
1524 }
1525
1526 static int perf_sched__lat(struct perf_sched *sched)
1527 {
1528         struct rb_node *next;
1529         struct perf_session *session;
1530
1531         setup_pager();
1532         if (perf_sched__read_events(sched, false, &session))
1533                 return -1;
1534         perf_sched__sort_lat(sched);
1535
1536         printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1537         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1538         printf(" ---------------------------------------------------------------------------------------------------------------\n");
1539
1540         next = rb_first(&sched->sorted_atom_root);
1541
1542         while (next) {
1543                 struct work_atoms *work_list;
1544
1545                 work_list = rb_entry(next, struct work_atoms, node);
1546                 output_lat_thread(sched, work_list);
1547                 next = rb_next(next);
1548         }
1549
1550         printf(" -----------------------------------------------------------------------------------------\n");
1551         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1552                 (double)sched->all_runtime / 1e6, sched->all_count);
1553
1554         printf(" ---------------------------------------------------\n");
1555
1556         print_bad_events(sched);
1557         printf("\n");
1558
1559         perf_session__delete(session);
1560         return 0;
1561 }
1562
1563 static int perf_sched__map(struct perf_sched *sched)
1564 {
1565         sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1566
1567         setup_pager();
1568         if (perf_sched__read_events(sched, true, NULL))
1569                 return -1;
1570         print_bad_events(sched);
1571         return 0;
1572 }
1573
1574 static int perf_sched__replay(struct perf_sched *sched)
1575 {
1576         unsigned long i;
1577
1578         calibrate_run_measurement_overhead(sched);
1579         calibrate_sleep_measurement_overhead(sched);
1580
1581         test_calibrations(sched);
1582
1583         if (perf_sched__read_events(sched, true, NULL))
1584                 return -1;
1585
1586         printf("nr_run_events:        %ld\n", sched->nr_run_events);
1587         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1588         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1589
1590         if (sched->targetless_wakeups)
1591                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1592         if (sched->multitarget_wakeups)
1593                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1594         if (sched->nr_run_events_optimized)
1595                 printf("run atoms optimized: %ld\n",
1596                         sched->nr_run_events_optimized);
1597
1598         print_task_traces(sched);
1599         add_cross_task_wakeups(sched);
1600
1601         create_tasks(sched);
1602         printf("------------------------------------------------------------\n");
1603         for (i = 0; i < sched->replay_repeat; i++)
1604                 run_one_test(sched);
1605
1606         return 0;
1607 }
1608
1609 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1610                           const char * const usage_msg[])
1611 {
1612         char *tmp, *tok, *str = strdup(sched->sort_order);
1613
1614         for (tok = strtok_r(str, ", ", &tmp);
1615                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1616                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1617                         error("Unknown --sort key: `%s'", tok);
1618                         usage_with_options(usage_msg, options);
1619                 }
1620         }
1621
1622         free(str);
1623
1624         sort_dimension__add("pid", &sched->cmp_pid);
1625 }
1626
1627 static int __cmd_record(int argc, const char **argv)
1628 {
1629         unsigned int rec_argc, i, j;
1630         const char **rec_argv;
1631         const char * const record_args[] = {
1632                 "record",
1633                 "-a",
1634                 "-R",
1635                 "-f",
1636                 "-m", "1024",
1637                 "-c", "1",
1638                 "-e", "sched:sched_switch",
1639                 "-e", "sched:sched_stat_wait",
1640                 "-e", "sched:sched_stat_sleep",
1641                 "-e", "sched:sched_stat_iowait",
1642                 "-e", "sched:sched_stat_runtime",
1643                 "-e", "sched:sched_process_exit",
1644                 "-e", "sched:sched_process_fork",
1645                 "-e", "sched:sched_wakeup",
1646                 "-e", "sched:sched_migrate_task",
1647         };
1648
1649         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1650         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1651
1652         if (rec_argv == NULL)
1653                 return -ENOMEM;
1654
1655         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1656                 rec_argv[i] = strdup(record_args[i]);
1657
1658         for (j = 1; j < (unsigned int)argc; j++, i++)
1659                 rec_argv[i] = argv[j];
1660
1661         BUG_ON(i != rec_argc);
1662
1663         return cmd_record(i, rec_argv, NULL);
1664 }
1665
1666 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1667 {
1668         const char default_sort_order[] = "avg, max, switch, runtime";
1669         struct perf_sched sched = {
1670                 .tool = {
1671                         .sample          = perf_sched__process_tracepoint_sample,
1672                         .comm            = perf_event__process_comm,
