Merge tag 'fuse-update-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[platform/kernel/linux-starfive.git] / tools / perf / builtin-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf-sys.h"
4
5 #include "util/cpumap.h"
6 #include "util/evlist.h"
7 #include "util/evsel.h"
8 #include "util/evsel_fprintf.h"
9 #include "util/mutex.h"
10 #include "util/symbol.h"
11 #include "util/thread.h"
12 #include "util/header.h"
13 #include "util/session.h"
14 #include "util/tool.h"
15 #include "util/cloexec.h"
16 #include "util/thread_map.h"
17 #include "util/color.h"
18 #include "util/stat.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/time-utils.h"
22
23 #include <subcmd/pager.h>
24 #include <subcmd/parse-options.h>
25 #include "util/trace-event.h"
26
27 #include "util/debug.h"
28 #include "util/event.h"
29 #include "util/util.h"
30
31 #include <linux/kernel.h>
32 #include <linux/log2.h>
33 #include <linux/zalloc.h>
34 #include <sys/prctl.h>
35 #include <sys/resource.h>
36 #include <inttypes.h>
37
38 #include <errno.h>
39 #include <semaphore.h>
40 #include <pthread.h>
41 #include <math.h>
42 #include <api/fs/fs.h>
43 #include <perf/cpumap.h>
44 #include <linux/time64.h>
45 #include <linux/err.h>
46
47 #include <linux/ctype.h>
48
49 #define PR_SET_NAME             15               /* Set process name */
50 #define MAX_CPUS                4096
51 #define COMM_LEN                20
52 #define SYM_LEN                 129
53 #define MAX_PID                 1024000
54
55 static const char *cpu_list;
56 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
57
58 struct sched_atom;
59
60 struct task_desc {
61         unsigned long           nr;
62         unsigned long           pid;
63         char                    comm[COMM_LEN];
64
65         unsigned long           nr_events;
66         unsigned long           curr_event;
67         struct sched_atom       **atoms;
68
69         pthread_t               thread;
70         sem_t                   sleep_sem;
71
72         sem_t                   ready_for_work;
73         sem_t                   work_done_sem;
74
75         u64                     cpu_usage;
76 };
77
78 enum sched_event_type {
79         SCHED_EVENT_RUN,
80         SCHED_EVENT_SLEEP,
81         SCHED_EVENT_WAKEUP,
82         SCHED_EVENT_MIGRATION,
83 };
84
85 struct sched_atom {
86         enum sched_event_type   type;
87         int                     specific_wait;
88         u64                     timestamp;
89         u64                     duration;
90         unsigned long           nr;
91         sem_t                   *wait_sem;
92         struct task_desc        *wakee;
93 };
94
95 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
96
97 /* task state bitmask, copied from include/linux/sched.h */
98 #define TASK_RUNNING            0
99 #define TASK_INTERRUPTIBLE      1
100 #define TASK_UNINTERRUPTIBLE    2
101 #define __TASK_STOPPED          4
102 #define __TASK_TRACED           8
103 /* in tsk->exit_state */
104 #define EXIT_DEAD               16
105 #define EXIT_ZOMBIE             32
106 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
107 /* in tsk->state again */
108 #define TASK_DEAD               64
109 #define TASK_WAKEKILL           128
110 #define TASK_WAKING             256
111 #define TASK_PARKED             512
112
113 enum thread_state {
114         THREAD_SLEEPING = 0,
115         THREAD_WAIT_CPU,
116         THREAD_SCHED_IN,
117         THREAD_IGNORE
118 };
119
120 struct work_atom {
121         struct list_head        list;
122         enum thread_state       state;
123         u64                     sched_out_time;
124         u64                     wake_up_time;
125         u64                     sched_in_time;
126         u64                     runtime;
127 };
128
129 struct work_atoms {
130         struct list_head        work_list;
131         struct thread           *thread;
132         struct rb_node          node;
133         u64                     max_lat;
134         u64                     max_lat_start;
135         u64                     max_lat_end;
136         u64                     total_lat;
137         u64                     nb_atoms;
138         u64                     total_runtime;
139         int                     num_merged;
140 };
141
142 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
143
144 struct perf_sched;
145
146 struct trace_sched_handler {
147         int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
148                             struct perf_sample *sample, struct machine *machine);
149
150         int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
151                              struct perf_sample *sample, struct machine *machine);
152
153         int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
154                             struct perf_sample *sample, struct machine *machine);
155
156         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
157         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
158                           struct machine *machine);
159
160         int (*migrate_task_event)(struct perf_sched *sched,
161                                   struct evsel *evsel,
162                                   struct perf_sample *sample,
163                                   struct machine *machine);
164 };
165
166 #define COLOR_PIDS PERF_COLOR_BLUE
167 #define COLOR_CPUS PERF_COLOR_BG_RED
168
169 struct perf_sched_map {
170         DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
171         struct perf_cpu         *comp_cpus;
172         bool                     comp;
173         struct perf_thread_map *color_pids;
174         const char              *color_pids_str;
175         struct perf_cpu_map     *color_cpus;
176         const char              *color_cpus_str;
177         struct perf_cpu_map     *cpus;
178         const char              *cpus_str;
179 };
180
181 struct perf_sched {
182         struct perf_tool tool;
183         const char       *sort_order;
184         unsigned long    nr_tasks;
185         struct task_desc **pid_to_task;
186         struct task_desc **tasks;
187         const struct trace_sched_handler *tp_handler;
188         struct mutex     start_work_mutex;
189         struct mutex     work_done_wait_mutex;
190         int              profile_cpu;
191 /*
192  * Track the current task - that way we can know whether there's any
193  * weird events, such as a task being switched away that is not current.
194  */
195         struct perf_cpu  max_cpu;
196         u32              *curr_pid;
197         struct thread    **curr_thread;
198         char             next_shortname1;
199         char             next_shortname2;
200         unsigned int     replay_repeat;
201         unsigned long    nr_run_events;
202         unsigned long    nr_sleep_events;
203         unsigned long    nr_wakeup_events;
204         unsigned long    nr_sleep_corrections;
205         unsigned long    nr_run_events_optimized;
206         unsigned long    targetless_wakeups;
207         unsigned long    multitarget_wakeups;
208         unsigned long    nr_runs;
209         unsigned long    nr_timestamps;
210         unsigned long    nr_unordered_timestamps;
211         unsigned long    nr_context_switch_bugs;
212         unsigned long    nr_events;
213         unsigned long    nr_lost_chunks;
214         unsigned long    nr_lost_events;
215         u64              run_measurement_overhead;
216         u64              sleep_measurement_overhead;
217         u64              start_time;
218         u64              cpu_usage;
219         u64              runavg_cpu_usage;
220         u64              parent_cpu_usage;
221         u64              runavg_parent_cpu_usage;
222         u64              sum_runtime;
223         u64              sum_fluct;
224         u64              run_avg;
225         u64              all_runtime;
226         u64              all_count;
227         u64              *cpu_last_switched;
228         struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
229         struct list_head sort_list, cmp_pid;
230         bool force;
231         bool skip_merge;
232         struct perf_sched_map map;
233
234         /* options for timehist command */
235         bool            summary;
236         bool            summary_only;
237         bool            idle_hist;
238         bool            show_callchain;
239         unsigned int    max_stack;
240         bool            show_cpu_visual;
241         bool            show_wakeups;
242         bool            show_next;
243         bool            show_migrations;
244         bool            show_state;
245         u64             skipped_samples;
246         const char      *time_str;
247         struct perf_time_interval ptime;
248         struct perf_time_interval hist_time;
249         volatile bool   thread_funcs_exit;
250 };
251
252 /* per thread run time data */
253 struct thread_runtime {
254         u64 last_time;      /* time of previous sched in/out event */
255         u64 dt_run;         /* run time */
256         u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
257         u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
258         u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
259         u64 dt_delay;       /* time between wakeup and sched-in */
260         u64 ready_to_run;   /* time of wakeup */
261
262         struct stats run_stats;
263         u64 total_run_time;
264         u64 total_sleep_time;
265         u64 total_iowait_time;
266         u64 total_preempt_time;
267         u64 total_delay_time;
268
269         int last_state;
270
271         char shortname[3];
272         bool comm_changed;
273
274         u64 migrations;
275 };
276
277 /* per event run time data */
278 struct evsel_runtime {
279         u64 *last_time; /* time this event was last seen per cpu */
280         u32 ncpu;       /* highest cpu slot allocated */
281 };
282
283 /* per cpu idle time data */
284 struct idle_thread_runtime {
285         struct thread_runtime   tr;
286         struct thread           *last_thread;
287         struct rb_root_cached   sorted_root;
288         struct callchain_root   callchain;
289         struct callchain_cursor cursor;
290 };
291
292 /* track idle times per cpu */
293 static struct thread **idle_threads;
294 static int idle_max_cpu;
295 static char idle_comm[] = "<idle>";
296
297 static u64 get_nsecs(void)
298 {
299         struct timespec ts;
300
301         clock_gettime(CLOCK_MONOTONIC, &ts);
302
303         return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
304 }
305
306 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
307 {
308         u64 T0 = get_nsecs(), T1;
309
310         do {
311                 T1 = get_nsecs();
312         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
313 }
314
315 static void sleep_nsecs(u64 nsecs)
316 {
317         struct timespec ts;
318
319         ts.tv_nsec = nsecs % 999999999;
320         ts.tv_sec = nsecs / 999999999;
321
322         nanosleep(&ts, NULL);
323 }
324
325 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
326 {
327         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
328         int i;
329
330         for (i = 0; i < 10; i++) {
331                 T0 = get_nsecs();
332                 burn_nsecs(sched, 0);
333                 T1 = get_nsecs();
334                 delta = T1-T0;
335                 min_delta = min(min_delta, delta);
336         }
337         sched->run_measurement_overhead = min_delta;
338
339         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
340 }
341
342 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
343 {
344         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
345         int i;
346
347         for (i = 0; i < 10; i++) {
348                 T0 = get_nsecs();
349                 sleep_nsecs(10000);
350                 T1 = get_nsecs();
351                 delta = T1-T0;
352                 min_delta = min(min_delta, delta);
353         }
354         min_delta -= 10000;
355         sched->sleep_measurement_overhead = min_delta;
356
357         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
358 }
359
360 static struct sched_atom *
361 get_new_event(struct task_desc *task, u64 timestamp)
362 {
363         struct sched_atom *event = zalloc(sizeof(*event));
364         unsigned long idx = task->nr_events;
365         size_t size;
366
367         event->timestamp = timestamp;
368         event->nr = idx;
369
370         task->nr_events++;
371         size = sizeof(struct sched_atom *) * task->nr_events;
372         task->atoms = realloc(task->atoms, size);
373         BUG_ON(!task->atoms);
374
375         task->atoms[idx] = event;
376
377         return event;
378 }
379
380 static struct sched_atom *last_event(struct task_desc *task)
381 {
382         if (!task->nr_events)
383                 return NULL;
384
385         return task->atoms[task->nr_events - 1];
386 }
387
388 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
389                                 u64 timestamp, u64 duration)
390 {
391         struct sched_atom *event, *curr_event = last_event(task);
392
393         /*
394          * optimize an existing RUN event by merging this one
395          * to it:
396          */
397         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
398                 sched->nr_run_events_optimized++;
399                 curr_event->duration += duration;
400                 return;
401         }
402
403         event = get_new_event(task, timestamp);
404
405         event->type = SCHED_EVENT_RUN;
406         event->duration = duration;
407
408         sched->nr_run_events++;
409 }
410
411 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
412                                    u64 timestamp, struct task_desc *wakee)
413 {
414         struct sched_atom *event, *wakee_event;
415
416         event = get_new_event(task, timestamp);
417         event->type = SCHED_EVENT_WAKEUP;
418         event->wakee = wakee;
419
420         wakee_event = last_event(wakee);
421         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
422                 sched->targetless_wakeups++;
423                 return;
424         }
425         if (wakee_event->wait_sem) {
426                 sched->multitarget_wakeups++;
427                 return;
428         }
429
430         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
431         sem_init(wakee_event->wait_sem, 0, 0);
432         wakee_event->specific_wait = 1;
433         event->wait_sem = wakee_event->wait_sem;
434
435         sched->nr_wakeup_events++;
436 }
437
438 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
439                                   u64 timestamp, u64 task_state __maybe_unused)
440 {
441         struct sched_atom *event = get_new_event(task, timestamp);
442
443         event->type = SCHED_EVENT_SLEEP;
444
445         sched->nr_sleep_events++;
446 }
447
448 static struct task_desc *register_pid(struct perf_sched *sched,
449                                       unsigned long pid, const char *comm)
450 {
451         struct task_desc *task;
452         static int pid_max;
453
454         if (sched->pid_to_task == NULL) {
455                 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
456                         pid_max = MAX_PID;
