4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
7 /* For the CLR_() macros */
11 #include "../builtin.h"
12 #include "../util/util.h"
13 #include <subcmd/parse-options.h>
14 #include "../util/cloexec.h"
29 #include <sys/resource.h>
31 #include <sys/prctl.h>
32 #include <sys/types.h>
38 * Regular printout to the terminal, supressed if -q is specified:
40 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
45 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
49 cpu_set_t bind_cpumask;
55 unsigned int loops_done;
61 pthread_mutex_t *process_lock;
64 /* Parameters set by options: */
67 /* Startup synchronization: */
68 bool serialize_startup;
74 /* Working set sizes: */
75 const char *mb_global_str;
76 const char *mb_proc_str;
77 const char *mb_proc_locked_str;
78 const char *mb_thread_str;
82 double mb_proc_locked;
85 /* Access patterns to the working set: */
89 bool data_zero_memset;
95 /* Working set initialization: */
107 long bytes_process_locked;
113 bool show_convergence;
114 bool measure_convergence;
120 /* Affinity options -C and -N: */
126 /* Global, read-writable area, accessible to all processes and threads: */
131 pthread_mutex_t startup_mutex;
132 int nr_tasks_started;
134 pthread_mutex_t startup_done_mutex;
136 pthread_mutex_t start_work_mutex;
137 int nr_tasks_working;
139 pthread_mutex_t stop_work_mutex;
142 struct thread_data *threads;
144 /* Convergence latency measurement: */
153 static struct global_info *g = NULL;
155 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
156 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
160 static const struct option options[] = {
161 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
162 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
164 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
165 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
166 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
167 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
169 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
170 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
171 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
173 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
174 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
175 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
176 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
177 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
180 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
181 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
182 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
183 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
185 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
186 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
187 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
188 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
189 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
190 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
191 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
193 /* Special option string parsing callbacks: */
194 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
195 "bind the first N tasks to these specific cpus (the rest is unbound)",
197 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
198 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
203 static const char * const bench_numa_usage[] = {
204 "perf bench numa <options>",
208 static const char * const numa_usage[] = {
209 "perf bench numa mem [<options>]",
213 static cpu_set_t bind_to_cpu(int target_cpu)
215 cpu_set_t orig_mask, mask;
218 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
223 if (target_cpu == -1) {
226 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
229 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
230 CPU_SET(target_cpu, &mask);
233 ret = sched_setaffinity(0, sizeof(mask), &mask);
239 static cpu_set_t bind_to_node(int target_node)
241 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
242 cpu_set_t orig_mask, mask;
246 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
247 BUG_ON(!cpus_per_node);
249 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
254 if (target_node == -1) {
255 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
258 int cpu_start = (target_node + 0) * cpus_per_node;
259 int cpu_stop = (target_node + 1) * cpus_per_node;
261 BUG_ON(cpu_stop > g->p.nr_cpus);
263 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
267 ret = sched_setaffinity(0, sizeof(mask), &mask);
273 static void bind_to_cpumask(cpu_set_t mask)
277 ret = sched_setaffinity(0, sizeof(mask), &mask);
281 static void mempol_restore(void)
285 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
290 static void bind_to_memnode(int node)
292 unsigned long nodemask;
298 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
299 nodemask = 1L << node;
301 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
302 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
307 #define HPSIZE (2*1024*1024)
309 #define set_taskname(fmt...) \
313 snprintf(name, 20, fmt); \
314 prctl(PR_SET_NAME, name); \
317 static u8 *alloc_data(ssize_t bytes0, int map_flags,
318 int init_zero, int init_cpu0, int thp, int init_random)
328 /* Allocate and initialize all memory on CPU#0: */
330 orig_mask = bind_to_node(0);
334 bytes = bytes0 + HPSIZE;
336 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
337 BUG_ON(buf == (void *)-1);
339 if (map_flags == MAP_PRIVATE) {
341 ret = madvise(buf, bytes, MADV_HUGEPAGE);
342 if (ret && !g->print_once) {
344 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
348 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
349 if (ret && !g->print_once) {
351 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
