1 // SPDX-License-Identifier: GPL-2.0+
3 * Tests for the core driver model code
5 * Copyright (c) 2013 Google, Inc
14 #include <asm/global_data.h>
15 #include <dm/device-internal.h>
19 #include <dm/uclass-internal.h>
20 #include <test/test.h>
23 DECLARE_GLOBAL_DATA_PTR;
29 TEST_INTVAL_MANUAL = 101112,
30 TEST_INTVAL_PRE_RELOC = 7,
33 static const struct dm_test_pdata test_pdata[] = {
34 { .ping_add = TEST_INTVAL1, },
35 { .ping_add = TEST_INTVAL2, },
36 { .ping_add = TEST_INTVAL3, },
39 static const struct dm_test_pdata test_pdata_manual = {
40 .ping_add = TEST_INTVAL_MANUAL,
43 static const struct dm_test_pdata test_pdata_pre_reloc = {
44 .ping_add = TEST_INTVAL_PRE_RELOC,
47 U_BOOT_DRVINFO(dm_test_info1) = {
49 .plat = &test_pdata[0],
52 U_BOOT_DRVINFO(dm_test_info2) = {
54 .plat = &test_pdata[1],
57 U_BOOT_DRVINFO(dm_test_info3) = {
59 .plat = &test_pdata[2],
62 static struct driver_info driver_info_manual = {
63 .name = "test_manual_drv",
64 .plat = &test_pdata_manual,
67 static struct driver_info driver_info_pre_reloc = {
68 .name = "test_pre_reloc_drv",
69 .plat = &test_pdata_pre_reloc,
72 static struct driver_info driver_info_act_dma = {
73 .name = "test_act_dma_drv",
76 static struct driver_info driver_info_vital_clk = {
77 .name = "test_vital_clk_drv",
80 static struct driver_info driver_info_act_dma_vital_clk = {
81 .name = "test_act_dma_vital_clk_drv",
84 void dm_leak_check_start(struct unit_test_state *uts)
86 uts->start = mallinfo();
87 if (!uts->start.uordblks)
88 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
91 int dm_leak_check_end(struct unit_test_state *uts)
96 /* Don't delete the root class, since we started with that */
97 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
100 uc = uclass_find(id);
103 ut_assertok(uclass_destroy(uc));
107 diff = end.uordblks - uts->start.uordblks;
109 printf("Leak: lost %#xd bytes\n", diff);
111 printf("Leak: gained %#xd bytes\n", -diff);
112 ut_asserteq(uts->start.uordblks, end.uordblks);
117 /* Test that binding with plat occurs correctly */
118 static int dm_test_autobind(struct unit_test_state *uts)
120 struct dm_test_state *dms = uts->priv;
124 * We should have a single class (UCLASS_ROOT) and a single root
125 * device with no children.
127 ut_assert(dms->root);
128 ut_asserteq(1, list_count_items(gd->uclass_root));
129 ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
130 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
132 ut_assertok(dm_scan_plat(false));
134 /* We should have our test class now at least, plus more children */
135 ut_assert(1 < list_count_items(gd->uclass_root));
136 ut_assert(0 < list_count_items(&gd->dm_root->child_head));
138 /* Our 3 dm_test_infox children should be bound to the test uclass */
139 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
141 /* No devices should be probed */
142 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
143 ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
145 /* Our test driver should have been bound 3 times */
146 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
150 DM_TEST(dm_test_autobind, 0);
152 /* Test that binding with uclass plat allocation occurs correctly */
153 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
155 struct dm_test_perdev_uc_pdata *uc_pdata;
159 ut_assertok(uclass_get(UCLASS_TEST, &uc));
163 * Test if test uclass driver requires allocation for the uclass
164 * platform data and then check the dev->uclass_plat pointer.
