1 // SPDX-License-Identifier: GPL-2.0
5 #include "util/cpumap.h"
6 #include "util/evlist.h"
7 #include "util/evsel.h"
8 #include "util/evsel_fprintf.h"
9 #include "util/mutex.h"
10 #include "util/symbol.h"
11 #include "util/thread.h"
12 #include "util/header.h"
13 #include "util/session.h"
14 #include "util/tool.h"
15 #include "util/cloexec.h"
16 #include "util/thread_map.h"
17 #include "util/color.h"
18 #include "util/stat.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/time-utils.h"
23 #include <subcmd/pager.h>
24 #include <subcmd/parse-options.h>
25 #include "util/trace-event.h"
27 #include "util/debug.h"
28 #include "util/event.h"
29 #include "util/util.h"
31 #include <linux/kernel.h>
32 #include <linux/log2.h>
33 #include <linux/zalloc.h>
34 #include <sys/prctl.h>
35 #include <sys/resource.h>
39 #include <semaphore.h>
42 #include <api/fs/fs.h>
43 #include <perf/cpumap.h>
44 #include <linux/time64.h>
45 #include <linux/err.h>
47 #include <linux/ctype.h>
49 #define PR_SET_NAME 15 /* Set process name */
53 #define MAX_PID 1024000
55 static const char *cpu_list;
56 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
65 unsigned long nr_events;
66 unsigned long curr_event;
67 struct sched_atom **atoms;
78 enum sched_event_type {
82 SCHED_EVENT_MIGRATION,
86 enum sched_event_type type;
92 struct task_desc *wakee;
95 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
97 /* task state bitmask, copied from include/linux/sched.h */
98 #define TASK_RUNNING 0
99 #define TASK_INTERRUPTIBLE 1
100 #define TASK_UNINTERRUPTIBLE 2
101 #define __TASK_STOPPED 4
102 #define __TASK_TRACED 8
103 /* in tsk->exit_state */
105 #define EXIT_ZOMBIE 32
106 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
107 /* in tsk->state again */
109 #define TASK_WAKEKILL 128
110 #define TASK_WAKING 256
111 #define TASK_PARKED 512
121 struct list_head list;
122 enum thread_state state;
130 struct list_head work_list;
131 struct thread *thread;
142 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
146 struct trace_sched_handler {
147 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
148 struct perf_sample *sample, struct machine *machine);
150 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
151 struct perf_sample *sample, struct machine *machine);
153 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
154 struct perf_sample *sample, struct machine *machine);
156 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
157 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
158 struct machine *machine);
160 int (*migrate_task_event)(struct perf_sched *sched,
162 struct perf_sample *sample,
163 struct machine *machine);
166 #define COLOR_PIDS PERF_COLOR_BLUE
167 #define COLOR_CPUS PERF_COLOR_BG_RED
169 struct perf_sched_map {
170 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
171 struct perf_cpu *comp_cpus;
173 struct perf_thread_map *color_pids;
174 const char *color_pids_str;
175 struct perf_cpu_map *color_cpus;
176 const char *color_cpus_str;
177 struct perf_cpu_map *cpus;
178 const char *cpus_str;
182 struct perf_tool tool;
183 const char *sort_order;
184 unsigned long nr_tasks;
185 struct task_desc **pid_to_task;
186 struct task_desc **tasks;
187 const struct trace_sched_handler *tp_handler;
188 struct mutex start_work_mutex;
189 struct mutex work_done_wait_mutex;
192 * Track the current task - that way we can know whether there's any
193 * weird events, such as a task being switched away that is not current.
195 struct perf_cpu max_cpu;
197 struct thread **curr_thread;
198 char next_shortname1;
199 char next_shortname2;
200 unsigned int replay_repeat;
201 unsigned long nr_run_events;
202 unsigned long nr_sleep_events;
203 unsigned long nr_wakeup_events;
204 unsigned long nr_sleep_corrections;
205 unsigned long nr_run_events_optimized;
206 unsigned long targetless_wakeups;
207 unsigned long multitarget_wakeups;
208 unsigned long nr_runs;
209 unsigned long nr_timestamps;
210 unsigned long nr_unordered_timestamps;
211 unsigned long nr_context_switch_bugs;
212 unsigned long nr_events;
213 unsigned long nr_lost_chunks;
214 unsigned long nr_lost_events;
215 u64 run_measurement_overhead;
216 u64 sleep_measurement_overhead;
219 u64 runavg_cpu_usage;
220 u64 parent_cpu_usage;
221 u64 runavg_parent_cpu_usage;
227 u64 *cpu_last_switched;
228 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
229 struct list_head sort_list, cmp_pid;
232 struct perf_sched_map map;
234 /* options for timehist command */
239 unsigned int max_stack;
240 bool show_cpu_visual;
243 bool show_migrations;
246 const char *time_str;
247 struct perf_time_interval ptime;
248 struct perf_time_interval hist_time;
249 volatile bool thread_funcs_exit;
252 /* per thread run time data */
253 struct thread_runtime {
254 u64 last_time; /* time of previous sched in/out event */
255 u64 dt_run; /* run time */
256 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
257 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
258 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
259 u64 dt_delay; /* time between wakeup and sched-in */
260 u64 ready_to_run; /* time of wakeup */
262 struct stats run_stats;
264 u64 total_sleep_time;
265 u64 total_iowait_time;
266 u64 total_preempt_time;
267 u64 total_delay_time;
277 /* per event run time data */
278 struct evsel_runtime {
279 u64 *last_time; /* time this event was last seen per cpu */
280 u32 ncpu; /* highest cpu slot allocated */
283 /* per cpu idle time data */
284 struct idle_thread_runtime {
285 struct thread_runtime tr;
286 struct thread *last_thread;
287 struct rb_root_cached sorted_root;
288 struct callchain_root callchain;
289 struct callchain_cursor cursor;
292 /* track idle times per cpu */
293 static struct thread **idle_threads;
294 static int idle_max_cpu;
295 static char idle_comm[] = "<idle>";
297 static u64 get_nsecs(void)
301 clock_gettime(CLOCK_MONOTONIC, &ts);
303 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
306 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
308 u64 T0 = get_nsecs(), T1;
312 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
315 static void sleep_nsecs(u64 nsecs)
319 ts.tv_nsec = nsecs % 999999999;
320 ts.tv_sec = nsecs / 999999999;
322 nanosleep(&ts, NULL);
325 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
327 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
330 for (i = 0; i < 10; i++) {
332 burn_nsecs(sched, 0);
335 min_delta = min(min_delta, delta);
337 sched->run_measurement_overhead = min_delta;
339 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
342 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
344 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
347 for (i = 0; i < 10; i++) {
352 min_delta = min(min_delta, delta);
355 sched->sleep_measurement_overhead = min_delta;
357 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
360 static struct sched_atom *
361 get_new_event(struct task_desc *task, u64 timestamp)
363 struct sched_atom *event = zalloc(sizeof(*event));
364 unsigned long idx = task->nr_events;
367 event->timestamp = timestamp;
371 size = sizeof(struct sched_atom *) * task->nr_events;
372 task->atoms = realloc(task->atoms, size);
373 BUG_ON(!task->atoms);
375 task->atoms[idx] = event;
380 static struct sched_atom *last_event(struct task_desc *task)
382 if (!task->nr_events)
385 return task->atoms[task->nr_events - 1];
388 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
389 u64 timestamp, u64 duration)
391 struct sched_atom *event, *curr_event = last_event(task);
394 * optimize an existing RUN event by merging this one
397 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
398 sched->nr_run_events_optimized++;
399 curr_event->duration += duration;
403 event = get_new_event(task, timestamp);
405 event->type = SCHED_EVENT_RUN;
406 event->duration = duration;
408 sched->nr_run_events++;
411 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
412 u64 timestamp, struct task_desc *wakee)
414 struct sched_atom *event, *wakee_event;
416 event = get_new_event(task, timestamp);
417 event->type = SCHED_EVENT_WAKEUP;
418 event->wakee = wakee;
420 wakee_event = last_event(wakee);
421 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
422 sched->targetless_wakeups++;
425 if (wakee_event->wait_sem) {
426 sched->multitarget_wakeups++;
430 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
431 sem_init(wakee_event->wait_sem, 0, 0);
432 wakee_event->specific_wait = 1;
433 event->wait_sem = wakee_event->wait_sem;
435 sched->nr_wakeup_events++;
438 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
439 u64 timestamp, u64 task_state __maybe_unused)
441 struct sched_atom *event = get_new_event(task, timestamp);
443 event->type = SCHED_EVENT_SLEEP;
445 sched->nr_sleep_events++;
448 static struct task_desc *register_pid(struct perf_sched *sched,
449 unsigned long pid, const char *comm)
451 struct task_desc *task;
454 if (sched->pid_to_task == NULL) {
455 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
457 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
459 if (pid >= (unsigned long)pid_max) {
460 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