359 /* Initialize random contents, different in each word: */
361 u64 *wbuf = (void *)buf;
365 for (i = 0; i < bytes/8; i++)
370 /* Align to 2MB boundary: */
371 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
373 /* Restore affinity: */
375 bind_to_cpumask(orig_mask);
382 static void free_data(void *data, ssize_t bytes)
389 ret = munmap(data, bytes);
394 * Create a shared memory buffer that can be shared between processes, zeroed:
396 static void * zalloc_shared_data(ssize_t bytes)
398 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
402 * Create a shared memory buffer that can be shared between processes:
404 static void * setup_shared_data(ssize_t bytes)
406 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
410 * Allocate process-local memory - this will either be shared between
411 * threads of this process, or only be accessed by this thread:
413 static void * setup_private_data(ssize_t bytes)
415 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
419 * Return a process-shared (global) mutex:
421 static void init_global_mutex(pthread_mutex_t *mutex)
423 pthread_mutexattr_t attr;
425 pthread_mutexattr_init(&attr);
426 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
427 pthread_mutex_init(mutex, &attr);
430 static int parse_cpu_list(const char *arg)
432 p0.cpu_list_str = strdup(arg);
434 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
439 static int parse_setup_cpu_list(void)
441 struct thread_data *td;
445 if (!g->p.cpu_list_str)
448 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
450 str0 = str = strdup(g->p.cpu_list_str);
455 tprintf("# binding tasks to CPUs:\n");
459 int bind_cpu, bind_cpu_0, bind_cpu_1;
460 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
465 tok = strsep(&str, ",");
469 tok_end = strstr(tok, "-");
471 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
473 /* Single CPU specified: */
474 bind_cpu_0 = bind_cpu_1 = atol(tok);
476 /* CPU range specified (for example: "5-11"): */
477 bind_cpu_0 = atol(tok);
478 bind_cpu_1 = atol(tok_end + 1);
482 tok_step = strstr(tok, "#");
484 step = atol(tok_step + 1);
485 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
490 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
491 * where the _4 means the next 4 CPUs are allowed.
494 tok_len = strstr(tok, "_");
496 bind_len = atol(tok_len + 1);
497 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
500 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
502 tok_mul = strstr(tok, "x");
504 mul = atol(tok_mul + 1);
508 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
510 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
511 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
515 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
516 BUG_ON(bind_cpu_0 > bind_cpu_1);
518 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
521 for (i = 0; i < mul; i++) {
524 if (t >= g->p.nr_tasks) {
525 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
533 tprintf("%2d/%d", bind_cpu, bind_len);
535 tprintf("%2d", bind_cpu);
538 CPU_ZERO(&td->bind_cpumask);
539 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
540 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
541 CPU_SET(cpu, &td->bind_cpumask);
551 if (t < g->p.nr_tasks)
552 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
558 static int parse_cpus_opt(const struct option *opt __maybe_unused,
559 const char *arg, int unset __maybe_unused)
564 return parse_cpu_list(arg);
567 static int parse_node_list(const char *arg)
569 p0.node_list_str = strdup(arg);
571 dprintf("got NODE list: {%s}\n", p0.node_list_str);
576 static int parse_setup_node_list(void)
578 struct thread_data *td;
582 if (!g->p.node_list_str)
585 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
587 str0 = str = strdup(g->p.node_list_str);
592 tprintf("# binding tasks to NODEs:\n");
596 int bind_node, bind_node_0, bind_node_1;
597 char *tok, *tok_end, *tok_step, *tok_mul;
601 tok = strsep(&str, ",");
605 tok_end = strstr(tok, "-");
607 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
609 /* Single NODE specified: */
610 bind_node_0 = bind_node_1 = atol(tok);
612 /* NODE range specified (for example: "5-11"): */
613 bind_node_0 = atol(tok);
614 bind_node_1 = atol(tok_end + 1);
618 tok_step = strstr(tok, "#");
620 step = atol(tok_step + 1);
621 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
624 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
626 tok_mul = strstr(tok, "x");
628 mul = atol(tok_mul + 1);
632 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
634 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
635 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
639 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
640 BUG_ON(bind_node_0 > bind_node_1);
642 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
645 for (i = 0; i < mul; i++) {
646 if (t >= g->p.nr_tasks) {
647 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
653 tprintf(" %2d", bind_node);
655 tprintf(",%2d", bind_node);
657 td->bind_node = bind_node;
666 if (t < g->p.nr_tasks)
667 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
673 static int parse_nodes_opt(const struct option *opt __maybe_unused,
674 const char *arg, int unset __maybe_unused)
679 return parse_node_list(arg);
684 #define BIT(x) (1ul << x)
686 static inline uint32_t lfsr_32(uint32_t lfsr)
688 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
689 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
693 * Make sure there's real data dependency to RAM (when read
694 * accesses are enabled), so the compiler, the CPU and the
695 * kernel (KSM, zero page, etc.) cannot optimize away RAM
698 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
702 if (g->p.data_writes)
708 * The worker process does two types of work, a forwards going
709 * loop and a backwards going loop.