166 ut_assert(uc->uc_drv->per_device_plat_auto);
168 for (uclass_find_first_device(UCLASS_TEST, &dev);
170 uclass_find_next_device(&dev)) {
171 ut_assertnonnull(dev);
173 uc_pdata = dev_get_uclass_plat(dev);
179 DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA);
181 /* Test that binding with uclass plat setting occurs correctly */
182 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
184 struct dm_test_perdev_uc_pdata *uc_pdata;
188 * In the test_postbind() method of test uclass driver, the uclass
189 * platform data should be set to three test int values - test it.
191 for (uclass_find_first_device(UCLASS_TEST, &dev);
193 uclass_find_next_device(&dev)) {
194 ut_assertnonnull(dev);
196 uc_pdata = dev_get_uclass_plat(dev);
198 ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
199 ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
200 ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
205 DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA);
207 /* Test that autoprobe finds all the expected devices */
208 static int dm_test_autoprobe(struct unit_test_state *uts)
210 struct dm_test_state *dms = uts->priv;
211 int expected_base_add;
216 ut_assertok(uclass_get(UCLASS_TEST, &uc));
219 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
220 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
221 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
223 /* The root device should not be activated until needed */
224 ut_assert(dev_get_flags(dms->root) & DM_FLAG_ACTIVATED);
227 * We should be able to find the three test devices, and they should
228 * all be activated as they are used (lazy activation, required by
231 for (i = 0; i < 3; i++) {
232 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
234 ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
235 "Driver %d/%s already activated", i, dev->name);
237 /* This should activate it */
238 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
240 ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
242 /* Activating a device should activate the root device */
244 ut_assert(dev_get_flags(dms->root) & DM_FLAG_ACTIVATED);
248 * Our 3 dm_test_info children should be passed to pre_probe and
251 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
252 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
254 /* Also we can check the per-device data */
255 expected_base_add = 0;
256 for (i = 0; i < 3; i++) {
257 struct dm_test_uclass_perdev_priv *priv;
258 struct dm_test_pdata *pdata;
260 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
263 priv = dev_get_uclass_priv(dev);
265 ut_asserteq(expected_base_add, priv->base_add);
267 pdata = dev_get_plat(dev);
268 expected_base_add += pdata->ping_add;
273 DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA);
275 /* Check that we see the correct plat in each device */
276 static int dm_test_plat(struct unit_test_state *uts)
278 const struct dm_test_pdata *pdata;
282 for (i = 0; i < 3; i++) {
283 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
285 pdata = dev_get_plat(dev);
286 ut_assert(pdata->ping_add == test_pdata[i].ping_add);
291 DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA);
293 /* Test that we can bind, probe, remove, unbind a driver */
294 static int dm_test_lifecycle(struct unit_test_state *uts)
296 struct dm_test_state *dms = uts->priv;
297 int op_count[DM_TEST_OP_COUNT];
298 struct udevice *dev, *test_dev;
302 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
304 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
307 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
308 == op_count[DM_TEST_OP_BIND] + 1);
309 ut_assert(!dev_get_priv(dev));
311 /* Probe the device - it should fail allocating private data */
312 dms->force_fail_alloc = 1;
313 ret = device_probe(dev);
314 ut_assert(ret == -ENOMEM);
315 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
316 == op_count[DM_TEST_OP_PROBE] + 1);
317 ut_assert(!dev_get_priv(dev));
319 /* Try again without the alloc failure */
320 dms->force_fail_alloc = 0;
321 ut_assertok(device_probe(dev));
322 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
323 == op_count[DM_TEST_OP_PROBE] + 2);
324 ut_assert(dev_get_priv(dev));
326 /* This should be device 3 in the uclass */
327 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
328 ut_assert(dev == test_dev);
331 ut_assertok(test_ping(dev, 100, &pingret));
332 ut_assert(pingret == 102);
334 /* Now remove device 3 */
335 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
336 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
337 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
339 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
