Merge tag 'ieee802154-for-davem-2019-09-28' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-starfive.git] / tools / include / linux / ring_buffer.h
1 #ifndef _TOOLS_LINUX_RING_BUFFER_H_
2 #define _TOOLS_LINUX_RING_BUFFER_H_
3
4 #include <asm/barrier.h>
5 #include <linux/perf_event.h>
6
7 /*
8  * Contract with kernel for walking the perf ring buffer from
9  * user space requires the following barrier pairing (quote
10  * from kernel/events/ring_buffer.c):
11  *
12  *   Since the mmap() consumer (userspace) can run on a
13  *   different CPU:
14  *
15  *   kernel                             user
16  *
17  *   if (LOAD ->data_tail) {            LOAD ->data_head
18  *                      (A)             smp_rmb()       (C)
19  *      STORE $data                     LOAD $data
20  *      smp_wmb()       (B)             smp_mb()        (D)
21  *      STORE ->data_head               STORE ->data_tail
22  *   }
23  *
24  *   Where A pairs with D, and B pairs with C.
25  *
26  *   In our case A is a control dependency that separates the
27  *   load of the ->data_tail and the stores of $data. In case
28  *   ->data_tail indicates there is no room in the buffer to
29  *   store $data we do not.
30  *
31  *   D needs to be a full barrier since it separates the data
32  *   READ from the tail WRITE.
33  *
34  *   For B a WMB is sufficient since it separates two WRITEs,
35  *   and for C an RMB is sufficient since it separates two READs.
36  *
37  * Note, instead of B, C, D we could also use smp_store_release()
38  * in B and D as well as smp_load_acquire() in C.
39  *
40  * However, this optimization does not make sense for all kernel
41  * supported architectures since for a fair number it would
42  * resolve into READ_ONCE() + smp_mb() pair for smp_load_acquire(),
43  * and smp_mb() + WRITE_ONCE() pair for smp_store_release().
44  *
45  * Thus for those smp_wmb() in B and smp_rmb() in C would still
46  * be less expensive. For the case of D this has either the same
47  * cost or is less expensive, for example, due to TSO x86 can
48  * avoid the CPU barrier entirely.
49  */
50
51 static inline u64 ring_buffer_read_head(struct perf_event_mmap_page *base)
52 {
53 /*
54  * Architectures where smp_load_acquire() does not fallback to
55  * READ_ONCE() + smp_mb() pair.
56  */
57 #if defined(__x86_64__) || defined(__aarch64__) || defined(__powerpc64__) || \
58     defined(__ia64__) || defined(__sparc__) && defined(__arch64__)
59         return smp_load_acquire(&base->data_head);
60 #else
61         u64 head = READ_ONCE(base->data_head);
62
63         smp_rmb();
64         return head;
65 #endif
66 }
67
68 static inline void ring_buffer_write_tail(struct perf_event_mmap_page *base,
69                                           u64 tail)
70 {
71         smp_store_release(&base->data_tail, tail);
72 }
73
74 #endif /* _TOOLS_LINUX_RING_BUFFER_H_ */