711 * We do this so that on multiprocessor systems we do not create
712 * a 'train' of processing, with highly synchronized processes,
713 * skewing the whole benchmark.
715 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
717 long words = bytes/sizeof(u64);
718 u64 *data = (void *)__data;
719 long chunk_0, chunk_1;
724 BUG_ON(!data && words);
725 BUG_ON(data && !words);
730 /* Very simple memset() work variant: */
731 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
736 /* Spread out by PID/TID nr and by loop nr: */
737 chunk_0 = words/nr_max;
738 chunk_1 = words/g->p.nr_loops;
739 off = nr*chunk_0 + loop*chunk_1;
744 if (g->p.data_rand_walk) {
745 u32 lfsr = nr + loop + val;
748 for (i = 0; i < words/1024; i++) {
751 lfsr = lfsr_32(lfsr);
753 start = lfsr % words;
754 end = min(start + 1024, words-1);
756 if (g->p.data_zero_memset) {
757 bzero(data + start, (end-start) * sizeof(u64));
759 for (j = start; j < end; j++)
760 val = access_data(data + j, val);
763 } else if (!g->p.data_backwards || (nr + loop) & 1) {
769 /* Process data forwards: */
771 if (unlikely(d >= d1))
773 if (unlikely(d == d0))
776 val = access_data(d, val);
781 /* Process data backwards: */
787 /* Process data forwards: */
789 if (unlikely(d < data))
791 if (unlikely(d == d0))
794 val = access_data(d, val);
803 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
807 cpu = sched_getcpu();
809 g->threads[task_nr].curr_cpu = cpu;
810 prctl(0, bytes_worked);
813 #define MAX_NR_NODES 64
816 * Count the number of nodes a process's threads
819 * A count of 1 means that the process is compressed
820 * to a single node. A count of g->p.nr_nodes means it's
821 * spread out on the whole system.
823 static int count_process_nodes(int process_nr)
825 char node_present[MAX_NR_NODES] = { 0, };
829 for (t = 0; t < g->p.nr_threads; t++) {
830 struct thread_data *td;
834 task_nr = process_nr*g->p.nr_threads + t;
835 td = g->threads + task_nr;
837 node = numa_node_of_cpu(td->curr_cpu);
838 if (node < 0) /* curr_cpu was likely still -1 */
841 node_present[node] = 1;
846 for (n = 0; n < MAX_NR_NODES; n++)
847 nodes += node_present[n];
853 * Count the number of distinct process-threads a node contains.
855 * A count of 1 means that the node contains only a single
856 * process. If all nodes on the system contain at most one
857 * process then we are well-converged.
859 static int count_node_processes(int node)
864 for (p = 0; p < g->p.nr_proc; p++) {
865 for (t = 0; t < g->p.nr_threads; t++) {
866 struct thread_data *td;
870 task_nr = p*g->p.nr_threads + t;
871 td = g->threads + task_nr;
873 n = numa_node_of_cpu(td->curr_cpu);
884 static void calc_convergence_compression(int *strong)
886 unsigned int nodes_min, nodes_max;
892 for (p = 0; p < g->p.nr_proc; p++) {
893 unsigned int nodes = count_process_nodes(p);
900 nodes_min = min(nodes, nodes_min);
901 nodes_max = max(nodes, nodes_max);
904 /* Strong convergence: all threads compress on a single node: */
905 if (nodes_min == 1 && nodes_max == 1) {
909 tprintf(" {%d-%d}", nodes_min, nodes_max);
913 static void calc_convergence(double runtime_ns_max, double *convergence)
915 unsigned int loops_done_min, loops_done_max;
917 int nodes[MAX_NR_NODES];
928 if (!g->p.show_convergence && !g->p.measure_convergence)
931 for (node = 0; node < g->p.nr_nodes; node++)
937 for (t = 0; t < g->p.nr_tasks; t++) {
938 struct thread_data *td = g->threads + t;
939 unsigned int loops_done;
943 /* Not all threads have written it yet: */
947 node = numa_node_of_cpu(cpu);
951 loops_done = td->loops_done;
952 loops_done_min = min(loops_done, loops_done_min);
953 loops_done_max = max(loops_done, loops_done_max);
957 nr_min = g->p.nr_tasks;
960 for (node = 0; node < g->p.nr_nodes; node++) {
962 nr_min = min(nr, nr_min);
963 nr_max = max(nr, nr_max);
966 BUG_ON(nr_min > nr_max);
968 BUG_ON(sum > g->p.nr_tasks);
970 if (0 && (sum < g->p.nr_tasks))
974 * Count the number of distinct process groups present
975 * on nodes - when we are converged this will decrease
980 for (node = 0; node < g->p.nr_nodes; node++) {
981 int processes = count_node_processes(node);
984 tprintf(" %2d/%-2d", nr, processes);
986 process_groups += processes;
989 distance = nr_max - nr_min;
991 tprintf(" [%2d/%-2d]", distance, process_groups);
993 tprintf(" l:%3d-%-3d (%3d)",
994 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
996 if (loops_done_min && loops_done_max) {
997 double skew = 1.0 - (double)loops_done_min/loops_done_max;
999 tprintf(" [%4.1f%%]", skew * 100.0);
1002 calc_convergence_compression(&strong);
1004 if (strong && process_groups == g->p.nr_proc) {
1005 if (!*convergence) {
