Fix for x86_64 build fail
[platform/upstream/connectedhomeip.git] / third_party / lwip / repo / lwip / doc / rawapi.txt
1 Raw TCP/IP interface for lwIP
2
3 Authors: Adam Dunkels, Leon Woestenberg, Christiaan Simons
4
5 lwIP provides three Application Program's Interfaces (APIs) for programs
6 to use for communication with the TCP/IP code:
7 * low-level "core" / "callback" or "raw" API.
8 * higher-level "sequential" API.
9 * BSD-style socket API.
10
11 The raw API (sometimes called native API) is an event-driven API designed
12 to be used without an operating system that implements zero-copy send and
13 receive. This API is also used by the core stack for interaction between
14 the various protocols. It is the only API available when running lwIP
15 without an operating system.
16
17 The sequential API provides a way for ordinary, sequential, programs
18 to use the lwIP stack. It is quite similar to the BSD socket API. The
19 model of execution is based on the blocking open-read-write-close
20 paradigm. Since the TCP/IP stack is event based by nature, the TCP/IP
21 code and the application program must reside in different execution
22 contexts (threads).
23
24 The socket API is a compatibility API for existing applications,
25 currently it is built on top of the sequential API. It is meant to
26 provide all functions needed to run socket API applications running
27 on other platforms (e.g. unix / windows etc.). However, due to limitations
28 in the specification of this API, there might be incompatibilities
29 that require small modifications of existing programs.
30
31 ** Multithreading
32
33 lwIP started targeting single-threaded environments. When adding multi-
34 threading support, instead of making the core thread-safe, another
35 approach was chosen: there is one main thread running the lwIP core
36 (also known as the "tcpip_thread"). When running in a multithreaded
37 environment, raw API functions MUST only be called from the core thread
38 since raw API functions are not protected from concurrent access (aside
39 from pbuf- and memory management functions). Application threads using
40 the sequential- or socket API communicate with this main thread through
41 message passing.
42
43       As such, the list of functions that may be called from
44       other threads or an ISR is very limited! Only functions
45       from these API header files are thread-safe:
46       - api.h
47       - netbuf.h
48       - netdb.h
49       - netifapi.h
50       - pppapi.h
51       - sockets.h
52       - sys.h
53
54       Additionaly, memory (de-)allocation functions may be
55       called from multiple threads (not ISR!) with NO_SYS=0
56       since they are protected by SYS_LIGHTWEIGHT_PROT and/or
57       semaphores.
58
59       Netconn or Socket API functions are thread safe against the
60       core thread but they are not reentrant at the control block
61       granularity level. That is, a UDP or TCP control block must
62       not be shared among multiple threads without proper locking.
63
64       If SYS_LIGHTWEIGHT_PROT is set to 1 and
65       LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT is set to 1,
66       pbuf_free() may also be called from another thread or
67       an ISR (since only then, mem_free - for PBUF_RAM - may
68       be called from an ISR: otherwise, the HEAP is only
69       protected by semaphores).
70
71
72 ** The remainder of this document discusses the "raw" API. **
73
74 The raw TCP/IP interface allows the application program to integrate
75 better with the TCP/IP code. Program execution is event based by
76 having callback functions being called from within the TCP/IP
77 code. The TCP/IP code and the application program both run in the same
78 thread. The sequential API has a much higher overhead and is not very
79 well suited for small systems since it forces a multithreaded paradigm
80 on the application.
81
82 The raw TCP/IP interface is not only faster in terms of code execution
83 time but is also less memory intensive. The drawback is that program
84 development is somewhat harder and application programs written for
85 the raw TCP/IP interface are more difficult to understand. Still, this
86 is the preferred way of writing applications that should be small in
87 code size and memory usage.
88
89 All APIs can be used simultaneously by different application
90 programs. In fact, the sequential API is implemented as an application
91 program using the raw TCP/IP interface.
92
93 Do not confuse the lwIP raw API with raw Ethernet or IP sockets.
94 The former is a way of interfacing the lwIP network stack (including
95 TCP and UDP), the later refers to processing raw Ethernet or IP data
96 instead of TCP connections or UDP packets.
