Prepare v2023.10
[platform/kernel/u-boot.git] / test / dm / core.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Tests for the core driver model code
4  *
5  * Copyright (c) 2013 Google, Inc
6  */
7
8 #include <common.h>
9 #include <errno.h>
10 #include <dm.h>
11 #include <fdtdec.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <asm/global_data.h>
15 #include <dm/device-internal.h>
16 #include <dm/root.h>
17 #include <dm/util.h>
18 #include <dm/test.h>
19 #include <dm/uclass-internal.h>
20 #include <test/test.h>
21 #include <test/ut.h>
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 enum {
26         TEST_INTVAL1            = 0,
27         TEST_INTVAL2            = 3,
28         TEST_INTVAL3            = 6,
29         TEST_INTVAL_MANUAL      = 101112,
30         TEST_INTVAL_PRE_RELOC   = 7,
31 };
32
33 static const struct dm_test_pdata test_pdata[] = {
34         { .ping_add             = TEST_INTVAL1, },
35         { .ping_add             = TEST_INTVAL2, },
36         { .ping_add             = TEST_INTVAL3, },
37 };
38
39 static const struct dm_test_pdata test_pdata_manual = {
40         .ping_add               = TEST_INTVAL_MANUAL,
41 };
42
43 static const struct dm_test_pdata test_pdata_pre_reloc = {
44         .ping_add               = TEST_INTVAL_PRE_RELOC,
45 };
46
47 U_BOOT_DRVINFO(dm_test_info1) = {
48         .name = "test_drv",
49         .plat = &test_pdata[0],
50 };
51
52 U_BOOT_DRVINFO(dm_test_info2) = {
53         .name = "test_drv",
54         .plat = &test_pdata[1],
55 };
56
57 U_BOOT_DRVINFO(dm_test_info3) = {
58         .name = "test_drv",
59         .plat = &test_pdata[2],
60 };
61
62 static struct driver_info driver_info_manual = {
63         .name = "test_manual_drv",
64         .plat = &test_pdata_manual,
65 };
66
67 static struct driver_info driver_info_pre_reloc = {
68         .name = "test_pre_reloc_drv",
69         .plat = &test_pdata_pre_reloc,
70 };
71
72 static struct driver_info driver_info_act_dma = {
73         .name = "test_act_dma_drv",
74 };
75
76 static struct driver_info driver_info_vital_clk = {
77         .name = "test_vital_clk_drv",
78 };
79
80 static struct driver_info driver_info_act_dma_vital_clk = {
81         .name = "test_act_dma_vital_clk_drv",
82 };
83
84 void dm_leak_check_start(struct unit_test_state *uts)
85 {
86         uts->start = mallinfo();
87         if (!uts->start.uordblks)
88                 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
89 }
90
91 int dm_leak_check_end(struct unit_test_state *uts)
92 {
93         struct mallinfo end;
94         int id, diff;
95
96         /* Don't delete the root class, since we started with that */
97         for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
98                 struct uclass *uc;
99
100                 uc = uclass_find(id);
101                 if (!uc)
102                         continue;
103                 ut_assertok(uclass_destroy(uc));
104         }
105
106         end = mallinfo();
107         diff = end.uordblks - uts->start.uordblks;
108         if (diff > 0)
109                 printf("Leak: lost %#xd bytes\n", diff);
110         else if (diff < 0)
111                 printf("Leak: gained %#xd bytes\n", -diff);
112         ut_asserteq(uts->start.uordblks, end.uordblks);
113
114         return 0;
115 }
116
117 /* Test that binding with plat occurs correctly */
118 static int dm_test_autobind(struct unit_test_state *uts)
119 {
120         struct udevice *dev;
121
122         /*
123          * We should have a single class (UCLASS_ROOT) and a single root
124          * device with no children.
125          */
126         ut_assert(uts->root);
127         ut_asserteq(1, list_count_items(gd->uclass_root));
128         ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
129         ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
130
131         ut_assertok(dm_scan_plat(false));
132
133         /* We should have our test class now at least, plus more children */
134         ut_assert(1 < list_count_items(gd->uclass_root));
135         ut_assert(0 < list_count_items(&gd->dm_root->child_head));
136
137         /* Our 3 dm_test_infox children should be bound to the test uclass */
138         ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
139
140         /* No devices should be probed */
141         list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
142                 ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
143
144         /* Our test driver should have been bound 3 times */
145         ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
146
147         return 0;
148 }
149 DM_TEST(dm_test_autobind, 0);
150
151 /* Test that binding with uclass plat allocation occurs correctly */
152 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
153 {
154         struct dm_test_perdev_uc_pdata *uc_pdata;
155         struct udevice *dev;
156         struct uclass *uc;
157
158         ut_assertok(uclass_get(UCLASS_TEST, &uc));
159         ut_assert(uc);
160
161         /**
162          * Test if test uclass driver requires allocation for the uclass
163          * platform data and then check the dev->uclass_plat pointer.