461 sizeof(struct task_desc *))) == NULL);
462 while (pid >= (unsigned long)pid_max)
463 sched->pid_to_task[pid_max++] = NULL;
466 task = sched->pid_to_task[pid];
471 task = zalloc(sizeof(*task));
473 task->nr = sched->nr_tasks;
474 strcpy(task->comm, comm);
476 * every task starts in sleeping state - this gets ignored
477 * if there's no wakeup pointing to this sleep state:
479 add_sched_event_sleep(sched, task, 0, 0);
481 sched->pid_to_task[pid] = task;
483 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
484 BUG_ON(!sched->tasks);
485 sched->tasks[task->nr] = task;
488 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
494 static void print_task_traces(struct perf_sched *sched)
496 struct task_desc *task;
499 for (i = 0; i < sched->nr_tasks; i++) {
500 task = sched->tasks[i];
501 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
502 task->nr, task->comm, task->pid, task->nr_events);
506 static void add_cross_task_wakeups(struct perf_sched *sched)
508 struct task_desc *task1, *task2;
511 for (i = 0; i < sched->nr_tasks; i++) {
512 task1 = sched->tasks[i];
514 if (j == sched->nr_tasks)
516 task2 = sched->tasks[j];
517 add_sched_event_wakeup(sched, task1, 0, task2);
521 static void perf_sched__process_event(struct perf_sched *sched,
522 struct sched_atom *atom)
526 switch (atom->type) {
527 case SCHED_EVENT_RUN:
528 burn_nsecs(sched, atom->duration);
530 case SCHED_EVENT_SLEEP:
532 ret = sem_wait(atom->wait_sem);
535 case SCHED_EVENT_WAKEUP:
537 ret = sem_post(atom->wait_sem);
540 case SCHED_EVENT_MIGRATION:
547 static u64 get_cpu_usage_nsec_parent(void)
553 err = getrusage(RUSAGE_SELF, &ru);
556 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
557 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
562 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
564 struct perf_event_attr attr;
565 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
568 bool need_privilege = false;
570 memset(&attr, 0, sizeof(attr));
572 attr.type = PERF_TYPE_SOFTWARE;
573 attr.config = PERF_COUNT_SW_TASK_CLOCK;
576 fd = sys_perf_event_open(&attr, 0, -1, -1,
577 perf_event_open_cloexec_flag());
580 if (errno == EMFILE) {
582 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
583 limit.rlim_cur += sched->nr_tasks - cur_task;
584 if (limit.rlim_cur > limit.rlim_max) {
585 limit.rlim_max = limit.rlim_cur;
586 need_privilege = true;
588 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
589 if (need_privilege && errno == EPERM)
590 strcpy(info, "Need privilege\n");
594 strcpy(info, "Have a try with -f option\n");
596 pr_err("Error: sys_perf_event_open() syscall returned "
597 "with %d (%s)\n%s", fd,
598 str_error_r(errno, sbuf, sizeof(sbuf)), info);
604 static u64 get_cpu_usage_nsec_self(int fd)
609 ret = read(fd, &runtime, sizeof(runtime));
610 BUG_ON(ret != sizeof(runtime));
615 struct sched_thread_parms {
616 struct task_desc *task;
617 struct perf_sched *sched;
621 static void *thread_func(void *ctx)
623 struct sched_thread_parms *parms = ctx;
624 struct task_desc *this_task = parms->task;
625 struct perf_sched *sched = parms->sched;
626 u64 cpu_usage_0, cpu_usage_1;
627 unsigned long i, ret;
633 sprintf(comm2, ":%s", this_task->comm);
634 prctl(PR_SET_NAME, comm2);
638 while (!sched->thread_funcs_exit) {
639 ret = sem_post(&this_task->ready_for_work);
641 mutex_lock(&sched->start_work_mutex);
642 mutex_unlock(&sched->start_work_mutex);
644 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
646 for (i = 0; i < this_task->nr_events; i++) {
647 this_task->curr_event = i;
648 perf_sched__process_event(sched, this_task->atoms[i]);
651 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
652 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
653 ret = sem_post(&this_task->work_done_sem);
656 mutex_lock(&sched->work_done_wait_mutex);
657 mutex_unlock(&sched->work_done_wait_mutex);
662 static void create_tasks(struct perf_sched *sched)
663 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
664 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
666 struct task_desc *task;
671 err = pthread_attr_init(&attr);
673 err = pthread_attr_setstacksize(&attr,
674 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
676 mutex_lock(&sched->start_work_mutex);
677 mutex_lock(&sched->work_done_wait_mutex);
678 for (i = 0; i < sched->nr_tasks; i++) {
679 struct sched_thread_parms *parms = malloc(sizeof(*parms));
680 BUG_ON(parms == NULL);
681 parms->task = task = sched->tasks[i];
682 parms->sched = sched;
683 parms->fd = self_open_counters(sched, i);
684 sem_init(&task->sleep_sem, 0, 0);
685 sem_init(&task->ready_for_work, 0, 0);
686 sem_init(&task->work_done_sem, 0, 0);
687 task->curr_event = 0;
688 err = pthread_create(&task->thread, &attr, thread_func, parms);
693 static void destroy_tasks(struct perf_sched *sched)
694 UNLOCK_FUNCTION(sched->start_work_mutex)
695 UNLOCK_FUNCTION(sched->work_done_wait_mutex)
697 struct task_desc *task;
701 mutex_unlock(&sched->start_work_mutex);
702 mutex_unlock(&sched->work_done_wait_mutex);
703 /* Get rid of threads so they won't be upset by mutex destrunction */
704 for (i = 0; i < sched->nr_tasks; i++) {
705 task = sched->tasks[i];
706 err = pthread_join(task->thread, NULL);
708 sem_destroy(&task->sleep_sem);
709 sem_destroy(&task->ready_for_work);
710 sem_destroy(&task->work_done_sem);
714 static void wait_for_tasks(struct perf_sched *sched)
715 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
716 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
718 u64 cpu_usage_0, cpu_usage_1;
719 struct task_desc *task;
720 unsigned long i, ret;
722 sched->start_time = get_nsecs();
723 sched->cpu_usage = 0;
724 mutex_unlock(&sched->work_done_wait_mutex);
726 for (i = 0; i < sched->nr_tasks; i++) {
727 task = sched->tasks[i];
728 ret = sem_wait(&task->ready_for_work);
730 sem_init(&task->ready_for_work, 0, 0);
732 mutex_lock(&sched->work_done_wait_mutex);
734 cpu_usage_0 = get_cpu_usage_nsec_parent();
736 mutex_unlock(&sched->start_work_mutex);
738 for (i = 0; i < sched->nr_tasks; i++) {
739 task = sched->tasks[i];
740 ret = sem_wait(&task->work_done_sem);
742 sem_init(&task->work_done_sem, 0, 0);
743 sched->cpu_usage += task->cpu_usage;
747 cpu_usage_1 = get_cpu_usage_nsec_parent();
748 if (!sched->runavg_cpu_usage)
749 sched->runavg_cpu_usage = sched->cpu_usage;
750 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
752 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
753 if (!sched->runavg_parent_cpu_usage)
754 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
755 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
756 sched->parent_cpu_usage)/sched->replay_repeat;
758 mutex_lock(&sched->start_work_mutex);
760 for (i = 0; i < sched->nr_tasks; i++) {
761 task = sched->tasks[i];
762 sem_init(&task->sleep_sem, 0, 0);
763 task->curr_event = 0;
767 static void run_one_test(struct perf_sched *sched)
768 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
769 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
771 u64 T0, T1, delta, avg_delta, fluct;
774 wait_for_tasks(sched);
778 sched->sum_runtime += delta;
781 avg_delta = sched->sum_runtime / sched->nr_runs;
782 if (delta < avg_delta)
783 fluct = avg_delta - delta;
785 fluct = delta - avg_delta;
786 sched->sum_fluct += fluct;
788 sched->run_avg = delta;
789 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
791 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
793 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
795 printf("cpu: %0.2f / %0.2f",
796 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
800 * rusage statistics done by the parent, these are less
801 * accurate than the sched->sum_exec_runtime based statistics:
803 printf(" [%0.2f / %0.2f]",
804 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
805 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
810 if (sched->nr_sleep_corrections)
811 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
812 sched->nr_sleep_corrections = 0;
815 static void test_calibrations(struct perf_sched *sched)
820 burn_nsecs(sched, NSEC_PER_MSEC);
823 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
826 sleep_nsecs(NSEC_PER_MSEC);
829 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
833 replay_wakeup_event(struct perf_sched *sched,
834 struct evsel *evsel, struct perf_sample *sample,
835 struct machine *machine __maybe_unused)
837 const char *comm = evsel__strval(evsel, sample, "comm");
838 const u32 pid = evsel__intval(evsel, sample, "pid");
839 struct task_desc *waker, *wakee;
842 printf("sched_wakeup event %p\n", evsel);
844 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
847 waker = register_pid(sched, sample->tid, "<unknown>");
848 wakee = register_pid(sched, pid, comm);
850 add_sched_event_wakeup(sched, waker, sample->time, wakee);
854 static int replay_switch_event(struct perf_sched *sched,
856 struct perf_sample *sample,
857 struct machine *machine __maybe_unused)
859 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
860 *next_comm = evsel__strval(evsel, sample, "next_comm");
861 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
