IVGCVSW-4661 Add include Assert to GatordMockService.cpp
[platform/upstream/armnn.git] / tests / YoloInferenceTest.hpp
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #pragma once
6
7 #include "InferenceTest.hpp"
8 #include "YoloDatabase.hpp"
9
10 #include <armnn/utility/Assert.hpp>
11 #include <armnn/utility/IgnoreUnused.hpp>
12
13 #include <algorithm>
14 #include <array>
15 #include <utility>
16
17 #include <boost/multi_array.hpp>
18 #include <boost/test/tools/floating_point_comparison.hpp>
19
20 constexpr size_t YoloOutputSize = 1470;
21
22 template <typename Model>
23 class YoloTestCase : public InferenceModelTestCase<Model>
24 {
25 public:
26     YoloTestCase(Model& model,
27         unsigned int testCaseId,
28         YoloTestCaseData& testCaseData)
29      : InferenceModelTestCase<Model>(model, testCaseId, { std::move(testCaseData.m_InputImage) }, { YoloOutputSize })
30      , m_FloatComparer(boost::math::fpc::percent_tolerance(1.0f))
31      , m_TopObjectDetections(std::move(testCaseData.m_TopObjectDetections))
32     {
33     }
34
35     virtual TestCaseResult ProcessResult(const InferenceTestOptions& options) override
36     {
37         armnn::IgnoreUnused(options);
38
39         using Boost3dArray = boost::multi_array<float, 3>;
40
41         const std::vector<float>& output = boost::get<std::vector<float>>(this->GetOutputs()[0]);
42         ARMNN_ASSERT(output.size() == YoloOutputSize);
43
44         constexpr Boost3dArray::index gridSize = 7;
45         constexpr Boost3dArray::index numClasses = 20;
46         constexpr Boost3dArray::index numScales = 2;
47
48         const float* outputPtr =  output.data();
49
50         // Range 0-980. Class probabilities. 7x7x20
51         Boost3dArray classProbabilities(boost::extents[gridSize][gridSize][numClasses]);
52         for (Boost3dArray::index y = 0; y < gridSize; ++y)
53         {
54             for (Boost3dArray::index x = 0; x < gridSize; ++x)
55             {
56                 for (Boost3dArray::index c = 0; c < numClasses; ++c)
57                 {
58                     classProbabilities[y][x][c] = *outputPtr++;
59                 }
60             }
61         }
62
63         // Range 980-1078. Scales. 7x7x2
64         Boost3dArray scales(boost::extents[gridSize][gridSize][numScales]);
65         for (Boost3dArray::index y = 0; y < gridSize; ++y)
66         {
67             for (Boost3dArray::index x = 0; x < gridSize; ++x)
68             {
69                 for (Boost3dArray::index s = 0; s < numScales; ++s)
70                 {
71                     scales[y][x][s] = *outputPtr++;
72                 }
73             }
74         }
75
76         // Range 1078-1469. Bounding boxes. 7x7x2x4
77         constexpr float imageWidthAsFloat = static_cast<float>(YoloImageWidth);
78         constexpr float imageHeightAsFloat = static_cast<float>(YoloImageHeight);
79
80         boost::multi_array<float, 4> boxes(boost::extents[gridSize][gridSize][numScales][4]);
81         for (Boost3dArray::index y = 0; y < gridSize; ++y)
82         {
83             for (Boost3dArray::index x = 0; x < gridSize; ++x)
84             {
85                 for (Boost3dArray::index s = 0; s < numScales; ++s)
86                 {
87                     float bx = *outputPtr++;
88                     float by = *outputPtr++;
89                     float bw = *outputPtr++;
90                     float bh = *outputPtr++;
91
92                     boxes[y][x][s][0] = ((bx + static_cast<float>(x)) / 7.0f) * imageWidthAsFloat;
93                     boxes[y][x][s][1] = ((by + static_cast<float>(y)) / 7.0f) * imageHeightAsFloat;
94                     boxes[y][x][s][2] = bw * bw * static_cast<float>(imageWidthAsFloat);
95                     boxes[y][x][s][3] = bh * bh * static_cast<float>(imageHeightAsFloat);
96                 }
97             }
98         }
99         ARMNN_ASSERT(output.data() + YoloOutputSize == outputPtr);
100
101         std::vector<YoloDetectedObject> detectedObjects;
102         detectedObjects.reserve(gridSize * gridSize * numScales * numClasses);
103
104         for (Boost3dArray::index y = 0; y < gridSize; ++y)
105         {
106             for (Boost3dArray::index x = 0; x < gridSize; ++x)
107             {
108                 for (Boost3dArray::index s = 0; s < numScales; ++s)
109                 {
110                     for (Boost3dArray::index c = 0; c < numClasses; ++c)
111                     {
112                         // Resolved confidence: class probabilities * scales.