164          */
165         ut_assert(uc->uc_drv->per_device_plat_auto);
166
167         for (uclass_find_first_device(UCLASS_TEST, &dev);
168              dev;
169              uclass_find_next_device(&dev)) {
170                 ut_assertnonnull(dev);
171
172                 uc_pdata = dev_get_uclass_plat(dev);
173                 ut_assert(uc_pdata);
174         }
175
176         return 0;
177 }
178 DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA);
179
180 /* compare node names ignoring the unit address */
181 static int dm_test_compare_node_name(struct unit_test_state *uts)
182 {
183         ofnode node;
184
185         node = ofnode_path("/mmio-bus@0");
186         ut_assert(ofnode_valid(node));
187         ut_assert(ofnode_name_eq(node, "mmio-bus"));
188
189         return 0;
190 }
191
192 DM_TEST(dm_test_compare_node_name, UT_TESTF_SCAN_PDATA);
193
194 /* Test that binding with uclass plat setting occurs correctly */
195 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
196 {
197         struct dm_test_perdev_uc_pdata *uc_pdata;
198         struct udevice *dev;
199
200         /**
201          * In the test_postbind() method of test uclass driver, the uclass
202          * platform data should be set to three test int values - test it.
203          */
204         for (uclass_find_first_device(UCLASS_TEST, &dev);
205              dev;
206              uclass_find_next_device(&dev)) {
207                 ut_assertnonnull(dev);
208
209                 uc_pdata = dev_get_uclass_plat(dev);
210                 ut_assert(uc_pdata);
211                 ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
212                 ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
213                 ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
214         }
215
216         return 0;
217 }
218 DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA);
219
220 /* Test that autoprobe finds all the expected devices */
221 static int dm_test_autoprobe(struct unit_test_state *uts)
222 {
223         int expected_base_add;
224         struct udevice *dev;
225         struct uclass *uc;
226         int i;
227
228         ut_assertok(uclass_get(UCLASS_TEST, &uc));
229         ut_assert(uc);
230
231         ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
232         ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
233         ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
234
235         /* The root device should not be activated until needed */
236         ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
237
238         /*
239          * We should be able to find the three test devices, and they should
240          * all be activated as they are used (lazy activation, required by
241          * U-Boot)
242          */
243         for (i = 0; i < 3; i++) {
244                 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
245                 ut_assert(dev);
246                 ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
247                            "Driver %d/%s already activated", i, dev->name);
248
249                 /* This should activate it */
250                 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
251                 ut_assert(dev);
252                 ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
253
254                 /* Activating a device should activate the root device */
255                 if (!i)
256                         ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
257         }
258
259         /*
260          * Our 3 dm_test_info children should be passed to pre_probe and
261          * post_probe
262          */
263         ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
264         ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
265
266         /* Also we can check the per-device data */
267         expected_base_add = 0;
268         for (i = 0; i < 3; i++) {
269                 struct dm_test_uclass_perdev_priv *priv;
270                 struct dm_test_pdata *pdata;
271
272                 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
273                 ut_assert(dev);
274
275                 priv = dev_get_uclass_priv(dev);
276                 ut_assert(priv);
277                 ut_asserteq(expected_base_add, priv->base_add);
278
279                 pdata = dev_get_plat(dev);
280                 expected_base_add += pdata->ping_add;
281         }
282
283         return 0;
284 }
285 DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA);
286
287 /* Check that we see the correct plat in each device */
288 static int dm_test_plat(struct unit_test_state *uts)
289 {
290         const struct dm_test_pdata *pdata;
291         struct udevice *dev;
292         int i;
293
294         for (i = 0; i < 3; i++) {
295                 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
296                 ut_assert(dev);
297                 pdata = dev_get_plat(dev);
298                 ut_assert(pdata->ping_add == test_pdata[i].ping_add);
299         }
300
301         return 0;
302 }
303 DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA);
304
305 /* Test that we can bind, probe, remove, unbind a driver */
306 static int dm_test_lifecycle(struct unit_test_state *uts)
307 {
308         int op_count[DM_TEST_OP_COUNT];
309         struct udevice *dev, *test_dev;
310         int start_dev_count, start_uc_count;
311         int dev_count, uc_count;
312         int pingret;
313         int ret;
314
315         memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
316
317         dm_get_stats(&start_dev_count, &start_uc_count);
318
319         ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
320                                         &dev));
321         ut_assert(dev);
322         ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
323                         == op_count[DM_TEST_OP_BIND] + 1);
324         ut_assert(!dev_get_priv(dev));
325
326         /* We should have one more device */
327         dm_get_stats(&dev_count, &uc_count);
328         ut_asserteq(start_dev_count + 1, dev_count);
329         ut_asserteq(start_uc_count, uc_count);
330
331         /* Probe the device - it should fail allocating private data */
332         uts->force_fail_alloc = 1;
333         ret = device_probe(dev);
334         ut_assert(ret == -ENOMEM);
335         ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
336                         == op_count[DM_TEST_OP_PROBE] + 1);
337         ut_assert(!dev_get_priv(dev));
338
339         /* Try again without the alloc failure */
340         uts->force_fail_alloc = 0;
341         ut_assertok(device_probe(dev));
342         ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
343                         == op_count[DM_TEST_OP_PROBE] + 2);
344         ut_assert(dev_get_priv(dev));
345
346         /* This should be device 3 in the uclass */
347         ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
348         ut_assert(dev == test_dev);
349
350         /* Try ping */
351         ut_assertok(test_ping(dev, 100, &pingret));
352         ut_assert(pingret == 102);
353
354         /* Now remove device 3 */
355         ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
356         ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
357         ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
358
359         ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
360         ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
361         ut_assertok(device_unbind(dev));
362         ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
363         ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