457                 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
458         }
459         if (pid >= (unsigned long)pid_max) {
460                 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
461                         sizeof(struct task_desc *))) == NULL);
462                 while (pid >= (unsigned long)pid_max)
463                         sched->pid_to_task[pid_max++] = NULL;
464         }
465
466         task = sched->pid_to_task[pid];
467
468         if (task)
469                 return task;
470
471         task = zalloc(sizeof(*task));
472         task->pid = pid;
473         task->nr = sched->nr_tasks;
474         strcpy(task->comm, comm);
475         /*
476          * every task starts in sleeping state - this gets ignored
477          * if there's no wakeup pointing to this sleep state:
478          */
479         add_sched_event_sleep(sched, task, 0, 0);
480
481         sched->pid_to_task[pid] = task;
482         sched->nr_tasks++;
483         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
484         BUG_ON(!sched->tasks);
485         sched->tasks[task->nr] = task;
486
487         if (verbose > 0)
488                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
489
490         return task;
491 }
492
493
494 static void print_task_traces(struct perf_sched *sched)
495 {
496         struct task_desc *task;
497         unsigned long i;
498
499         for (i = 0; i < sched->nr_tasks; i++) {
500                 task = sched->tasks[i];
501                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
502                         task->nr, task->comm, task->pid, task->nr_events);
503         }
504 }
505
506 static void add_cross_task_wakeups(struct perf_sched *sched)
507 {
508         struct task_desc *task1, *task2;
509         unsigned long i, j;
510
511         for (i = 0; i < sched->nr_tasks; i++) {
512                 task1 = sched->tasks[i];
513                 j = i + 1;
514                 if (j == sched->nr_tasks)
515                         j = 0;
516                 task2 = sched->tasks[j];
517                 add_sched_event_wakeup(sched, task1, 0, task2);
518         }
519 }
520
521 static void perf_sched__process_event(struct perf_sched *sched,
522                                       struct sched_atom *atom)
523 {
524         int ret = 0;
525
526         switch (atom->type) {
527                 case SCHED_EVENT_RUN:
528                         burn_nsecs(sched, atom->duration);
529                         break;
530                 case SCHED_EVENT_SLEEP:
531                         if (atom->wait_sem)
532                                 ret = sem_wait(atom->wait_sem);
533                         BUG_ON(ret);
534                         break;
535                 case SCHED_EVENT_WAKEUP:
536                         if (atom->wait_sem)
537                                 ret = sem_post(atom->wait_sem);
538                         BUG_ON(ret);
539                         break;
540                 case SCHED_EVENT_MIGRATION:
541                         break;
542                 default:
543                         BUG_ON(1);
544         }
545 }
546
547 static u64 get_cpu_usage_nsec_parent(void)
548 {
549         struct rusage ru;
550         u64 sum;
551         int err;
552
553         err = getrusage(RUSAGE_SELF, &ru);
554         BUG_ON(err);
555
556         sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
557         sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
558
559         return sum;
560 }
561
562 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
563 {
564         struct perf_event_attr attr;
565         char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
566         int fd;
567         struct rlimit limit;
568         bool need_privilege = false;
569
570         memset(&attr, 0, sizeof(attr));
571
572         attr.type = PERF_TYPE_SOFTWARE;
573         attr.config = PERF_COUNT_SW_TASK_CLOCK;
574
575 force_again:
576         fd = sys_perf_event_open(&attr, 0, -1, -1,
577                                  perf_event_open_cloexec_flag());
578
579         if (fd < 0) {
580                 if (errno == EMFILE) {
581                         if (sched->force) {
582                                 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
583                                 limit.rlim_cur += sched->nr_tasks - cur_task;
584                                 if (limit.rlim_cur > limit.rlim_max) {
585                                         limit.rlim_max = limit.rlim_cur;
586                                         need_privilege = true;
587                                 }
588                                 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
589                                         if (need_privilege && errno == EPERM)
590                                                 strcpy(info, "Need privilege\n");
591                                 } else
592                                         goto force_again;
593                         } else
594                                 strcpy(info, "Have a try with -f option\n");
595                 }
596                 pr_err("Error: sys_perf_event_open() syscall returned "
597                        "with %d (%s)\n%s", fd,
598                        str_error_r(errno, sbuf, sizeof(sbuf)), info);
599                 exit(EXIT_FAILURE);
600         }
601         return fd;
602 }
603
604 static u64 get_cpu_usage_nsec_self(int fd)
605 {
606         u64 runtime;
607         int ret;
608
609         ret = read(fd, &runtime, sizeof(runtime));
610         BUG_ON(ret != sizeof(runtime));
611
612         return runtime;
613 }
614
615 struct sched_thread_parms {
616         struct task_desc  *task;
617         struct perf_sched *sched;
618         int fd;
619 };
620
621 static void *thread_func(void *ctx)
622 {
623         struct sched_thread_parms *parms = ctx;
624         struct task_desc *this_task = parms->task;
625         struct perf_sched *sched = parms->sched;
626         u64 cpu_usage_0, cpu_usage_1;
627         unsigned long i, ret;
628         char comm2[22];
629         int fd = parms->fd;
630
631         zfree(&parms);
632
633         sprintf(comm2, ":%s", this_task->comm);
634         prctl(PR_SET_NAME, comm2);
635         if (fd < 0)
636                 return NULL;
637
638         while (!sched->thread_funcs_exit) {
639                 ret = sem_post(&this_task->ready_for_work);
640                 BUG_ON(ret);
641                 mutex_lock(&sched->start_work_mutex);
642                 mutex_unlock(&sched->start_work_mutex);
643
644                 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
645
646                 for (i = 0; i < this_task->nr_events; i++) {
647                         this_task->curr_event = i;
648                         perf_sched__process_event(sched, this_task->atoms[i]);
649                 }
650
651                 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
652                 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
653                 ret = sem_post(&this_task->work_done_sem);
654                 BUG_ON(ret);
655
656                 mutex_lock(&sched->work_done_wait_mutex);
657                 mutex_unlock(&sched->work_done_wait_mutex);
658         }
659         return NULL;
660 }
661
662 static void create_tasks(struct perf_sched *sched)
663         EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
664         EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
665 {
666         struct task_desc *task;
667         pthread_attr_t attr;
668         unsigned long i;
669         int err;
670
671         err = pthread_attr_init(&attr);
672         BUG_ON(err);
673         err = pthread_attr_setstacksize(&attr,
674                         (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
675         BUG_ON(err);
676         mutex_lock(&sched->start_work_mutex);
677         mutex_lock(&sched->work_done_wait_mutex);
678         for (i = 0; i < sched->nr_tasks; i++) {
679                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
680                 BUG_ON(parms == NULL);
681                 parms->task = task = sched->tasks[i];
682                 parms->sched = sched;
683                 parms->fd = self_open_counters(sched, i);
684                 sem_init(&task->sleep_sem, 0, 0);
685                 sem_init(&task->ready_for_work, 0, 0);
686                 sem_init(&task->work_done_sem, 0, 0);
687                 task->curr_event = 0;
688                 err = pthread_create(&task->thread, &attr, thread_func, parms);
689                 BUG_ON(err);
690         }
691 }
692
693 static void destroy_tasks(struct perf_sched *sched)
694         UNLOCK_FUNCTION(sched->start_work_mutex)
695         UNLOCK_FUNCTION(sched->work_done_wait_mutex)
696 {
697         struct task_desc *task;
698         unsigned long i;
699         int err;
700
701         mutex_unlock(&sched->start_work_mutex);
702         mutex_unlock(&sched->work_done_wait_mutex);
703         /* Get rid of threads so they won't be upset by mutex destrunction */
704         for (i = 0; i < sched->nr_tasks; i++) {
705                 task = sched->tasks[i];
706                 err = pthread_join(task->thread, NULL);
707                 BUG_ON(err);
708                 sem_destroy(&task->sleep_sem);
709                 sem_destroy(&task->ready_for_work);
710                 sem_destroy(&task->work_done_sem);
711         }
712 }
713
714 static void wait_for_tasks(struct perf_sched *sched)
715         EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
716         EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
717 {
718         u64 cpu_usage_0, cpu_usage_1;
719         struct task_desc *task;
720         unsigned long i, ret;
721
722         sched->start_time = get_nsecs();
723         sched->cpu_usage = 0;
724         mutex_unlock(&sched->work_done_wait_mutex);
725
726         for (i = 0; i < sched->nr_tasks; i++) {
727                 task = sched->tasks[i];
728                 ret = sem_wait(&task->ready_for_work);
729                 BUG_ON(ret);
730                 sem_init(&task->ready_for_work, 0, 0);
731         }
732         mutex_lock(&sched->work_done_wait_mutex);
733
734         cpu_usage_0 = get_cpu_usage_nsec_parent();
735
736         mutex_unlock(&sched->start_work_mutex);
737
738         for (i = 0; i < sched->nr_tasks; i++) {
739                 task = sched->tasks[i];
740                 ret = sem_wait(&task->work_done_sem);
741                 BUG_ON(ret);
742                 sem_init(&task->work_done_sem, 0, 0);
743                 sched->cpu_usage += task->cpu_usage;
744                 task->cpu_usage = 0;
745         }
746
747         cpu_usage_1 = get_cpu_usage_nsec_parent();
748         if (!sched->runavg_cpu_usage)
749                 sched->runavg_cpu_usage = sched->cpu_usage;
750         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
751
752         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
753         if (!sched->runavg_parent_cpu_usage)
754                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
755         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
756                                          sched->parent_cpu_usage)/sched->replay_repeat;
757
758         mutex_lock(&sched->start_work_mutex);
759
760         for (i = 0; i < sched->nr_tasks; i++) {
761                 task = sched->tasks[i];
762                 sem_init(&task->sleep_sem, 0, 0);
763                 task->curr_event = 0;
764         }
765 }
766
767 static void run_one_test(struct perf_sched *sched)
768         EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
769         EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
770 {
771         u64 T0, T1, delta, avg_delta, fluct;
772
773         T0 = get_nsecs();
774         wait_for_tasks(sched);
775         T1 = get_nsecs();
776
777         delta = T1 - T0;
778         sched->sum_runtime += delta;
779         sched->nr_runs++;
780
781         avg_delta = sched->sum_runtime / sched->nr_runs;
782         if (delta < avg_delta)
783                 fluct = avg_delta - delta;
784         else
785                 fluct = delta - avg_delta;
786         sched->sum_fluct += fluct;
787         if (!sched->run_avg)
788                 sched->run_avg = delta;
789         sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
790
791         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
792
793         printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
794
795         printf("cpu: %0.2f / %0.2f",
796                 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
797
798 #if 0
799         /*
800          * rusage statistics done by the parent, these are less
801          * accurate than the sched->sum_exec_runtime based statistics:
802          */
803         printf(" [%0.2f / %0.2f]",
804                 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
805                 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
806 #endif
807
808         printf("\n");
809
810         if (sched->nr_sleep_corrections)
811                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
812         sched->nr_sleep_corrections = 0;
813 }
814
815 static void test_calibrations(struct perf_sched *sched)
816 {
817         u64 T0, T1;
818
819         T0 = get_nsecs();
820         burn_nsecs(sched, NSEC_PER_MSEC);
821         T1 = get_nsecs();
822
823         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
824
825         T0 = get_nsecs();
826         sleep_nsecs(NSEC_PER_MSEC);
827         T1 = get_nsecs();
828
829         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
830 }
831
832 static int
833 replay_wakeup_event(struct perf_sched *sched,
834                     struct evsel *evsel, struct perf_sample *sample,
835                     struct machine *machine __maybe_unused)
836 {
837         const char *comm = evsel__strval(evsel, sample, "comm");
838         const u32 pid    = evsel__intval(evsel, sample, "pid");
839         struct task_desc *waker, *wakee;
840
841         if (verbose > 0) {
842                 printf("sched_wakeup event %p\n", evsel);
843
844                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
845         }
846
847         waker = register_pid(sched, sample->tid, "<unknown>");
848         wakee = register_pid(sched, pid, comm);
849
850         add_sched_event_wakeup(sched, waker, sample->time, wakee);
851         return 0;
852 }
853
854 static int replay_switch_event(struct perf_sched *sched,
855                                struct evsel *evsel,
856                                struct perf_sample *sample,
857                                struct machine *machine __maybe_unused)
858 {
859         const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
860                    *next_comm  = evsel__strval(evsel, sample, "next_comm");
861         const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
862                   next_pid = evsel__intval(evsel, sample, "next_pid");
863         const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
864         struct task_desc *prev, __maybe_unused *next;
865         u64 timestamp0, timestamp = sample->time;
866         int cpu = sample->cpu;
867         s64 delta;
868
869         if (verbose > 0)
870                 printf("sched_switch event %p\n", evsel);
871