862 next_pid = evsel__intval(evsel, sample, "next_pid");
863 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
864 struct task_desc *prev, __maybe_unused *next;
865 u64 timestamp0, timestamp = sample->time;
866 int cpu = sample->cpu;
870 printf("sched_switch event %p\n", evsel);
872 if (cpu >= MAX_CPUS || cpu < 0)
875 timestamp0 = sched->cpu_last_switched[cpu];
877 delta = timestamp - timestamp0;
882 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
886 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
887 prev_comm, prev_pid, next_comm, next_pid, delta);
889 prev = register_pid(sched, prev_pid, prev_comm);
890 next = register_pid(sched, next_pid, next_comm);
892 sched->cpu_last_switched[cpu] = timestamp;
894 add_sched_event_run(sched, prev, timestamp, delta);
895 add_sched_event_sleep(sched, prev, timestamp, prev_state);
900 static int replay_fork_event(struct perf_sched *sched,
901 union perf_event *event,
902 struct machine *machine)
904 struct thread *child, *parent;
906 child = machine__findnew_thread(machine, event->fork.pid,
908 parent = machine__findnew_thread(machine, event->fork.ppid,
911 if (child == NULL || parent == NULL) {
912 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
918 printf("fork event\n");
919 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
920 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child));
923 register_pid(sched, thread__tid(parent), thread__comm_str(parent));
924 register_pid(sched, thread__tid(child), thread__comm_str(child));
931 struct sort_dimension {
934 struct list_head list;
938 * handle runtime stats saved per thread
940 static struct thread_runtime *thread__init_runtime(struct thread *thread)
942 struct thread_runtime *r;
944 r = zalloc(sizeof(struct thread_runtime));
948 init_stats(&r->run_stats);
949 thread__set_priv(thread, r);
954 static struct thread_runtime *thread__get_runtime(struct thread *thread)
956 struct thread_runtime *tr;
958 tr = thread__priv(thread);
960 tr = thread__init_runtime(thread);
962 pr_debug("Failed to malloc memory for runtime data.\n");
969 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
971 struct sort_dimension *sort;
974 BUG_ON(list_empty(list));
976 list_for_each_entry(sort, list, list) {
977 ret = sort->cmp(l, r);
985 static struct work_atoms *
986 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
987 struct list_head *sort_list)
989 struct rb_node *node = root->rb_root.rb_node;
990 struct work_atoms key = { .thread = thread };
993 struct work_atoms *atoms;
996 atoms = container_of(node, struct work_atoms, node);
998 cmp = thread_lat_cmp(sort_list, &key, atoms);
1000 node = node->rb_left;
1002 node = node->rb_right;
1004 BUG_ON(thread != atoms->thread);
1012 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013 struct list_head *sort_list)
1015 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016 bool leftmost = true;
1019 struct work_atoms *this;
1022 this = container_of(*new, struct work_atoms, node);
1025 cmp = thread_lat_cmp(sort_list, data, this);
1028 new = &((*new)->rb_left);
1030 new = &((*new)->rb_right);
1035 rb_link_node(&data->node, parent, new);
1036 rb_insert_color_cached(&data->node, root, leftmost);
1039 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1041 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1043 pr_err("No memory at %s\n", __func__);
1047 atoms->thread = thread__get(thread);
1048 INIT_LIST_HEAD(&atoms->work_list);
1049 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1053 static char sched_out_state(u64 prev_state)
1055 const char *str = TASK_STATE_TO_CHAR_STR;
1057 return str[prev_state];
1061 add_sched_out_event(struct work_atoms *atoms,
1065 struct work_atom *atom = zalloc(sizeof(*atom));
1067 pr_err("Non memory at %s", __func__);
1071 atom->sched_out_time = timestamp;
1073 if (run_state == 'R') {
1074 atom->state = THREAD_WAIT_CPU;
1075 atom->wake_up_time = atom->sched_out_time;
1078 list_add_tail(&atom->list, &atoms->work_list);
1083 add_runtime_event(struct work_atoms *atoms, u64 delta,
1084 u64 timestamp __maybe_unused)
1086 struct work_atom *atom;
1088 BUG_ON(list_empty(&atoms->work_list));
1090 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092 atom->runtime += delta;
1093 atoms->total_runtime += delta;
1097 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1099 struct work_atom *atom;
1102 if (list_empty(&atoms->work_list))
1105 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1107 if (atom->state != THREAD_WAIT_CPU)
1110 if (timestamp < atom->wake_up_time) {
1111 atom->state = THREAD_IGNORE;
1115 atom->state = THREAD_SCHED_IN;
1116 atom->sched_in_time = timestamp;
1118 delta = atom->sched_in_time - atom->wake_up_time;
1119 atoms->total_lat += delta;
1120 if (delta > atoms->max_lat) {
1121 atoms->max_lat = delta;
1122 atoms->max_lat_start = atom->wake_up_time;
1123 atoms->max_lat_end = timestamp;
1128 static int latency_switch_event(struct perf_sched *sched,
1129 struct evsel *evsel,
1130 struct perf_sample *sample,
1131 struct machine *machine)
1133 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134 next_pid = evsel__intval(evsel, sample, "next_pid");
1135 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136 struct work_atoms *out_events, *in_events;
1137 struct thread *sched_out, *sched_in;
1138 u64 timestamp0, timestamp = sample->time;
1139 int cpu = sample->cpu, err = -1;
1142 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1144 timestamp0 = sched->cpu_last_switched[cpu];
1145 sched->cpu_last_switched[cpu] = timestamp;
1147 delta = timestamp - timestamp0;
1152 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1156 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157 sched_in = machine__findnew_thread(machine, -1, next_pid);
1158 if (sched_out == NULL || sched_in == NULL)
1161 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1163 if (thread_atoms_insert(sched, sched_out))
1165 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1167 pr_err("out-event: Internal tree error");
1171 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1174 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1176 if (thread_atoms_insert(sched, sched_in))
1178 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1180 pr_err("in-event: Internal tree error");
1184 * Take came in we have not heard about yet,
1185 * add in an initial atom in runnable state:
1187 if (add_sched_out_event(in_events, 'R', timestamp))
1190 add_sched_in_event(in_events, timestamp);
1193 thread__put(sched_out);
1194 thread__put(sched_in);
1198 static int latency_runtime_event(struct perf_sched *sched,
1199 struct evsel *evsel,
1200 struct perf_sample *sample,
1201 struct machine *machine)
1203 const u32 pid = evsel__intval(evsel, sample, "pid");
1204 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1205 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207 u64 timestamp = sample->time;
1208 int cpu = sample->cpu, err = -1;
1213 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1215 if (thread_atoms_insert(sched, thread))
1217 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1219 pr_err("in-event: Internal tree error");
1222 if (add_sched_out_event(atoms, 'R', timestamp))
1226 add_runtime_event(atoms, runtime, timestamp);
1229 thread__put(thread);
1233 static int latency_wakeup_event(struct perf_sched *sched,
1234 struct evsel *evsel,
1235 struct perf_sample *sample,
1236 struct machine *machine)
1238 const u32 pid = evsel__intval(evsel, sample, "pid");
1239 struct work_atoms *atoms;
1240 struct work_atom *atom;
1241 struct thread *wakee;
1242 u64 timestamp = sample->time;
1245 wakee = machine__findnew_thread(machine, -1, pid);
1248 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1250 if (thread_atoms_insert(sched, wakee))
1252 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1254 pr_err("wakeup-event: Internal tree error");
1257 if (add_sched_out_event(atoms, 'S', timestamp))
1261 BUG_ON(list_empty(&atoms->work_list));
1263 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1266 * As we do not guarantee the wakeup event happens when
1267 * task is out of run queue, also may happen when task is
1268 * on run queue and wakeup only change ->state to TASK_RUNNING,
1269 * then we should not set the ->wake_up_time when wake up a
1270 * task which is on run queue.
1272 * You WILL be missing events if you've recorded only
1273 * one CPU, or are only looking at only one, so don't
1274 * skip in this case.
1276 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1279 sched->nr_timestamps++;
1280 if (atom->sched_out_time > timestamp) {
1281 sched->nr_unordered_timestamps++;
1285 atom->state = THREAD_WAIT_CPU;
1286 atom->wake_up_time = timestamp;
1294 static int latency_migrate_task_event(struct perf_sched *sched,
1295 struct evsel *evsel,
1296 struct perf_sample *sample,
1297 struct machine *machine)
1299 const u32 pid = evsel__intval(evsel, sample, "pid");
1300 u64 timestamp = sample->time;
1301 struct work_atoms *atoms;
1302 struct work_atom *atom;
1303 struct thread *migrant;
1307 * Only need to worry about migration when profiling one CPU.