364
365         /* We should have one less device */
366         dm_get_stats(&dev_count, &uc_count);
367         ut_asserteq(start_dev_count, dev_count);
368         ut_asserteq(start_uc_count, uc_count);
369
370         return 0;
371 }
372 DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
373
374 /* Test that we can bind/unbind and the lists update correctly */
375 static int dm_test_ordering(struct unit_test_state *uts)
376 {
377         struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
378         int pingret;
379
380         ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
381                                         &dev));
382         ut_assert(dev);
383
384         /* Bind two new devices (numbers 4 and 5) */
385         ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
386                                         &dev_penultimate));
387         ut_assert(dev_penultimate);
388         ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
389                                         &dev_last));
390         ut_assert(dev_last);
391
392         /* Now remove device 3 */
393         ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
394         ut_assertok(device_unbind(dev));
395
396         /* The device numbering should have shifted down one */
397         ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
398         ut_assert(dev_penultimate == test_dev);
399         ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
400         ut_assert(dev_last == test_dev);
401
402         /* Add back the original device 3, now in position 5 */
403         ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
404                                         &dev));
405         ut_assert(dev);
406
407         /* Try ping */
408         ut_assertok(test_ping(dev, 100, &pingret));
409         ut_assert(pingret == 102);
410
411         /* Remove 3 and 4 */
412         ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
413         ut_assertok(device_unbind(dev_penultimate));
414         ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
415         ut_assertok(device_unbind(dev_last));
416
417         /* Our device should now be in position 3 */
418         ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
419         ut_assert(dev == test_dev);
420
421         /* Now remove device 3 */
422         ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
423         ut_assertok(device_unbind(dev));
424
425         return 0;
426 }
427 DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA);
428
429 /* Check that we can perform operations on a device (do a ping) */
430 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
431                         uint32_t base, struct dm_test_priv *priv)
432 {
433         int expected;
434         int pingret;
435
436         /* Getting the child device should allocate plat / priv */
437         ut_assertok(testfdt_ping(dev, 10, &pingret));
438         ut_assert(dev_get_priv(dev));
439         ut_assert(dev_get_plat(dev));
440
441         expected = 10 + base;
442         ut_asserteq(expected, pingret);
443
444         /* Do another ping */
445         ut_assertok(testfdt_ping(dev, 20, &pingret));
446         expected = 20 + base;
447         ut_asserteq(expected, pingret);
448
449         /* Now check the ping_total */
450         priv = dev_get_priv(dev);
451         ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
452                     priv->ping_total);
453
454         return 0;
455 }
456
457 /* Check that we can perform operations on devices */
458 static int dm_test_operations(struct unit_test_state *uts)
459 {
460         struct udevice *dev;
461         int i;
462
463         /*
464          * Now check that the ping adds are what we expect. This is using the
465          * ping-add property in each node.
466          */
467         for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
468                 uint32_t base;
469
470                 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
471
472                 /*
473                  * Get the 'reg' property, which tells us what the ping add
474                  * should be. We don't use the plat because we want
475                  * to test the code that sets that up (testfdt_drv_probe()).
476                  */
477                 base = test_pdata[i].ping_add;
478                 debug("dev=%d, base=%d\n", i, base);
479
480                 ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
481         }
482
483         return 0;
484 }
485 DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA);
486
487 /* Remove all drivers and check that things work */
488 static int dm_test_remove(struct unit_test_state *uts)
489 {
490         struct udevice *dev;
491         int i;
492
493         for (i = 0; i < 3; i++) {
494                 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
495                 ut_assert(dev);
496                 ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
497                            "Driver %d/%s not activated", i, dev->name);
498                 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
499                 ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
500                            "Driver %d/%s should have deactivated", i,
501                            dev->name);
502                 ut_assert(!dev_get_priv(dev));
503         }
504
505         return 0;
506 }
507 DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
508
509 /* Remove and recreate everything, check for memory leaks */
510 static int dm_test_leak(struct unit_test_state *uts)
511 {
512         int i;
513
514         for (i = 0; i < 2; i++) {
515                 int ret;
516
517                 dm_leak_check_start(uts);
518
519                 ut_assertok(dm_scan_plat(false));
520                 ut_assertok(dm_scan_fdt(false));
521
522                 ret = uclass_probe_all(UCLASS_TEST);
523                 ut_assertok(ret);
524
525                 ut_assertok(dm_leak_check_end(uts));
526         }
527
528         return 0;
529 }
530 DM_TEST(dm_test_leak, 0);
531
532 /* Test uclass init/destroy methods */
533 static int dm_test_uclass(struct unit_test_state *uts)
534 {
535         int dev_count, uc_count;
536         struct uclass *uc;
537
538         /* We should have just the root device and uclass */
539         dm_get_stats(&dev_count, &uc_count);
540         ut_asserteq(1, dev_count);
541         ut_asserteq(1, uc_count);
542
543         ut_assertok(uclass_get(UCLASS_TEST, &uc));
544         ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
545         ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
546         ut_assert(uclass_get_priv(uc));
547
548         dm_get_stats(&dev_count, &uc_count);
549         ut_asserteq(1, dev_count);
550         ut_asserteq(2, uc_count);
551
552         ut_assertok(uclass_destroy(uc));
553         ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
554         ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
555
556         dm_get_stats(&dev_count, &uc_count);
557         ut_asserteq(1, dev_count);
558         ut_asserteq(1, uc_count);
559
560         return 0;
561 }
562 DM_TEST(dm_test_uclass, 0);
563
564 /**
565  * create_children() - Create children of a parent node
566  *
567  * @dms:        Test system state
568  * @parent:     Parent device
569  * @count:      Number of children to create
570  * @key:        Key value to put in first child. Subsequence children
571  *              receive an incrementing value
572  * @child:      If not NULL, then the child device pointers are written into
573  *              this array.
