2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 #include "host-utils.h"
32 static void do_unaligned_access(CPUXtensaState *env,
33 target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
36 #define MMUSUFFIX _mmu
39 #include "exec/softmmu_template.h"
42 #include "exec/softmmu_template.h"
45 #include "exec/softmmu_template.h"
48 #include "exec/softmmu_template.h"
50 static void do_unaligned_access(CPUXtensaState *env,
51 target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
53 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
54 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
55 cpu_restore_state(env, retaddr);
56 HELPER(exception_cause_vaddr)(env,
57 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
61 void tlb_fill(CPUXtensaState *env,
62 target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
67 int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
68 &paddr, &page_size, &access);
70 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
71 vaddr, is_write, mmu_idx, paddr, ret);
75 vaddr & TARGET_PAGE_MASK,
76 paddr & TARGET_PAGE_MASK,
77 access, mmu_idx, page_size);
79 cpu_restore_state(env, retaddr);
80 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
84 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
89 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
90 &paddr, &page_size, &access);
92 tb_invalidate_phys_addr(paddr);
96 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
98 env->exception_index = excp;
102 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
107 if (env->sregs[PS] & PS_EXCM) {
108 if (env->config->ndepc) {
109 env->sregs[DEPC] = pc;
111 env->sregs[EPC1] = pc;
115 env->sregs[EPC1] = pc;
116 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
119 env->sregs[EXCCAUSE] = cause;
120 env->sregs[PS] |= PS_EXCM;
122 HELPER(exception)(env, vector);
125 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
126 uint32_t pc, uint32_t cause, uint32_t vaddr)
128 env->sregs[EXCVADDR] = vaddr;
129 HELPER(exception_cause)(env, pc, cause);
132 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
134 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
135 HELPER(debug_exception)(env, env->pc, cause);
139 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
141 unsigned level = env->config->debug_level;
144 env->sregs[DEBUGCAUSE] = cause;
145 env->sregs[EPC1 + level - 1] = pc;
146 env->sregs[EPS2 + level - 2] = env->sregs[PS];
147 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
148 (level << PS_INTLEVEL_SHIFT);
149 HELPER(exception)(env, EXC_DEBUG);
152 uint32_t HELPER(nsa)(uint32_t v)
154 if (v & 0x80000000) {
157 return v ? clz32(v) - 1 : 31;
160 uint32_t HELPER(nsau)(uint32_t v)
162 return v ? clz32(v) : 32;
165 static void copy_window_from_phys(CPUXtensaState *env,
166 uint32_t window, uint32_t phys, uint32_t n)
168 assert(phys < env->config->nareg);
169 if (phys + n <= env->config->nareg) {
170 memcpy(env->regs + window, env->phys_regs + phys,
171 n * sizeof(uint32_t));
173 uint32_t n1 = env->config->nareg - phys;
174 memcpy(env->regs + window, env->phys_regs + phys,
175 n1 * sizeof(uint32_t));
176 memcpy(env->regs + window + n1, env->phys_regs,
177 (n - n1) * sizeof(uint32_t));
181 static void copy_phys_from_window(CPUXtensaState *env,
182 uint32_t phys, uint32_t window, uint32_t n)
184 assert(phys < env->config->nareg);
185 if (phys + n <= env->config->nareg) {
186 memcpy(env->phys_regs + phys, env->regs + window,
187 n * sizeof(uint32_t));
189 uint32_t n1 = env->config->nareg - phys;
190 memcpy(env->phys_regs + phys, env->regs + window,
191 n1 * sizeof(uint32_t));
192 memcpy(env->phys_regs, env->regs + window + n1,
193 (n - n1) * sizeof(uint32_t));
198 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
200 return a & (env->config->nareg / 4 - 1);
203 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
205 return 1 << windowbase_bound(a, env);
208 void xtensa_sync_window_from_phys(CPUXtensaState *env)
210 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
213 void xtensa_sync_phys_from_window(CPUXtensaState *env)
215 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
218 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
220 xtensa_sync_phys_from_window(env);
221 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
222 xtensa_sync_window_from_phys(env);
225 static void rotate_window(CPUXtensaState *env, uint32_t delta)
227 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
230 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
232 rotate_window_abs(env, v);
235 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
237 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
238 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
239 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
241 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
243 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
244 rotate_window(env, callinc);
245 env->sregs[WINDOW_START] |=
246 windowstart_bit(env->sregs[WINDOW_BASE], env);
250 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
252 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
253 uint32_t windowstart = env->sregs[WINDOW_START];
256 if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
264 if (windowstart & windowstart_bit(windowbase + n, env)) {