97
98 Raw API applications may never block since all packet processing
99 (input and output) as well as timer processing (TCP mainly) is done
100 in a single execution context.
101
102 --- Callbacks
103
104 Program execution is driven by callbacks functions, which are then
105 invoked by the lwIP core when activity related to that application
106 occurs. A particular application may register to be notified via a
107 callback function for events such as incoming data available, outgoing
108 data sent, error notifications, poll timer expiration, connection
109 closed, etc. An application can provide a callback function to perform
110 processing for any or all of these events. Each callback is an ordinary
111 C function that is called from within the TCP/IP code. Every callback
112 function is passed the current TCP or UDP connection state as an
113 argument. Also, in order to be able to keep program specific state,
114 the callback functions are called with a program specified argument
115 that is independent of the TCP/IP state.
116
117 The function for setting the application connection state is:
118
119 - void tcp_arg(struct tcp_pcb *pcb, void *arg)
120
121   Specifies the program specific state that should be passed to all
122   other callback functions. The "pcb" argument is the current TCP
123   connection control block, and the "arg" argument is the argument
124   that will be passed to the callbacks.
125
126   
127 --- TCP connection setup
128
129 The functions used for setting up connections is similar to that of
130 the sequential API and of the BSD socket API. A new TCP connection
131 identifier (i.e., a protocol control block - PCB) is created with the
132 tcp_new() function. This PCB can then be either set to listen for new
133 incoming connections or be explicitly connected to another host.
134
135 - struct tcp_pcb *tcp_new(void)
136
137   Creates a new connection identifier (PCB). If memory is not
138   available for creating the new pcb, NULL is returned.
139
140 - err_t tcp_bind(struct tcp_pcb *pcb, ip_addr_t *ipaddr,
141                  u16_t port)
142
143   Binds the pcb to a local IP address and port number. The IP address
144   can be specified as IP_ADDR_ANY in order to bind the connection to
145   all local IP addresses.
146
147   If another connection is bound to the same port, the function will
148   return ERR_USE, otherwise ERR_OK is returned.
149
150 - struct tcp_pcb *tcp_listen(struct tcp_pcb *pcb)
151
152   Commands a pcb to start listening for incoming connections. When an
153   incoming connection is accepted, the function specified with the
154   tcp_accept() function will be called. The pcb will have to be bound
155   to a local port with the tcp_bind() function.
156
157   The tcp_listen() function returns a new connection identifier, and
158   the one passed as an argument to the function will be
159   deallocated. The reason for this behavior is that less memory is
160   needed for a connection that is listening, so tcp_listen() will
161   reclaim the memory needed for the original connection and allocate a
162   new smaller memory block for the listening connection.
163
164   tcp_listen() may return NULL if no memory was available for the
165   listening connection. If so, the memory associated with the pcb
166   passed as an argument to tcp_listen() will not be deallocated.
167
168 - struct tcp_pcb *tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t backlog)
169
170   Same as tcp_listen, but limits the number of outstanding connections
171   in the listen queue to the value specified by the backlog argument.
172   To use it, your need to set TCP_LISTEN_BACKLOG=1 in your lwipopts.h.
173
174 - void tcp_accept(struct tcp_pcb *pcb,
175                   err_t (* accept)(void *arg, struct tcp_pcb *newpcb,
176                                    err_t err))
177
178   Specified the callback function that should be called when a new
179   connection arrives on a listening connection.
180
181 - err_t tcp_connect(struct tcp_pcb *pcb, ip_addr_t *ipaddr,
182                     u16_t port, err_t (* connected)(void *arg,
183                                                     struct tcp_pcb *tpcb,
184                                                     err_t err));
185
186   Sets up the pcb to connect to the remote host and sends the
187   initial SYN segment which opens the connection. 
188
189   The tcp_connect() function returns immediately; it does not wait for
190   the connection to be properly setup. Instead, it will call the
191   function specified as the fourth argument (the "connected" argument)
192   when the connection is established. If the connection could not be
193   properly established, either because the other host refused the
194   connection or because the other host didn't answer, the "err"
195   callback function of this pcb (registered with tcp_err, see below)
196   will be called.