574  * Return: 0 if OK, -ve on error
575  */
576 static int create_children(struct unit_test_state *uts, struct udevice *parent,
577                            int count, int key, struct udevice *child[])
578 {
579         struct udevice *dev;
580         int i;
581
582         for (i = 0; i < count; i++) {
583                 struct dm_test_pdata *pdata;
584
585                 ut_assertok(device_bind_by_name(parent, false,
586                                                 &driver_info_manual, &dev));
587                 pdata = calloc(1, sizeof(*pdata));
588                 pdata->ping_add = key + i;
589                 dev_set_plat(dev, pdata);
590                 if (child)
591                         child[i] = dev;
592         }
593
594         return 0;
595 }
596
597 #define NODE_COUNT      10
598
599 static int dm_test_children(struct unit_test_state *uts)
600 {
601         struct udevice *top[NODE_COUNT];
602         struct udevice *child[NODE_COUNT];
603         struct udevice *grandchild[NODE_COUNT];
604         struct udevice *dev;
605         int total;
606         int ret;
607         int i;
608
609         /* We don't care about the numbering for this test */
610         uts->skip_post_probe = 1;
611
612         ut_assert(NODE_COUNT > 5);
613
614         /* First create 10 top-level children */
615         ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
616
617         /* Now a few have their own children */
618         ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
619         ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
620
621         /* And grandchildren */
622         for (i = 0; i < NODE_COUNT; i++)
623                 ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
624                                             i == 2 ? grandchild : NULL));
625
626         /* Check total number of devices */
627         total = NODE_COUNT * (3 + NODE_COUNT);
628         ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
629
630         /* Try probing one of the grandchildren */
631         ut_assertok(uclass_get_device(UCLASS_TEST,
632                                       NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
633         ut_asserteq_ptr(grandchild[0], dev);
634
635         /*
636          * This should have probed the child and top node also, for a total
637          * of 3 nodes.
638          */
639         ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
640
641         /* Probe the other grandchildren */
642         for (i = 1; i < NODE_COUNT; i++)
643                 ut_assertok(device_probe(grandchild[i]));
644
645         ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
646
647         /* Probe everything */
648         ret = uclass_probe_all(UCLASS_TEST);
649         ut_assertok(ret);
650
651         ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
652
653         /* Remove a top-level child and check that the children are removed */
654         ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
655         ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
656         dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
657
658         /* Try one with grandchildren */
659         ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
660         ut_asserteq_ptr(dev, top[5]);
661         ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
662         ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
663                     dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
664
665         /* Try the same with unbind */
666         ut_assertok(device_unbind(top[2]));
667         ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
668         dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
669
670         /* Try one with grandchildren */
671         ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
672         ut_asserteq_ptr(dev, top[6]);
673         ut_assertok(device_unbind(top[5]));
674         ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
675                     dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
676
677         return 0;
678 }
679 DM_TEST(dm_test_children, 0);
680
681 static int dm_test_device_reparent(struct unit_test_state *uts)
682 {
683         struct udevice *top[NODE_COUNT];
684         struct udevice *child[NODE_COUNT];
685         struct udevice *grandchild[NODE_COUNT];
686         struct udevice *dev;
687         int total;
688         int ret;
689         int i;
690
691         /* We don't care about the numbering for this test */
692         uts->skip_post_probe = 1;
693
694         ut_assert(NODE_COUNT > 5);
695
696         /* First create 10 top-level children */
697         ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
698
699         /* Now a few have their own children */
700         ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
701         ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
702
703         /* And grandchildren */
704         for (i = 0; i < NODE_COUNT; i++)
705                 ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
706                                             i == 2 ? grandchild : NULL));
707
708         /* Check total number of devices */
709         total = NODE_COUNT * (3 + NODE_COUNT);
710         ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
711
712         /* Probe everything */
713         for (i = 0; i < total; i++)
714                 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
715
716         /* Re-parent top-level children with no grandchildren. */
717         ut_assertok(device_reparent(top[3], top[0]));
718         /* try to get devices */
719         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
720              dev;
721              ret = uclass_find_next_device(&dev)) {
722                 ut_assert(!ret);
723                 ut_assertnonnull(dev);
724         }
725
726         ut_assertok(device_reparent(top[4], top[0]));
727         /* try to get devices */
728         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
729              dev;
730              ret = uclass_find_next_device(&dev)) {
731                 ut_assert(!ret);