269 m = windowbase_bound(windowbase + n, env);
270 rotate_window(env, n);
271 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
272 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
273 env->sregs[EPC1] = env->pc = pc;
275 if (windowstart & windowstart_bit(m + 1, env)) {
276 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
277 } else if (windowstart & windowstart_bit(m + 2, env)) {
278 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
280 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
284 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
286 int n = (env->regs[0] >> 30) & 0x3;
288 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
289 uint32_t windowstart = env->sregs[WINDOW_START];
292 if (windowstart & windowstart_bit(windowbase - 1, env)) {
294 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
296 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
300 if (n == 0 || (m != 0 && m != n) ||
301 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
302 qemu_log("Illegal retw instruction(pc = %08x), "
303 "PS = %08x, m = %d, n = %d\n",
304 pc, env->sregs[PS], m, n);
305 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
307 int owb = windowbase;
309 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
311 rotate_window(env, -n);
312 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
313 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
315 /* window underflow */
316 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
317 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
318 env->sregs[EPC1] = env->pc = pc;
321 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
323 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
325 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
332 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
334 rotate_window(env, imm4);
337 void HELPER(restore_owb)(CPUXtensaState *env)
339 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
342 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
344 if ((env->sregs[WINDOW_START] &
345 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
346 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
347 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
348 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
352 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
354 if (env->sregs[LBEG] != v) {
355 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
356 env->sregs[LBEG] = v;
360 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
362 if (env->sregs[LEND] != v) {
363 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
364 env->sregs[LEND] = v;
365 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
369 void HELPER(dump_state)(CPUXtensaState *env)
371 cpu_dump_state(env, stderr, fprintf, 0);
374 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
377 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
378 (intlevel << PS_INTLEVEL_SHIFT);
379 check_interrupts(env);
380 if (env->pending_irq_level) {
385 env->halt_clock = qemu_get_clock_ns(vm_clock);
387 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
388 xtensa_rearm_ccompare_timer(env);
390 HELPER(exception)(env, EXCP_HLT);
393 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
395 xtensa_timer_irq(env, id, active);
398 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
400 xtensa_advance_ccount(env, d);
403 void HELPER(check_interrupts)(CPUXtensaState *env)
405 check_interrupts(env);
409 * Check vaddr accessibility/cache attributes and raise an exception if
410 * specified by the ATOMCTL SR.
412 * Note: local memory exclusion is not implemented
414 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
416 uint32_t paddr, page_size, access;
417 uint32_t atomctl = env->sregs[ATOMCTL];
418 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
419 xtensa_get_cring(env), &paddr, &page_size, &access);
422 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
423 * see opcode description in the ISA
426 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
427 rc = STORE_PROHIBITED_CAUSE;
431 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
435 * When data cache is not configured use ATOMCTL bypass field.
436 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
437 * under the Conditional Store Option.
439 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
440 access = PAGE_CACHE_BYPASS;
443 switch (access & PAGE_CACHE_MASK) {
448 case PAGE_CACHE_BYPASS:
449 if ((atomctl & 0x3) == 0) {
450 HELPER(exception_cause_vaddr)(env, pc,
451 LOAD_STORE_ERROR_CAUSE, vaddr);
455 case PAGE_CACHE_ISOLATE:
456 HELPER(exception_cause_vaddr)(env, pc,
457 LOAD_STORE_ERROR_CAUSE, vaddr);
465 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
467 v = (v & 0xffffff00) | 0x1;
468 if (v != env->sregs[RASID]) {
469 env->sregs[RASID] = v;
474 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
476 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
480 return (tlbcfg >> 16) & 0x3;
483 return (tlbcfg >> 20) & 0x1;
486 return (tlbcfg >> 24) & 0x1;
494 * Get bit mask for the virtual address bits translated by the TLB way
496 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
498 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
499 bool varway56 = dtlb ?