1309 if (sched->profile_cpu == -1)
1312 migrant = machine__findnew_thread(machine, -1, pid);
1313 if (migrant == NULL)
1315 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1317 if (thread_atoms_insert(sched, migrant))
1319 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1320 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1322 pr_err("migration-event: Internal tree error");
1325 if (add_sched_out_event(atoms, 'R', timestamp))
1329 BUG_ON(list_empty(&atoms->work_list));
1331 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1334 sched->nr_timestamps++;
1336 if (atom->sched_out_time > timestamp)
1337 sched->nr_unordered_timestamps++;
1340 thread__put(migrant);
1344 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1349 char max_lat_start[32], max_lat_end[32];
1351 if (!work_list->nb_atoms)
1354 * Ignore idle threads:
1356 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1359 sched->all_runtime += work_list->total_runtime;
1360 sched->all_count += work_list->nb_atoms;
1362 if (work_list->num_merged > 1) {
1363 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread),
1364 work_list->num_merged);
1366 ret = printf(" %s:%d ", thread__comm_str(work_list->thread),
1367 thread__tid(work_list->thread));
1370 for (i = 0; i < 24 - ret; i++)
1373 avg = work_list->total_lat / work_list->nb_atoms;
1374 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1375 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1377 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1378 (double)work_list->total_runtime / NSEC_PER_MSEC,
1379 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1380 (double)work_list->max_lat / NSEC_PER_MSEC,
1381 max_lat_start, max_lat_end);
1384 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1388 if (RC_CHK_ACCESS(l->thread) == RC_CHK_ACCESS(r->thread))
1390 l_tid = thread__tid(l->thread);
1391 r_tid = thread__tid(r->thread);
1396 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1399 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1409 avgl = l->total_lat / l->nb_atoms;
1410 avgr = r->total_lat / r->nb_atoms;
1420 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1422 if (l->max_lat < r->max_lat)
1424 if (l->max_lat > r->max_lat)
1430 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1432 if (l->nb_atoms < r->nb_atoms)
1434 if (l->nb_atoms > r->nb_atoms)
1440 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1442 if (l->total_runtime < r->total_runtime)
1444 if (l->total_runtime > r->total_runtime)
1450 static int sort_dimension__add(const char *tok, struct list_head *list)
1453 static struct sort_dimension avg_sort_dimension = {
1457 static struct sort_dimension max_sort_dimension = {
1461 static struct sort_dimension pid_sort_dimension = {
1465 static struct sort_dimension runtime_sort_dimension = {
1469 static struct sort_dimension switch_sort_dimension = {
1473 struct sort_dimension *available_sorts[] = {
1474 &pid_sort_dimension,
1475 &avg_sort_dimension,
1476 &max_sort_dimension,
1477 &switch_sort_dimension,
1478 &runtime_sort_dimension,
1481 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1482 if (!strcmp(available_sorts[i]->name, tok)) {
1483 list_add_tail(&available_sorts[i]->list, list);
1492 static void perf_sched__sort_lat(struct perf_sched *sched)
1494 struct rb_node *node;
1495 struct rb_root_cached *root = &sched->atom_root;
1498 struct work_atoms *data;
1499 node = rb_first_cached(root);
1503 rb_erase_cached(node, root);
1504 data = rb_entry(node, struct work_atoms, node);
1505 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1507 if (root == &sched->atom_root) {
1508 root = &sched->merged_atom_root;
1513 static int process_sched_wakeup_event(struct perf_tool *tool,
1514 struct evsel *evsel,
1515 struct perf_sample *sample,
1516 struct machine *machine)
1518 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1520 if (sched->tp_handler->wakeup_event)
1521 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1526 static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1527 struct evsel *evsel __maybe_unused,
1528 struct perf_sample *sample __maybe_unused,
1529 struct machine *machine __maybe_unused)
1539 static bool thread__has_color(struct thread *thread)
1541 union map_priv priv = {
1542 .ptr = thread__priv(thread),
1548 static struct thread*
1549 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1551 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1552 union map_priv priv = {
1556 if (!sched->map.color_pids || !thread || thread__priv(thread))
1559 if (thread_map__has(sched->map.color_pids, tid))
1562 thread__set_priv(thread, priv.ptr);
1566 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1567 struct perf_sample *sample, struct machine *machine)
1569 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1570 struct thread *sched_in;
1571 struct thread_runtime *tr;
1573 u64 timestamp0, timestamp = sample->time;
1576 struct perf_cpu this_cpu = {
1580 bool new_cpu = false;
1581 const char *color = PERF_COLOR_NORMAL;
1582 char stimestamp[32];
1584 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1586 if (this_cpu.cpu > sched->max_cpu.cpu)
1587 sched->max_cpu = this_cpu;
1589 if (sched->map.comp) {
1590 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1591 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1592 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1596 cpus_nr = sched->max_cpu.cpu;
1598 timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1599 sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1601 delta = timestamp - timestamp0;
1606 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1610 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1611 if (sched_in == NULL)
1614 tr = thread__get_runtime(sched_in);
1616 thread__put(sched_in);
1620 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1625 if (!tr->shortname[0]) {
1626 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1628 * Don't allocate a letter-number for swapper:0
1629 * as a shortname. Instead, we use '.' for it.
1631 tr->shortname[0] = '.';
1632 tr->shortname[1] = ' ';
1634 tr->shortname[0] = sched->next_shortname1;
1635 tr->shortname[1] = sched->next_shortname2;
1637 if (sched->next_shortname1 < 'Z') {
1638 sched->next_shortname1++;
1640 sched->next_shortname1 = 'A';
1641 if (sched->next_shortname2 < '9')
1642 sched->next_shortname2++;
1644 sched->next_shortname2 = '0';
1650 for (i = 0; i < cpus_nr; i++) {
1651 struct perf_cpu cpu = {
1652 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1654 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1655 struct thread_runtime *curr_tr;
1656 const char *pid_color = color;
1657 const char *cpu_color = color;
1659 if (curr_thread && thread__has_color(curr_thread))
1660 pid_color = COLOR_PIDS;
1662 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1665 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1666 cpu_color = COLOR_CPUS;
1668 if (cpu.cpu != this_cpu.cpu)
1669 color_fprintf(stdout, color, " ");
1671 color_fprintf(stdout, cpu_color, "*");
1673 if (sched->curr_thread[cpu.cpu]) {
1674 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1675 if (curr_tr == NULL) {
1676 thread__put(sched_in);
1679 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1681 color_fprintf(stdout, color, " ");
1684 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1687 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1688 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1689 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1690 const char *pid_color = color;
1692 if (thread__has_color(sched_in))
1693 pid_color = COLOR_PIDS;
1695 color_fprintf(stdout, pid_color, "%s => %s:%d",
1696 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1697 tr->comm_changed = false;
1700 if (sched->map.comp && new_cpu)
1701 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1704 color_fprintf(stdout, color, "\n");
1706 thread__put(sched_in);
1711 static int process_sched_switch_event(struct perf_tool *tool,
1712 struct evsel *evsel,
1713 struct perf_sample *sample,
1714 struct machine *machine)
1716 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1717 int this_cpu = sample->cpu, err = 0;
1718 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1719 next_pid = evsel__intval(evsel, sample, "next_pid");
1721 if (sched->curr_pid[this_cpu] != (u32)-1) {
1723 * Are we trying to switch away a PID that is
1726 if (sched->curr_pid[this_cpu] != prev_pid)
1727 sched->nr_context_switch_bugs++;
1730 if (sched->tp_handler->switch_event)
1731 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1733 sched->curr_pid[this_cpu] = next_pid;
1737 static int process_sched_runtime_event(struct perf_tool *tool,
1738 struct evsel *evsel,
1739 struct perf_sample *sample,
1740 struct machine *machine)
1742 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1744 if (sched->tp_handler->runtime_event)
1745 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1750 static int perf_sched__process_fork_event(struct perf_tool *tool,
1751 union perf_event *event,
1752 struct perf_sample *sample,
1753 struct machine *machine)
1755 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1757 /* run the fork event through the perf machinery */
1758 perf_event__process_fork(tool, event, sample, machine);
1760 /* and then run additional processing needed for this command */
1761 if (sched->tp_handler->fork_event)
1762 return sched->tp_handler->fork_event(sched, event, machine);
1767 static int process_sched_migrate_task_event(struct perf_tool *tool,
1768 struct evsel *evsel,
1769 struct perf_sample *sample,
1770 struct machine *machine)
1772 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1774 if (sched->tp_handler->migrate_task_event)
1775 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1780 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1781 struct evsel *evsel,
1782 struct perf_sample *sample,
1783 struct machine *machine);
1785 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1786 union perf_event *event __maybe_unused,
1787 struct perf_sample *sample,
1788 struct evsel *evsel,
1789 struct machine *machine)
1793 if (evsel->handler != NULL) {
1794 tracepoint_handler f = evsel->handler;
1795 err = f(tool, evsel, sample, machine);
1801 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1802 union perf_event *event,
1803 struct perf_sample *sample,
1804 struct machine *machine)
1806 struct thread *thread;
1807 struct thread_runtime *tr;
1810 err = perf_event__process_comm(tool, event, sample, machine);
1814 thread = machine__find_thread(machine, sample->pid, sample->tid);
1816 pr_err("Internal error: can't find thread\n");
1820 tr = thread__get_runtime(thread);
1822 thread__put(thread);
1826 tr->comm_changed = true;
1827 thread__put(thread);
1832 static int perf_sched__read_events(struct perf_sched *sched)
1834 struct evsel_str_handler handlers[] = {
1835 { "sched:sched_switch", process_sched_switch_event, },
1836 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1837 { "sched:sched_wakeup", process_sched_wakeup_event, },
1838 { "sched:sched_waking", process_sched_wakeup_event, },
1839 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1840 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1842 struct perf_session *session;
1843 struct perf_data data = {
1845 .mode = PERF_DATA_MODE_READ,
1846 .force = sched->force,
1850 session = perf_session__new(&data, &sched->tool);
1851 if (IS_ERR(session)) {
1852 pr_debug("Error creating perf session");
1853 return PTR_ERR(session);
1856 symbol__init(&session->header.env);
1858 /* prefer sched_waking if it is captured */
1859 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1860 handlers[2].handler = process_sched_wakeup_ignore;
1862 if (perf_session__set_tracepoints_handlers(session, handlers))
1865 if (perf_session__has_traces(session, "record -R")) {
1866 int err = perf_session__process_events(session);
1868 pr_err("Failed to process events, error %d", err);
1872 sched->nr_events = session->evlist->stats.nr_events[0];
1873 sched->nr_lost_events = session->evlist->stats.total_lost;
1874 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1879 perf_session__delete(session);
1884 * scheduling times are printed as msec.usec
1886 static inline void print_sched_time(unsigned long long nsecs, int width)
1888 unsigned long msecs;
1889 unsigned long usecs;
1891 msecs = nsecs / NSEC_PER_MSEC;
1892 nsecs -= msecs * NSEC_PER_MSEC;
1893 usecs = nsecs / NSEC_PER_USEC;
1894 printf("%*lu.%03lu ", width, msecs, usecs);
1898 * returns runtime data for event, allocating memory for it the
1899 * first time it is used.