732                 ut_assertnonnull(dev);
733         }
734
735         /* Re-parent top-level children with grandchildren. */
736         ut_assertok(device_reparent(top[2], top[0]));
737         /* try to get devices */
738         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
739              dev;
740              ret = uclass_find_next_device(&dev)) {
741                 ut_assert(!ret);
742                 ut_assertnonnull(dev);
743         }
744
745         ut_assertok(device_reparent(top[5], top[2]));
746         /* try to get devices */
747         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
748              dev;
749              ret = uclass_find_next_device(&dev)) {
750                 ut_assert(!ret);
751                 ut_assertnonnull(dev);
752         }
753
754         /* Re-parent grandchildren. */
755         ut_assertok(device_reparent(grandchild[0], top[1]));
756         /* try to get devices */
757         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
758              dev;
759              ret = uclass_find_next_device(&dev)) {
760                 ut_assert(!ret);
761                 ut_assertnonnull(dev);
762         }
763
764         ut_assertok(device_reparent(grandchild[1], top[1]));
765         /* try to get devices */
766         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
767              dev;
768              ret = uclass_find_next_device(&dev)) {
769                 ut_assert(!ret);
770                 ut_assertnonnull(dev);
771         }
772
773         /* Remove re-pareneted devices. */
774         ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
775         /* try to get devices */
776         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
777              dev;
778              ret = uclass_find_next_device(&dev)) {
779                 ut_assert(!ret);
780                 ut_assertnonnull(dev);
781         }
782
783         ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
784         /* try to get devices */
785         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
786              dev;
787              ret = uclass_find_next_device(&dev)) {
788                 ut_assert(!ret);
789                 ut_assertnonnull(dev);
790         }
791
792         ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
793         /* try to get devices */
794         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
795              dev;
796              ret = uclass_find_next_device(&dev)) {
797                 ut_assert(!ret);
798                 ut_assertnonnull(dev);
799         }
800
801         ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
802         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
803              dev;
804              ret = uclass_find_next_device(&dev)) {
805                 ut_assert(!ret);
806                 ut_assertnonnull(dev);
807         }
808
809         ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
810         /* try to get devices */
811         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
812              dev;
813              ret = uclass_find_next_device(&dev)) {
814                 ut_assert(!ret);
815                 ut_assertnonnull(dev);
816         }
817
818         ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
819         /* try to get devices */
820         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
821              dev;
822              ret = uclass_find_next_device(&dev)) {
823                 ut_assert(!ret);
824                 ut_assertnonnull(dev);
825         }
826
827         /* Try the same with unbind */
828         ut_assertok(device_unbind(top[3]));
829         ut_assertok(device_unbind(top[4]));
830         ut_assertok(device_unbind(top[5]));
831         ut_assertok(device_unbind(top[2]));
832
833         ut_assertok(device_unbind(grandchild[0]));
834         ut_assertok(device_unbind(grandchild[1]));
835
836         return 0;
837 }
838 DM_TEST(dm_test_device_reparent, 0);
839
840 /* Test that pre-relocation devices work as expected */
841 static int dm_test_pre_reloc(struct unit_test_state *uts)
842 {
843         struct udevice *dev;
844
845         /* The normal driver should refuse to bind before relocation */
846         ut_asserteq(-EPERM, device_bind_by_name(uts->root, true,
847                                                 &driver_info_manual, &dev));
848
849         /* But this one is marked pre-reloc */
850         ut_assertok(device_bind_by_name(uts->root, true,
851                                         &driver_info_pre_reloc, &dev));
852
853         return 0;
854 }
855 DM_TEST(dm_test_pre_reloc, 0);
856
857 /*
858  * Test that removal of devices, either via the "normal" device_remove()
859  * API or via the device driver selective flag works as expected
860  */
861 static int dm_test_remove_active_dma(struct unit_test_state *uts)
862 {
863         struct udevice *dev;
864
865         ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
866                                         &dev));
867         ut_assert(dev);
868
869         /* Probe the device */
870         ut_assertok(device_probe(dev));
871
872         /* Test if device is active right now */
873         ut_asserteq(true, device_active(dev));
874
875         /* Remove the device via selective remove flag */
876         dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
877
878         /* Test if device is inactive right now */
879         ut_asserteq(false, device_active(dev));
880
881         /* Probe the device again */
882         ut_assertok(device_probe(dev));
883
884         /* Test if device is active right now */
885         ut_asserteq(true, device_active(dev));
886
887         /* Remove the device via "normal" remove API */
888         ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
889
890         /* Test if device is inactive right now */
891         ut_asserteq(false, device_active(dev));
892
893         /*
894          * Test if a device without the active DMA flags is not removed upon
895          * the active DMA remove call
896          */
897         ut_assertok(device_unbind(dev));