113                         const float confidence = classProbabilities[y][x][c] * scales[y][x][s];
114
115                         // Resolves bounding box and stores.
116                         YoloBoundingBox box;
117                         box.m_X = boxes[y][x][s][0];
118                         box.m_Y = boxes[y][x][s][1];
119                         box.m_W = boxes[y][x][s][2];
120                         box.m_H = boxes[y][x][s][3];
121
122                         detectedObjects.emplace_back(c, box, confidence);
123                     }
124                 }
125             }
126         }
127
128         // Sorts detected objects by confidence.
129         std::sort(detectedObjects.begin(), detectedObjects.end(),
130             [](const YoloDetectedObject& a, const YoloDetectedObject& b)
131             {
132                 // Sorts by largest confidence first, then by class.
133                 return a.m_Confidence > b.m_Confidence
134                     || (a.m_Confidence == b.m_Confidence && a.m_Class > b.m_Class);
135             });
136
137         // Checks the top N detections.
138         auto outputIt  = detectedObjects.begin();
139         auto outputEnd = detectedObjects.end();
140
141         for (const YoloDetectedObject& expectedDetection : m_TopObjectDetections)
142         {
143             if (outputIt == outputEnd)
144             {
145                 // Somehow expected more things to check than detections found by the model.
146                 return TestCaseResult::Abort;
147             }
148
149             const YoloDetectedObject& detectedObject = *outputIt;
150             if (detectedObject.m_Class != expectedDetection.m_Class)
151             {
152                 ARMNN_LOG(error) << "Prediction for test case " << this->GetTestCaseId() <<
153                     " is incorrect: Expected (" << expectedDetection.m_Class << ")" <<
154                     " but predicted (" << detectedObject.m_Class << ")";
155                 return TestCaseResult::Failed;
156             }
157
158             if (!m_FloatComparer(detectedObject.m_Box.m_X, expectedDetection.m_Box.m_X) ||
159                 !m_FloatComparer(detectedObject.m_Box.m_Y, expectedDetection.m_Box.m_Y) ||
160                 !m_FloatComparer(detectedObject.m_Box.m_W, expectedDetection.m_Box.m_W) ||
161                 !m_FloatComparer(detectedObject.m_Box.m_H, expectedDetection.m_Box.m_H) ||
162                 !m_FloatComparer(detectedObject.m_Confidence, expectedDetection.m_Confidence))
163             {
164                 ARMNN_LOG(error) << "Detected bounding box for test case " << this->GetTestCaseId() <<
165                     " is incorrect";
166                 return TestCaseResult::Failed;
167             }
168
169             ++outputIt;
170         }
171
172         return TestCaseResult::Ok;
173     }
174
175 private:
176     boost::math::fpc::close_at_tolerance<float> m_FloatComparer;
177     std::vector<YoloDetectedObject> m_TopObjectDetections;
178 };
179
180 template <typename Model>
181 class YoloTestCaseProvider : public IInferenceTestCaseProvider
182 {
183 public:
184     template <typename TConstructModelCallable>
185     explicit YoloTestCaseProvider(TConstructModelCallable constructModel)
186         : m_ConstructModel(constructModel)
187     {
188     }
189
190     virtual void AddCommandLineOptions(boost::program_options::options_description& options) override
191     {
192         namespace po = boost::program_options;
193
194         options.add_options()
195             ("data-dir,d", po::value<std::string>(&m_DataDir)->required(),
196                 "Path to directory containing test data");
197
198         Model::AddCommandLineOptions(options, m_ModelCommandLineOptions);
199     }
200
201     virtual bool ProcessCommandLineOptions(const InferenceTestOptions &commonOptions) override
202     {
203         if (!ValidateDirectory(m_DataDir))
204         {
205             return false;
206         }
207
208         m_Model = m_ConstructModel(commonOptions, m_ModelCommandLineOptions);
209         if (!m_Model)
210         {
211             return false;
212         }
213
214         m_Database = std::make_unique<YoloDatabase>(m_DataDir.c_str());
215         if (!m_Database)
216         {
217             return false;
218         }
219
220         return true;
221     }
222
223     virtual std::unique_ptr<IInferenceTestCase> GetTestCase(unsigned int testCaseId) override
224     {
225         std::unique_ptr<YoloTestCaseData> testCaseData = m_Database->GetTestCaseData(testCaseId);
226         if (!testCaseData)
227         {
228             return nullptr;
229         }
230
231         return std::make_unique<YoloTestCase<Model>>(*m_Model, testCaseId, *testCaseData);
232     }
233
234 private:
235     typename Model::CommandLineOptions m_ModelCommandLineOptions;
236     std::function<std::unique_ptr<Model>(const InferenceTestOptions&,
237                                          typename Model::CommandLineOptions)> m_ConstructModel;
238     std::unique_ptr<Model> m_Model;
239
240     std::string m_DataDir;
241     std::unique_ptr<YoloDatabase> m_Database;
242 };