1901 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1903 struct evsel_runtime *r = evsel->priv;
1906 r = zalloc(sizeof(struct evsel_runtime));
1914 * save last time event was seen per cpu
1916 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1918 struct evsel_runtime *r = evsel__get_runtime(evsel);
1923 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1924 int i, n = __roundup_pow_of_two(cpu+1);
1925 void *p = r->last_time;
1927 p = realloc(r->last_time, n * sizeof(u64));
1932 for (i = r->ncpu; i < n; ++i)
1933 r->last_time[i] = (u64) 0;
1938 r->last_time[cpu] = timestamp;
1941 /* returns last time this event was seen on the given cpu */
1942 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1944 struct evsel_runtime *r = evsel__get_runtime(evsel);
1946 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1949 return r->last_time[cpu];
1952 static int comm_width = 30;
1954 static char *timehist_get_commstr(struct thread *thread)
1956 static char str[32];
1957 const char *comm = thread__comm_str(thread);
1958 pid_t tid = thread__tid(thread);
1959 pid_t pid = thread__pid(thread);
1963 n = scnprintf(str, sizeof(str), "%s", comm);
1965 else if (tid != pid)
1966 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1969 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1977 static void timehist_header(struct perf_sched *sched)
1979 u32 ncpus = sched->max_cpu.cpu + 1;
1982 printf("%15s %6s ", "time", "cpu");
1984 if (sched->show_cpu_visual) {
1986 for (i = 0, j = 0; i < ncpus; ++i) {
1994 printf(" %-*s %9s %9s %9s", comm_width,
1995 "task name", "wait time", "sch delay", "run time");
1997 if (sched->show_state)
1998 printf(" %s", "state");
2005 printf("%15s %-6s ", "", "");
2007 if (sched->show_cpu_visual)
2008 printf(" %*s ", ncpus, "");
2010 printf(" %-*s %9s %9s %9s", comm_width,
2011 "[tid/pid]", "(msec)", "(msec)", "(msec)");
2013 if (sched->show_state)
2021 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2023 if (sched->show_cpu_visual)
2024 printf(" %.*s ", ncpus, graph_dotted_line);
2026 printf(" %.*s %.9s %.9s %.9s", comm_width,
2027 graph_dotted_line, graph_dotted_line, graph_dotted_line,
2030 if (sched->show_state)
2031 printf(" %.5s", graph_dotted_line);
2036 static char task_state_char(struct thread *thread, int state)
2038 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2039 unsigned bit = state ? ffs(state) : 0;
2042 if (thread__tid(thread) == 0)
2045 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2048 static void timehist_print_sample(struct perf_sched *sched,
2049 struct evsel *evsel,
2050 struct perf_sample *sample,
2051 struct addr_location *al,
2052 struct thread *thread,
2055 struct thread_runtime *tr = thread__priv(thread);
2056 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2057 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2058 u32 max_cpus = sched->max_cpu.cpu + 1;
2063 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2066 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2067 printf("%15s [%04d] ", tstr, sample->cpu);
2069 if (sched->show_cpu_visual) {
2074 for (i = 0; i < max_cpus; ++i) {
2075 /* flag idle times with 'i'; others are sched events */
2076 if (i == sample->cpu)
2077 c = (thread__tid(thread) == 0) ? 'i' : 's';
2085 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2087 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2088 print_sched_time(wait_time, 6);
2090 print_sched_time(tr->dt_delay, 6);
2091 print_sched_time(tr->dt_run, 6);
2093 if (sched->show_state)
2094 printf(" %5c ", task_state_char(thread, state));
2096 if (sched->show_next) {
2097 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2098 printf(" %-*s", comm_width, nstr);
2101 if (sched->show_wakeups && !sched->show_next)
2102 printf(" %-*s", comm_width, "");
2104 if (thread__tid(thread) == 0)
2107 if (sched->show_callchain)
2110 sample__fprintf_sym(sample, al, 0,
2111 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2112 EVSEL__PRINT_CALLCHAIN_ARROW |
2113 EVSEL__PRINT_SKIP_IGNORED,
2114 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout);
2121 * Explanation of delta-time stats:
2123 * t = time of current schedule out event
2124 * tprev = time of previous sched out event
2125 * also time of schedule-in event for current task
2126 * last_time = time of last sched change event for current task
2127 * (i.e, time process was last scheduled out)
2128 * ready_to_run = time of wakeup for current task
2130 * -----|------------|------------|------------|------
2131 * last ready tprev t
2134 * |-------- dt_wait --------|
2135 * |- dt_delay -|-- dt_run --|
2137 * dt_run = run time of current task
2138 * dt_wait = time between last schedule out event for task and tprev
2139 * represents time spent off the cpu
2140 * dt_delay = time between wakeup and schedule-in of task
2143 static void timehist_update_runtime_stats(struct thread_runtime *r,
2153 r->dt_run = t - tprev;
2154 if (r->ready_to_run) {
2155 if (r->ready_to_run > tprev)
2156 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2158 r->dt_delay = tprev - r->ready_to_run;
2161 if (r->last_time > tprev)
2162 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2163 else if (r->last_time) {
2164 u64 dt_wait = tprev - r->last_time;
2166 if (r->last_state == TASK_RUNNING)
2167 r->dt_preempt = dt_wait;
2168 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2169 r->dt_iowait = dt_wait;
2171 r->dt_sleep = dt_wait;
2175 update_stats(&r->run_stats, r->dt_run);
2177 r->total_run_time += r->dt_run;
2178 r->total_delay_time += r->dt_delay;
2179 r->total_sleep_time += r->dt_sleep;
2180 r->total_iowait_time += r->dt_iowait;
2181 r->total_preempt_time += r->dt_preempt;
2184 static bool is_idle_sample(struct perf_sample *sample,
2185 struct evsel *evsel)
2187 /* pid 0 == swapper == idle task */
2188 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2189 return evsel__intval(evsel, sample, "prev_pid") == 0;
2191 return sample->pid == 0;
2194 static void save_task_callchain(struct perf_sched *sched,
2195 struct perf_sample *sample,
2196 struct evsel *evsel,
2197 struct machine *machine)
2199 struct callchain_cursor *cursor;
2200 struct thread *thread;
2202 /* want main thread for process - has maps */
2203 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2204 if (thread == NULL) {
2205 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2209 if (!sched->show_callchain || sample->callchain == NULL)
2212 cursor = get_tls_callchain_cursor();
2214 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2215 NULL, NULL, sched->max_stack + 2) != 0) {
2217 pr_err("Failed to resolve callchain. Skipping\n");
2222 callchain_cursor_commit(cursor);
2225 struct callchain_cursor_node *node;
2228 node = callchain_cursor_current(cursor);
2234 if (!strcmp(sym->name, "schedule") ||
2235 !strcmp(sym->name, "__schedule") ||
2236 !strcmp(sym->name, "preempt_schedule"))
2240 callchain_cursor_advance(cursor);
2244 static int init_idle_thread(struct thread *thread)
2246 struct idle_thread_runtime *itr;
2248 thread__set_comm(thread, idle_comm, 0);
2250 itr = zalloc(sizeof(*itr));
2254 init_stats(&itr->tr.run_stats);
2255 callchain_init(&itr->callchain);
2256 callchain_cursor_reset(&itr->cursor);
2257 thread__set_priv(thread, itr);
2263 * Track idle stats per cpu by maintaining a local thread
2264 * struct for the idle task on each cpu.
2266 static int init_idle_threads(int ncpu)
2270 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2274 idle_max_cpu = ncpu;
2276 /* allocate the actual thread struct if needed */
2277 for (i = 0; i < ncpu; ++i) {
2278 idle_threads[i] = thread__new(0, 0);
2279 if (idle_threads[i] == NULL)
2282 ret = init_idle_thread(idle_threads[i]);
2290 static void free_idle_threads(void)
2294 if (idle_threads == NULL)
2297 for (i = 0; i < idle_max_cpu; ++i) {
2298 if ((idle_threads[i]))
2299 thread__delete(idle_threads[i]);
2305 static struct thread *get_idle_thread(int cpu)
2308 * expand/allocate array of pointers to local thread
2311 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2312 int i, j = __roundup_pow_of_two(cpu+1);
2315 p = realloc(idle_threads, j * sizeof(struct thread *));
2319 idle_threads = (struct thread **) p;
2320 for (i = idle_max_cpu; i < j; ++i)
2321 idle_threads[i] = NULL;
2326 /* allocate a new thread struct if needed */
2327 if (idle_threads[cpu] == NULL) {
2328 idle_threads[cpu] = thread__new(0, 0);
2330 if (idle_threads[cpu]) {
2331 if (init_idle_thread(idle_threads[cpu]) < 0)
2336 return idle_threads[cpu];
2339 static void save_idle_callchain(struct perf_sched *sched,
2340 struct idle_thread_runtime *itr,
2341 struct perf_sample *sample)
2343 struct callchain_cursor *cursor;
2345 if (!sched->show_callchain || sample->callchain == NULL)
2348 cursor = get_tls_callchain_cursor();
2352 callchain_cursor__copy(&itr->cursor, cursor);
2355 static struct thread *timehist_get_thread(struct perf_sched *sched,
2356 struct perf_sample *sample,
2357 struct machine *machine,
2358 struct evsel *evsel)
2360 struct thread *thread;
2362 if (is_idle_sample(sample, evsel)) {
2363 thread = get_idle_thread(sample->cpu);
2365 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2368 /* there were samples with tid 0 but non-zero pid */
2369 thread = machine__findnew_thread(machine, sample->pid,
2370 sample->tid ?: sample->pid);
2371 if (thread == NULL) {
2372 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2376 save_task_callchain(sched, sample, evsel, machine);
2377 if (sched->idle_hist) {
2378 struct thread *idle;
2379 struct idle_thread_runtime *itr;
2381 idle = get_idle_thread(sample->cpu);
2383 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2387 itr = thread__priv(idle);
2391 itr->last_thread = thread;
2393 /* copy task callchain when entering to idle */
2394 if (evsel__intval(evsel, sample, "next_pid") == 0)
2395 save_idle_callchain(sched, itr, sample);
2402 static bool timehist_skip_sample(struct perf_sched *sched,
2403 struct thread *thread,
2404 struct evsel *evsel,
2405 struct perf_sample *sample)
2409 if (thread__is_filtered(thread)) {
2411 sched->skipped_samples++;
2414 if (sched->idle_hist) {
2415 if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2417 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2418 evsel__intval(evsel, sample, "next_pid") != 0)
2425 static void timehist_print_wakeup_event(struct perf_sched *sched,
2426 struct evsel *evsel,
2427 struct perf_sample *sample,
2428 struct machine *machine,
2429 struct thread *awakened)
2431 struct thread *thread;
2434 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2438 /* show wakeup unless both awakee and awaker are filtered */
2439 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2440 timehist_skip_sample(sched, awakened, evsel, sample)) {
2444 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2445 printf("%15s [%04d] ", tstr, sample->cpu);
2446 if (sched->show_cpu_visual)