872         if (cpu >= MAX_CPUS || cpu < 0)
873                 return 0;
874
875         timestamp0 = sched->cpu_last_switched[cpu];
876         if (timestamp0)
877                 delta = timestamp - timestamp0;
878         else
879                 delta = 0;
880
881         if (delta < 0) {
882                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
883                 return -1;
884         }
885
886         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
887                  prev_comm, prev_pid, next_comm, next_pid, delta);
888
889         prev = register_pid(sched, prev_pid, prev_comm);
890         next = register_pid(sched, next_pid, next_comm);
891
892         sched->cpu_last_switched[cpu] = timestamp;
893
894         add_sched_event_run(sched, prev, timestamp, delta);
895         add_sched_event_sleep(sched, prev, timestamp, prev_state);
896
897         return 0;
898 }
899
900 static int replay_fork_event(struct perf_sched *sched,
901                              union perf_event *event,
902                              struct machine *machine)
903 {
904         struct thread *child, *parent;
905
906         child = machine__findnew_thread(machine, event->fork.pid,
907                                         event->fork.tid);
908         parent = machine__findnew_thread(machine, event->fork.ppid,
909                                          event->fork.ptid);
910
911         if (child == NULL || parent == NULL) {
912                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
913                                  child, parent);
914                 goto out_put;
915         }
916
917         if (verbose > 0) {
918                 printf("fork event\n");
919                 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
920                 printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
921         }
922
923         register_pid(sched, thread__tid(parent), thread__comm_str(parent));
924         register_pid(sched, thread__tid(child), thread__comm_str(child));
925 out_put:
926         thread__put(child);
927         thread__put(parent);
928         return 0;
929 }
930
931 struct sort_dimension {
932         const char              *name;
933         sort_fn_t               cmp;
934         struct list_head        list;
935 };
936
937 /*
938  * handle runtime stats saved per thread
939  */
940 static struct thread_runtime *thread__init_runtime(struct thread *thread)
941 {
942         struct thread_runtime *r;
943
944         r = zalloc(sizeof(struct thread_runtime));
945         if (!r)
946                 return NULL;
947
948         init_stats(&r->run_stats);
949         thread__set_priv(thread, r);
950
951         return r;
952 }
953
954 static struct thread_runtime *thread__get_runtime(struct thread *thread)
955 {
956         struct thread_runtime *tr;
957
958         tr = thread__priv(thread);
959         if (tr == NULL) {
960                 tr = thread__init_runtime(thread);
961                 if (tr == NULL)
962                         pr_debug("Failed to malloc memory for runtime data.\n");
963         }
964
965         return tr;
966 }
967
968 static int
969 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
970 {
971         struct sort_dimension *sort;
972         int ret = 0;
973
974         BUG_ON(list_empty(list));
975
976         list_for_each_entry(sort, list, list) {
977                 ret = sort->cmp(l, r);
978                 if (ret)
979                         return ret;
980         }
981
982         return ret;
983 }
984
985 static struct work_atoms *
986 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
987                          struct list_head *sort_list)
988 {
989         struct rb_node *node = root->rb_root.rb_node;
990         struct work_atoms key = { .thread = thread };
991
992         while (node) {
993                 struct work_atoms *atoms;
994                 int cmp;
995
996                 atoms = container_of(node, struct work_atoms, node);
997
998                 cmp = thread_lat_cmp(sort_list, &key, atoms);
999                 if (cmp > 0)
1000                         node = node->rb_left;
1001                 else if (cmp < 0)
1002                         node = node->rb_right;
1003                 else {
1004                         BUG_ON(thread != atoms->thread);
1005                         return atoms;
1006                 }
1007         }
1008         return NULL;
1009 }
1010
1011 static void
1012 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013                          struct list_head *sort_list)
1014 {
1015         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016         bool leftmost = true;
1017
1018         while (*new) {
1019                 struct work_atoms *this;
1020                 int cmp;
1021
1022                 this = container_of(*new, struct work_atoms, node);
1023                 parent = *new;
1024
1025                 cmp = thread_lat_cmp(sort_list, data, this);
1026
1027                 if (cmp > 0)
1028                         new = &((*new)->rb_left);
1029                 else {
1030                         new = &((*new)->rb_right);
1031                         leftmost = false;
1032                 }
1033         }
1034
1035         rb_link_node(&data->node, parent, new);
1036         rb_insert_color_cached(&data->node, root, leftmost);
1037 }
1038
1039 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040 {
1041         struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042         if (!atoms) {
1043                 pr_err("No memory at %s\n", __func__);
1044                 return -1;
1045         }
1046
1047         atoms->thread = thread__get(thread);
1048         INIT_LIST_HEAD(&atoms->work_list);
1049         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050         return 0;
1051 }
1052
1053 static char sched_out_state(u64 prev_state)
1054 {
1055         const char *str = TASK_STATE_TO_CHAR_STR;
1056
1057         return str[prev_state];
1058 }
1059
1060 static int
1061 add_sched_out_event(struct work_atoms *atoms,
1062                     char run_state,
1063                     u64 timestamp)
1064 {
1065         struct work_atom *atom = zalloc(sizeof(*atom));
1066         if (!atom) {
1067                 pr_err("Non memory at %s", __func__);
1068                 return -1;
1069         }
1070
1071         atom->sched_out_time = timestamp;
1072
1073         if (run_state == 'R') {
1074                 atom->state = THREAD_WAIT_CPU;
1075                 atom->wake_up_time = atom->sched_out_time;
1076         }
1077
1078         list_add_tail(&atom->list, &atoms->work_list);
1079         return 0;
1080 }
1081
1082 static void
1083 add_runtime_event(struct work_atoms *atoms, u64 delta,
1084                   u64 timestamp __maybe_unused)
1085 {
1086         struct work_atom *atom;
1087
1088         BUG_ON(list_empty(&atoms->work_list));
1089
1090         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092         atom->runtime += delta;
1093         atoms->total_runtime += delta;
1094 }
1095
1096 static void
1097 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1098 {
1099         struct work_atom *atom;
1100         u64 delta;
1101
1102         if (list_empty(&atoms->work_list))
1103                 return;
1104
1105         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1106
1107         if (atom->state != THREAD_WAIT_CPU)
1108                 return;
1109
1110         if (timestamp < atom->wake_up_time) {
1111                 atom->state = THREAD_IGNORE;
1112                 return;
1113         }
1114
1115         atom->state = THREAD_SCHED_IN;
1116         atom->sched_in_time = timestamp;
1117
1118         delta = atom->sched_in_time - atom->wake_up_time;
1119         atoms->total_lat += delta;
1120         if (delta > atoms->max_lat) {
1121                 atoms->max_lat = delta;
1122                 atoms->max_lat_start = atom->wake_up_time;
1123                 atoms->max_lat_end = timestamp;
1124         }
1125         atoms->nb_atoms++;
1126 }
1127
1128 static int latency_switch_event(struct perf_sched *sched,
1129                                 struct evsel *evsel,
1130                                 struct perf_sample *sample,
1131                                 struct machine *machine)
1132 {
1133         const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134                   next_pid = evsel__intval(evsel, sample, "next_pid");
1135         const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136         struct work_atoms *out_events, *in_events;
1137         struct thread *sched_out, *sched_in;
1138         u64 timestamp0, timestamp = sample->time;
1139         int cpu = sample->cpu, err = -1;
1140         s64 delta;
1141
1142         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1143
1144         timestamp0 = sched->cpu_last_switched[cpu];
1145         sched->cpu_last_switched[cpu] = timestamp;
1146         if (timestamp0)
1147                 delta = timestamp - timestamp0;
1148         else
1149                 delta = 0;
1150
1151         if (delta < 0) {
1152                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1153                 return -1;
1154         }
1155
1156         sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157         sched_in = machine__findnew_thread(machine, -1, next_pid);
1158         if (sched_out == NULL || sched_in == NULL)
1159                 goto out_put;
1160
1161         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1162         if (!out_events) {
1163                 if (thread_atoms_insert(sched, sched_out))
1164                         goto out_put;
1165                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1166                 if (!out_events) {
1167                         pr_err("out-event: Internal tree error");
1168                         goto out_put;
1169                 }
1170         }
1171         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1172                 return -1;
1173
1174         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1175         if (!in_events) {
1176                 if (thread_atoms_insert(sched, sched_in))
1177                         goto out_put;
1178                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1179                 if (!in_events) {
1180                         pr_err("in-event: Internal tree error");
1181                         goto out_put;
1182                 }
1183                 /*
1184                  * Take came in we have not heard about yet,
1185                  * add in an initial atom in runnable state:
1186                  */
1187                 if (add_sched_out_event(in_events, 'R', timestamp))
1188                         goto out_put;
1189         }
1190         add_sched_in_event(in_events, timestamp);
1191         err = 0;
1192 out_put:
1193         thread__put(sched_out);
1194         thread__put(sched_in);
1195         return err;
1196 }
1197
1198 static int latency_runtime_event(struct perf_sched *sched,
1199                                  struct evsel *evsel,
1200                                  struct perf_sample *sample,
1201                                  struct machine *machine)
1202 {
1203         const u32 pid      = evsel__intval(evsel, sample, "pid");
1204         const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1205         struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207         u64 timestamp = sample->time;
1208         int cpu = sample->cpu, err = -1;
1209
1210         if (thread == NULL)
1211                 return -1;
1212
1213         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1214         if (!atoms) {
1215                 if (thread_atoms_insert(sched, thread))
1216                         goto out_put;
1217                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1218                 if (!atoms) {
1219                         pr_err("in-event: Internal tree error");
1220                         goto out_put;
1221                 }
1222                 if (add_sched_out_event(atoms, 'R', timestamp))
1223                         goto out_put;
1224         }
1225
1226         add_runtime_event(atoms, runtime, timestamp);
1227         err = 0;
1228 out_put:
1229         thread__put(thread);
1230         return err;
1231 }
1232
1233 static int latency_wakeup_event(struct perf_sched *sched,
1234                                 struct evsel *evsel,
1235                                 struct perf_sample *sample,
1236                                 struct machine *machine)
1237 {
1238         const u32 pid     = evsel__intval(evsel, sample, "pid");
1239         struct work_atoms *atoms;
1240         struct work_atom *atom;
1241         struct thread *wakee;
1242         u64 timestamp = sample->time;
1243         int err = -1;
1244
1245         wakee = machine__findnew_thread(machine, -1, pid);
1246         if (wakee == NULL)
1247                 return -1;
1248         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1249         if (!atoms) {
1250                 if (thread_atoms_insert(sched, wakee))
1251                         goto out_put;
1252                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1253                 if (!atoms) {
1254                         pr_err("wakeup-event: Internal tree error");
1255                         goto out_put;
1256                 }
1257                 if (add_sched_out_event(atoms, 'S', timestamp))
1258                         goto out_put;
1259         }
1260
1261         BUG_ON(list_empty(&atoms->work_list));
1262
1263         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1264
1265         /*
1266          * As we do not guarantee the wakeup event happens when
1267          * task is out of run queue, also may happen when task is
1268          * on run queue and wakeup only change ->state to TASK_RUNNING,
1269          * then we should not set the ->wake_up_time when wake up a
1270          * task which is on run queue.
1271          *
1272          * You WILL be missing events if you've recorded only
1273          * one CPU, or are only looking at only one, so don't
1274          * skip in this case.
1275          */
1276         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1277                 goto out_ok;
1278
1279         sched->nr_timestamps++;
1280         if (atom->sched_out_time > timestamp) {
1281                 sched->nr_unordered_timestamps++;
1282                 goto out_ok;
1283         }
1284
1285         atom->state = THREAD_WAIT_CPU;
1286         atom->wake_up_time = timestamp;
1287 out_ok:
1288         err = 0;
1289 out_put:
1290         thread__put(wakee);
1291         return err;
1292 }
1293
1294 static int latency_migrate_task_event(struct perf_sched *sched,
1295                                       struct evsel *evsel,
1296                                       struct perf_sample *sample,
1297                                       struct machine *machine)
1298 {
1299         const u32 pid = evsel__intval(evsel, sample, "pid");
1300         u64 timestamp = sample->time;
1301         struct work_atoms *atoms;
1302         struct work_atom *atom;
1303         struct thread *migrant;
1304         int err = -1;
1305
1306         /*
1307          * Only need to worry about migration when profiling one CPU.
