Update ACL pin to 1c2ff950071c5b4fd6e83487083d23c96637545f
[platform/upstream/armnn.git] / tests / InferenceTestImage.cpp
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #include "InferenceTestImage.hpp"
6
7 #include <armnn/utility/IgnoreUnused.hpp>
8
9 #include <boost/format.hpp>
10 #include <boost/numeric/conversion/cast.hpp>
11
12 #include <array>
13
14 #define STB_IMAGE_IMPLEMENTATION
15 #include <stb/stb_image.h>
16
17 #define STB_IMAGE_RESIZE_IMPLEMENTATION
18 #include <stb/stb_image_resize.h>
19
20 #define STB_IMAGE_WRITE_IMPLEMENTATION
21 #include <stb/stb_image_write.h>
22
23 namespace
24 {
25
26 unsigned int GetImageChannelIndex(ImageChannelLayout channelLayout, ImageChannel channel)
27 {
28     switch (channelLayout)
29     {
30     case ImageChannelLayout::Rgb:
31         return static_cast<unsigned int>(channel);
32     case ImageChannelLayout::Bgr:
33         return 2u - static_cast<unsigned int>(channel);
34     default:
35         throw UnknownImageChannelLayout(boost::str(boost::format("Unknown layout %1%")
36             % static_cast<int>(channelLayout)));
37     }
38 }
39
40 inline float Lerp(float a, float b, float w)
41 {
42     return w * b + (1.f - w) * a;
43 }
44
45 inline void PutData(std::vector<float> & data,
46                     const unsigned int width,
47                     const unsigned int x,
48                     const unsigned int y,
49                     const unsigned int c,
50                     float value)
51 {
52     data[(3*((y*width)+x)) + c] = value;
53 }
54
55 std::vector<float> ResizeBilinearAndNormalize(const InferenceTestImage & image,
56                                               const unsigned int outputWidth,
57                                               const unsigned int outputHeight,
58                                               const float scale,
59                                               const std::array<float, 3>& mean,
60                                               const std::array<float, 3>& stddev)
61 {
62     std::vector<float> out;
63     out.resize(outputWidth * outputHeight * 3);
64
65     // We follow the definition of TensorFlow and AndroidNN: the top-left corner of a texel in the output
66     // image is projected into the input image to figure out the interpolants and weights. Note that this
67     // will yield different results than if projecting the centre of output texels.
68
69     const unsigned int inputWidth = image.GetWidth();
70     const unsigned int inputHeight = image.GetHeight();
71
72     // How much to scale pixel coordinates in the output image to get the corresponding pixel coordinates
73     // in the input image.
74     const float scaleY = boost::numeric_cast<float>(inputHeight) / boost::numeric_cast<float>(outputHeight);
75     const float scaleX = boost::numeric_cast<float>(inputWidth) / boost::numeric_cast<float>(outputWidth);
76
77     uint8_t rgb_x0y0[3];
78     uint8_t rgb_x1y0[3];
79     uint8_t rgb_x0y1[3];
80     uint8_t rgb_x1y1[3];
81
82     for (unsigned int y = 0; y < outputHeight; ++y)
83     {
84         // Corresponding real-valued height coordinate in input image.
85         const float iy = boost::numeric_cast<float>(y) * scaleY;
86
87         // Discrete height coordinate of top-left texel (in the 2x2 texel area used for interpolation).
88         const float fiy = floorf(iy);
89         const unsigned int y0 = boost::numeric_cast<unsigned int>(fiy);
90
91         // Interpolation weight (range [0,1])
92         const float yw = iy - fiy;
93
94         for (unsigned int x = 0; x < outputWidth; ++x)
95         {
96             // Real-valued and discrete width coordinates in input image.
97             const float ix = boost::numeric_cast<float>(x) * scaleX;
98             const float fix = floorf(ix);
99             const unsigned int x0 = boost::numeric_cast<unsigned int>(fix);
100
101             // Interpolation weight (range [0,1]).
102             const float xw = ix - fix;
103
104             // Discrete width/height coordinates of texels below and to the right of (x0, y0).