2447 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2449 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2452 printf(" %9s %9s %9s ", "", "", "");
2454 printf("awakened: %s", timehist_get_commstr(awakened));
2459 static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2460 union perf_event *event __maybe_unused,
2461 struct evsel *evsel __maybe_unused,
2462 struct perf_sample *sample __maybe_unused,
2463 struct machine *machine __maybe_unused)
2468 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2469 union perf_event *event __maybe_unused,
2470 struct evsel *evsel,
2471 struct perf_sample *sample,
2472 struct machine *machine)
2474 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2475 struct thread *thread;
2476 struct thread_runtime *tr = NULL;
2477 /* want pid of awakened task not pid in sample */
2478 const u32 pid = evsel__intval(evsel, sample, "pid");
2480 thread = machine__findnew_thread(machine, 0, pid);
2484 tr = thread__get_runtime(thread);
2488 if (tr->ready_to_run == 0)
2489 tr->ready_to_run = sample->time;
2491 /* show wakeups if requested */
2492 if (sched->show_wakeups &&
2493 !perf_time__skip_sample(&sched->ptime, sample->time))
2494 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2499 static void timehist_print_migration_event(struct perf_sched *sched,
2500 struct evsel *evsel,
2501 struct perf_sample *sample,
2502 struct machine *machine,
2503 struct thread *migrated)
2505 struct thread *thread;
2510 if (sched->summary_only)
2513 max_cpus = sched->max_cpu.cpu + 1;
2514 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2515 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2517 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2521 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2522 timehist_skip_sample(sched, migrated, evsel, sample)) {
2526 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2527 printf("%15s [%04d] ", tstr, sample->cpu);
2529 if (sched->show_cpu_visual) {
2534 for (i = 0; i < max_cpus; ++i) {
2535 c = (i == sample->cpu) ? 'm' : ' ';
2541 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2544 printf(" %9s %9s %9s ", "", "", "");
2546 printf("migrated: %s", timehist_get_commstr(migrated));
2547 printf(" cpu %d => %d", ocpu, dcpu);
2552 static int timehist_migrate_task_event(struct perf_tool *tool,
2553 union perf_event *event __maybe_unused,
2554 struct evsel *evsel,
2555 struct perf_sample *sample,
2556 struct machine *machine)
2558 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2559 struct thread *thread;
2560 struct thread_runtime *tr = NULL;
2561 /* want pid of migrated task not pid in sample */
2562 const u32 pid = evsel__intval(evsel, sample, "pid");
2564 thread = machine__findnew_thread(machine, 0, pid);
2568 tr = thread__get_runtime(thread);
2574 /* show migrations if requested */
2575 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2580 static int timehist_sched_change_event(struct perf_tool *tool,
2581 union perf_event *event,
2582 struct evsel *evsel,
2583 struct perf_sample *sample,
2584 struct machine *machine)
2586 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2587 struct perf_time_interval *ptime = &sched->ptime;
2588 struct addr_location al;
2589 struct thread *thread;
2590 struct thread_runtime *tr = NULL;
2591 u64 tprev, t = sample->time;
2593 int state = evsel__intval(evsel, sample, "prev_state");
2595 addr_location__init(&al);
2596 if (machine__resolve(machine, &al, sample) < 0) {
2597 pr_err("problem processing %d event. skipping it\n",
2598 event->header.type);
2603 thread = timehist_get_thread(sched, sample, machine, evsel);
2604 if (thread == NULL) {
2609 if (timehist_skip_sample(sched, thread, evsel, sample))
2612 tr = thread__get_runtime(thread);
2618 tprev = evsel__get_time(evsel, sample->cpu);
2621 * If start time given:
2622 * - sample time is under window user cares about - skip sample
2623 * - tprev is under window user cares about - reset to start of window
2625 if (ptime->start && ptime->start > t)
2628 if (tprev && ptime->start > tprev)
2629 tprev = ptime->start;
2632 * If end time given:
2633 * - previous sched event is out of window - we are done
2634 * - sample time is beyond window user cares about - reset it
2635 * to close out stats for time window interest
2638 if (tprev > ptime->end)
2645 if (!sched->idle_hist || thread__tid(thread) == 0) {
2646 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2647 timehist_update_runtime_stats(tr, t, tprev);
2649 if (sched->idle_hist) {
2650 struct idle_thread_runtime *itr = (void *)tr;
2651 struct thread_runtime *last_tr;
2653 BUG_ON(thread__tid(thread) != 0);
2655 if (itr->last_thread == NULL)
2658 /* add current idle time as last thread's runtime */
2659 last_tr = thread__get_runtime(itr->last_thread);
2660 if (last_tr == NULL)
2663 timehist_update_runtime_stats(last_tr, t, tprev);
2665 * remove delta time of last thread as it's not updated
2666 * and otherwise it will show an invalid value next
2667 * time. we only care total run time and run stat.
2669 last_tr->dt_run = 0;
2670 last_tr->dt_delay = 0;
2671 last_tr->dt_sleep = 0;
2672 last_tr->dt_iowait = 0;
2673 last_tr->dt_preempt = 0;
2676 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2678 itr->last_thread = NULL;
2682 if (!sched->summary_only)
2683 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2686 if (sched->hist_time.start == 0 && t >= ptime->start)
2687 sched->hist_time.start = t;
2688 if (ptime->end == 0 || t <= ptime->end)
2689 sched->hist_time.end = t;
2692 /* time of this sched_switch event becomes last time task seen */
2693 tr->last_time = sample->time;
2695 /* last state is used to determine where to account wait time */
2696 tr->last_state = state;
2698 /* sched out event for task so reset ready to run time */
2699 tr->ready_to_run = 0;
2702 evsel__save_time(evsel, sample->time, sample->cpu);
2704 addr_location__exit(&al);
2708 static int timehist_sched_switch_event(struct perf_tool *tool,
2709 union perf_event *event,
2710 struct evsel *evsel,
2711 struct perf_sample *sample,
2712 struct machine *machine __maybe_unused)
2714 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2717 static int process_lost(struct perf_tool *tool __maybe_unused,
2718 union perf_event *event,
2719 struct perf_sample *sample,
2720 struct machine *machine __maybe_unused)
2724 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2725 printf("%15s ", tstr);
2726 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2732 static void print_thread_runtime(struct thread *t,
2733 struct thread_runtime *r)
2735 double mean = avg_stats(&r->run_stats);
2738 printf("%*s %5d %9" PRIu64 " ",
2739 comm_width, timehist_get_commstr(t), thread__ppid(t),
2740 (u64) r->run_stats.n);
2742 print_sched_time(r->total_run_time, 8);
2743 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2744 print_sched_time(r->run_stats.min, 6);
2746 print_sched_time((u64) mean, 6);
2748 print_sched_time(r->run_stats.max, 6);
2750 printf("%5.2f", stddev);
2751 printf(" %5" PRIu64, r->migrations);
2755 static void print_thread_waittime(struct thread *t,
2756 struct thread_runtime *r)
2758 printf("%*s %5d %9" PRIu64 " ",
2759 comm_width, timehist_get_commstr(t), thread__ppid(t),
2760 (u64) r->run_stats.n);
2762 print_sched_time(r->total_run_time, 8);
2763 print_sched_time(r->total_sleep_time, 6);
2765 print_sched_time(r->total_iowait_time, 6);
2767 print_sched_time(r->total_preempt_time, 6);
2769 print_sched_time(r->total_delay_time, 6);
2773 struct total_run_stats {
2774 struct perf_sched *sched;
2780 static int show_thread_runtime(struct thread *t, void *priv)
2782 struct total_run_stats *stats = priv;
2783 struct thread_runtime *r;
2785 if (thread__is_filtered(t))
2788 r = thread__priv(t);
2789 if (r && r->run_stats.n) {
2790 stats->task_count++;
2791 stats->sched_count += r->run_stats.n;
2792 stats->total_run_time += r->total_run_time;
2794 if (stats->sched->show_state)
2795 print_thread_waittime(t, r);
2797 print_thread_runtime(t, r);
2803 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2805 const char *sep = " <- ";
2806 struct callchain_list *chain;
2814 ret = callchain__fprintf_folded(fp, node->parent);
2817 list_for_each_entry(chain, &node->val, list) {
2818 if (chain->ip >= PERF_CONTEXT_MAX)
2820 if (chain->ms.sym && chain->ms.sym->ignore)
2822 ret += fprintf(fp, "%s%s", first ? "" : sep,
2823 callchain_list__sym_name(chain, bf, sizeof(bf),
2831 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2835 struct callchain_node *chain;
2836 struct rb_node *rb_node = rb_first_cached(root);
2838 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2839 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2843 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2844 rb_node = rb_next(rb_node);
2846 ret += fprintf(fp, " ");
2847 print_sched_time(chain->hit, 12);
2848 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2849 ret += fprintf(fp, " %8d ", chain->count);
2850 ret += callchain__fprintf_folded(fp, chain);
2851 ret += fprintf(fp, "\n");
2857 static void timehist_print_summary(struct perf_sched *sched,
2858 struct perf_session *session)
2860 struct machine *m = &session->machines.host;
2861 struct total_run_stats totals;
2864 struct thread_runtime *r;
2866 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2868 memset(&totals, 0, sizeof(totals));
2869 totals.sched = sched;
2871 if (sched->idle_hist) {
2872 printf("\nIdle-time summary\n");
2873 printf("%*s parent sched-out ", comm_width, "comm");
2874 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2875 } else if (sched->show_state) {
2876 printf("\nWait-time summary\n");
2877 printf("%*s parent sched-in ", comm_width, "comm");
2878 printf(" run-time sleep iowait preempt delay\n");
2880 printf("\nRuntime summary\n");
2881 printf("%*s parent sched-in ", comm_width, "comm");
2882 printf(" run-time min-run avg-run max-run stddev migrations\n");
2884 printf("%*s (count) ", comm_width, "");
2885 printf(" (msec) (msec) (msec) (msec) %s\n",
2886 sched->show_state ? "(msec)" : "%");
2887 printf("%.117s\n", graph_dotted_line);
2889 machine__for_each_thread(m, show_thread_runtime, &totals);
2890 task_count = totals.task_count;
2892 printf("<no still running tasks>\n");
2894 /* CPU idle stats not tracked when samples were skipped */
2895 if (sched->skipped_samples && !sched->idle_hist)
2898 printf("\nIdle stats:\n");
2899 for (i = 0; i < idle_max_cpu; ++i) {
2900 if (cpu_list && !test_bit(i, cpu_bitmap))
2903 t = idle_threads[i];
2907 r = thread__priv(t);
2908 if (r && r->run_stats.n) {
2909 totals.sched_count += r->run_stats.n;
2910 printf(" CPU %2d idle for ", i);
2911 print_sched_time(r->total_run_time, 6);
2912 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2914 printf(" CPU %2d idle entire time window\n", i);
2917 if (sched->idle_hist && sched->show_callchain) {
2918 callchain_param.mode = CHAIN_FOLDED;
2919 callchain_param.value = CCVAL_PERIOD;