1006 *convergence = runtime_ns_max;
1007 tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1008 if (g->p.measure_convergence) {
1009 g->all_converged = true;
1010 g->stop_work = true;
1015 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1022 static void show_summary(double runtime_ns_max, int l, double *convergence)
1024 tprintf("\r # %5.1f%% [%.1f mins]",
1025 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1027 calc_convergence(runtime_ns_max, convergence);
1029 if (g->p.show_details >= 0)
1033 static void *worker_thread(void *__tdata)
1035 struct thread_data *td = __tdata;
1036 struct timeval start0, start, stop, diff;
1037 int process_nr = td->process_nr;
1038 int thread_nr = td->thread_nr;
1039 unsigned long last_perturbance;
1040 int task_nr = td->task_nr;
1041 int details = g->p.show_details;
1042 int first_task, last_task;
1043 double convergence = 0;
1045 double runtime_ns_max;
1052 struct rusage rusage;
1054 bind_to_cpumask(td->bind_cpumask);
1055 bind_to_memnode(td->bind_node);
1057 set_taskname("thread %d/%d", process_nr, thread_nr);
1059 global_data = g->data;
1060 process_data = td->process_data;
1061 thread_data = setup_private_data(g->p.bytes_thread);
1066 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1070 if (process_nr == 0 && thread_nr == 0)
1074 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1075 process_nr, thread_nr, global_data, process_data, thread_data);
1078 if (g->p.serialize_startup) {
1079 pthread_mutex_lock(&g->startup_mutex);
1080 g->nr_tasks_started++;
1081 pthread_mutex_unlock(&g->startup_mutex);
1083 /* Here we will wait for the main process to start us all at once: */
1084 pthread_mutex_lock(&g->start_work_mutex);
1085 g->nr_tasks_working++;
1087 /* Last one wake the main process: */
1088 if (g->nr_tasks_working == g->p.nr_tasks)
1089 pthread_mutex_unlock(&g->startup_done_mutex);
1091 pthread_mutex_unlock(&g->start_work_mutex);
1094 gettimeofday(&start0, NULL);
1096 start = stop = start0;
1097 last_perturbance = start.tv_sec;
1099 for (l = 0; l < g->p.nr_loops; l++) {
1105 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1106 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1107 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1109 if (g->p.sleep_usecs) {
1110 pthread_mutex_lock(td->process_lock);
1111 usleep(g->p.sleep_usecs);
1112 pthread_mutex_unlock(td->process_lock);
1115 * Amount of work to be done under a process-global lock:
1117 if (g->p.bytes_process_locked) {
1118 pthread_mutex_lock(td->process_lock);
1119 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1120 pthread_mutex_unlock(td->process_lock);
1123 work_done = g->p.bytes_global + g->p.bytes_process +
1124 g->p.bytes_process_locked + g->p.bytes_thread;
1126 update_curr_cpu(task_nr, work_done);
1127 bytes_done += work_done;
1129 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1134 gettimeofday(&stop, NULL);
1136 /* Check whether our max runtime timed out: */
1138 timersub(&stop, &start0, &diff);
1139 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1140 g->stop_work = true;
1145 /* Update the summary at most once per second: */
1146 if (start.tv_sec == stop.tv_sec)
1150 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1151 * by migrating to CPU#0:
1153 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1154 cpu_set_t orig_mask;
1158 last_perturbance = stop.tv_sec;
1161 * Depending on where we are running, move into
1162 * the other half of the system, to create some
1165 this_cpu = g->threads[task_nr].curr_cpu;
1166 if (this_cpu < g->p.nr_cpus/2)
1167 target_cpu = g->p.nr_cpus-1;
1171 orig_mask = bind_to_cpu(target_cpu);
1173 /* Here we are running on the target CPU already */
1175 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1177 bind_to_cpumask(orig_mask);
1181 timersub(&stop, &start, &diff);
1182 runtime_ns_max = diff.tv_sec * 1000000000;
1183 runtime_ns_max += diff.tv_usec * 1000;
1186 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1187 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1194 timersub(&stop, &start0, &diff);
1195 runtime_ns_max = diff.tv_sec * 1000000000ULL;
1196 runtime_ns_max += diff.tv_usec * 1000ULL;
1198 show_summary(runtime_ns_max, l, &convergence);
1201 gettimeofday(&stop, NULL);
1202 timersub(&stop, &start0, &diff);
1203 td->runtime_ns = diff.tv_sec * 1000000000ULL;
1204 td->runtime_ns += diff.tv_usec * 1000ULL;
1205 td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9;
1207 getrusage(RUSAGE_THREAD, &rusage);
1208 td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL;
1209 td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL;