340 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
341 ut_assertok(device_unbind(dev));
342 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
343 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
347 DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
349 /* Test that we can bind/unbind and the lists update correctly */
350 static int dm_test_ordering(struct unit_test_state *uts)
352 struct dm_test_state *dms = uts->priv;
353 struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
356 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
360 /* Bind two new devices (numbers 4 and 5) */
361 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
363 ut_assert(dev_penultimate);
364 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
368 /* Now remove device 3 */
369 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
370 ut_assertok(device_unbind(dev));
372 /* The device numbering should have shifted down one */
373 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
374 ut_assert(dev_penultimate == test_dev);
375 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
376 ut_assert(dev_last == test_dev);
378 /* Add back the original device 3, now in position 5 */
379 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
384 ut_assertok(test_ping(dev, 100, &pingret));
385 ut_assert(pingret == 102);
388 ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
389 ut_assertok(device_unbind(dev_penultimate));
390 ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
391 ut_assertok(device_unbind(dev_last));
393 /* Our device should now be in position 3 */
394 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
395 ut_assert(dev == test_dev);
397 /* Now remove device 3 */
398 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
399 ut_assertok(device_unbind(dev));
403 DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA);
405 /* Check that we can perform operations on a device (do a ping) */
406 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
407 uint32_t base, struct dm_test_priv *priv)
412 /* Getting the child device should allocate plat / priv */
413 ut_assertok(testfdt_ping(dev, 10, &pingret));
414 ut_assert(dev_get_priv(dev));
415 ut_assert(dev_get_plat(dev));
417 expected = 10 + base;
418 ut_asserteq(expected, pingret);
420 /* Do another ping */
421 ut_assertok(testfdt_ping(dev, 20, &pingret));
422 expected = 20 + base;
423 ut_asserteq(expected, pingret);
425 /* Now check the ping_total */
426 priv = dev_get_priv(dev);
427 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
433 /* Check that we can perform operations on devices */
434 static int dm_test_operations(struct unit_test_state *uts)
440 * Now check that the ping adds are what we expect. This is using the
441 * ping-add property in each node.
443 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
446 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
449 * Get the 'reg' property, which tells us what the ping add
450 * should be. We don't use the plat because we want
451 * to test the code that sets that up (testfdt_drv_probe()).
453 base = test_pdata[i].ping_add;
454 debug("dev=%d, base=%d\n", i, base);
456 ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
461 DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA);
463 /* Remove all drivers and check that things work */
464 static int dm_test_remove(struct unit_test_state *uts)
469 for (i = 0; i < 3; i++) {
470 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
472 ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
473 "Driver %d/%s not activated", i, dev->name);
474 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
475 ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
476 "Driver %d/%s should have deactivated", i,
478 ut_assert(!dev_get_priv(dev));
483 DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
485 /* Remove and recreate everything, check for memory leaks */
486 static int dm_test_leak(struct unit_test_state *uts)
490 for (i = 0; i < 2; i++) {
495 dm_leak_check_start(uts);
497 ut_assertok(dm_scan_plat(false));
498 ut_assertok(dm_scan_fdt(false));
500 /* Scanning the uclass is enough to probe all the devices */
501 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
502 for (ret = uclass_first_device(UCLASS_TEST, &dev);
504 ret = uclass_next_device(&dev))
509 ut_assertok(dm_leak_check_end(uts));
514 DM_TEST(dm_test_leak, 0);
516 /* Test uclass init/destroy methods */
517 static int dm_test_uclass(struct unit_test_state *uts)
521 ut_assertok(uclass_get(UCLASS_TEST, &uc));
522 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
523 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