197
198   The tcp_connect() function can return ERR_MEM if no memory is
199   available for enqueueing the SYN segment. If the SYN indeed was
200   enqueued successfully, the tcp_connect() function returns ERR_OK.
201
202
203 --- Sending TCP data
204
205 TCP data is sent by enqueueing the data with a call to
206 tcp_write(). When the data is successfully transmitted to the remote
207 host, the application will be notified with a call to a specified
208 callback function.
209
210 - err_t tcp_write(struct tcp_pcb *pcb, const void *dataptr, u16_t len,
211                   u8_t apiflags)
212
213   Enqueues the data pointed to by the argument dataptr. The length of
214   the data is passed as the len parameter. The apiflags can be one or more of:
215   - TCP_WRITE_FLAG_COPY: indicates whether the new memory should be allocated
216     for the data to be copied into. If this flag is not given, no new memory
217     should be allocated and the data should only be referenced by pointer. This
218     also means that the memory behind dataptr must not change until the data is
219     ACKed by the remote host
220   - TCP_WRITE_FLAG_MORE: indicates that more data follows. If this is omitted,
221     the PSH flag is set in the last segment created by this call to tcp_write.
222     If this flag is given, the PSH flag is not set.
223
224   The tcp_write() function will fail and return ERR_MEM if the length
225   of the data exceeds the current send buffer size or if the length of
226   the queue of outgoing segment is larger than the upper limit defined
227   in lwipopts.h. The number of bytes available in the output queue can
228   be retrieved with the tcp_sndbuf() function.
229
230   The proper way to use this function is to call the function with at
231   most tcp_sndbuf() bytes of data. If the function returns ERR_MEM,
232   the application should wait until some of the currently enqueued
233   data has been successfully received by the other host and try again.
234
235 - void tcp_sent(struct tcp_pcb *pcb,
236                 err_t (* sent)(void *arg, struct tcp_pcb *tpcb,
237                 u16_t len))
238
239   Specifies the callback function that should be called when data has
240   successfully been received (i.e., acknowledged) by the remote
241   host. The len argument passed to the callback function gives the
242   amount bytes that was acknowledged by the last acknowledgment.
243
244   
245 --- Receiving TCP data
246
247 TCP data reception is callback based - an application specified
248 callback function is called when new data arrives. When the
249 application has taken the data, it has to call the tcp_recved()
250 function to indicate that TCP can advertise increase the receive
251 window.
252
253 - void tcp_recv(struct tcp_pcb *pcb,
254                 err_t (* recv)(void *arg, struct tcp_pcb *tpcb,
255                                struct pbuf *p, err_t err))
256
257   Sets the callback function that will be called when new data
258   arrives. The callback function will be passed a NULL pbuf to
259   indicate that the remote host has closed the connection. If
260   there are no errors and the callback function is to return
261   ERR_OK, then it must free the pbuf. Otherwise, it must not
262   free the pbuf so that lwIP core code can store it.
263
264 - void tcp_recved(struct tcp_pcb *pcb, u16_t len)
265
266   Must be called when the application has received the data. The len
267   argument indicates the length of the received data.
268
269
270 --- Application polling
271
272 When a connection is idle (i.e., no data is either transmitted or
273 received), lwIP will repeatedly poll the application by calling a
274 specified callback function. This can be used either as a watchdog
275 timer for killing connections that have stayed idle for too long, or
276 as a method of waiting for memory to become available. For instance,
277 if a call to tcp_write() has failed because memory wasn't available,
278 the application may use the polling functionality to call tcp_write()
279 again when the connection has been idle for a while.
280
281 - void tcp_poll(struct tcp_pcb *pcb, 
282                 err_t (* poll)(void *arg, struct tcp_pcb *tpcb),
283                 u8_t interval)
284
285   Specifies the polling interval and the callback function that should
286   be called to poll the application. The interval is specified in
287   number of TCP coarse grained timer shots, which typically occurs
288   twice a second. An interval of 10 means that the application would
289   be polled every 5 seconds.