1210 td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL;
1211 td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL;
1213 free_data(thread_data, g->p.bytes_thread);
1215 pthread_mutex_lock(&g->stop_work_mutex);
1216 g->bytes_done += bytes_done;
1217 pthread_mutex_unlock(&g->stop_work_mutex);
1223 * A worker process starts a couple of threads:
1225 static void worker_process(int process_nr)
1227 pthread_mutex_t process_lock;
1228 struct thread_data *td;
1229 pthread_t *pthreads;
1235 pthread_mutex_init(&process_lock, NULL);
1236 set_taskname("process %d", process_nr);
1239 * Pick up the memory policy and the CPU binding of our first thread,
1240 * so that we initialize memory accordingly:
1242 task_nr = process_nr*g->p.nr_threads;
1243 td = g->threads + task_nr;
1245 bind_to_memnode(td->bind_node);
1246 bind_to_cpumask(td->bind_cpumask);
1248 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1249 process_data = setup_private_data(g->p.bytes_process);
1251 if (g->p.show_details >= 3) {
1252 printf(" # process %2d global mem: %p, process mem: %p\n",
1253 process_nr, g->data, process_data);
1256 for (t = 0; t < g->p.nr_threads; t++) {
1257 task_nr = process_nr*g->p.nr_threads + t;
1258 td = g->threads + task_nr;
1260 td->process_data = process_data;
1261 td->process_nr = process_nr;
1263 td->task_nr = task_nr;
1266 td->process_lock = &process_lock;
1268 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1272 for (t = 0; t < g->p.nr_threads; t++) {
1273 ret = pthread_join(pthreads[t], NULL);
1277 free_data(process_data, g->p.bytes_process);
1281 static void print_summary(void)
1283 if (g->p.show_details < 0)
1287 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1288 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1289 printf(" # %5dx %5ldMB global shared mem operations\n",
1290 g->p.nr_loops, g->p.bytes_global/1024/1024);
1291 printf(" # %5dx %5ldMB process shared mem operations\n",
1292 g->p.nr_loops, g->p.bytes_process/1024/1024);
1293 printf(" # %5dx %5ldMB thread local mem operations\n",
1294 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1298 printf("\n ###\n"); fflush(stdout);
1301 static void init_thread_data(void)
1303 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1306 g->threads = zalloc_shared_data(size);
1308 for (t = 0; t < g->p.nr_tasks; t++) {
1309 struct thread_data *td = g->threads + t;
1312 /* Allow all nodes by default: */
1315 /* Allow all CPUs by default: */
1316 CPU_ZERO(&td->bind_cpumask);
1317 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1318 CPU_SET(cpu, &td->bind_cpumask);
1322 static void deinit_thread_data(void)
1324 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1326 free_data(g->threads, size);
1329 static int init(void)
1331 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1333 /* Copy over options: */
1336 g->p.nr_cpus = numa_num_configured_cpus();
1338 g->p.nr_nodes = numa_max_node() + 1;
1340 /* char array in count_process_nodes(): */
1341 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1343 if (g->p.show_quiet && !g->p.show_details)
1344 g->p.show_details = -1;
1346 /* Some memory should be specified: */
1347 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1350 if (g->p.mb_global_str) {
1351 g->p.mb_global = atof(g->p.mb_global_str);
1352 BUG_ON(g->p.mb_global < 0);
1355 if (g->p.mb_proc_str) {
1356 g->p.mb_proc = atof(g->p.mb_proc_str);
1357 BUG_ON(g->p.mb_proc < 0);
1360 if (g->p.mb_proc_locked_str) {
1361 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1362 BUG_ON(g->p.mb_proc_locked < 0);
1363 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1366 if (g->p.mb_thread_str) {
1367 g->p.mb_thread = atof(g->p.mb_thread_str);
1368 BUG_ON(g->p.mb_thread < 0);
1371 BUG_ON(g->p.nr_threads <= 0);
1372 BUG_ON(g->p.nr_proc <= 0);
1374 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1376 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1377 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1378 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1379 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1381 g->data = setup_shared_data(g->p.bytes_global);
1383 /* Startup serialization: */
1384 init_global_mutex(&g->start_work_mutex);
1385 init_global_mutex(&g->startup_mutex);
1386 init_global_mutex(&g->startup_done_mutex);
1387 init_global_mutex(&g->stop_work_mutex);
1392 if (parse_setup_cpu_list() || parse_setup_node_list())
1401 static void deinit(void)
1403 free_data(g->data, g->p.bytes_global);
1406 deinit_thread_data();
1408 free_data(g, sizeof(*g));
1413 * Print a short or long result, depending on the verbosity setting:
1415 static void print_res(const char *name, double val,