524 ut_assert(uclass_get_priv(uc));
526 ut_assertok(uclass_destroy(uc));
527 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
528 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
532 DM_TEST(dm_test_uclass, 0);
535 * create_children() - Create children of a parent node
537 * @dms: Test system state
538 * @parent: Parent device
539 * @count: Number of children to create
540 * @key: Key value to put in first child. Subsequence children
541 * receive an incrementing value
542 * @child: If not NULL, then the child device pointers are written into
544 * @return 0 if OK, -ve on error
546 static int create_children(struct unit_test_state *uts, struct udevice *parent,
547 int count, int key, struct udevice *child[])
552 for (i = 0; i < count; i++) {
553 struct dm_test_pdata *pdata;
555 ut_assertok(device_bind_by_name(parent, false,
556 &driver_info_manual, &dev));
557 pdata = calloc(1, sizeof(*pdata));
558 pdata->ping_add = key + i;
559 dev_set_plat(dev, pdata);
567 #define NODE_COUNT 10
569 static int dm_test_children(struct unit_test_state *uts)
571 struct dm_test_state *dms = uts->priv;
572 struct udevice *top[NODE_COUNT];
573 struct udevice *child[NODE_COUNT];
574 struct udevice *grandchild[NODE_COUNT];
580 /* We don't care about the numbering for this test */
581 dms->skip_post_probe = 1;
583 ut_assert(NODE_COUNT > 5);
585 /* First create 10 top-level children */
586 ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
588 /* Now a few have their own children */
589 ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
590 ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
592 /* And grandchildren */
593 for (i = 0; i < NODE_COUNT; i++)
594 ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
595 i == 2 ? grandchild : NULL));
597 /* Check total number of devices */
598 total = NODE_COUNT * (3 + NODE_COUNT);
599 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
601 /* Try probing one of the grandchildren */
602 ut_assertok(uclass_get_device(UCLASS_TEST,
603 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
604 ut_asserteq_ptr(grandchild[0], dev);
607 * This should have probed the child and top node also, for a total
610 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
612 /* Probe the other grandchildren */
613 for (i = 1; i < NODE_COUNT; i++)
614 ut_assertok(device_probe(grandchild[i]));
616 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
618 /* Probe everything */
619 for (ret = uclass_first_device(UCLASS_TEST, &dev);
621 ret = uclass_next_device(&dev))
625 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
627 /* Remove a top-level child and check that the children are removed */
628 ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
629 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
630 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
632 /* Try one with grandchildren */
633 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
634 ut_asserteq_ptr(dev, top[5]);
635 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
636 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
637 dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
639 /* Try the same with unbind */
640 ut_assertok(device_unbind(top[2]));
641 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
642 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
644 /* Try one with grandchildren */
645 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
646 ut_asserteq_ptr(dev, top[6]);
647 ut_assertok(device_unbind(top[5]));
648 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
649 dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
653 DM_TEST(dm_test_children, 0);
655 static int dm_test_device_reparent(struct unit_test_state *uts)
657 struct dm_test_state *dms = uts->priv;
658 struct udevice *top[NODE_COUNT];
659 struct udevice *child[NODE_COUNT];
660 struct udevice *grandchild[NODE_COUNT];
666 /* We don't care about the numbering for this test */
667 dms->skip_post_probe = 1;
669 ut_assert(NODE_COUNT > 5);
671 /* First create 10 top-level children */
672 ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
674 /* Now a few have their own children */
675 ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
676 ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
678 /* And grandchildren */
679 for (i = 0; i < NODE_COUNT; i++)
680 ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
681 i == 2 ? grandchild : NULL));
683 /* Check total number of devices */
684 total = NODE_COUNT * (3 + NODE_COUNT);
685 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
687 /* Probe everything */
688 for (i = 0; i < total; i++)