1308          */
1309         if (sched->profile_cpu == -1)
1310                 return 0;
1311
1312         migrant = machine__findnew_thread(machine, -1, pid);
1313         if (migrant == NULL)
1314                 return -1;
1315         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1316         if (!atoms) {
1317                 if (thread_atoms_insert(sched, migrant))
1318                         goto out_put;
1319                 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1320                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1321                 if (!atoms) {
1322                         pr_err("migration-event: Internal tree error");
1323                         goto out_put;
1324                 }
1325                 if (add_sched_out_event(atoms, 'R', timestamp))
1326                         goto out_put;
1327         }
1328
1329         BUG_ON(list_empty(&atoms->work_list));
1330
1331         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1333
1334         sched->nr_timestamps++;
1335
1336         if (atom->sched_out_time > timestamp)
1337                 sched->nr_unordered_timestamps++;
1338         err = 0;
1339 out_put:
1340         thread__put(migrant);
1341         return err;
1342 }
1343
1344 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1345 {
1346         int i;
1347         int ret;
1348         u64 avg;
1349         char max_lat_start[32], max_lat_end[32];
1350
1351         if (!work_list->nb_atoms)
1352                 return;
1353         /*
1354          * Ignore idle threads:
1355          */
1356         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1357                 return;
1358
1359         sched->all_runtime += work_list->total_runtime;
1360         sched->all_count   += work_list->nb_atoms;
1361
1362         if (work_list->num_merged > 1) {
1363                 ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1364                              work_list->num_merged);
1365         } else {
1366                 ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1367                              thread__tid(work_list->thread));
1368         }
1369
1370         for (i = 0; i < 24 - ret; i++)
1371                 printf(" ");
1372
1373         avg = work_list->total_lat / work_list->nb_atoms;
1374         timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1375         timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1376
1377         printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1378               (double)work_list->total_runtime / NSEC_PER_MSEC,
1379                  work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1380                  (double)work_list->max_lat / NSEC_PER_MSEC,
1381                  max_lat_start, max_lat_end);
1382 }
1383
1384 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1385 {
1386         pid_t l_tid, r_tid;
1387
1388         if (RC_CHK_ACCESS(l->thread) == RC_CHK_ACCESS(r->thread))
1389                 return 0;
1390         l_tid = thread__tid(l->thread);
1391         r_tid = thread__tid(r->thread);
1392         if (l_tid < r_tid)
1393                 return -1;
1394         if (l_tid > r_tid)
1395                 return 1;
1396         return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1397 }
1398
1399 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1400 {
1401         u64 avgl, avgr;
1402
1403         if (!l->nb_atoms)
1404                 return -1;
1405
1406         if (!r->nb_atoms)
1407                 return 1;
1408
1409         avgl = l->total_lat / l->nb_atoms;
1410         avgr = r->total_lat / r->nb_atoms;
1411
1412         if (avgl < avgr)
1413                 return -1;
1414         if (avgl > avgr)
1415                 return 1;
1416
1417         return 0;
1418 }
1419
1420 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1421 {
1422         if (l->max_lat < r->max_lat)
1423                 return -1;
1424         if (l->max_lat > r->max_lat)
1425                 return 1;
1426
1427         return 0;
1428 }
1429
1430 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1431 {
1432         if (l->nb_atoms < r->nb_atoms)
1433                 return -1;
1434         if (l->nb_atoms > r->nb_atoms)
1435                 return 1;
1436
1437         return 0;
1438 }
1439
1440 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1441 {
1442         if (l->total_runtime < r->total_runtime)
1443                 return -1;
1444         if (l->total_runtime > r->total_runtime)
1445                 return 1;
1446
1447         return 0;
1448 }
1449
1450 static int sort_dimension__add(const char *tok, struct list_head *list)
1451 {
1452         size_t i;
1453         static struct sort_dimension avg_sort_dimension = {
1454                 .name = "avg",
1455                 .cmp  = avg_cmp,
1456         };
1457         static struct sort_dimension max_sort_dimension = {
1458                 .name = "max",
1459                 .cmp  = max_cmp,
1460         };
1461         static struct sort_dimension pid_sort_dimension = {
1462                 .name = "pid",
1463                 .cmp  = pid_cmp,
1464         };
1465         static struct sort_dimension runtime_sort_dimension = {
1466                 .name = "runtime",
1467                 .cmp  = runtime_cmp,
1468         };
1469         static struct sort_dimension switch_sort_dimension = {
1470                 .name = "switch",
1471                 .cmp  = switch_cmp,
1472         };
1473         struct sort_dimension *available_sorts[] = {
1474                 &pid_sort_dimension,
1475                 &avg_sort_dimension,
1476                 &max_sort_dimension,
1477                 &switch_sort_dimension,
1478                 &runtime_sort_dimension,
1479         };
1480
1481         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1482                 if (!strcmp(available_sorts[i]->name, tok)) {
1483                         list_add_tail(&available_sorts[i]->list, list);
1484
1485                         return 0;
1486                 }
1487         }
1488
1489         return -1;
1490 }
1491
1492 static void perf_sched__sort_lat(struct perf_sched *sched)
1493 {
1494         struct rb_node *node;
1495         struct rb_root_cached *root = &sched->atom_root;
1496 again:
1497         for (;;) {
1498                 struct work_atoms *data;
1499                 node = rb_first_cached(root);
1500                 if (!node)
1501                         break;
1502
1503                 rb_erase_cached(node, root);
1504                 data = rb_entry(node, struct work_atoms, node);
1505                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1506         }
1507         if (root == &sched->atom_root) {
1508                 root = &sched->merged_atom_root;
1509                 goto again;
1510         }
1511 }
1512
1513 static int process_sched_wakeup_event(struct perf_tool *tool,
1514                                       struct evsel *evsel,
1515                                       struct perf_sample *sample,
1516                                       struct machine *machine)
1517 {
1518         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1519
1520         if (sched->tp_handler->wakeup_event)
1521                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1522
1523         return 0;
1524 }
1525
1526 static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1527                                       struct evsel *evsel __maybe_unused,
1528                                       struct perf_sample *sample __maybe_unused,
1529                                       struct machine *machine __maybe_unused)
1530 {
1531         return 0;
1532 }
1533
1534 union map_priv {
1535         void    *ptr;
1536         bool     color;
1537 };
1538
1539 static bool thread__has_color(struct thread *thread)
1540 {
1541         union map_priv priv = {
1542                 .ptr = thread__priv(thread),
1543         };
1544
1545         return priv.color;
1546 }
1547
1548 static struct thread*
1549 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1550 {
1551         struct thread *thread = machine__findnew_thread(machine, pid, tid);
1552         union map_priv priv = {
1553                 .color = false,
1554         };
1555
1556         if (!sched->map.color_pids || !thread || thread__priv(thread))
1557                 return thread;
1558
1559         if (thread_map__has(sched->map.color_pids, tid))
1560                 priv.color = true;
1561
1562         thread__set_priv(thread, priv.ptr);
1563         return thread;
1564 }
1565
1566 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1567                             struct perf_sample *sample, struct machine *machine)
1568 {
1569         const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1570         struct thread *sched_in;
1571         struct thread_runtime *tr;
1572         int new_shortname;
1573         u64 timestamp0, timestamp = sample->time;
1574         s64 delta;
1575         int i;
1576         struct perf_cpu this_cpu = {
1577                 .cpu = sample->cpu,
1578         };
1579         int cpus_nr;
1580         bool new_cpu = false;
1581         const char *color = PERF_COLOR_NORMAL;
1582         char stimestamp[32];
1583
1584         BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1585
1586         if (this_cpu.cpu > sched->max_cpu.cpu)
1587                 sched->max_cpu = this_cpu;
1588
1589         if (sched->map.comp) {
1590                 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1591                 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1592                         sched->map.comp_cpus[cpus_nr++] = this_cpu;
1593                         new_cpu = true;
1594                 }
1595         } else
1596                 cpus_nr = sched->max_cpu.cpu;
1597
1598         timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1599         sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1600         if (timestamp0)
1601                 delta = timestamp - timestamp0;
1602         else
1603                 delta = 0;
1604
1605         if (delta < 0) {
1606                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1607                 return -1;
1608         }
1609
1610         sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1611         if (sched_in == NULL)
1612                 return -1;
1613
1614         tr = thread__get_runtime(sched_in);
1615         if (tr == NULL) {
1616                 thread__put(sched_in);
1617                 return -1;
1618         }
1619
1620         sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1621
1622         printf("  ");
1623
1624         new_shortname = 0;
1625         if (!tr->shortname[0]) {
1626                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1627                         /*
1628                          * Don't allocate a letter-number for swapper:0
1629                          * as a shortname. Instead, we use '.' for it.
1630                          */
1631                         tr->shortname[0] = '.';
1632                         tr->shortname[1] = ' ';
1633                 } else {
1634                         tr->shortname[0] = sched->next_shortname1;
1635                         tr->shortname[1] = sched->next_shortname2;
1636
1637                         if (sched->next_shortname1 < 'Z') {
1638                                 sched->next_shortname1++;
1639                         } else {
1640                                 sched->next_shortname1 = 'A';
1641                                 if (sched->next_shortname2 < '9')
1642                                         sched->next_shortname2++;
1643                                 else
1644                                         sched->next_shortname2 = '0';
1645                         }
1646                 }
1647                 new_shortname = 1;
1648         }
1649
1650         for (i = 0; i < cpus_nr; i++) {
1651                 struct perf_cpu cpu = {
1652                         .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1653                 };
1654                 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1655                 struct thread_runtime *curr_tr;
1656                 const char *pid_color = color;
1657                 const char *cpu_color = color;
1658
1659                 if (curr_thread && thread__has_color(curr_thread))
1660                         pid_color = COLOR_PIDS;
1661
1662                 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1663                         continue;
1664
1665                 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1666                         cpu_color = COLOR_CPUS;
1667
1668                 if (cpu.cpu != this_cpu.cpu)
1669                         color_fprintf(stdout, color, " ");
1670                 else
1671                         color_fprintf(stdout, cpu_color, "*");
1672
1673                 if (sched->curr_thread[cpu.cpu]) {
1674                         curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1675                         if (curr_tr == NULL) {
1676                                 thread__put(sched_in);
1677                                 return -1;
1678                         }
1679                         color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1680                 } else
1681                         color_fprintf(stdout, color, "   ");
1682         }
1683
1684         if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1685                 goto out;
1686
1687         timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1688         color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1689         if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1690                 const char *pid_color = color;
1691
1692                 if (thread__has_color(sched_in))
1693                         pid_color = COLOR_PIDS;
1694
1695                 color_fprintf(stdout, pid_color, "%s => %s:%d",
1696                         tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1697                 tr->comm_changed = false;
1698         }
1699
1700         if (sched->map.comp && new_cpu)
1701                 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1702
1703 out:
1704         color_fprintf(stdout, color, "\n");
1705
1706         thread__put(sched_in);
1707
1708         return 0;
1709 }
1710
1711 static int process_sched_switch_event(struct perf_tool *tool,
1712                                       struct evsel *evsel,
1713                                       struct perf_sample *sample,
1714                                       struct machine *machine)
1715 {
1716         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1717         int this_cpu = sample->cpu, err = 0;
1718         u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1719             next_pid = evsel__intval(evsel, sample, "next_pid");
1720
1721         if (sched->curr_pid[this_cpu] != (u32)-1) {
1722                 /*
1723                  * Are we trying to switch away a PID that is
1724                  * not current?
1725                  */
1726                 if (sched->curr_pid[this_cpu] != prev_pid)
1727                         sched->nr_context_switch_bugs++;
1728         }
1729
1730         if (sched->tp_handler->switch_event)
1731                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1732
1733         sched->curr_pid[this_cpu] = next_pid;
1734         return err;
1735 }
1736
1737 static int process_sched_runtime_event(struct perf_tool *tool,
1738                                        struct evsel *evsel,
1739                                        struct perf_sample *sample,
1740                                        struct machine *machine)
1741 {
1742         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1743
1744         if (sched->tp_handler->runtime_event)
1745                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1746
1747         return 0;
1748 }
1749
1750 static int perf_sched__process_fork_event(struct perf_tool *tool,
1751                                           union perf_event *event,
1752                                           struct perf_sample *sample,
1753                                           struct machine *machine)
1754 {
1755         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1756
1757         /* run the fork event through the perf machinery */
1758         perf_event__process_fork(tool, event, sample, machine);
1759
1760         /* and then run additional processing needed for this command */
1761         if (sched->tp_handler->fork_event)
1762                 return sched->tp_handler->fork_event(sched, event, machine);
1763
1764         return 0;
1765 }
1766
1767 static int process_sched_migrate_task_event(struct perf_tool *tool,
1768                                             struct evsel *evsel,
1769                                             struct perf_sample *sample,
1770                                             struct machine *machine)
1771 {
1772         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1773
1774         if (sched->tp_handler->migrate_task_event)
1775                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1776
1777         return 0;
1778 }
1779
1780 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1781                                   struct evsel *evsel,
1782                                   struct perf_sample *sample,
1783                                   struct machine *machine);
1784
1785 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1786                                                  union perf_event *event __maybe_unused,
1787                                                  struct perf_sample *sample,
1788                                                  struct evsel *evsel,
1789                                                  struct machine *machine)
1790 {
1791         int err = 0;
1792
1793         if (evsel->handler != NULL) {
1794                 tracepoint_handler f = evsel->handler;
1795                 err = f(tool, evsel, sample, machine);
1796         }
1797
1798         return err;
1799 }
1800
1801 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1802                                     union perf_event *event,
1803                                     struct perf_sample *sample,
1804                                     struct machine *machine)
1805 {
1806         struct thread *thread;
1807         struct thread_runtime *tr;
1808         int err;
1809
1810         err = perf_event__process_comm(tool, event, sample, machine);
1811         if (err)
1812                 return err;
1813
1814         thread = machine__find_thread(machine, sample->pid, sample->tid);
1815         if (!thread) {
1816                 pr_err("Internal error: can't find thread\n");
1817                 return -1;
1818         }
1819
1820         tr = thread__get_runtime(thread);
1821         if (tr == NULL) {
1822                 thread__put(thread);
1823                 return -1;
1824         }
1825
1826         tr->comm_changed = true;
1827         thread__put(thread);
1828
1829         return 0;
1830 }
1831
1832 static int perf_sched__read_events(struct perf_sched *sched)
1833 {
1834         struct evsel_str_handler handlers[] = {
1835                 { "sched:sched_switch",       process_sched_switch_event, },
1836                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1837                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1838                 { "sched:sched_waking",       process_sched_wakeup_event, },
1839                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1840                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1841         };
1842         struct perf_session *session;
1843         struct perf_data data = {
1844                 .path  = input_name,
1845                 .mode  = PERF_DATA_MODE_READ,
1846                 .force = sched->force,
1847         };
1848         int rc = -1;
1849
1850         session = perf_session__new(&data, &sched->tool);
1851         if (IS_ERR(session)) {
1852                 pr_debug("Error creating perf session");
1853                 return PTR_ERR(session);
1854         }
1855
1856         symbol__init(&session->header.env);
1857
1858         /* prefer sched_waking if it is captured */
1859         if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1860                 handlers[2].handler = process_sched_wakeup_ignore;
1861
1862         if (perf_session__set_tracepoints_handlers(session, handlers))
1863                 goto out_delete;
1864
1865         if (perf_session__has_traces(session, "record -R")) {
1866                 int err = perf_session__process_events(session);
1867                 if (err) {
1868                         pr_err("Failed to process events, error %d", err);
1869                         goto out_delete;
1870                 }
1871
1872                 sched->nr_events      = session->evlist->stats.nr_events[0];
1873                 sched->nr_lost_events = session->evlist->stats.total_lost;
1874                 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1875         }
1876
1877         rc = 0;
1878 out_delete:
1879         perf_session__delete(session);
1880         return rc;
1881 }
1882
1883 /*
1884  * scheduling times are printed as msec.usec
1885  */
1886 static inline void print_sched_time(unsigned long long nsecs, int width)
1887 {
1888         unsigned long msecs;
1889         unsigned long usecs;
1890
1891         msecs  = nsecs / NSEC_PER_MSEC;
1892         nsecs -= msecs * NSEC_PER_MSEC;
1893         usecs  = nsecs / NSEC_PER_USEC;
1894         printf("%*lu.%03lu ", width, msecs, usecs);
1895 }
1896
1897 /*
1898  * returns runtime data for event, allocating memory for it the
1899  * first time it is used.