1416 const char *txt_unit, const char *txt_short, const char *txt_long)
1421 if (!g->p.show_quiet)
1422 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1424 printf(" %14.3f %s\n", val, txt_long);
1427 static int __bench_numa(const char *name)
1429 struct timeval start, stop, diff;
1430 u64 runtime_ns_min, runtime_ns_sum;
1431 pid_t *pids, pid, wpid;
1432 double delta_runtime;
1434 double runtime_sec_max;
1435 double runtime_sec_min;
1443 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1446 /* All threads try to acquire it, this way we can wait for them to start up: */
1447 pthread_mutex_lock(&g->start_work_mutex);
1449 if (g->p.serialize_startup) {
1451 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1454 gettimeofday(&start, NULL);
1456 for (i = 0; i < g->p.nr_proc; i++) {
1458 dprintf(" # process %2d: PID %d\n", i, pid);
1462 /* Child process: */
1470 /* Wait for all the threads to start up: */
1471 while (g->nr_tasks_started != g->p.nr_tasks)
1474 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1476 if (g->p.serialize_startup) {
1479 pthread_mutex_lock(&g->startup_done_mutex);
1481 /* This will start all threads: */
1482 pthread_mutex_unlock(&g->start_work_mutex);
1484 /* This mutex is locked - the last started thread will wake us: */
1485 pthread_mutex_lock(&g->startup_done_mutex);
1487 gettimeofday(&stop, NULL);
1489 timersub(&stop, &start, &diff);
1491 startup_sec = diff.tv_sec * 1000000000.0;
1492 startup_sec += diff.tv_usec * 1000.0;
1495 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1499 pthread_mutex_unlock(&g->startup_done_mutex);
1501 gettimeofday(&start, NULL);
1504 /* Parent process: */
1507 for (i = 0; i < g->p.nr_proc; i++) {
1508 wpid = waitpid(pids[i], &wait_stat, 0);
1510 BUG_ON(!WIFEXITED(wait_stat));
1515 runtime_ns_min = -1LL;
1517 for (t = 0; t < g->p.nr_tasks; t++) {
1518 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1520 runtime_ns_sum += thread_runtime_ns;
1521 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1524 gettimeofday(&stop, NULL);
1525 timersub(&stop, &start, &diff);
1527 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1529 tprintf("\n ###\n");
1532 runtime_sec_max = diff.tv_sec * 1000000000.0;
1533 runtime_sec_max += diff.tv_usec * 1000.0;
1534 runtime_sec_max /= 1e9;
1536 runtime_sec_min = runtime_ns_min/1e9;
1538 bytes = g->bytes_done;
1539 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1541 if (g->p.measure_convergence) {
1542 print_res(name, runtime_sec_max,
1543 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1546 print_res(name, runtime_sec_max,
1547 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1549 print_res(name, runtime_sec_min,
1550 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1552 print_res(name, runtime_avg,
1553 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1555 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1556 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1557 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1559 print_res(name, bytes / g->p.nr_tasks / 1e9,
1560 "GB,", "data/thread", "GB data processed, per thread");
1562 print_res(name, bytes / 1e9,
1563 "GB,", "data-total", "GB data processed, total");
1565 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1566 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1568 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1569 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1571 print_res(name, bytes / runtime_sec_max / 1e9,
1572 "GB/sec,", "total-speed", "GB/sec total speed");
1574 if (g->p.show_details >= 2) {
1576 struct thread_data *td;
1577 for (p = 0; p < g->p.nr_proc; p++) {
1578 for (t = 0; t < g->p.nr_threads; t++) {
1579 memset(tname, 0, 32);
1580 td = g->threads + p*g->p.nr_threads + t;
1581 snprintf(tname, 32, "process%d:thread%d", p, t);
1582 print_res(tname, td->speed_gbs,
1583 "GB/sec", "thread-speed", "GB/sec/thread speed");
1584 print_res(tname, td->system_time_ns / 1e9,
1585 "secs", "thread-system-time", "system CPU time/thread");
1586 print_res(tname, td->user_time_ns / 1e9,
1587 "secs", "thread-user-time", "user CPU time/thread");
1601 static int command_size(const char **argv)
1610 BUG_ON(size >= MAX_ARGS);
1615 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1619 printf("\n # Running %s \"perf bench numa", name);
1621 for (i = 0; i < argc; i++)
1622 printf(" %s", argv[i]);
1626 memset(p, 0, sizeof(*p));
1628 /* Initialize nonzero defaults: */
1630 p->serialize_startup = 1;
1631 p->data_reads = true;
1632 p->data_writes = true;
1633 p->data_backwards = true;
1634 p->data_rand_walk = true;
1636 p->init_random = true;