290
291
292 --- Closing and aborting connections
293
294 - err_t tcp_close(struct tcp_pcb *pcb)
295
296   Closes the connection. The function may return ERR_MEM if no memory
297   was available for closing the connection. If so, the application
298   should wait and try again either by using the acknowledgment
299   callback or the polling functionality. If the close succeeds, the
300   function returns ERR_OK.
301
302   The pcb is deallocated by the TCP code after a call to tcp_close(). 
303
304 - void tcp_abort(struct tcp_pcb *pcb)
305
306   Aborts the connection by sending a RST (reset) segment to the remote
307   host. The pcb is deallocated. This function never fails.
308
309   ATTENTION: When calling this from one of the TCP callbacks, make
310   sure you always return ERR_ABRT (and never return ERR_ABRT otherwise
311   or you will risk accessing deallocated memory or memory leaks!
312
313
314 If a connection is aborted because of an error, the application is
315 alerted of this event by the err callback. Errors that might abort a
316 connection are when there is a shortage of memory. The callback
317 function to be called is set using the tcp_err() function.
318
319 - void tcp_err(struct tcp_pcb *pcb, void (* err)(void *arg,
320        err_t err))
321
322   The error callback function does not get the pcb passed to it as a
323   parameter since the pcb may already have been deallocated.
324
325
326 --- UDP interface
327
328 The UDP interface is similar to that of TCP, but due to the lower
329 level of complexity of UDP, the interface is significantly simpler.
330
331 - struct udp_pcb *udp_new(void)
332
333   Creates a new UDP pcb which can be used for UDP communication. The
334   pcb is not active until it has either been bound to a local address
335   or connected to a remote address.
336
337 - void udp_remove(struct udp_pcb *pcb)
338
339   Removes and deallocates the pcb.  
340   
341 - err_t udp_bind(struct udp_pcb *pcb, ip_addr_t *ipaddr,
342                  u16_t port)
343
344   Binds the pcb to a local address. The IP-address argument "ipaddr"
345   can be IP_ADDR_ANY to indicate that it should listen to any local IP
346   address. The function currently always return ERR_OK.
347
348 - err_t udp_connect(struct udp_pcb *pcb, ip_addr_t *ipaddr,
349                     u16_t port)
350
351   Sets the remote end of the pcb. This function does not generate any
352   network traffic, but only set the remote address of the pcb.
353
354 - err_t udp_disconnect(struct udp_pcb *pcb)
355
356   Remove the remote end of the pcb. This function does not generate
357   any network traffic, but only removes the remote address of the pcb.
358
359 - err_t udp_send(struct udp_pcb *pcb, struct pbuf *p)
360
361   Sends the pbuf p. The pbuf is not deallocated.
362
363 - void udp_recv(struct udp_pcb *pcb,
364                 void (* recv)(void *arg, struct udp_pcb *upcb,
365                                          struct pbuf *p,
366                                          ip_addr_t *addr,
367                                          u16_t port),
368                               void *recv_arg)
369
370   Specifies a callback function that should be called when a UDP
371   datagram is received.
372   
373
374 --- System initalization
375
376 A truly complete and generic sequence for initializing the lwIP stack
377 cannot be given because it depends on additional initializations for
378 your runtime environment (e.g. timers).
379
380 We can give you some idea on how to proceed when using the raw API.
381 We assume a configuration using a single Ethernet netif and the
382 UDP and TCP transport layers, IPv4 and the DHCP client.
383
384 Call these functions in the order of appearance:
385
386 - lwip_init()
387
388   Initialize the lwIP stack and all of its subsystems.
389
390 - netif_add(struct netif *netif, const ip4_addr_t *ipaddr,
391             const ip4_addr_t *netmask, const ip4_addr_t *gw,
392             void *state, netif_init_fn init, netif_input_fn input)
393
394   Adds your network interface to the netif_list. Allocate a struct
395   netif and pass a pointer to this structure as the first argument.