1900  */
1901 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1902 {
1903         struct evsel_runtime *r = evsel->priv;
1904
1905         if (r == NULL) {
1906                 r = zalloc(sizeof(struct evsel_runtime));
1907                 evsel->priv = r;
1908         }
1909
1910         return r;
1911 }
1912
1913 /*
1914  * save last time event was seen per cpu
1915  */
1916 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1917 {
1918         struct evsel_runtime *r = evsel__get_runtime(evsel);
1919
1920         if (r == NULL)
1921                 return;
1922
1923         if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1924                 int i, n = __roundup_pow_of_two(cpu+1);
1925                 void *p = r->last_time;
1926
1927                 p = realloc(r->last_time, n * sizeof(u64));
1928                 if (!p)
1929                         return;
1930
1931                 r->last_time = p;
1932                 for (i = r->ncpu; i < n; ++i)
1933                         r->last_time[i] = (u64) 0;
1934
1935                 r->ncpu = n;
1936         }
1937
1938         r->last_time[cpu] = timestamp;
1939 }
1940
1941 /* returns last time this event was seen on the given cpu */
1942 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1943 {
1944         struct evsel_runtime *r = evsel__get_runtime(evsel);
1945
1946         if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1947                 return 0;
1948
1949         return r->last_time[cpu];
1950 }
1951
1952 static int comm_width = 30;
1953
1954 static char *timehist_get_commstr(struct thread *thread)
1955 {
1956         static char str[32];
1957         const char *comm = thread__comm_str(thread);
1958         pid_t tid = thread__tid(thread);
1959         pid_t pid = thread__pid(thread);
1960         int n;
1961
1962         if (pid == 0)
1963                 n = scnprintf(str, sizeof(str), "%s", comm);
1964
1965         else if (tid != pid)
1966                 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1967
1968         else
1969                 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1970
1971         if (n > comm_width)
1972                 comm_width = n;
1973
1974         return str;
1975 }
1976
1977 static void timehist_header(struct perf_sched *sched)
1978 {
1979         u32 ncpus = sched->max_cpu.cpu + 1;
1980         u32 i, j;
1981
1982         printf("%15s %6s ", "time", "cpu");
1983
1984         if (sched->show_cpu_visual) {
1985                 printf(" ");
1986                 for (i = 0, j = 0; i < ncpus; ++i) {
1987                         printf("%x", j++);
1988                         if (j > 15)
1989                                 j = 0;
1990                 }
1991                 printf(" ");
1992         }
1993
1994         printf(" %-*s  %9s  %9s  %9s", comm_width,
1995                 "task name", "wait time", "sch delay", "run time");
1996
1997         if (sched->show_state)
1998                 printf("  %s", "state");
1999
2000         printf("\n");
2001
2002         /*
2003          * units row
2004          */
2005         printf("%15s %-6s ", "", "");
2006
2007         if (sched->show_cpu_visual)
2008                 printf(" %*s ", ncpus, "");
2009
2010         printf(" %-*s  %9s  %9s  %9s", comm_width,
2011                "[tid/pid]", "(msec)", "(msec)", "(msec)");
2012
2013         if (sched->show_state)
2014                 printf("  %5s", "");
2015
2016         printf("\n");
2017
2018         /*
2019          * separator
2020          */
2021         printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2022
2023         if (sched->show_cpu_visual)
2024                 printf(" %.*s ", ncpus, graph_dotted_line);
2025
2026         printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2027                 graph_dotted_line, graph_dotted_line, graph_dotted_line,
2028                 graph_dotted_line);
2029
2030         if (sched->show_state)
2031                 printf("  %.5s", graph_dotted_line);
2032
2033         printf("\n");
2034 }
2035
2036 static char task_state_char(struct thread *thread, int state)
2037 {
2038         static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2039         unsigned bit = state ? ffs(state) : 0;
2040
2041         /* 'I' for idle */
2042         if (thread__tid(thread) == 0)
2043                 return 'I';
2044
2045         return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2046 }
2047
2048 static void timehist_print_sample(struct perf_sched *sched,
2049                                   struct evsel *evsel,
2050                                   struct perf_sample *sample,
2051                                   struct addr_location *al,
2052                                   struct thread *thread,
2053                                   u64 t, int state)
2054 {
2055         struct thread_runtime *tr = thread__priv(thread);
2056         const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2057         const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2058         u32 max_cpus = sched->max_cpu.cpu + 1;
2059         char tstr[64];
2060         char nstr[30];
2061         u64 wait_time;
2062
2063         if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2064                 return;
2065
2066         timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2067         printf("%15s [%04d] ", tstr, sample->cpu);
2068
2069         if (sched->show_cpu_visual) {
2070                 u32 i;
2071                 char c;
2072
2073                 printf(" ");
2074                 for (i = 0; i < max_cpus; ++i) {
2075                         /* flag idle times with 'i'; others are sched events */
2076                         if (i == sample->cpu)
2077                                 c = (thread__tid(thread) == 0) ? 'i' : 's';
2078                         else
2079                                 c = ' ';
2080                         printf("%c", c);
2081                 }
2082                 printf(" ");
2083         }
2084
2085         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2086
2087         wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2088         print_sched_time(wait_time, 6);
2089
2090         print_sched_time(tr->dt_delay, 6);
2091         print_sched_time(tr->dt_run, 6);
2092
2093         if (sched->show_state)
2094                 printf(" %5c ", task_state_char(thread, state));
2095
2096         if (sched->show_next) {
2097                 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2098                 printf(" %-*s", comm_width, nstr);
2099         }
2100
2101         if (sched->show_wakeups && !sched->show_next)
2102                 printf("  %-*s", comm_width, "");
2103
2104         if (thread__tid(thread) == 0)
2105                 goto out;
2106
2107         if (sched->show_callchain)
2108                 printf("  ");
2109
2110         sample__fprintf_sym(sample, al, 0,
2111                             EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2112                             EVSEL__PRINT_CALLCHAIN_ARROW |
2113                             EVSEL__PRINT_SKIP_IGNORED,
2114                             get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2115
2116 out:
2117         printf("\n");
2118 }
2119
2120 /*
2121  * Explanation of delta-time stats:
2122  *
2123  *            t = time of current schedule out event
2124  *        tprev = time of previous sched out event
2125  *                also time of schedule-in event for current task
2126  *    last_time = time of last sched change event for current task
2127  *                (i.e, time process was last scheduled out)
2128  * ready_to_run = time of wakeup for current task
2129  *
2130  * -----|------------|------------|------------|------
2131  *    last         ready        tprev          t
2132  *    time         to run
2133  *
2134  *      |-------- dt_wait --------|
2135  *                   |- dt_delay -|-- dt_run --|
2136  *
2137  *   dt_run = run time of current task
2138  *  dt_wait = time between last schedule out event for task and tprev
2139  *            represents time spent off the cpu
2140  * dt_delay = time between wakeup and schedule-in of task
2141  */
2142
2143 static void timehist_update_runtime_stats(struct thread_runtime *r,
2144                                          u64 t, u64 tprev)
2145 {
2146         r->dt_delay   = 0;
2147         r->dt_sleep   = 0;
2148         r->dt_iowait  = 0;
2149         r->dt_preempt = 0;
2150         r->dt_run     = 0;
2151
2152         if (tprev) {
2153                 r->dt_run = t - tprev;
2154                 if (r->ready_to_run) {
2155                         if (r->ready_to_run > tprev)
2156                                 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2157                         else
2158                                 r->dt_delay = tprev - r->ready_to_run;
2159                 }
2160
2161                 if (r->last_time > tprev)
2162                         pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2163                 else if (r->last_time) {
2164                         u64 dt_wait = tprev - r->last_time;
2165
2166                         if (r->last_state == TASK_RUNNING)
2167                                 r->dt_preempt = dt_wait;
2168                         else if (r->last_state == TASK_UNINTERRUPTIBLE)
2169                                 r->dt_iowait = dt_wait;
2170                         else
2171                                 r->dt_sleep = dt_wait;
2172                 }
2173         }
2174
2175         update_stats(&r->run_stats, r->dt_run);
2176
2177         r->total_run_time     += r->dt_run;
2178         r->total_delay_time   += r->dt_delay;
2179         r->total_sleep_time   += r->dt_sleep;
2180         r->total_iowait_time  += r->dt_iowait;
2181         r->total_preempt_time += r->dt_preempt;
2182 }
2183
2184 static bool is_idle_sample(struct perf_sample *sample,
2185                            struct evsel *evsel)
2186 {
2187         /* pid 0 == swapper == idle task */
2188         if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2189                 return evsel__intval(evsel, sample, "prev_pid") == 0;
2190
2191         return sample->pid == 0;
2192 }
2193
2194 static void save_task_callchain(struct perf_sched *sched,
2195                                 struct perf_sample *sample,
2196                                 struct evsel *evsel,
2197                                 struct machine *machine)
2198 {
2199         struct callchain_cursor *cursor;
2200         struct thread *thread;
2201
2202         /* want main thread for process - has maps */
2203         thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2204         if (thread == NULL) {
2205                 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2206                 return;
2207         }
2208
2209         if (!sched->show_callchain || sample->callchain == NULL)
2210                 return;
2211
2212         cursor = get_tls_callchain_cursor();
2213
2214         if (thread__resolve_callchain(thread, cursor, evsel, sample,
2215                                       NULL, NULL, sched->max_stack + 2) != 0) {
2216                 if (verbose > 0)
2217                         pr_err("Failed to resolve callchain. Skipping\n");
2218
2219                 return;
2220         }
2221
2222         callchain_cursor_commit(cursor);
2223
2224         while (true) {
2225                 struct callchain_cursor_node *node;
2226                 struct symbol *sym;
2227
2228                 node = callchain_cursor_current(cursor);
2229                 if (node == NULL)
2230                         break;
2231
2232                 sym = node->ms.sym;
2233                 if (sym) {
2234                         if (!strcmp(sym->name, "schedule") ||
2235                             !strcmp(sym->name, "__schedule") ||
2236                             !strcmp(sym->name, "preempt_schedule"))
2237                                 sym->ignore = 1;
2238                 }
2239
2240                 callchain_cursor_advance(cursor);
2241         }
2242 }
2243
2244 static int init_idle_thread(struct thread *thread)
2245 {
2246         struct idle_thread_runtime *itr;
2247
2248         thread__set_comm(thread, idle_comm, 0);
2249
2250         itr = zalloc(sizeof(*itr));
2251         if (itr == NULL)
2252                 return -ENOMEM;
2253
2254         init_stats(&itr->tr.run_stats);
2255         callchain_init(&itr->callchain);
2256         callchain_cursor_reset(&itr->cursor);
2257         thread__set_priv(thread, itr);
2258
2259         return 0;
2260 }
2261
2262 /*
2263  * Track idle stats per cpu by maintaining a local thread
2264  * struct for the idle task on each cpu.