105             const unsigned int x1 = std::min(x0 + 1, inputWidth - 1u);
106             const unsigned int y1 = std::min(y0 + 1, inputHeight - 1u);
107
108             std::tie(rgb_x0y0[0], rgb_x0y0[1], rgb_x0y0[2]) = image.GetPixelAs3Channels(x0, y0);
109             std::tie(rgb_x1y0[0], rgb_x1y0[1], rgb_x1y0[2]) = image.GetPixelAs3Channels(x1, y0);
110             std::tie(rgb_x0y1[0], rgb_x0y1[1], rgb_x0y1[2]) = image.GetPixelAs3Channels(x0, y1);
111             std::tie(rgb_x1y1[0], rgb_x1y1[1], rgb_x1y1[2]) = image.GetPixelAs3Channels(x1, y1);
112
113             for (unsigned c=0; c<3; ++c)
114             {
115                 const float ly0 = Lerp(float(rgb_x0y0[c]), float(rgb_x1y0[c]), xw);
116                 const float ly1 = Lerp(float(rgb_x0y1[c]), float(rgb_x1y1[c]), xw);
117                 const float l = Lerp(ly0, ly1, yw);
118                 PutData(out, outputWidth, x, y, c, ((l / scale) - mean[c]) / stddev[c]);
119             }
120         }
121     }
122     return out;
123 }
124
125 } // namespace
126
127 InferenceTestImage::InferenceTestImage(char const* filePath)
128  : m_Width(0u)
129  , m_Height(0u)
130  , m_NumChannels(0u)
131 {
132     int width;
133     int height;
134     int channels;
135
136     using StbImageDataPtr = std::unique_ptr<unsigned char, decltype(&stbi_image_free)>;
137     StbImageDataPtr stbData(stbi_load(filePath, &width, &height, &channels, 0), &stbi_image_free);
138
139     if (stbData == nullptr)
140     {
141         throw InferenceTestImageLoadFailed(boost::str(boost::format("Could not load the image at %1%") % filePath));
142     }
143
144     if (width == 0 || height == 0)
145     {
146         throw InferenceTestImageLoadFailed(boost::str(boost::format("Could not load empty image at %1%") % filePath));
147     }
148
149     m_Width = boost::numeric_cast<unsigned int>(width);
150     m_Height = boost::numeric_cast<unsigned int>(height);
151     m_NumChannels = boost::numeric_cast<unsigned int>(channels);
152
153     const unsigned int sizeInBytes = GetSizeInBytes();
154     m_Data.resize(sizeInBytes);
155     memcpy(m_Data.data(), stbData.get(), sizeInBytes);
156 }
157
158 std::tuple<uint8_t, uint8_t, uint8_t> InferenceTestImage::GetPixelAs3Channels(unsigned int x, unsigned int y) const
159 {
160     if (x >= m_Width || y >= m_Height)
161     {
162         throw InferenceTestImageOutOfBoundsAccess(boost::str(boost::format("Attempted out of bounds image access. "
163             "Requested (%1%, %2%). Maximum valid coordinates (%3%, %4%).") % x % y % (m_Width - 1) % (m_Height - 1)));
164     }
165
166     const unsigned int pixelOffset = x * GetNumChannels() + y * GetWidth() * GetNumChannels();
167     const uint8_t* const pixelData = m_Data.data() + pixelOffset;
168     BOOST_ASSERT(pixelData <= (m_Data.data() + GetSizeInBytes()));
169
170     std::array<uint8_t, 3> outPixelData;
171     outPixelData.fill(0);
172
173     const unsigned int maxChannelsInPixel = std::min(GetNumChannels(), static_cast<unsigned int>(outPixelData.size()));
174     for (unsigned int c = 0; c < maxChannelsInPixel; ++c)
175     {
176         outPixelData[c] = pixelData[c];
177     }
178
179     return std::make_tuple(outPixelData[0], outPixelData[1], outPixelData[2]);
180 }
181
182
183 void InferenceTestImage::StbResize(InferenceTestImage& im, const unsigned int newWidth, const unsigned int newHeight)
184 {
185     std::vector<uint8_t> newData;
186     newData.resize(newWidth * newHeight * im.GetNumChannels() * im.GetSingleElementSizeInBytes());
187
188     // boost::numeric_cast<>() is used for user-provided data (protecting about overflows).
189     // static_cast<> is ok for internal data (assumes that, when internal data was originally provided by a user,
190     // a boost::numeric_cast<>() handled the conversion).