689 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
691 /* Re-parent top-level children with no grandchildren. */
692 ut_assertok(device_reparent(top[3], top[0]));
693 /* try to get devices */
694 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
696 ret = uclass_find_next_device(&dev)) {
698 ut_assertnonnull(dev);
701 ut_assertok(device_reparent(top[4], top[0]));
702 /* try to get devices */
703 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
705 ret = uclass_find_next_device(&dev)) {
707 ut_assertnonnull(dev);
710 /* Re-parent top-level children with grandchildren. */
711 ut_assertok(device_reparent(top[2], top[0]));
712 /* try to get devices */
713 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
715 ret = uclass_find_next_device(&dev)) {
717 ut_assertnonnull(dev);
720 ut_assertok(device_reparent(top[5], top[2]));
721 /* try to get devices */
722 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
724 ret = uclass_find_next_device(&dev)) {
726 ut_assertnonnull(dev);
729 /* Re-parent grandchildren. */
730 ut_assertok(device_reparent(grandchild[0], top[1]));
731 /* try to get devices */
732 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
734 ret = uclass_find_next_device(&dev)) {
736 ut_assertnonnull(dev);
739 ut_assertok(device_reparent(grandchild[1], top[1]));
740 /* try to get devices */
741 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
743 ret = uclass_find_next_device(&dev)) {
745 ut_assertnonnull(dev);
748 /* Remove re-pareneted devices. */
749 ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
750 /* try to get devices */
751 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
753 ret = uclass_find_next_device(&dev)) {
755 ut_assertnonnull(dev);
758 ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
759 /* try to get devices */
760 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
762 ret = uclass_find_next_device(&dev)) {
764 ut_assertnonnull(dev);
767 ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
768 /* try to get devices */
769 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
771 ret = uclass_find_next_device(&dev)) {
773 ut_assertnonnull(dev);
776 ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
777 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
779 ret = uclass_find_next_device(&dev)) {
781 ut_assertnonnull(dev);
784 ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
785 /* try to get devices */
786 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
788 ret = uclass_find_next_device(&dev)) {
790 ut_assertnonnull(dev);
793 ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
794 /* try to get devices */
795 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
797 ret = uclass_find_next_device(&dev)) {
799 ut_assertnonnull(dev);
802 /* Try the same with unbind */
803 ut_assertok(device_unbind(top[3]));
804 ut_assertok(device_unbind(top[4]));
805 ut_assertok(device_unbind(top[5]));
806 ut_assertok(device_unbind(top[2]));
808 ut_assertok(device_unbind(grandchild[0]));
809 ut_assertok(device_unbind(grandchild[1]));
813 DM_TEST(dm_test_device_reparent, 0);
815 /* Test that pre-relocation devices work as expected */
816 static int dm_test_pre_reloc(struct unit_test_state *uts)
818 struct dm_test_state *dms = uts->priv;
821 /* The normal driver should refuse to bind before relocation */
822 ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
823 &driver_info_manual, &dev));
825 /* But this one is marked pre-reloc */
826 ut_assertok(device_bind_by_name(dms->root, true,
827 &driver_info_pre_reloc, &dev));
831 DM_TEST(dm_test_pre_reloc, 0);
834 * Test that removal of devices, either via the "normal" device_remove()
835 * API or via the device driver selective flag works as expected
837 static int dm_test_remove_active_dma(struct unit_test_state *uts)
839 struct dm_test_state *dms = uts->priv;
842 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_act_dma,
846 /* Probe the device */
847 ut_assertok(device_probe(dev));
849 /* Test if device is active right now */
850 ut_asserteq(true, device_active(dev));
852 /* Remove the device via selective remove flag */
853 dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
855 /* Test if device is inactive right now */
856 ut_asserteq(false, device_active(dev));
858 /* Probe the device again */
859 ut_assertok(device_probe(dev));
861 /* Test if device is active right now */
862 ut_asserteq(true, device_active(dev));
864 /* Remove the device via "normal" remove API */
865 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
867 /* Test if device is inactive right now */
868 ut_asserteq(false, device_active(dev));
871 * Test if a device without the active DMA flags is not removed upon