2265  */
2266 static int init_idle_threads(int ncpu)
2267 {
2268         int i, ret;
2269
2270         idle_threads = zalloc(ncpu * sizeof(struct thread *));
2271         if (!idle_threads)
2272                 return -ENOMEM;
2273
2274         idle_max_cpu = ncpu;
2275
2276         /* allocate the actual thread struct if needed */
2277         for (i = 0; i < ncpu; ++i) {
2278                 idle_threads[i] = thread__new(0, 0);
2279                 if (idle_threads[i] == NULL)
2280                         return -ENOMEM;
2281
2282                 ret = init_idle_thread(idle_threads[i]);
2283                 if (ret < 0)
2284                         return ret;
2285         }
2286
2287         return 0;
2288 }
2289
2290 static void free_idle_threads(void)
2291 {
2292         int i;
2293
2294         if (idle_threads == NULL)
2295                 return;
2296
2297         for (i = 0; i < idle_max_cpu; ++i) {
2298                 if ((idle_threads[i]))
2299                         thread__delete(idle_threads[i]);
2300         }
2301
2302         free(idle_threads);
2303 }
2304
2305 static struct thread *get_idle_thread(int cpu)
2306 {
2307         /*
2308          * expand/allocate array of pointers to local thread
2309          * structs if needed
2310          */
2311         if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2312                 int i, j = __roundup_pow_of_two(cpu+1);
2313                 void *p;
2314
2315                 p = realloc(idle_threads, j * sizeof(struct thread *));
2316                 if (!p)
2317                         return NULL;
2318
2319                 idle_threads = (struct thread **) p;
2320                 for (i = idle_max_cpu; i < j; ++i)
2321                         idle_threads[i] = NULL;
2322
2323                 idle_max_cpu = j;
2324         }
2325
2326         /* allocate a new thread struct if needed */
2327         if (idle_threads[cpu] == NULL) {
2328                 idle_threads[cpu] = thread__new(0, 0);
2329
2330                 if (idle_threads[cpu]) {
2331                         if (init_idle_thread(idle_threads[cpu]) < 0)
2332                                 return NULL;
2333                 }
2334         }
2335
2336         return idle_threads[cpu];
2337 }
2338
2339 static void save_idle_callchain(struct perf_sched *sched,
2340                                 struct idle_thread_runtime *itr,
2341                                 struct perf_sample *sample)
2342 {
2343         struct callchain_cursor *cursor;
2344
2345         if (!sched->show_callchain || sample->callchain == NULL)
2346                 return;
2347
2348         cursor = get_tls_callchain_cursor();
2349         if (cursor == NULL)
2350                 return;
2351
2352         callchain_cursor__copy(&itr->cursor, cursor);
2353 }
2354
2355 static struct thread *timehist_get_thread(struct perf_sched *sched,
2356                                           struct perf_sample *sample,
2357                                           struct machine *machine,
2358                                           struct evsel *evsel)
2359 {
2360         struct thread *thread;
2361
2362         if (is_idle_sample(sample, evsel)) {
2363                 thread = get_idle_thread(sample->cpu);
2364                 if (thread == NULL)
2365                         pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2366
2367         } else {
2368                 /* there were samples with tid 0 but non-zero pid */
2369                 thread = machine__findnew_thread(machine, sample->pid,
2370                                                  sample->tid ?: sample->pid);
2371                 if (thread == NULL) {
2372                         pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2373                                  sample->tid);
2374                 }
2375
2376                 save_task_callchain(sched, sample, evsel, machine);
2377                 if (sched->idle_hist) {
2378                         struct thread *idle;
2379                         struct idle_thread_runtime *itr;
2380
2381                         idle = get_idle_thread(sample->cpu);
2382                         if (idle == NULL) {
2383                                 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2384                                 return NULL;
2385                         }
2386
2387                         itr = thread__priv(idle);
2388                         if (itr == NULL)
2389                                 return NULL;
2390
2391                         itr->last_thread = thread;
2392
2393                         /* copy task callchain when entering to idle */
2394                         if (evsel__intval(evsel, sample, "next_pid") == 0)
2395                                 save_idle_callchain(sched, itr, sample);
2396                 }
2397         }
2398
2399         return thread;
2400 }
2401
2402 static bool timehist_skip_sample(struct perf_sched *sched,
2403                                  struct thread *thread,
2404                                  struct evsel *evsel,
2405                                  struct perf_sample *sample)
2406 {
2407         bool rc = false;
2408
2409         if (thread__is_filtered(thread)) {
2410                 rc = true;
2411                 sched->skipped_samples++;
2412         }
2413
2414         if (sched->idle_hist) {
2415                 if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2416                         rc = true;
2417                 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2418                          evsel__intval(evsel, sample, "next_pid") != 0)
2419                         rc = true;
2420         }
2421
2422         return rc;
2423 }
2424
2425 static void timehist_print_wakeup_event(struct perf_sched *sched,
2426                                         struct evsel *evsel,
2427                                         struct perf_sample *sample,
2428                                         struct machine *machine,
2429                                         struct thread *awakened)
2430 {
2431         struct thread *thread;
2432         char tstr[64];
2433
2434         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2435         if (thread == NULL)
2436                 return;
2437
2438         /* show wakeup unless both awakee and awaker are filtered */
2439         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2440             timehist_skip_sample(sched, awakened, evsel, sample)) {
2441                 return;
2442         }
2443
2444         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2445         printf("%15s [%04d] ", tstr, sample->cpu);
2446         if (sched->show_cpu_visual)
2447                 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2448
2449         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2450
2451         /* dt spacer */
2452         printf("  %9s  %9s  %9s ", "", "", "");
2453
2454         printf("awakened: %s", timehist_get_commstr(awakened));
2455
2456         printf("\n");
2457 }
2458
2459 static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2460                                         union perf_event *event __maybe_unused,
2461                                         struct evsel *evsel __maybe_unused,
2462                                         struct perf_sample *sample __maybe_unused,
2463                                         struct machine *machine __maybe_unused)
2464 {
2465         return 0;
2466 }
2467
2468 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2469                                        union perf_event *event __maybe_unused,
2470                                        struct evsel *evsel,
2471                                        struct perf_sample *sample,
2472                                        struct machine *machine)
2473 {
2474         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2475         struct thread *thread;
2476         struct thread_runtime *tr = NULL;
2477         /* want pid of awakened task not pid in sample */
2478         const u32 pid = evsel__intval(evsel, sample, "pid");
2479
2480         thread = machine__findnew_thread(machine, 0, pid);
2481         if (thread == NULL)
2482                 return -1;
2483
2484         tr = thread__get_runtime(thread);
2485         if (tr == NULL)
2486                 return -1;
2487
2488         if (tr->ready_to_run == 0)
2489                 tr->ready_to_run = sample->time;
2490
2491         /* show wakeups if requested */
2492         if (sched->show_wakeups &&
2493             !perf_time__skip_sample(&sched->ptime, sample->time))
2494                 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2495
2496         return 0;
2497 }
2498
2499 static void timehist_print_migration_event(struct perf_sched *sched,
2500                                         struct evsel *evsel,
2501                                         struct perf_sample *sample,
2502                                         struct machine *machine,
2503                                         struct thread *migrated)
2504 {
2505         struct thread *thread;
2506         char tstr[64];
2507         u32 max_cpus;
2508         u32 ocpu, dcpu;
2509
2510         if (sched->summary_only)
2511                 return;
2512
2513         max_cpus = sched->max_cpu.cpu + 1;
2514         ocpu = evsel__intval(evsel, sample, "orig_cpu");
2515         dcpu = evsel__intval(evsel, sample, "dest_cpu");
2516
2517         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2518         if (thread == NULL)
2519                 return;
2520
2521         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2522             timehist_skip_sample(sched, migrated, evsel, sample)) {
2523                 return;
2524         }
2525
2526         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2527         printf("%15s [%04d] ", tstr, sample->cpu);
2528
2529         if (sched->show_cpu_visual) {
2530                 u32 i;
2531                 char c;
2532
2533                 printf("  ");
2534                 for (i = 0; i < max_cpus; ++i) {
2535                         c = (i == sample->cpu) ? 'm' : ' ';
2536                         printf("%c", c);
2537                 }
2538                 printf("  ");
2539         }
2540
2541         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2542
2543         /* dt spacer */
2544         printf("  %9s  %9s  %9s ", "", "", "");
2545
2546         printf("migrated: %s", timehist_get_commstr(migrated));
2547         printf(" cpu %d => %d", ocpu, dcpu);
2548
2549         printf("\n");
2550 }
2551
2552 static int timehist_migrate_task_event(struct perf_tool *tool,
2553                                        union perf_event *event __maybe_unused,
2554                                        struct evsel *evsel,
2555                                        struct perf_sample *sample,
2556                                        struct machine *machine)
2557 {
2558         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2559         struct thread *thread;
2560         struct thread_runtime *tr = NULL;
2561         /* want pid of migrated task not pid in sample */
2562         const u32 pid = evsel__intval(evsel, sample, "pid");
2563
2564         thread = machine__findnew_thread(machine, 0, pid);
2565         if (thread == NULL)
2566                 return -1;
2567
2568         tr = thread__get_runtime(thread);
2569         if (tr == NULL)
2570                 return -1;
2571
2572         tr->migrations++;
2573
2574         /* show migrations if requested */
2575         timehist_print_migration_event(sched, evsel, sample, machine, thread);
2576
2577         return 0;
2578 }
2579
2580 static int timehist_sched_change_event(struct perf_tool *tool,
2581                                        union perf_event *event,
2582                                        struct evsel *evsel,
2583                                        struct perf_sample *sample,
2584                                        struct machine *machine)
2585 {
2586         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2587         struct perf_time_interval *ptime = &sched->ptime;
2588         struct addr_location al;
2589         struct thread *thread;
2590         struct thread_runtime *tr = NULL;
2591         u64 tprev, t = sample->time;
2592         int rc = 0;
2593         int state = evsel__intval(evsel, sample, "prev_state");
2594
2595         addr_location__init(&al);
2596         if (machine__resolve(machine, &al, sample) < 0) {
2597                 pr_err("problem processing %d event. skipping it\n",
2598                        event->header.type);
2599                 rc = -1;
2600                 goto out;
2601         }
2602
2603         thread = timehist_get_thread(sched, sample, machine, evsel);
2604         if (thread == NULL) {
2605                 rc = -1;
2606                 goto out;
2607         }
2608
2609         if (timehist_skip_sample(sched, thread, evsel, sample))
2610                 goto out;
2611
2612         tr = thread__get_runtime(thread);
2613         if (tr == NULL) {
2614                 rc = -1;
2615                 goto out;
2616         }
2617
2618         tprev = evsel__get_time(evsel, sample->cpu);
2619
2620         /*
2621          * If start time given:
2622          * - sample time is under window user cares about - skip sample
2623          * - tprev is under window user cares about  - reset to start of window
2624          */
2625         if (ptime->start && ptime->start > t)
2626                 goto out;
2627
2628         if (tprev && ptime->start > tprev)
2629                 tprev = ptime->start;
2630
2631         /*
2632          * If end time given:
2633          * - previous sched event is out of window - we are done
2634          * - sample time is beyond window user cares about - reset it
2635          *   to close out stats for time window interest
2636          */
2637         if (ptime->end) {
2638                 if (tprev > ptime->end)
2639                         goto out;
2640
2641                 if (t > ptime->end)
2642                         t = ptime->end;
2643         }
2644
2645         if (!sched->idle_hist || thread__tid(thread) == 0) {
2646                 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2647                         timehist_update_runtime_stats(tr, t, tprev);
2648
2649                 if (sched->idle_hist) {
2650                         struct idle_thread_runtime *itr = (void *)tr;
2651                         struct thread_runtime *last_tr;
2652
2653                         BUG_ON(thread__tid(thread) != 0);
2654
2655                         if (itr->last_thread == NULL)
2656                                 goto out;
2657
2658                         /* add current idle time as last thread's runtime */
2659                         last_tr = thread__get_runtime(itr->last_thread);
2660                         if (last_tr == NULL)
2661                                 goto out;
2662
2663                         timehist_update_runtime_stats(last_tr, t, tprev);
2664                         /*
2665                          * remove delta time of last thread as it's not updated
2666                          * and otherwise it will show an invalid value next
2667                          * time.  we only care total run time and run stat.
2668                          */
2669                         last_tr->dt_run = 0;
2670                         last_tr->dt_delay = 0;
2671                         last_tr->dt_sleep = 0;
2672                         last_tr->dt_iowait = 0;
2673                         last_tr->dt_preempt = 0;
2674
2675                         if (itr->cursor.nr)
2676                                 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2677
2678                         itr->last_thread = NULL;
2679                 }
2680         }
2681
2682         if (!sched->summary_only)
2683                 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2684
2685 out:
2686         if (sched->hist_time.start == 0 && t >= ptime->start)
2687                 sched->hist_time.start = t;
2688         if (ptime->end == 0 || t <= ptime->end)
2689                 sched->hist_time.end = t;
2690
2691         if (tr) {
2692                 /* time of this sched_switch event becomes last time task seen */
2693                 tr->last_time = sample->time;
2694
2695                 /* last state is used to determine where to account wait time */
2696                 tr->last_state = state;
2697
2698                 /* sched out event for task so reset ready to run time */
2699                 tr->ready_to_run = 0;
2700         }
2701
2702         evsel__save_time(evsel, sample->time, sample->cpu);
2703
2704         addr_location__exit(&al);
2705         return rc;
2706 }
2707
2708 static int timehist_sched_switch_event(struct perf_tool *tool,
2709                              union perf_event *event,
2710                              struct evsel *evsel,
2711                              struct perf_sample *sample,
2712                              struct machine *machine __maybe_unused)
2713 {
2714         return timehist_sched_change_event(tool, event, evsel, sample, machine);
2715 }
2716
2717 static int process_lost(struct perf_tool *tool __maybe_unused,
2718                         union perf_event *event,
2719                         struct perf_sample *sample,
2720                         struct machine *machine __maybe_unused)
2721 {
2722         char tstr[64];
2723
2724         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2725         printf("%15s ", tstr);
2726         printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2727
2728         return 0;
2729 }
2730
2731
2732 static void print_thread_runtime(struct thread *t,
2733                                  struct thread_runtime *r)
2734 {
2735         double mean = avg_stats(&r->run_stats);
2736         float stddev;
2737
2738         printf("%*s   %5d  %9" PRIu64 " ",
2739                comm_width, timehist_get_commstr(t), thread__ppid(t),
2740                (u64) r->run_stats.n);
2741
2742         print_sched_time(r->total_run_time, 8);
2743         stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2744         print_sched_time(r->run_stats.min, 6);
2745         printf(" ");
2746         print_sched_time((u64) mean, 6);
2747         printf(" ");
2748         print_sched_time(r->run_stats.max, 6);
2749         printf("  ");
2750         printf("%5.2f", stddev);
2751         printf("   %5" PRIu64, r->migrations);
2752         printf("\n");
2753 }
2754
2755 static void print_thread_waittime(struct thread *t,
2756                                   struct thread_runtime *r)
2757 {
2758         printf("%*s   %5d  %9" PRIu64 " ",
2759                comm_width, timehist_get_commstr(t), thread__ppid(t),
2760                (u64) r->run_stats.n);
2761
2762         print_sched_time(r->total_run_time, 8);
2763         print_sched_time(r->total_sleep_time, 6);
2764         printf(" ");
2765         print_sched_time(r->total_iowait_time, 6);
2766         printf(" ");
2767         print_sched_time(r->total_preempt_time, 6);
2768         printf(" ");
2769         print_sched_time(r->total_delay_time, 6);
2770         printf("\n");
2771 }
2772
2773 struct total_run_stats {
2774         struct perf_sched *sched;
2775         u64  sched_count;
2776         u64  task_count;
2777         u64  total_run_time;
2778 };
2779
2780 static int show_thread_runtime(struct thread *t, void *priv)
2781 {
2782         struct total_run_stats *stats = priv;
2783         struct thread_runtime *r;
2784
2785         if (thread__is_filtered(t))
2786                 return 0;
2787
2788         r = thread__priv(t);
2789         if (r && r->run_stats.n) {
2790                 stats->task_count++;
2791                 stats->sched_count += r->run_stats.n;
2792                 stats->total_run_time += r->total_run_time;
2793
2794                 if (stats->sched->show_state)
2795                         print_thread_waittime(t, r);
2796                 else
2797                         print_thread_runtime(t, r);
2798         }
2799
2800         return 0;
2801 }
2802
2803 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2804 {
2805         const char *sep = " <- ";
2806         struct callchain_list *chain;
2807         size_t ret = 0;
2808         char bf[1024];
2809         bool first;
2810
2811         if (node == NULL)
2812                 return 0;
2813
2814         ret = callchain__fprintf_folded(fp, node->parent);
2815         first = (ret == 0);
2816
2817         list_for_each_entry(chain, &node->val, list) {
2818                 if (chain->ip >= PERF_CONTEXT_MAX)
2819                         continue;
2820                 if (chain->ms.sym && chain->ms.sym->ignore)
2821                         continue;
2822                 ret += fprintf(fp, "%s%s", first ? "" : sep,
2823                                callchain_list__sym_name(chain, bf, sizeof(bf),
2824                                                         false));
2825                 first = false;
2826         }
2827
2828         return ret;
2829 }
2830
2831 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2832 {
