2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
7 #include "InferenceTest.hpp"
8 #include "YoloDatabase.hpp"
10 #include <armnn/utility/Assert.hpp>
11 #include <armnn/utility/IgnoreUnused.hpp>
17 #include <boost/multi_array.hpp>
18 #include <boost/test/tools/floating_point_comparison.hpp>
20 constexpr size_t YoloOutputSize = 1470;
22 template <typename Model>
23 class YoloTestCase : public InferenceModelTestCase<Model>
26 YoloTestCase(Model& model,
27 unsigned int testCaseId,
28 YoloTestCaseData& testCaseData)
29 : InferenceModelTestCase<Model>(model, testCaseId, { std::move(testCaseData.m_InputImage) }, { YoloOutputSize })
30 , m_FloatComparer(boost::math::fpc::percent_tolerance(1.0f))
31 , m_TopObjectDetections(std::move(testCaseData.m_TopObjectDetections))
35 virtual TestCaseResult ProcessResult(const InferenceTestOptions& options) override
37 armnn::IgnoreUnused(options);
39 using Boost3dArray = boost::multi_array<float, 3>;
41 const std::vector<float>& output = boost::get<std::vector<float>>(this->GetOutputs()[0]);
42 ARMNN_ASSERT(output.size() == YoloOutputSize);
44 constexpr Boost3dArray::index gridSize = 7;
45 constexpr Boost3dArray::index numClasses = 20;
46 constexpr Boost3dArray::index numScales = 2;
48 const float* outputPtr = output.data();
50 // Range 0-980. Class probabilities. 7x7x20
51 Boost3dArray classProbabilities(boost::extents[gridSize][gridSize][numClasses]);
52 for (Boost3dArray::index y = 0; y < gridSize; ++y)
54 for (Boost3dArray::index x = 0; x < gridSize; ++x)
56 for (Boost3dArray::index c = 0; c < numClasses; ++c)
58 classProbabilities[y][x][c] = *outputPtr++;
63 // Range 980-1078. Scales. 7x7x2
64 Boost3dArray scales(boost::extents[gridSize][gridSize][numScales]);
65 for (Boost3dArray::index y = 0; y < gridSize; ++y)
67 for (Boost3dArray::index x = 0; x < gridSize; ++x)
69 for (Boost3dArray::index s = 0; s < numScales; ++s)
71 scales[y][x][s] = *outputPtr++;
76 // Range 1078-1469. Bounding boxes. 7x7x2x4
77 constexpr float imageWidthAsFloat = static_cast<float>(YoloImageWidth);
78 constexpr float imageHeightAsFloat = static_cast<float>(YoloImageHeight);
80 boost::multi_array<float, 4> boxes(boost::extents[gridSize][gridSize][numScales][4]);
81 for (Boost3dArray::index y = 0; y < gridSize; ++y)
83 for (Boost3dArray::index x = 0; x < gridSize; ++x)
85 for (Boost3dArray::index s = 0; s < numScales; ++s)
87 float bx = *outputPtr++;
88 float by = *outputPtr++;
89 float bw = *outputPtr++;
90 float bh = *outputPtr++;
92 boxes[y][x][s][0] = ((bx + static_cast<float>(x)) / 7.0f) * imageWidthAsFloat;
93 boxes[y][x][s][1] = ((by + static_cast<float>(y)) / 7.0f) * imageHeightAsFloat;
94 boxes[y][x][s][2] = bw * bw * static_cast<float>(imageWidthAsFloat);
95 boxes[y][x][s][3] = bh * bh * static_cast<float>(imageHeightAsFloat);
99 ARMNN_ASSERT(output.data() + YoloOutputSize == outputPtr);
101 std::vector<YoloDetectedObject> detectedObjects;
102 detectedObjects.reserve(gridSize * gridSize * numScales * numClasses);
104 for (Boost3dArray::index y = 0; y < gridSize; ++y)
106 for (Boost3dArray::index x = 0; x < gridSize; ++x)
108 for (Boost3dArray::index s = 0; s < numScales; ++s)
110 for (Boost3dArray::index c = 0; c < numClasses; ++c)
112 // Resolved confidence: class probabilities * scales.