872 * the active DMA remove call
874 ut_assertok(device_unbind(dev));
875 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
879 /* Probe the device */
880 ut_assertok(device_probe(dev));
882 /* Test if device is active right now */
883 ut_asserteq(true, device_active(dev));
885 /* Remove the device via selective remove flag */
886 dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
888 /* Test if device is still active right now */
889 ut_asserteq(true, device_active(dev));
893 DM_TEST(dm_test_remove_active_dma, 0);
895 /* Test removal of 'vital' devices */
896 static int dm_test_remove_vital(struct unit_test_state *uts)
898 struct dm_test_state *dms = uts->priv;
899 struct udevice *normal, *dma, *vital, *dma_vital;
901 /* Skip the behaviour in test_post_probe() */
902 dms->skip_post_probe = 1;
904 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
906 ut_assertnonnull(normal);
908 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_act_dma,
910 ut_assertnonnull(dma);
912 ut_assertok(device_bind_by_name(dms->root, false,
913 &driver_info_vital_clk, &vital));
914 ut_assertnonnull(vital);
916 ut_assertok(device_bind_by_name(dms->root, false,
917 &driver_info_act_dma_vital_clk,
919 ut_assertnonnull(dma_vital);
921 /* Probe the devices */
922 ut_assertok(device_probe(normal));
923 ut_assertok(device_probe(dma));
924 ut_assertok(device_probe(vital));
925 ut_assertok(device_probe(dma_vital));
927 /* Check that devices are active right now */
928 ut_asserteq(true, device_active(normal));
929 ut_asserteq(true, device_active(dma));
930 ut_asserteq(true, device_active(vital));
931 ut_asserteq(true, device_active(dma_vital));
933 /* Remove active devices via selective remove flag */
934 dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
937 * Check that this only has an effect on the dma device, since two
938 * devices are vital and the third does not have active DMA
940 ut_asserteq(true, device_active(normal));
941 ut_asserteq(false, device_active(dma));
942 ut_asserteq(true, device_active(vital));
943 ut_asserteq(true, device_active(dma_vital));
945 /* Remove active devices via selective remove flag */
946 ut_assertok(device_probe(dma));
947 dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
949 /* This should have affected both active-dma devices */
950 ut_asserteq(true, device_active(normal));
951 ut_asserteq(false, device_active(dma));
952 ut_asserteq(true, device_active(vital));
953 ut_asserteq(false, device_active(dma_vital));
955 /* Remove non-vital devices */
956 ut_assertok(device_probe(dma));
957 ut_assertok(device_probe(dma_vital));
958 dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
960 /* This should have affected only non-vital devices */
961 ut_asserteq(false, device_active(normal));
962 ut_asserteq(false, device_active(dma));
963 ut_asserteq(true, device_active(vital));
964 ut_asserteq(true, device_active(dma_vital));
966 /* Remove vital devices via normal remove flag */
967 ut_assertok(device_probe(normal));
968 ut_assertok(device_probe(dma));
969 dm_remove_devices_flags(DM_REMOVE_NORMAL);
971 /* Check that all devices are inactive right now */
972 ut_asserteq(false, device_active(normal));
973 ut_asserteq(false, device_active(dma));
974 ut_asserteq(false, device_active(vital));
975 ut_asserteq(false, device_active(dma_vital));
979 DM_TEST(dm_test_remove_vital, 0);
981 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
985 ut_assertok(uclass_get(UCLASS_TEST, &uc));
988 gd->dm_root_f = NULL;
989 memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
991 ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
995 DM_TEST(dm_test_uclass_before_ready, 0);
997 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
1002 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
1004 ret = uclass_find_next_device(&dev)) {
1006 ut_assertnonnull(dev);
1009 ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
1014 DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA);
1016 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
1018 struct udevice *finddev;
1019 struct udevice *testdev;
1023 * For each test device found in fdt like: "a-test", "b-test", etc.,
1024 * use its name and try to find it by uclass_find_device_by_name().
1025 * Then, on success check if:
1026 * - current 'testdev' name is equal to the returned 'finddev' name
1027 * - current 'testdev' pointer is equal to the returned 'finddev'
1029 * We assume that, each uclass's device name is unique, so if not, then
1030 * this will fail on checking condition: testdev == finddev, since the
1031 * uclass_find_device_by_name(), returns the first device by given name.