2921 callchain_register_param(&callchain_param);
2923 printf("\nIdle stats by callchain:\n");
2924 for (i = 0; i < idle_max_cpu; ++i) {
2925 struct idle_thread_runtime *itr;
2927 t = idle_threads[i];
2931 itr = thread__priv(t);
2935 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2936 0, &callchain_param);
2938 printf(" CPU %2d:", i);
2939 print_sched_time(itr->tr.total_run_time, 6);
2941 timehist_print_idlehist_callchain(&itr->sorted_root);
2947 " Total number of unique tasks: %" PRIu64 "\n"
2948 "Total number of context switches: %" PRIu64 "\n",
2949 totals.task_count, totals.sched_count);
2951 printf(" Total run time (msec): ");
2952 print_sched_time(totals.total_run_time, 2);
2955 printf(" Total scheduling time (msec): ");
2956 print_sched_time(hist_time, 2);
2957 printf(" (x %d)\n", sched->max_cpu.cpu);
2960 typedef int (*sched_handler)(struct perf_tool *tool,
2961 union perf_event *event,
2962 struct evsel *evsel,
2963 struct perf_sample *sample,
2964 struct machine *machine);
2966 static int perf_timehist__process_sample(struct perf_tool *tool,
2967 union perf_event *event,
2968 struct perf_sample *sample,
2969 struct evsel *evsel,
2970 struct machine *machine)
2972 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2974 struct perf_cpu this_cpu = {
2978 if (this_cpu.cpu > sched->max_cpu.cpu)
2979 sched->max_cpu = this_cpu;
2981 if (evsel->handler != NULL) {
2982 sched_handler f = evsel->handler;
2984 err = f(tool, event, evsel, sample, machine);
2990 static int timehist_check_attr(struct perf_sched *sched,
2991 struct evlist *evlist)
2993 struct evsel *evsel;
2994 struct evsel_runtime *er;
2996 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2997 er = evsel__get_runtime(evsel);
2999 pr_err("Failed to allocate memory for evsel runtime data\n");
3003 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
3004 pr_info("Samples do not have callchains.\n");
3005 sched->show_callchain = 0;
3006 symbol_conf.use_callchain = 0;
3013 static int perf_sched__timehist(struct perf_sched *sched)
3015 struct evsel_str_handler handlers[] = {
3016 { "sched:sched_switch", timehist_sched_switch_event, },
3017 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
3018 { "sched:sched_waking", timehist_sched_wakeup_event, },
3019 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3021 const struct evsel_str_handler migrate_handlers[] = {
3022 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3024 struct perf_data data = {
3026 .mode = PERF_DATA_MODE_READ,
3027 .force = sched->force,
3030 struct perf_session *session;
3031 struct evlist *evlist;
3035 * event handlers for timehist option
3037 sched->tool.sample = perf_timehist__process_sample;
3038 sched->tool.mmap = perf_event__process_mmap;
3039 sched->tool.comm = perf_event__process_comm;
3040 sched->tool.exit = perf_event__process_exit;
3041 sched->tool.fork = perf_event__process_fork;
3042 sched->tool.lost = process_lost;
3043 sched->tool.attr = perf_event__process_attr;
3044 sched->tool.tracing_data = perf_event__process_tracing_data;
3045 sched->tool.build_id = perf_event__process_build_id;
3047 sched->tool.ordered_events = true;
3048 sched->tool.ordering_requires_timestamps = true;
3050 symbol_conf.use_callchain = sched->show_callchain;
3052 session = perf_session__new(&data, &sched->tool);
3053 if (IS_ERR(session))
3054 return PTR_ERR(session);
3057 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3062 evlist = session->evlist;
3064 symbol__init(&session->header.env);
3066 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3067 pr_err("Invalid time string\n");
3071 if (timehist_check_attr(sched, evlist) != 0)
3076 /* prefer sched_waking if it is captured */
3077 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3078 handlers[1].handler = timehist_sched_wakeup_ignore;
3080 /* setup per-evsel handlers */
3081 if (perf_session__set_tracepoints_handlers(session, handlers))
3084 /* sched_switch event at a minimum needs to exist */
3085 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3086 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3090 if (sched->show_migrations &&
3091 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3094 /* pre-allocate struct for per-CPU idle stats */
3095 sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3096 if (sched->max_cpu.cpu == 0)
3097 sched->max_cpu.cpu = 4;
3098 if (init_idle_threads(sched->max_cpu.cpu))
3101 /* summary_only implies summary option, but don't overwrite summary if set */
3102 if (sched->summary_only)
3103 sched->summary = sched->summary_only;
3105 if (!sched->summary_only)
3106 timehist_header(sched);
3108 err = perf_session__process_events(session);
3110 pr_err("Failed to process events, error %d", err);
3114 sched->nr_events = evlist->stats.nr_events[0];
3115 sched->nr_lost_events = evlist->stats.total_lost;
3116 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3119 timehist_print_summary(sched, session);
3122 free_idle_threads();
3123 perf_session__delete(session);
3129 static void print_bad_events(struct perf_sched *sched)
3131 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3132 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3133 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3134 sched->nr_unordered_timestamps, sched->nr_timestamps);
3136 if (sched->nr_lost_events && sched->nr_events) {
3137 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3138 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3139 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3141 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3142 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3143 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3144 sched->nr_context_switch_bugs, sched->nr_timestamps);
3145 if (sched->nr_lost_events)
3146 printf(" (due to lost events?)");
3151 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3153 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3154 struct work_atoms *this;
3155 const char *comm = thread__comm_str(data->thread), *this_comm;
3156 bool leftmost = true;
3161 this = container_of(*new, struct work_atoms, node);
3164 this_comm = thread__comm_str(this->thread);
3165 cmp = strcmp(comm, this_comm);
3167 new = &((*new)->rb_left);
3168 } else if (cmp < 0) {
3169 new = &((*new)->rb_right);
3173 this->total_runtime += data->total_runtime;
3174 this->nb_atoms += data->nb_atoms;
3175 this->total_lat += data->total_lat;
3176 list_splice(&data->work_list, &this->work_list);
3177 if (this->max_lat < data->max_lat) {
3178 this->max_lat = data->max_lat;
3179 this->max_lat_start = data->max_lat_start;
3180 this->max_lat_end = data->max_lat_end;
3188 rb_link_node(&data->node, parent, new);
3189 rb_insert_color_cached(&data->node, root, leftmost);
3192 static void perf_sched__merge_lat(struct perf_sched *sched)
3194 struct work_atoms *data;
3195 struct rb_node *node;
3197 if (sched->skip_merge)
3200 while ((node = rb_first_cached(&sched->atom_root))) {
3201 rb_erase_cached(node, &sched->atom_root);
3202 data = rb_entry(node, struct work_atoms, node);
3203 __merge_work_atoms(&sched->merged_atom_root, data);
3207 static int perf_sched__lat(struct perf_sched *sched)
3209 struct rb_node *next;
3213 if (perf_sched__read_events(sched))
3216 perf_sched__merge_lat(sched);
3217 perf_sched__sort_lat(sched);
3219 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3220 printf(" Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3221 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3223 next = rb_first_cached(&sched->sorted_atom_root);
3226 struct work_atoms *work_list;
3228 work_list = rb_entry(next, struct work_atoms, node);
3229 output_lat_thread(sched, work_list);
3230 next = rb_next(next);
3231 thread__zput(work_list->thread);
3234 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3235 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3236 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3238 printf(" ---------------------------------------------------\n");
3240 print_bad_events(sched);
3246 static int setup_map_cpus(struct perf_sched *sched)
3248 struct perf_cpu_map *map;
3250 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3252 if (sched->map.comp) {
3253 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3254 if (!sched->map.comp_cpus)
3258 if (!sched->map.cpus_str)
3261 map = perf_cpu_map__new(sched->map.cpus_str);
3263 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3267 sched->map.cpus = map;
3271 static int setup_color_pids(struct perf_sched *sched)
3273 struct perf_thread_map *map;
3275 if (!sched->map.color_pids_str)
3278 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3280 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3284 sched->map.color_pids = map;
3288 static int setup_color_cpus(struct perf_sched *sched)
3290 struct perf_cpu_map *map;
3292 if (!sched->map.color_cpus_str)
3295 map = perf_cpu_map__new(sched->map.color_cpus_str);
3297 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3301 sched->map.color_cpus = map;
3305 static int perf_sched__map(struct perf_sched *sched)
3307 if (setup_map_cpus(sched))
3310 if (setup_color_pids(sched))
3313 if (setup_color_cpus(sched))
3317 if (perf_sched__read_events(sched))
3319 print_bad_events(sched);
3323 static int perf_sched__replay(struct perf_sched *sched)
3327 calibrate_run_measurement_overhead(sched);
3328 calibrate_sleep_measurement_overhead(sched);
3330 test_calibrations(sched);
3332 if (perf_sched__read_events(sched))
3335 printf("nr_run_events: %ld\n", sched->nr_run_events);
3336 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3337 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3339 if (sched->targetless_wakeups)
3340 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3341 if (sched->multitarget_wakeups)
3342 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3343 if (sched->nr_run_events_optimized)
3344 printf("run atoms optimized: %ld\n",
3345 sched->nr_run_events_optimized);
3347 print_task_traces(sched);
3348 add_cross_task_wakeups(sched);
3350 sched->thread_funcs_exit = false;
3351 create_tasks(sched);
3352 printf("------------------------------------------------------------\n");
3353 for (i = 0; i < sched->replay_repeat; i++)
3354 run_one_test(sched);
3356 sched->thread_funcs_exit = true;
3357 destroy_tasks(sched);
3361 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3362 const char * const usage_msg[])
3364 char *tmp, *tok, *str = strdup(sched->sort_order);
3366 for (tok = strtok_r(str, ", ", &tmp);
3367 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3368 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3369 usage_with_options_msg(usage_msg, options,
3370 "Unknown --sort key: `%s'", tok);
3376 sort_dimension__add("pid", &sched->cmp_pid);
3379 static bool schedstat_events_exposed(void)
3382 * Select "sched:sched_stat_wait" event to check
3383 * whether schedstat tracepoints are exposed.