898         ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
899                                         &dev));
900         ut_assert(dev);
901
902         /* Probe the device */
903         ut_assertok(device_probe(dev));
904
905         /* Test if device is active right now */
906         ut_asserteq(true, device_active(dev));
907
908         /* Remove the device via selective remove flag */
909         dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
910
911         /* Test if device is still active right now */
912         ut_asserteq(true, device_active(dev));
913
914         return 0;
915 }
916 DM_TEST(dm_test_remove_active_dma, 0);
917
918 /* Test removal of 'vital' devices */
919 static int dm_test_remove_vital(struct unit_test_state *uts)
920 {
921         struct udevice *normal, *dma, *vital, *dma_vital;
922
923         /* Skip the behaviour in test_post_probe() */
924         uts->skip_post_probe = 1;
925
926         ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
927                                         &normal));
928         ut_assertnonnull(normal);
929
930         ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
931                                         &dma));
932         ut_assertnonnull(dma);
933
934         ut_assertok(device_bind_by_name(uts->root, false,
935                                         &driver_info_vital_clk, &vital));
936         ut_assertnonnull(vital);
937
938         ut_assertok(device_bind_by_name(uts->root, false,
939                                         &driver_info_act_dma_vital_clk,
940                                         &dma_vital));
941         ut_assertnonnull(dma_vital);
942
943         /* Probe the devices */
944         ut_assertok(device_probe(normal));
945         ut_assertok(device_probe(dma));
946         ut_assertok(device_probe(vital));
947         ut_assertok(device_probe(dma_vital));
948
949         /* Check that devices are active right now */
950         ut_asserteq(true, device_active(normal));
951         ut_asserteq(true, device_active(dma));
952         ut_asserteq(true, device_active(vital));
953         ut_asserteq(true, device_active(dma_vital));
954
955         /* Remove active devices via selective remove flag */
956         dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
957
958         /*
959          * Check that this only has an effect on the dma device, since two
960          * devices are vital and the third does not have active DMA
961          */
962         ut_asserteq(true, device_active(normal));
963         ut_asserteq(false, device_active(dma));
964         ut_asserteq(true, device_active(vital));
965         ut_asserteq(true, device_active(dma_vital));
966
967         /* Remove active devices via selective remove flag */
968         ut_assertok(device_probe(dma));
969         dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
970
971         /* This should have affected both active-dma devices */
972         ut_asserteq(true, device_active(normal));
973         ut_asserteq(false, device_active(dma));
974         ut_asserteq(true, device_active(vital));
975         ut_asserteq(false, device_active(dma_vital));
976
977         /* Remove non-vital devices */
978         ut_assertok(device_probe(dma));
979         ut_assertok(device_probe(dma_vital));
980         dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
981
982         /* This should have affected only non-vital devices */
983         ut_asserteq(false, device_active(normal));
984         ut_asserteq(false, device_active(dma));
985         ut_asserteq(true, device_active(vital));
986         ut_asserteq(true, device_active(dma_vital));
987
988         /* Remove vital devices via normal remove flag */
989         ut_assertok(device_probe(normal));
990         ut_assertok(device_probe(dma));
991         dm_remove_devices_flags(DM_REMOVE_NORMAL);
992
993         /* Check that all devices are inactive right now */
994         ut_asserteq(false, device_active(normal));
995         ut_asserteq(false, device_active(dma));
996         ut_asserteq(false, device_active(vital));
997         ut_asserteq(false, device_active(dma_vital));
998
999         return 0;
1000 }
1001 DM_TEST(dm_test_remove_vital, 0);
1002
1003 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
1004 {
1005         struct uclass *uc;
1006
1007         ut_assertok(uclass_get(UCLASS_TEST, &uc));
1008
1009         gd->dm_root = NULL;
1010         gd->dm_root_f = NULL;
1011         memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
1012
1013         ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
1014         ut_asserteq(-EDEADLK, uclass_get(UCLASS_TEST, &uc));
1015
1016         return 0;
1017 }
1018 DM_TEST(dm_test_uclass_before_ready, 0);
1019
1020 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
1021 {
1022         struct udevice *dev;
1023         int ret;
1024
1025         for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
1026              dev;
1027              ret = uclass_find_next_device(&dev)) {
1028                 ut_assert(!ret);
1029                 ut_assertnonnull(dev);
1030         }
1031
1032         ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
1033         ut_assertnull(dev);
1034
1035         return 0;
1036 }
1037 DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA);
1038
1039 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
1040 {
1041         struct udevice *finddev;
1042         struct udevice *testdev;
1043         int findret, ret;
1044
1045         /*
1046          * For each test device found in fdt like: "a-test", "b-test", etc.,
1047          * use its name and try to find it by uclass_find_device_by_name().
1048          * Then, on success check if:
1049          * - current 'testdev' name is equal to the returned 'finddev' name
1050          * - current 'testdev' pointer is equal to the returned 'finddev'
1051          *
1052          * We assume that, each uclass's device name is unique, so if not, then
1053          * this will fail on checking condition: testdev == finddev, since the
1054          * uclass_find_device_by_name(), returns the first device by given name.