1033 for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
1035 ret = uclass_find_next_device(&testdev)) {
1037 ut_assertnonnull(testdev);
1039 findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
1043 ut_assertok(findret);
1045 ut_asserteq_str(testdev->name, finddev->name);
1046 ut_asserteq_ptr(testdev, finddev);
1051 DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT);
1053 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
1055 struct udevice *dev;
1058 for (ret = uclass_first_device(UCLASS_TEST, &dev);
1060 ret = uclass_next_device(&dev)) {
1063 ut_assert(device_active(dev));
1068 DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA);
1070 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
1072 struct udevice *finddev;
1073 struct udevice *testdev;
1077 * For each test device found in fdt like: "a-test", "b-test", etc.,
1078 * use its name and try to get it by uclass_get_device_by_name().
1079 * On success check if:
1080 * - returned finddev' is active
1081 * - current 'testdev' name is equal to the returned 'finddev' name
1082 * - current 'testdev' pointer is equal to the returned 'finddev'
1084 * We asserts that the 'testdev' is active on each loop entry, so we
1085 * could be sure that the 'finddev' is activated too, but for sure
1086 * we check it again.
1088 * We assume that, each uclass's device name is unique, so if not, then
1089 * this will fail on checking condition: testdev == finddev, since the
1090 * uclass_get_device_by_name(), returns the first device by given name.
1092 for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
1094 ret = uclass_next_device(&testdev)) {
1097 ut_assert(device_active(testdev));
1099 findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
1103 ut_assertok(findret);
1105 ut_assert(device_active(finddev));
1106 ut_asserteq_str(testdev->name, finddev->name);
1107 ut_asserteq_ptr(testdev, finddev);
1112 DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT);
1114 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
1116 struct udevice *dev;
1118 ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
1119 ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
1123 DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA);
1125 static int dm_test_uclass_names(struct unit_test_state *uts)
1127 ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
1128 ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
1132 DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA);
1134 static int dm_test_inactive_child(struct unit_test_state *uts)
1136 struct dm_test_state *dms = uts->priv;
1137 struct udevice *parent, *dev1, *dev2;
1139 /* Skip the behaviour in test_post_probe() */
1140 dms->skip_post_probe = 1;
1142 ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
1145 * Create a child but do not activate it. Calling the function again
1146 * should return the same child.
1148 ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1149 UCLASS_TEST, &dev1));
1150 ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
1151 "test_child", 0, ofnode_null(), &dev1));
1153 ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
1155 ut_asserteq_ptr(dev1, dev2);
1157 ut_assertok(device_probe(dev1));
1158 ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1159 UCLASS_TEST, &dev2));
1163 DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA);
1165 /* Make sure all bound devices have a sequence number */
1166 static int dm_test_all_have_seq(struct unit_test_state *uts)
1168 struct udevice *dev;
1171 list_for_each_entry(uc, gd->uclass_root, sibling_node) {
1172 list_for_each_entry(dev, &uc->dev_head, uclass_node) {
1173 if (dev->seq_ == -1)
1174 printf("Device '%s' has no seq (%d)\n",
1175 dev->name, dev->seq_);
1176 ut_assert(dev->seq_ != -1);
1182 DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA);
1184 static int dm_test_dma_offset(struct unit_test_state *uts)
1186 struct udevice *dev;
1189 /* Make sure the bus's dma-ranges aren't taken into account here */
1190 node = ofnode_path("/mmio-bus@0");
1191 ut_assert(ofnode_valid(node));
1192 ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1193 ut_asserteq_64(0, dev->dma_offset);
1195 /* Device behind a bus with dma-ranges */
1196 node = ofnode_path("/mmio-bus@0/subnode@0");
1197 ut_assert(ofnode_valid(node));
1198 ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1199 ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
1201 /* This one has no dma-ranges */
1202 node = ofnode_path("/mmio-bus@1");
1203 ut_assert(ofnode_valid(node));
1204 ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1205 node = ofnode_path("/mmio-bus@1/subnode@0");
1206 ut_assert(ofnode_valid(node));
1207 ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1208 ut_asserteq_64(0, dev->dma_offset);
1212 DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);