2833         size_t ret = 0;
2834         FILE *fp = stdout;
2835         struct callchain_node *chain;
2836         struct rb_node *rb_node = rb_first_cached(root);
2837
2838         printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2839         printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2840                graph_dotted_line);
2841
2842         while (rb_node) {
2843                 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2844                 rb_node = rb_next(rb_node);
2845
2846                 ret += fprintf(fp, "  ");
2847                 print_sched_time(chain->hit, 12);
2848                 ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2849                 ret += fprintf(fp, " %8d  ", chain->count);
2850                 ret += callchain__fprintf_folded(fp, chain);
2851                 ret += fprintf(fp, "\n");
2852         }
2853
2854         return ret;
2855 }
2856
2857 static void timehist_print_summary(struct perf_sched *sched,
2858                                    struct perf_session *session)
2859 {
2860         struct machine *m = &session->machines.host;
2861         struct total_run_stats totals;
2862         u64 task_count;
2863         struct thread *t;
2864         struct thread_runtime *r;
2865         int i;
2866         u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2867
2868         memset(&totals, 0, sizeof(totals));
2869         totals.sched = sched;
2870
2871         if (sched->idle_hist) {
2872                 printf("\nIdle-time summary\n");
2873                 printf("%*s  parent  sched-out  ", comm_width, "comm");
2874                 printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2875         } else if (sched->show_state) {
2876                 printf("\nWait-time summary\n");
2877                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2878                 printf("   run-time      sleep      iowait     preempt       delay\n");
2879         } else {
2880                 printf("\nRuntime summary\n");
2881                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2882                 printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2883         }
2884         printf("%*s            (count)  ", comm_width, "");
2885         printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2886                sched->show_state ? "(msec)" : "%");
2887         printf("%.117s\n", graph_dotted_line);
2888
2889         machine__for_each_thread(m, show_thread_runtime, &totals);
2890         task_count = totals.task_count;
2891         if (!task_count)
2892                 printf("<no still running tasks>\n");
2893
2894         /* CPU idle stats not tracked when samples were skipped */
2895         if (sched->skipped_samples && !sched->idle_hist)
2896                 return;
2897
2898         printf("\nIdle stats:\n");
2899         for (i = 0; i < idle_max_cpu; ++i) {
2900                 if (cpu_list && !test_bit(i, cpu_bitmap))
2901                         continue;
2902
2903                 t = idle_threads[i];
2904                 if (!t)
2905                         continue;
2906
2907                 r = thread__priv(t);
2908                 if (r && r->run_stats.n) {
2909                         totals.sched_count += r->run_stats.n;
2910                         printf("    CPU %2d idle for ", i);
2911                         print_sched_time(r->total_run_time, 6);
2912                         printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2913                 } else
2914                         printf("    CPU %2d idle entire time window\n", i);
2915         }
2916
2917         if (sched->idle_hist && sched->show_callchain) {
2918                 callchain_param.mode  = CHAIN_FOLDED;
2919                 callchain_param.value = CCVAL_PERIOD;
2920
2921                 callchain_register_param(&callchain_param);
2922
2923                 printf("\nIdle stats by callchain:\n");
2924                 for (i = 0; i < idle_max_cpu; ++i) {
2925                         struct idle_thread_runtime *itr;
2926
2927                         t = idle_threads[i];
2928                         if (!t)
2929                                 continue;
2930
2931                         itr = thread__priv(t);
2932                         if (itr == NULL)
2933                                 continue;
2934
2935                         callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2936                                              0, &callchain_param);
2937
2938                         printf("  CPU %2d:", i);
2939                         print_sched_time(itr->tr.total_run_time, 6);
2940                         printf(" msec\n");
2941                         timehist_print_idlehist_callchain(&itr->sorted_root);
2942                         printf("\n");
2943                 }
2944         }
2945
2946         printf("\n"
2947                "    Total number of unique tasks: %" PRIu64 "\n"
2948                "Total number of context switches: %" PRIu64 "\n",
2949                totals.task_count, totals.sched_count);
2950
2951         printf("           Total run time (msec): ");
2952         print_sched_time(totals.total_run_time, 2);
2953         printf("\n");
2954
2955         printf("    Total scheduling time (msec): ");
2956         print_sched_time(hist_time, 2);
2957         printf(" (x %d)\n", sched->max_cpu.cpu);
2958 }
2959
2960 typedef int (*sched_handler)(struct perf_tool *tool,
2961                           union perf_event *event,
2962                           struct evsel *evsel,
2963                           struct perf_sample *sample,
2964                           struct machine *machine);
2965
2966 static int perf_timehist__process_sample(struct perf_tool *tool,
2967                                          union perf_event *event,
2968                                          struct perf_sample *sample,
2969                                          struct evsel *evsel,
2970                                          struct machine *machine)
2971 {
2972         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2973         int err = 0;
2974         struct perf_cpu this_cpu = {
2975                 .cpu = sample->cpu,
2976         };
2977
2978         if (this_cpu.cpu > sched->max_cpu.cpu)
2979                 sched->max_cpu = this_cpu;
2980
2981         if (evsel->handler != NULL) {
2982                 sched_handler f = evsel->handler;
2983
2984                 err = f(tool, event, evsel, sample, machine);
2985         }
2986
2987         return err;
2988 }
2989
2990 static int timehist_check_attr(struct perf_sched *sched,
2991                                struct evlist *evlist)
2992 {
2993         struct evsel *evsel;
2994         struct evsel_runtime *er;
2995
2996         list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2997                 er = evsel__get_runtime(evsel);
2998                 if (er == NULL) {
2999                         pr_err("Failed to allocate memory for evsel runtime data\n");
3000                         return -1;
3001                 }
3002
3003                 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
3004                         pr_info("Samples do not have callchains.\n");
3005                         sched->show_callchain = 0;
3006                         symbol_conf.use_callchain = 0;
3007                 }
3008         }
3009
3010         return 0;
3011 }
3012
3013 static int perf_sched__timehist(struct perf_sched *sched)
3014 {
3015         struct evsel_str_handler handlers[] = {
3016                 { "sched:sched_switch",       timehist_sched_switch_event, },
3017                 { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
3018                 { "sched:sched_waking",       timehist_sched_wakeup_event, },
3019                 { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3020         };
3021         const struct evsel_str_handler migrate_handlers[] = {
3022                 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3023         };
3024         struct perf_data data = {
3025                 .path  = input_name,
3026                 .mode  = PERF_DATA_MODE_READ,
3027                 .force = sched->force,
3028         };
3029
3030         struct perf_session *session;
3031         struct evlist *evlist;
3032         int err = -1;
3033
3034         /*
3035          * event handlers for timehist option
3036          */
3037         sched->tool.sample       = perf_timehist__process_sample;
3038         sched->tool.mmap         = perf_event__process_mmap;
3039         sched->tool.comm         = perf_event__process_comm;
3040         sched->tool.exit         = perf_event__process_exit;
3041         sched->tool.fork         = perf_event__process_fork;
3042         sched->tool.lost         = process_lost;
3043         sched->tool.attr         = perf_event__process_attr;
3044         sched->tool.tracing_data = perf_event__process_tracing_data;
3045         sched->tool.build_id     = perf_event__process_build_id;
3046
3047         sched->tool.ordered_events = true;
3048         sched->tool.ordering_requires_timestamps = true;
3049
3050         symbol_conf.use_callchain = sched->show_callchain;
3051
3052         session = perf_session__new(&data, &sched->tool);
3053         if (IS_ERR(session))
3054                 return PTR_ERR(session);
3055
3056         if (cpu_list) {
3057                 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3058                 if (err < 0)
3059                         goto out;
3060         }
3061
3062         evlist = session->evlist;
3063
3064         symbol__init(&session->header.env);
3065
3066         if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3067                 pr_err("Invalid time string\n");
3068                 return -EINVAL;
3069         }
3070
3071         if (timehist_check_attr(sched, evlist) != 0)
3072                 goto out;
3073
3074         setup_pager();
3075
3076         /* prefer sched_waking if it is captured */
3077         if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3078                 handlers[1].handler = timehist_sched_wakeup_ignore;
3079
3080         /* setup per-evsel handlers */
3081         if (perf_session__set_tracepoints_handlers(session, handlers))
3082                 goto out;
3083
3084         /* sched_switch event at a minimum needs to exist */
3085         if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3086                 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3087                 goto out;
3088         }
3089
3090         if (sched->show_migrations &&
3091             perf_session__set_tracepoints_handlers(session, migrate_handlers))
3092                 goto out;
3093
3094         /* pre-allocate struct for per-CPU idle stats */
3095         sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3096         if (sched->max_cpu.cpu == 0)
3097                 sched->max_cpu.cpu = 4;
3098         if (init_idle_threads(sched->max_cpu.cpu))
3099                 goto out;
3100
3101         /* summary_only implies summary option, but don't overwrite summary if set */
3102         if (sched->summary_only)
3103                 sched->summary = sched->summary_only;
3104
3105         if (!sched->summary_only)
3106                 timehist_header(sched);
3107
3108         err = perf_session__process_events(session);
3109         if (err) {
3110                 pr_err("Failed to process events, error %d", err);
3111                 goto out;
3112         }
3113
3114         sched->nr_events      = evlist->stats.nr_events[0];
3115         sched->nr_lost_events = evlist->stats.total_lost;
3116         sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3117
3118         if (sched->summary)
3119                 timehist_print_summary(sched, session);
3120
3121 out:
3122         free_idle_threads();
3123         perf_session__delete(session);
3124
3125         return err;
3126 }
3127
3128
3129 static void print_bad_events(struct perf_sched *sched)
3130 {
3131         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3132                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3133                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3134                         sched->nr_unordered_timestamps, sched->nr_timestamps);
3135         }
3136         if (sched->nr_lost_events && sched->nr_events) {
3137                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3138                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3139                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3140         }
3141         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3142                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3143                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3144                         sched->nr_context_switch_bugs, sched->nr_timestamps);
3145                 if (sched->nr_lost_events)
3146                         printf(" (due to lost events?)");
3147                 printf("\n");
3148         }
3149 }
3150
3151 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3152 {
3153         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3154         struct work_atoms *this;
3155         const char *comm = thread__comm_str(data->thread), *this_comm;
3156         bool leftmost = true;
3157
3158         while (*new) {
3159                 int cmp;
3160
3161                 this = container_of(*new, struct work_atoms, node);
3162                 parent = *new;
3163
3164                 this_comm = thread__comm_str(this->thread);
3165                 cmp = strcmp(comm, this_comm);
3166                 if (cmp > 0) {
3167                         new = &((*new)->rb_left);
3168                 } else if (cmp < 0) {
3169                         new = &((*new)->rb_right);
3170                         leftmost = false;
3171                 } else {
3172                         this->num_merged++;
3173                         this->total_runtime += data->total_runtime;
3174                         this->nb_atoms += data->nb_atoms;
3175                         this->total_lat += data->total_lat;
3176                         list_splice(&data->work_list, &this->work_list);
3177                         if (this->max_lat < data->max_lat) {
3178                                 this->max_lat = data->max_lat;
3179                                 this->max_lat_start = data->max_lat_start;
3180                                 this->max_lat_end = data->max_lat_end;
3181                         }
3182                         zfree(&data);
3183                         return;
3184                 }
3185         }
3186
3187         data->num_merged++;
3188         rb_link_node(&data->node, parent, new);
3189         rb_insert_color_cached(&data->node, root, leftmost);
3190 }
3191
3192 static void perf_sched__merge_lat(struct perf_sched *sched)
3193 {
3194         struct work_atoms *data;
3195         struct rb_node *node;
3196
3197         if (sched->skip_merge)
3198                 return;
3199
3200         while ((node = rb_first_cached(&sched->atom_root))) {
3201                 rb_erase_cached(node, &sched->atom_root);
3202                 data = rb_entry(node, struct work_atoms, node);
3203                 __merge_work_atoms(&sched->merged_atom_root, data);
3204         }
3205 }
3206
3207 static int perf_sched__lat(struct perf_sched *sched)
3208 {
3209         struct rb_node *next;
3210
3211         setup_pager();
3212
3213         if (perf_sched__read_events(sched))
3214                 return -1;
3215
3216         perf_sched__merge_lat(sched);
3217         perf_sched__sort_lat(sched);
3218
3219         printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3220         printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3221         printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3222
3223         next = rb_first_cached(&sched->sorted_atom_root);
3224
3225         while (next) {
3226                 struct work_atoms *work_list;
3227
3228                 work_list = rb_entry(next, struct work_atoms, node);
3229                 output_lat_thread(sched, work_list);
3230                 next = rb_next(next);
3231                 thread__zput(work_list->thread);
3232         }
3233
3234         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3235         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3236                 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3237
3238         printf(" ---------------------------------------------------\n");
3239
3240         print_bad_events(sched);
3241         printf("\n");
3242
3243         return 0;
3244 }
3245
3246 static int setup_map_cpus(struct perf_sched *sched)
3247 {
3248         struct perf_cpu_map *map;
3249
3250         sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3251
3252         if (sched->map.comp) {
3253                 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3254                 if (!sched->map.comp_cpus)
3255                         return -1;
3256         }
3257
3258         if (!sched->map.cpus_str)
3259                 return 0;
3260
3261         map = perf_cpu_map__new(sched->map.cpus_str);
3262         if (!map) {
3263                 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3264                 return -1;
3265         }
3266
3267         sched->map.cpus = map;
3268         return 0;
3269 }
3270
3271 static int setup_color_pids(struct perf_sched *sched)
3272 {
3273         struct perf_thread_map *map;
3274
3275         if (!sched->map.color_pids_str)
3276                 return 0;
3277
3278         map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3279         if (!map) {
3280                 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3281                 return -1;
3282         }
3283
3284         sched->map.color_pids = map;
3285         return 0;
3286 }
3287
3288 static int setup_color_cpus(struct perf_sched *sched)
3289 {
3290         struct perf_cpu_map *map;
3291
3292         if (!sched->map.color_cpus_str)
3293                 return 0;
3294
3295         map = perf_cpu_map__new(sched->map.color_cpus_str);
3296         if (!map) {
3297                 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3298                 return -1;
3299         }
3300
3301         sched->map.color_cpus = map;
3302         return 0;
3303 }
3304
3305 static int perf_sched__map(struct perf_sched *sched)
3306 {
3307         if (setup_map_cpus(sched))
3308                 return -1;
3309
3310         if (setup_color_pids(sched))
3311                 return -1;
3312
3313         if (setup_color_cpus(sched))
3314                 return -1;
3315
3316         setup_pager();
3317         if (perf_sched__read_events(sched))
3318                 return -1;
3319         print_bad_events(sched);
3320         return 0;
3321 }
3322
3323 static int perf_sched__replay(struct perf_sched *sched)
3324 {
3325         unsigned long i;
3326
3327         calibrate_run_measurement_overhead(sched);
3328         calibrate_sleep_measurement_overhead(sched);
3329
3330         test_calibrations(sched);
3331
3332         if (perf_sched__read_events(sched))
3333                 return -1;
3334
3335         printf("nr_run_events:        %ld\n", sched->nr_run_events);
3336         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3337         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3338
3339         if (sched->targetless_wakeups)
3340                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3341         if (sched->multitarget_wakeups)
3342                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3343         if (sched->nr_run_events_optimized)
3344                 printf("run atoms optimized: %ld\n",
3345                         sched->nr_run_events_optimized);
3346
3347         print_task_traces(sched);
3348         add_cross_task_wakeups(sched);
3349
3350         sched->thread_funcs_exit = false;
3351         create_tasks(sched);
3352         printf("------------------------------------------------------------\n");
3353         for (i = 0; i < sched->replay_repeat; i++)
3354                 run_one_test(sched);
3355
3356         sched->thread_funcs_exit = true;
3357         destroy_tasks(sched);
3358         return 0;
3359 }
3360
3361 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3362                           const char * const usage_msg[])
3363 {
3364         char *tmp, *tok, *str = strdup(sched->sort_order);
3365
3366         for (tok = strtok_r(str, ", ", &tmp);
3367                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
3368                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3369                         usage_with_options_msg(usage_msg, options,
3370                                         "Unknown --sort key: `%s'", tok);
3371                 }
3372         }
3373
3374         free(str);
3375
3376         sort_dimension__add("pid", &sched->cmp_pid);
3377 }
3378
3379 static bool schedstat_events_exposed(void)
3380 {
3381         /*
3382          * Select "sched:sched_stat_wait" event to check
3383          * whether schedstat tracepoints are exposed.