1637 p->mb_global_str = "1";
1641 p->run_all = argc == 1;
1644 static int run_bench_numa(const char *name, const char **argv)
1646 int argc = command_size(argv);
1648 init_params(&p0, name, argc, argv);
1649 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1653 if (__bench_numa(name))
1662 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1663 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1665 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1666 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1668 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1669 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1672 * The built-in test-suite executed by "perf bench numa -a".
1674 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1676 static const char *tests[][MAX_ARGS] = {
1677 /* Basic single-stream NUMA bandwidth measurements: */
1678 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1679 "-C" , "0", "-M", "0", OPT_BW_RAM },
1680 { "RAM-bw-local-NOTHP,",
1681 "mem", "-p", "1", "-t", "1", "-P", "1024",
1682 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1683 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1684 "-C" , "0", "-M", "1", OPT_BW_RAM },
1686 /* 2-stream NUMA bandwidth measurements: */
1687 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1688 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1689 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1690 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1692 /* Cross-stream NUMA bandwidth measurement: */
1693 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1694 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1696 /* Convergence latency measurements: */
1697 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1698 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1699 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1700 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1701 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1702 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1703 { " 4x4-convergence-NOTHP,",
1704 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1705 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1706 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1707 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1708 { " 8x4-convergence-NOTHP,",
1709 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1710 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1711 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1712 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1713 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1714 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1716 /* Various NUMA process/thread layout bandwidth measurements: */
1717 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1718 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1719 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1720 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1721 { " 8x1-bw-process-NOTHP,",
1722 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1723 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1725 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1726 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1727 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1728 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1730 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1731 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1732 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1733 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1734 { " 4x8-bw-thread-NOTHP,",
1735 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1736 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1737 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1739 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1740 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1742 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1743 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1744 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1745 { "numa01-bw-thread-NOTHP,",
1746 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1749 static int bench_all(void)
1751 int nr = ARRAY_SIZE(tests);
1755 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1758 for (i = 0; i < nr; i++) {
1759 run_bench_numa(tests[i][0], tests[i] + 1);
1767 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1769 init_params(&p0, "main,", argc, argv);
1770 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1777 if (__bench_numa(NULL))
1783 usage_with_options(numa_usage, options);