1673                         .lost            = perf_event__process_lost,
1674                         .exit            = perf_event__process_exit,
1675                         .fork            = perf_event__process_fork,
1676                         .ordered_samples = true,
1677                 },
1678                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
1679                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
1680                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1681                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1682                 .curr_pid             = { [0 ... MAX_CPUS - 1] = -1 },
1683                 .sort_order           = default_sort_order,
1684                 .replay_repeat        = 10,
1685                 .profile_cpu          = -1,
1686                 .next_shortname1      = 'A',
1687                 .next_shortname2      = '0',
1688         };
1689         const struct option latency_options[] = {
1690         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1691                    "sort by key(s): runtime, switch, avg, max"),
1692         OPT_INCR('v', "verbose", &verbose,
1693                     "be more verbose (show symbol address, etc)"),
1694         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1695                     "CPU to profile on"),
1696         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1697                     "dump raw trace in ASCII"),
1698         OPT_END()
1699         };
1700         const struct option replay_options[] = {
1701         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1702                      "repeat the workload replay N times (-1: infinite)"),
1703         OPT_INCR('v', "verbose", &verbose,
1704                     "be more verbose (show symbol address, etc)"),
1705         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1706                     "dump raw trace in ASCII"),
1707         OPT_END()
1708         };
1709         const struct option sched_options[] = {
1710         OPT_STRING('i', "input", &input_name, "file",
1711                     "input file name"),
1712         OPT_INCR('v', "verbose", &verbose,
1713                     "be more verbose (show symbol address, etc)"),
1714         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1715                     "dump raw trace in ASCII"),
1716         OPT_END()
1717         };
1718         const char * const latency_usage[] = {
1719                 "perf sched latency [<options>]",
1720                 NULL
1721         };
1722         const char * const replay_usage[] = {
1723                 "perf sched replay [<options>]",
1724                 NULL
1725         };
1726         const char * const sched_usage[] = {
1727                 "perf sched [<options>] {record|latency|map|replay|script}",
1728                 NULL
1729         };
1730         struct trace_sched_handler lat_ops  = {
1731                 .wakeup_event       = latency_wakeup_event,
1732                 .switch_event       = latency_switch_event,
1733                 .runtime_event      = latency_runtime_event,
1734                 .fork_event         = latency_fork_event,
1735                 .migrate_task_event = latency_migrate_task_event,
1736         };
1737         struct trace_sched_handler map_ops  = {
1738                 .switch_event       = map_switch_event,
1739         };
1740         struct trace_sched_handler replay_ops  = {
1741                 .wakeup_event       = replay_wakeup_event,
1742                 .switch_event       = replay_switch_event,
1743                 .fork_event         = replay_fork_event,
1744         };
1745
1746         argc = parse_options(argc, argv, sched_options, sched_usage,
1747                              PARSE_OPT_STOP_AT_NON_OPTION);
1748         if (!argc)
1749                 usage_with_options(sched_usage, sched_options);
1750
1751         /*
1752          * Aliased to 'perf script' for now:
1753          */
1754         if (!strcmp(argv[0], "script"))
1755                 return cmd_script(argc, argv, prefix);
1756
1757         symbol__init();
1758         if (!strncmp(argv[0], "rec", 3)) {
1759                 return __cmd_record(argc, argv);
1760         } else if (!strncmp(argv[0], "lat", 3)) {
1761                 sched.tp_handler = &lat_ops;
1762                 if (argc > 1) {
1763                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1764                         if (argc)
1765                                 usage_with_options(latency_usage, latency_options);
1766                 }
1767                 setup_sorting(&sched, latency_options, latency_usage);
1768                 return perf_sched__lat(&sched);
1769         } else if (!strcmp(argv[0], "map")) {
1770                 sched.tp_handler = &map_ops;
1771                 setup_sorting(&sched, latency_options, latency_usage);
1772                 return perf_sched__map(&sched);
1773         } else if (!strncmp(argv[0], "rep", 3)) {
1774                 sched.tp_handler = &replay_ops;
1775                 if (argc) {
1776                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1777                         if (argc)
1778                                 usage_with_options(replay_usage, replay_options);
1779                 }
1780                 return perf_sched__replay(&sched);
1781         } else {
1782                 usage_with_options(sched_usage, sched_options);
1783         }
1784
1785         return 0;
1786 }