1055         */
1056         for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
1057              testdev;
1058              ret = uclass_find_next_device(&testdev)) {
1059                 ut_assertok(ret);
1060                 ut_assertnonnull(testdev);
1061
1062                 findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
1063                                                      testdev->name,
1064                                                      &finddev);
1065
1066                 ut_assertok(findret);
1067                 ut_assert(testdev);
1068                 ut_asserteq_str(testdev->name, finddev->name);
1069                 ut_asserteq_ptr(testdev, finddev);
1070         }
1071
1072         return 0;
1073 }
1074 DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT);
1075
1076 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
1077 {
1078         struct udevice *dev;
1079         int ret;
1080
1081         for (ret = uclass_first_device_check(UCLASS_TEST, &dev);
1082              dev;
1083              ret = uclass_next_device_check(&dev)) {
1084                 ut_assert(!ret);
1085                 ut_assert(device_active(dev));
1086         }
1087
1088         return 0;
1089 }
1090 DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA);
1091
1092 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
1093 {
1094         struct udevice *finddev;
1095         struct udevice *testdev;
1096         int ret, findret;
1097
1098         /*
1099          * For each test device found in fdt like: "a-test", "b-test", etc.,
1100          * use its name and try to get it by uclass_get_device_by_name().
1101          * On success check if:
1102          * - returned finddev' is active
1103          * - current 'testdev' name is equal to the returned 'finddev' name
1104          * - current 'testdev' pointer is equal to the returned 'finddev'
1105          *
1106          * We asserts that the 'testdev' is active on each loop entry, so we
1107          * could be sure that the 'finddev' is activated too, but for sure
1108          * we check it again.
1109          *
1110          * We assume that, each uclass's device name is unique, so if not, then
1111          * this will fail on checking condition: testdev == finddev, since the
1112          * uclass_get_device_by_name(), returns the first device by given name.
1113         */
1114         for (ret = uclass_first_device_check(UCLASS_TEST_FDT, &testdev);
1115              testdev;
1116              ret = uclass_next_device_check(&testdev)) {
1117                 ut_assertok(ret);
1118                 ut_assert(device_active(testdev));
1119
1120                 findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
1121                                                     testdev->name,
1122                                                     &finddev);
1123
1124                 ut_assertok(findret);
1125                 ut_assert(finddev);
1126                 ut_assert(device_active(finddev));
1127                 ut_asserteq_str(testdev->name, finddev->name);
1128                 ut_asserteq_ptr(testdev, finddev);
1129         }
1130
1131         return 0;
1132 }
1133 DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT);
1134
1135 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
1136 {
1137         struct udevice *dev;
1138
1139         ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
1140         ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
1141
1142         return 0;
1143 }
1144 DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA);
1145
1146 static int dm_test_uclass_names(struct unit_test_state *uts)
1147 {
1148         ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
1149         ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
1150
1151         ut_asserteq(UCLASS_SPI, uclass_get_by_name("spi"));
1152
1153         return 0;
1154 }
1155 DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA);
1156
1157 static int dm_test_inactive_child(struct unit_test_state *uts)
1158 {
1159         struct udevice *parent, *dev1, *dev2;
1160
1161         /* Skip the behaviour in test_post_probe() */
1162         uts->skip_post_probe = 1;
1163
1164         ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
1165
1166         /*
1167          * Create a child but do not activate it. Calling the function again
1168          * should return the same child.
1169          */
1170         ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1171                                                         UCLASS_TEST, &dev1));
1172         ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
1173                                 "test_child", 0, ofnode_null(), &dev1));
1174
1175         ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
1176                                                      &dev2));
1177         ut_asserteq_ptr(dev1, dev2);
1178
1179         ut_assertok(device_probe(dev1));
1180         ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1181                                                         UCLASS_TEST, &dev2));
1182
1183         return 0;
1184 }
1185 DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA);
1186
1187 /* Make sure all bound devices have a sequence number */
1188 static int dm_test_all_have_seq(struct unit_test_state *uts)
1189 {
1190         struct udevice *dev;
1191         struct uclass *uc;
1192
1193         list_for_each_entry(uc, gd->uclass_root, sibling_node) {
1194                 list_for_each_entry(dev, &uc->dev_head, uclass_node) {
1195                         if (dev->seq_ == -1)
1196                                 printf("Device '%s' has no seq (%d)\n",
1197                                        dev->name, dev->seq_);
1198                         ut_assert(dev->seq_ != -1);
1199                 }
1200         }
1201
1202         return 0;
1203 }
1204 DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA);
1205
1206 #if CONFIG_IS_ENABLED(DM_DMA)
1207 static int dm_test_dma_offset(struct unit_test_state *uts)
1208 {
1209        struct udevice *dev;
1210        ofnode node;
1211
1212        /* Make sure the bus's dma-ranges aren't taken into account here */
1213        node = ofnode_path("/mmio-bus@0");
1214        ut_assert(ofnode_valid(node));