396   Give pointers to cleared ip_addr structures when using DHCP,
397   or fill them with sane numbers otherwise. The state pointer may be NULL.
398
399   The init function pointer must point to a initialization function for
400   your Ethernet netif interface. The following code illustrates its use.
401   
402   err_t netif_if_init(struct netif *netif)
403   {
404     u8_t i;
405     
406     for (i = 0; i < ETHARP_HWADDR_LEN; i++) {
407       netif->hwaddr[i] = some_eth_addr[i];
408     }
409     init_my_eth_device();
410     return ERR_OK;
411   }
412   
413   For Ethernet drivers, the input function pointer must point to the lwIP
414   function ethernet_input() declared in "netif/etharp.h". Other drivers
415   must use ip_input() declared in "lwip/ip.h".
416   
417 - netif_set_default(struct netif *netif)
418
419   Registers the default network interface.
420
421 - netif_set_link_up(struct netif *netif)
422
423   This is the hardware link state; e.g. whether cable is plugged for wired
424   Ethernet interface. This function must be called even if you don't know
425   the current state. Having link up and link down events is optional but
426   DHCP and IPv6 discover benefit well from those events.
427
428 - netif_set_up(struct netif *netif)
429
430   This is the administrative (= software) state of the netif, when the
431   netif is fully configured this function must be called.
432
433 - dhcp_start(struct netif *netif)
434
435   Creates a new DHCP client for this interface on the first call.
436   
437   You can peek in the netif->dhcp struct for the actual DHCP status.
438
439 - sys_check_timeouts()
440
441   When the system is running, you have to periodically call
442   sys_check_timeouts() which will handle all timers for all protocols in
443   the stack; add this to your main loop or equivalent.
444
445
446 --- Optimalization hints
447
448 The first thing you want to optimize is the lwip_standard_checksum()
449 routine from src/core/inet.c. You can override this standard
450 function with the #define LWIP_CHKSUM <your_checksum_routine>.
451
452 There are C examples given in inet.c or you might want to
453 craft an assembly function for this. RFC1071 is a good
454 introduction to this subject.
455
456 Other significant improvements can be made by supplying
457 assembly or inline replacements for htons() and htonl()
458 if you're using a little-endian architecture.
459 #define lwip_htons(x) <your_htons>
460 #define lwip_htonl(x) <your_htonl>
461 If you #define them to htons() and htonl(), you should
462 #define LWIP_DONT_PROVIDE_BYTEORDER_FUNCTIONS to prevent lwIP from
463 defining hton*/ntoh* compatibility macros.
464
465 Check your network interface driver if it reads at
466 a higher speed than the maximum wire-speed. If the
467 hardware isn't serviced frequently and fast enough
468 buffer overflows are likely to occur.
469
470 E.g. when using the cs8900 driver, call cs8900if_service(ethif)
471 as frequently as possible. When using an RTOS let the cs8900 interrupt
472 wake a high priority task that services your driver using a binary
473 semaphore or event flag. Some drivers might allow additional tuning
474 to match your application and network.
475
476 For a production release it is recommended to set LWIP_STATS to 0.
477 Note that speed performance isn't influenced much by simply setting
478 high values to the memory options.
479
480 For more optimization hints take a look at the lwIP wiki.
481
482 --- Zero-copy MACs
483
484 To achieve zero-copy on transmit, the data passed to the raw API must
485 remain unchanged until sent. Because the send- (or write-)functions return
486 when the packets have been enqueued for sending, data must be kept stable
487 after that, too.
488
489 This implies that PBUF_RAM/PBUF_POOL pbufs passed to raw-API send functions
490 must *not* be reused by the application unless their ref-count is 1.
491
492 For no-copy pbufs (PBUF_ROM/PBUF_REF), data must be kept unchanged, too,
493 but the stack/driver will/must copy PBUF_REF'ed data when enqueueing, while
494 PBUF_ROM-pbufs are just enqueued (as ROM-data is expected to never change).
495
496 Also, data passed to tcp_write without the copy-flag must not be changed!
497
498 Therefore, be careful which type of PBUF you use and if you copy TCP data
499 or not!