3384          */
3385         return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3386                 false : true;
3387 }
3388
3389 static int __cmd_record(int argc, const char **argv)
3390 {
3391         unsigned int rec_argc, i, j;
3392         char **rec_argv;
3393         const char **rec_argv_copy;
3394         const char * const record_args[] = {
3395                 "record",
3396                 "-a",
3397                 "-R",
3398                 "-m", "1024",
3399                 "-c", "1",
3400                 "-e", "sched:sched_switch",
3401                 "-e", "sched:sched_stat_runtime",
3402                 "-e", "sched:sched_process_fork",
3403                 "-e", "sched:sched_wakeup_new",
3404                 "-e", "sched:sched_migrate_task",
3405         };
3406
3407         /*
3408          * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3409          * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3410          * to prevent "perf sched record" execution failure, determine
3411          * whether to record schedstat events according to actual situation.
3412          */
3413         const char * const schedstat_args[] = {
3414                 "-e", "sched:sched_stat_wait",
3415                 "-e", "sched:sched_stat_sleep",
3416                 "-e", "sched:sched_stat_iowait",
3417         };
3418         unsigned int schedstat_argc = schedstat_events_exposed() ?
3419                 ARRAY_SIZE(schedstat_args) : 0;
3420
3421         struct tep_event *waking_event;
3422         int ret;
3423
3424         /*
3425          * +2 for either "-e", "sched:sched_wakeup" or
3426          * "-e", "sched:sched_waking"
3427          */
3428         rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3429         rec_argv = calloc(rec_argc + 1, sizeof(char *));
3430         if (rec_argv == NULL)
3431                 return -ENOMEM;
3432         rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3433         if (rec_argv_copy == NULL) {
3434                 free(rec_argv);
3435                 return -ENOMEM;
3436         }
3437
3438         for (i = 0; i < ARRAY_SIZE(record_args); i++)
3439                 rec_argv[i] = strdup(record_args[i]);
3440
3441         rec_argv[i++] = strdup("-e");
3442         waking_event = trace_event__tp_format("sched", "sched_waking");
3443         if (!IS_ERR(waking_event))
3444                 rec_argv[i++] = strdup("sched:sched_waking");
3445         else
3446                 rec_argv[i++] = strdup("sched:sched_wakeup");
3447
3448         for (j = 0; j < schedstat_argc; j++)
3449                 rec_argv[i++] = strdup(schedstat_args[j]);
3450
3451         for (j = 1; j < (unsigned int)argc; j++, i++)
3452                 rec_argv[i] = strdup(argv[j]);
3453
3454         BUG_ON(i != rec_argc);
3455
3456         memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3457         ret = cmd_record(rec_argc, rec_argv_copy);
3458
3459         for (i = 0; i < rec_argc; i++)
3460                 free(rec_argv[i]);
3461         free(rec_argv);
3462         free(rec_argv_copy);
3463
3464         return ret;
3465 }
3466
3467 int cmd_sched(int argc, const char **argv)
3468 {
3469         static const char default_sort_order[] = "avg, max, switch, runtime";
3470         struct perf_sched sched = {
3471                 .tool = {
3472                         .sample          = perf_sched__process_tracepoint_sample,
3473                         .comm            = perf_sched__process_comm,
3474                         .namespaces      = perf_event__process_namespaces,
3475                         .lost            = perf_event__process_lost,
3476                         .fork            = perf_sched__process_fork_event,
3477                         .ordered_events = true,
3478                 },
3479                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3480                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3481                 .sort_order           = default_sort_order,
3482                 .replay_repeat        = 10,
3483                 .profile_cpu          = -1,
3484                 .next_shortname1      = 'A',
3485                 .next_shortname2      = '0',
3486                 .skip_merge           = 0,
3487                 .show_callchain       = 1,
3488                 .max_stack            = 5,
3489         };
3490         const struct option sched_options[] = {
3491         OPT_STRING('i', "input", &input_name, "file",
3492                     "input file name"),
3493         OPT_INCR('v', "verbose", &verbose,
3494                     "be more verbose (show symbol address, etc)"),
3495         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3496                     "dump raw trace in ASCII"),
3497         OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3498         OPT_END()
3499         };
3500         const struct option latency_options[] = {
3501         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3502                    "sort by key(s): runtime, switch, avg, max"),
3503         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3504                     "CPU to profile on"),
3505         OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3506                     "latency stats per pid instead of per comm"),
3507         OPT_PARENT(sched_options)
3508         };
3509         const struct option replay_options[] = {
3510         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3511                      "repeat the workload replay N times (-1: infinite)"),
3512         OPT_PARENT(sched_options)
3513         };
3514         const struct option map_options[] = {
3515         OPT_BOOLEAN(0, "compact", &sched.map.comp,
3516                     "map output in compact mode"),
3517         OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3518                    "highlight given pids in map"),
3519         OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3520                     "highlight given CPUs in map"),
3521         OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3522                     "display given CPUs in map"),
3523         OPT_PARENT(sched_options)
3524         };
3525         const struct option timehist_options[] = {
3526         OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3527                    "file", "vmlinux pathname"),
3528         OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3529                    "file", "kallsyms pathname"),
3530         OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3531                     "Display call chains if present (default on)"),
3532         OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3533                    "Maximum number of functions to display backtrace."),
3534         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3535                     "Look for files with symbols relative to this directory"),
3536         OPT_BOOLEAN('s', "summary", &sched.summary_only,
3537                     "Show only syscall summary with statistics"),
3538         OPT_BOOLEAN('S', "with-summary", &sched.summary,
3539                     "Show all syscalls and summary with statistics"),
3540         OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3541         OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3542         OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3543         OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3544         OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3545         OPT_STRING(0, "time", &sched.time_str, "str",
3546                    "Time span for analysis (start,stop)"),
3547         OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3548         OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3549                    "analyze events only for given process id(s)"),
3550         OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3551                    "analyze events only for given thread id(s)"),
3552         OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3553         OPT_PARENT(sched_options)
3554         };
3555
3556         const char * const latency_usage[] = {
3557                 "perf sched latency [<options>]",
3558                 NULL
3559         };
3560         const char * const replay_usage[] = {
3561                 "perf sched replay [<options>]",
3562                 NULL
3563         };
3564         const char * const map_usage[] = {
3565                 "perf sched map [<options>]",
3566                 NULL
3567         };
3568         const char * const timehist_usage[] = {
3569                 "perf sched timehist [<options>]",
3570                 NULL
3571         };
3572         const char *const sched_subcommands[] = { "record", "latency", "map",
3573                                                   "replay", "script",
3574                                                   "timehist", NULL };
3575         const char *sched_usage[] = {
3576                 NULL,
3577                 NULL
3578         };
3579         struct trace_sched_handler lat_ops  = {
3580                 .wakeup_event       = latency_wakeup_event,
3581                 .switch_event       = latency_switch_event,
3582                 .runtime_event      = latency_runtime_event,
3583                 .migrate_task_event = latency_migrate_task_event,
3584         };
3585         struct trace_sched_handler map_ops  = {
3586                 .switch_event       = map_switch_event,
3587         };
3588         struct trace_sched_handler replay_ops  = {
3589                 .wakeup_event       = replay_wakeup_event,
3590                 .switch_event       = replay_switch_event,
3591                 .fork_event         = replay_fork_event,
3592         };
3593         unsigned int i;
3594         int ret = 0;
3595
3596         mutex_init(&sched.start_work_mutex);
3597         mutex_init(&sched.work_done_wait_mutex);
3598         sched.curr_thread = calloc(MAX_CPUS, sizeof(*sched.curr_thread));
3599         if (!sched.curr_thread) {
3600                 ret = -ENOMEM;
3601                 goto out;
3602         }
3603         sched.cpu_last_switched = calloc(MAX_CPUS, sizeof(*sched.cpu_last_switched));
3604         if (!sched.cpu_last_switched) {
3605                 ret = -ENOMEM;
3606                 goto out;
3607         }
3608         sched.curr_pid = malloc(MAX_CPUS * sizeof(*sched.curr_pid));
3609         if (!sched.curr_pid) {
3610                 ret = -ENOMEM;
3611                 goto out;
3612         }
3613         for (i = 0; i < MAX_CPUS; i++)
3614                 sched.curr_pid[i] = -1;
3615
3616         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3617                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3618         if (!argc)
3619                 usage_with_options(sched_usage, sched_options);
3620
3621         /*
3622          * Aliased to 'perf script' for now:
3623          */
3624         if (!strcmp(argv[0], "script")) {
3625                 ret = cmd_script(argc, argv);
3626         } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3627                 ret = __cmd_record(argc, argv);
3628         } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3629                 sched.tp_handler = &lat_ops;
3630                 if (argc > 1) {
3631                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3632                         if (argc)
3633                                 usage_with_options(latency_usage, latency_options);
3634                 }
3635                 setup_sorting(&sched, latency_options, latency_usage);
3636                 ret = perf_sched__lat(&sched);
3637         } else if (!strcmp(argv[0], "map")) {
3638                 if (argc) {
3639                         argc = parse_options(argc, argv, map_options, map_usage, 0);
3640                         if (argc)
3641                                 usage_with_options(map_usage, map_options);
3642                 }
3643                 sched.tp_handler = &map_ops;
3644                 setup_sorting(&sched, latency_options, latency_usage);
3645                 ret = perf_sched__map(&sched);
3646         } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3647                 sched.tp_handler = &replay_ops;
3648                 if (argc) {
3649                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3650                         if (argc)
3651                                 usage_with_options(replay_usage, replay_options);
3652                 }
3653                 ret = perf_sched__replay(&sched);
3654         } else if (!strcmp(argv[0], "timehist")) {
3655                 if (argc) {
3656                         argc = parse_options(argc, argv, timehist_options,
3657                                              timehist_usage, 0);
3658                         if (argc)
3659                                 usage_with_options(timehist_usage, timehist_options);
3660                 }
3661                 if ((sched.show_wakeups || sched.show_next) &&
3662                     sched.summary_only) {
3663                         pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3664                         parse_options_usage(timehist_usage, timehist_options, "s", true);
3665                         if (sched.show_wakeups)
3666                                 parse_options_usage(NULL, timehist_options, "w", true);
3667                         if (sched.show_next)
3668                                 parse_options_usage(NULL, timehist_options, "n", true);
3669                         ret = -EINVAL;
3670                         goto out;
3671                 }
3672                 ret = symbol__validate_sym_arguments();
3673                 if (ret)
3674                         goto out;
3675
3676                 ret = perf_sched__timehist(&sched);
3677         } else {
3678                 usage_with_options(sched_usage, sched_options);
3679         }
3680
3681 out:
3682         free(sched.curr_pid);
3683         free(sched.cpu_last_switched);
3684         free(sched.curr_thread);
3685         mutex_destroy(&sched.start_work_mutex);
3686         mutex_destroy(&sched.work_done_wait_mutex);
3687
3688         return ret;
3689 }