113 const float confidence = classProbabilities[y][x][c] * scales[y][x][s];
115 // Resolves bounding box and stores.
117 box.m_X = boxes[y][x][s][0];
118 box.m_Y = boxes[y][x][s][1];
119 box.m_W = boxes[y][x][s][2];
120 box.m_H = boxes[y][x][s][3];
122 detectedObjects.emplace_back(c, box, confidence);
128 // Sorts detected objects by confidence.
129 std::sort(detectedObjects.begin(), detectedObjects.end(),
130 [](const YoloDetectedObject& a, const YoloDetectedObject& b)
132 // Sorts by largest confidence first, then by class.
133 return a.m_Confidence > b.m_Confidence
134 || (a.m_Confidence == b.m_Confidence && a.m_Class > b.m_Class);
137 // Checks the top N detections.
138 auto outputIt = detectedObjects.begin();
139 auto outputEnd = detectedObjects.end();
141 for (const YoloDetectedObject& expectedDetection : m_TopObjectDetections)
143 if (outputIt == outputEnd)
145 // Somehow expected more things to check than detections found by the model.
146 return TestCaseResult::Abort;
149 const YoloDetectedObject& detectedObject = *outputIt;
150 if (detectedObject.m_Class != expectedDetection.m_Class)
152 ARMNN_LOG(error) << "Prediction for test case " << this->GetTestCaseId() <<
153 " is incorrect: Expected (" << expectedDetection.m_Class << ")" <<
154 " but predicted (" << detectedObject.m_Class << ")";
155 return TestCaseResult::Failed;
158 if (!m_FloatComparer(detectedObject.m_Box.m_X, expectedDetection.m_Box.m_X) ||
159 !m_FloatComparer(detectedObject.m_Box.m_Y, expectedDetection.m_Box.m_Y) ||
160 !m_FloatComparer(detectedObject.m_Box.m_W, expectedDetection.m_Box.m_W) ||
161 !m_FloatComparer(detectedObject.m_Box.m_H, expectedDetection.m_Box.m_H) ||
162 !m_FloatComparer(detectedObject.m_Confidence, expectedDetection.m_Confidence))
164 ARMNN_LOG(error) << "Detected bounding box for test case " << this->GetTestCaseId() <<
166 return TestCaseResult::Failed;
172 return TestCaseResult::Ok;
176 boost::math::fpc::close_at_tolerance<float> m_FloatComparer;
177 std::vector<YoloDetectedObject> m_TopObjectDetections;
180 template <typename Model>
181 class YoloTestCaseProvider : public IInferenceTestCaseProvider
184 template <typename TConstructModelCallable>
185 explicit YoloTestCaseProvider(TConstructModelCallable constructModel)
186 : m_ConstructModel(constructModel)
190 virtual void AddCommandLineOptions(boost::program_options::options_description& options) override
192 namespace po = boost::program_options;
194 options.add_options()
195 ("data-dir,d", po::value<std::string>(&m_DataDir)->required(),
196 "Path to directory containing test data");
198 Model::AddCommandLineOptions(options, m_ModelCommandLineOptions);
201 virtual bool ProcessCommandLineOptions(const InferenceTestOptions &commonOptions) override
203 if (!ValidateDirectory(m_DataDir))
208 m_Model = m_ConstructModel(commonOptions, m_ModelCommandLineOptions);
214 m_Database = std::make_unique<YoloDatabase>(m_DataDir.c_str());
223 virtual std::unique_ptr<IInferenceTestCase> GetTestCase(unsigned int testCaseId) override
225 std::unique_ptr<YoloTestCaseData> testCaseData = m_Database->GetTestCaseData(testCaseId);
231 return std::make_unique<YoloTestCase<Model>>(*m_Model, testCaseId, *testCaseData);
235 typename Model::CommandLineOptions m_ModelCommandLineOptions;
236 std::function<std::unique_ptr<Model>(const InferenceTestOptions&,
237 typename Model::CommandLineOptions)> m_ConstructModel;
238 std::unique_ptr<Model> m_Model;
240 std::string m_DataDir;
241 std::unique_ptr<YoloDatabase> m_Database;