3385 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3389 static int __cmd_record(int argc, const char **argv)
3391 unsigned int rec_argc, i, j;
3393 const char **rec_argv_copy;
3394 const char * const record_args[] = {
3400 "-e", "sched:sched_switch",
3401 "-e", "sched:sched_stat_runtime",
3402 "-e", "sched:sched_process_fork",
3403 "-e", "sched:sched_wakeup_new",
3404 "-e", "sched:sched_migrate_task",
3408 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3409 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3410 * to prevent "perf sched record" execution failure, determine
3411 * whether to record schedstat events according to actual situation.
3413 const char * const schedstat_args[] = {
3414 "-e", "sched:sched_stat_wait",
3415 "-e", "sched:sched_stat_sleep",
3416 "-e", "sched:sched_stat_iowait",
3418 unsigned int schedstat_argc = schedstat_events_exposed() ?
3419 ARRAY_SIZE(schedstat_args) : 0;
3421 struct tep_event *waking_event;
3425 * +2 for either "-e", "sched:sched_wakeup" or
3426 * "-e", "sched:sched_waking"
3428 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3429 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3430 if (rec_argv == NULL)
3432 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3433 if (rec_argv_copy == NULL) {
3438 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3439 rec_argv[i] = strdup(record_args[i]);
3441 rec_argv[i++] = strdup("-e");
3442 waking_event = trace_event__tp_format("sched", "sched_waking");
3443 if (!IS_ERR(waking_event))
3444 rec_argv[i++] = strdup("sched:sched_waking");
3446 rec_argv[i++] = strdup("sched:sched_wakeup");
3448 for (j = 0; j < schedstat_argc; j++)
3449 rec_argv[i++] = strdup(schedstat_args[j]);
3451 for (j = 1; j < (unsigned int)argc; j++, i++)
3452 rec_argv[i] = strdup(argv[j]);
3454 BUG_ON(i != rec_argc);
3456 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3457 ret = cmd_record(rec_argc, rec_argv_copy);
3459 for (i = 0; i < rec_argc; i++)
3462 free(rec_argv_copy);
3467 int cmd_sched(int argc, const char **argv)
3469 static const char default_sort_order[] = "avg, max, switch, runtime";
3470 struct perf_sched sched = {
3472 .sample = perf_sched__process_tracepoint_sample,
3473 .comm = perf_sched__process_comm,
3474 .namespaces = perf_event__process_namespaces,
3475 .lost = perf_event__process_lost,
3476 .fork = perf_sched__process_fork_event,
3477 .ordered_events = true,
3479 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3480 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3481 .sort_order = default_sort_order,
3482 .replay_repeat = 10,
3484 .next_shortname1 = 'A',
3485 .next_shortname2 = '0',
3487 .show_callchain = 1,
3490 const struct option sched_options[] = {
3491 OPT_STRING('i', "input", &input_name, "file",
3493 OPT_INCR('v', "verbose", &verbose,
3494 "be more verbose (show symbol address, etc)"),
3495 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3496 "dump raw trace in ASCII"),
3497 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3500 const struct option latency_options[] = {
3501 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3502 "sort by key(s): runtime, switch, avg, max"),
3503 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3504 "CPU to profile on"),
3505 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3506 "latency stats per pid instead of per comm"),
3507 OPT_PARENT(sched_options)
3509 const struct option replay_options[] = {
3510 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3511 "repeat the workload replay N times (-1: infinite)"),
3512 OPT_PARENT(sched_options)
3514 const struct option map_options[] = {
3515 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3516 "map output in compact mode"),
3517 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3518 "highlight given pids in map"),
3519 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3520 "highlight given CPUs in map"),
3521 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3522 "display given CPUs in map"),
3523 OPT_PARENT(sched_options)
3525 const struct option timehist_options[] = {
3526 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3527 "file", "vmlinux pathname"),
3528 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3529 "file", "kallsyms pathname"),
3530 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3531 "Display call chains if present (default on)"),
3532 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3533 "Maximum number of functions to display backtrace."),
3534 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3535 "Look for files with symbols relative to this directory"),
3536 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3537 "Show only syscall summary with statistics"),
3538 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3539 "Show all syscalls and summary with statistics"),
3540 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3541 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3542 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3543 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3544 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3545 OPT_STRING(0, "time", &sched.time_str, "str",
3546 "Time span for analysis (start,stop)"),
3547 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3548 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3549 "analyze events only for given process id(s)"),
3550 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3551 "analyze events only for given thread id(s)"),
3552 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3553 OPT_PARENT(sched_options)
3556 const char * const latency_usage[] = {
3557 "perf sched latency [<options>]",
3560 const char * const replay_usage[] = {
3561 "perf sched replay [<options>]",
3564 const char * const map_usage[] = {
3565 "perf sched map [<options>]",
3568 const char * const timehist_usage[] = {
3569 "perf sched timehist [<options>]",
3572 const char *const sched_subcommands[] = { "record", "latency", "map",
3575 const char *sched_usage[] = {
3579 struct trace_sched_handler lat_ops = {
3580 .wakeup_event = latency_wakeup_event,
3581 .switch_event = latency_switch_event,
3582 .runtime_event = latency_runtime_event,
3583 .migrate_task_event = latency_migrate_task_event,
3585 struct trace_sched_handler map_ops = {
3586 .switch_event = map_switch_event,
3588 struct trace_sched_handler replay_ops = {
3589 .wakeup_event = replay_wakeup_event,
3590 .switch_event = replay_switch_event,
3591 .fork_event = replay_fork_event,
3596 mutex_init(&sched.start_work_mutex);
3597 mutex_init(&sched.work_done_wait_mutex);
3598 sched.curr_thread = calloc(MAX_CPUS, sizeof(*sched.curr_thread));
3599 if (!sched.curr_thread) {
3603 sched.cpu_last_switched = calloc(MAX_CPUS, sizeof(*sched.cpu_last_switched));
3604 if (!sched.cpu_last_switched) {
3608 sched.curr_pid = malloc(MAX_CPUS * sizeof(*sched.curr_pid));
3609 if (!sched.curr_pid) {
3613 for (i = 0; i < MAX_CPUS; i++)
3614 sched.curr_pid[i] = -1;
3616 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3617 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3619 usage_with_options(sched_usage, sched_options);
3622 * Aliased to 'perf script' for now:
3624 if (!strcmp(argv[0], "script")) {
3625 ret = cmd_script(argc, argv);
3626 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3627 ret = __cmd_record(argc, argv);
3628 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3629 sched.tp_handler = &lat_ops;
3631 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3633 usage_with_options(latency_usage, latency_options);
3635 setup_sorting(&sched, latency_options, latency_usage);
3636 ret = perf_sched__lat(&sched);
3637 } else if (!strcmp(argv[0], "map")) {
3639 argc = parse_options(argc, argv, map_options, map_usage, 0);
3641 usage_with_options(map_usage, map_options);
3643 sched.tp_handler = &map_ops;
3644 setup_sorting(&sched, latency_options, latency_usage);
3645 ret = perf_sched__map(&sched);
3646 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3647 sched.tp_handler = &replay_ops;
3649 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3651 usage_with_options(replay_usage, replay_options);
3653 ret = perf_sched__replay(&sched);
3654 } else if (!strcmp(argv[0], "timehist")) {
3656 argc = parse_options(argc, argv, timehist_options,
3659 usage_with_options(timehist_usage, timehist_options);
3661 if ((sched.show_wakeups || sched.show_next) &&
3662 sched.summary_only) {
3663 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3664 parse_options_usage(timehist_usage, timehist_options, "s", true);
3665 if (sched.show_wakeups)
3666 parse_options_usage(NULL, timehist_options, "w", true);
3667 if (sched.show_next)
3668 parse_options_usage(NULL, timehist_options, "n", true);
3672 ret = symbol__validate_sym_arguments();
3676 ret = perf_sched__timehist(&sched);
3678 usage_with_options(sched_usage, sched_options);
3682 free(sched.curr_pid);
3683 free(sched.cpu_last_switched);
3684 free(sched.curr_thread);
3685 mutex_destroy(&sched.start_work_mutex);
3686 mutex_destroy(&sched.work_done_wait_mutex);