1215        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1216        ut_asserteq_64(0, dev->dma_offset);
1217
1218        /* Device behind a bus with dma-ranges */
1219        node = ofnode_path("/mmio-bus@0/subnode@0");
1220        ut_assert(ofnode_valid(node));
1221        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1222        ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
1223
1224        /* This one has no dma-ranges */
1225        node = ofnode_path("/mmio-bus@1");
1226        ut_assert(ofnode_valid(node));
1227        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1228        node = ofnode_path("/mmio-bus@1/subnode@0");
1229        ut_assert(ofnode_valid(node));
1230        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1231        ut_asserteq_64(0, dev->dma_offset);
1232
1233        return 0;
1234 }
1235 DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
1236 #endif
1237
1238 /* Test dm_get_stats() */
1239 static int dm_test_get_stats(struct unit_test_state *uts)
1240 {
1241         int dev_count, uc_count;
1242
1243         dm_get_stats(&dev_count, &uc_count);
1244         ut_assert(dev_count > 50);
1245         ut_assert(uc_count > 30);
1246
1247         return 0;
1248 }
1249 DM_TEST(dm_test_get_stats, UT_TESTF_SCAN_FDT);
1250
1251 /* Test uclass_find_device_by_name() */
1252 static int dm_test_uclass_find_device(struct unit_test_state *uts)
1253 {
1254         struct udevice *dev;
1255
1256         ut_assertok(uclass_find_device_by_name(UCLASS_I2C, "i2c@0", &dev));
1257         ut_asserteq(-ENODEV,
1258                     uclass_find_device_by_name(UCLASS_I2C, "i2c@0x", &dev));
1259         ut_assertok(uclass_find_device_by_namelen(UCLASS_I2C, "i2c@0x", 5,
1260                                                   &dev));
1261
1262         return 0;
1263 }
1264 DM_TEST(dm_test_uclass_find_device, UT_TESTF_SCAN_FDT);
1265
1266 /* Test getting information about tags attached to devices */
1267 static int dm_test_dev_get_attach(struct unit_test_state *uts)
1268 {
1269         struct udevice *dev;
1270
1271         ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
1272         ut_asserteq_str("a-test", dev->name);
1273
1274         ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PLAT));
1275         ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PRIV));
1276         ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_UC_PRIV));
1277         ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_UC_PLAT));
1278         ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PLAT));
1279         ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PRIV));
1280
1281         ut_asserteq(sizeof(struct dm_test_pdata),
1282                     dev_get_attach_size(dev, DM_TAG_PLAT));
1283         ut_asserteq(sizeof(struct dm_test_priv),
1284                     dev_get_attach_size(dev, DM_TAG_PRIV));
1285         ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_UC_PRIV));
1286         ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_UC_PLAT));
1287         ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PLAT));
1288         ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PRIV));
1289
1290         return 0;
1291 }
1292 DM_TEST(dm_test_dev_get_attach, UT_TESTF_SCAN_FDT);
1293
1294 /* Test getting information about tags attached to bus devices */
1295 static int dm_test_dev_get_attach_bus(struct unit_test_state *uts)
1296 {
1297         struct udevice *dev, *child;
1298
1299         ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &dev));
1300         ut_asserteq_str("some-bus", dev->name);
1301
1302         ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PLAT));
1303         ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PRIV));
1304         ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_UC_PRIV));
1305         ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_UC_PLAT));
1306         ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PLAT));
1307         ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PRIV));
1308
1309         ut_asserteq(sizeof(struct dm_test_pdata),
1310                     dev_get_attach_size(dev, DM_TAG_PLAT));
1311         ut_asserteq(sizeof(struct dm_test_priv),
1312                     dev_get_attach_size(dev, DM_TAG_PRIV));
1313         ut_asserteq(sizeof(struct dm_test_uclass_priv),
1314                     dev_get_attach_size(dev, DM_TAG_UC_PRIV));
1315         ut_asserteq(sizeof(struct dm_test_uclass_plat),
1316                     dev_get_attach_size(dev, DM_TAG_UC_PLAT));
1317         ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PLAT));
1318         ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PRIV));
1319
1320         /* Now try the child of the bus */
1321         ut_assertok(device_first_child_err(dev, &child));
1322         ut_asserteq_str("c-test@5", child->name);
1323
1324         ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PLAT));
1325         ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PRIV));
1326         ut_assertnull(dev_get_attach_ptr(child, DM_TAG_UC_PRIV));
1327         ut_assertnull(dev_get_attach_ptr(child, DM_TAG_UC_PLAT));
1328         ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PARENT_PLAT));
1329         ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PARENT_PRIV));
1330
1331         ut_asserteq(sizeof(struct dm_test_pdata),
1332                     dev_get_attach_size(child, DM_TAG_PLAT));
1333         ut_asserteq(sizeof(struct dm_test_priv),
1334                     dev_get_attach_size(child, DM_TAG_PRIV));
1335         ut_asserteq(0, dev_get_attach_size(child, DM_TAG_UC_PRIV));
1336         ut_asserteq(0, dev_get_attach_size(child, DM_TAG_UC_PLAT));
1337         ut_asserteq(sizeof(struct dm_test_parent_plat),
1338                     dev_get_attach_size(child, DM_TAG_PARENT_PLAT));
1339         ut_asserteq(sizeof(struct dm_test_parent_data),
1340                     dev_get_attach_size(child, DM_TAG_PARENT_PRIV));
1341
1342         return 0;
1343 }
1344 DM_TEST(dm_test_dev_get_attach_bus, UT_TESTF_SCAN_FDT);
1345
1346 /* Test getting information about tags attached to bus devices */
1347 static int dm_test_dev_get_mem(struct unit_test_state *uts)
1348 {
1349         struct dm_stats stats;
1350
1351         dm_get_mem(&stats);
1352
1353         return 0;
1354 }
1355 DM_TEST(dm_test_dev_get_mem, UT_TESTF_SCAN_FDT);