191     const int nW = boost::numeric_cast<int>(newWidth);
192     const int nH = boost::numeric_cast<int>(newHeight);
193
194     const int w = static_cast<int>(im.GetWidth());
195     const int h = static_cast<int>(im.GetHeight());
196     const int numChannels = static_cast<int>(im.GetNumChannels());
197
198     const int res = stbir_resize_uint8(im.m_Data.data(), w, h, 0, newData.data(), nW, nH, 0, numChannels);
199     if (res == 0)
200     {
201         throw InferenceTestImageResizeFailed("The resizing operation failed");
202     }
203
204     im.m_Data.swap(newData);
205     im.m_Width = newWidth;
206     im.m_Height = newHeight;
207 }
208
209 std::vector<float> InferenceTestImage::Resize(unsigned int newWidth,
210                                               unsigned int newHeight,
211                                               const armnn::CheckLocation& location,
212                                               const ResizingMethods meth,
213                                               const std::array<float, 3>& mean,
214                                               const std::array<float, 3>& stddev,
215                                               const float scale)
216 {
217     std::vector<float> out;
218     if (newWidth == 0 || newHeight == 0)
219     {
220         throw InferenceTestImageResizeFailed(boost::str(boost::format("None of the dimensions passed to a resize "
221             "operation can be zero. Requested width: %1%. Requested height: %2%.") % newWidth % newHeight));
222     }
223
224     switch (meth) {
225         case ResizingMethods::STB:
226         {
227             StbResize(*this, newWidth, newHeight);
228             break;
229         }
230         case ResizingMethods::BilinearAndNormalized:
231         {
232             out = ResizeBilinearAndNormalize(*this, newWidth, newHeight, scale, mean, stddev);
233             break;
234         }
235         default:
236             throw InferenceTestImageResizeFailed(boost::str(
237                 boost::format("Unknown resizing method asked ArmNN only supports {STB, BilinearAndNormalized} %1%")
238                               % location.AsString()));
239     }
240     return out;
241 }
242
243 void InferenceTestImage::Write(WriteFormat format, const char* filePath) const
244 {
245     const int w = static_cast<int>(GetWidth());
246     const int h = static_cast<int>(GetHeight());
247     const int numChannels = static_cast<int>(GetNumChannels());
248     int res = 0;
249
250     switch (format)
251     {
252     case WriteFormat::Png:
253         {
254             res = stbi_write_png(filePath, w, h, numChannels, m_Data.data(), 0);
255             break;
256         }
257     case WriteFormat::Bmp:
258         {
259             res = stbi_write_bmp(filePath, w, h, numChannels, m_Data.data());
260             break;
261         }
262     case WriteFormat::Tga:
263         {
264             res = stbi_write_tga(filePath, w, h, numChannels, m_Data.data());
265             break;
266         }
267     default:
268         throw InferenceTestImageWriteFailed(boost::str(boost::format("Unknown format %1%")
269             % static_cast<int>(format)));
270     }
271
272     if (res == 0)
273     {
274         throw InferenceTestImageWriteFailed(boost::str(boost::format("An error occurred when writing to file %1%")
275             % filePath));
276     }
277 }
278
279 template <typename TProcessValueCallable>
280 std::vector<float> GetImageDataInArmNnLayoutAsFloats(ImageChannelLayout channelLayout,
281     const InferenceTestImage& image,
282     TProcessValueCallable processValue)
283 {
284     const unsigned int h = image.GetHeight();
285     const unsigned int w = image.GetWidth();
286
287     std::vector<float> imageData;
288     imageData.resize(h * w * 3);
289
290     for (unsigned int j = 0; j < h; ++j)
291     {
292         for (unsigned int i = 0; i < w; ++i)
293         {
294             uint8_t r, g, b;
295             std::tie(r, g, b) = image.GetPixelAs3Channels(i, j);
296
297             // ArmNN order: C, H, W
298             const unsigned int rDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::R) * h * w + j * w + i;
299             const unsigned int gDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::G) * h * w + j * w + i;
300             const unsigned int bDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::B) * h * w + j * w + i;
301
302             imageData[rDstIndex] = processValue(ImageChannel::R, float(r));
303             imageData[gDstIndex] = processValue(ImageChannel::G, float(g));
304             imageData[bDstIndex] = processValue(ImageChannel::B, float(b));
305         }
306     }
307
308     return imageData;
309 }
310
311 std::vector<float> GetImageDataInArmNnLayoutAsNormalizedFloats(ImageChannelLayout layout,
312     const InferenceTestImage& image)
313 {
314     return GetImageDataInArmNnLayoutAsFloats(layout, image,
315         [](ImageChannel channel, float value)
316         {
317             armnn::IgnoreUnused(channel);
318             return value / 255.f;
319         });
320 }
321
322 std::vector<float> GetImageDataInArmNnLayoutAsFloatsSubtractingMean(ImageChannelLayout layout,
323     const InferenceTestImage& image,
324     const std::array<float, 3>& mean)
325 {
326     return GetImageDataInArmNnLayoutAsFloats(layout, image,
327         [layout, &mean](ImageChannel channel, float value)
328         {
329             const unsigned int channelIndex = GetImageChannelIndex(layout, channel);
330             return value - mean[channelIndex];
331         });
332 }
333
334 std::vector<float> GetImageDataAsNormalizedFloats(ImageChannelLayout layout,
335                                                   const InferenceTestImage& image)
336 {
337     std::vector<float> imageData;
338     const unsigned int h = image.GetHeight();
339     const unsigned int w = image.GetWidth();
340
341     const unsigned int rDstIndex = GetImageChannelIndex(layout, ImageChannel::R);
342     const unsigned int gDstIndex = GetImageChannelIndex(layout, ImageChannel::G);
343     const unsigned int bDstIndex = GetImageChannelIndex(layout, ImageChannel::B);
344
345     imageData.resize(h * w * 3);
346     unsigned int offset = 0;
347
348     for (unsigned int j = 0; j < h; ++j)
349     {
350         for (unsigned int i = 0; i < w; ++i)
351         {
352             uint8_t r, g, b;
353             std::tie(r, g, b) = image.GetPixelAs3Channels(i, j);
354
355             imageData[offset+rDstIndex] = float(r) / 255.0f;
356             imageData[offset+gDstIndex] = float(g) / 255.0f;
357             imageData[offset+bDstIndex] = float(b) / 255.0f;
358             offset += 3;
359         }
360     }
361
362     return imageData;
363 }