500 env->config->dtlb.varway56 :
501 env->config->itlb.varway56;
505 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
509 return 0xf8000000 << get_page_size(env, dtlb, way);
516 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
525 return REGION_PAGE_MASK;
530 * Get bit mask for the 'VPN without index' field.
531 * See ISA, 4.6.5.6, data format for RxTLB0
533 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
537 env->config->dtlb.nrefillentries :
538 env->config->itlb.nrefillentries) == 32;
539 return is32 ? 0xffff8000 : 0xffffc000;
540 } else if (way == 4) {
541 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
542 } else if (way <= 6) {
543 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
544 bool varway56 = dtlb ?
545 env->config->dtlb.varway56 :
546 env->config->itlb.varway56;
549 return mask << (way == 5 ? 2 : 3);
559 * Split virtual address into VPN (with index) and entry index
560 * for the given TLB way
562 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
563 uint32_t *vpn, uint32_t wi, uint32_t *ei)
565 bool varway56 = dtlb ?
566 env->config->dtlb.varway56 :
567 env->config->itlb.varway56;
575 env->config->dtlb.nrefillentries :
576 env->config->itlb.nrefillentries) == 32;
577 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
582 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
583 *ei = (v >> eibase) & 0x3;
589 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
590 *ei = (v >> eibase) & 0x3;
592 *ei = (v >> 27) & 0x1;
598 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
599 *ei = (v >> eibase) & 0x7;
601 *ei = (v >> 28) & 0x1;
610 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
614 * Split TLB address into TLB way, entry index and VPN (with index).
615 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
617 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
618 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
620 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
621 *wi = v & (dtlb ? 0xf : 0x7);
622 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
624 *vpn = v & REGION_PAGE_MASK;
626 *ei = (v >> 29) & 0x7;
630 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
631 uint32_t v, bool dtlb, uint32_t *pwi)
637 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
641 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
644 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
646 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
648 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
649 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
651 return v & REGION_PAGE_MASK;
655 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
657 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
658 return entry->paddr | entry->attr;
661 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
663 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
665 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
666 if (entry->variable && entry->asid) {
667 tlb_flush_page(env, entry->vaddr);
673 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
675 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
679 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
683 if (ring >= xtensa_get_ring(env)) {
684 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
688 case INST_TLB_MULTI_HIT_CAUSE:
689 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
690 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
695 return (v & REGION_PAGE_MASK) | 0x1;
699 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
700 xtensa_tlb_entry *entry, bool dtlb,
701 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
704 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
705 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
706 entry->attr = pte & 0xf;
709 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
710 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
712 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
714 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
715 if (entry->variable) {
717 tlb_flush_page(env, entry->vaddr);
719 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
720 tlb_flush_page(env, entry->vaddr);
722 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
723 __func__, dtlb, wi, ei);
726 tlb_flush_page(env, entry->vaddr);
727 if (xtensa_option_enabled(env->config,
728 XTENSA_OPTION_REGION_TRANSLATION)) {
729 entry->paddr = pte & REGION_PAGE_MASK;
731 entry->attr = pte & 0xf;
735 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
740 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
741 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
745 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
747 uint32_t change = v ^ env->sregs[IBREAKENABLE];
750 for (i = 0; i < env->config->nibreak; ++i) {
751 if (change & (1 << i)) {
752 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
755 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
758 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
760 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
761 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
762 tb_invalidate_virtual_addr(env, v);
764 env->sregs[IBREAKA + i] = v;
767 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
770 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
771 uint32_t mask = dbreakc | ~DBREAKC_MASK;
773 if (env->cpu_watchpoint[i]) {
774 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
776 if (dbreakc & DBREAKC_SB) {
777 flags |= BP_MEM_WRITE;
779 if (dbreakc & DBREAKC_LB) {
780 flags |= BP_MEM_READ;
782 /* contiguous mask after inversion is one less than some power of 2 */
783 if ((~mask + 1) & ~mask) {
784 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
785 /* cut mask after the first zero bit */
786 mask = 0xffffffff << (32 - clo32(mask));
788 if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
789 flags, &env->cpu_watchpoint[i])) {
790 env->cpu_watchpoint[i] = NULL;
791 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
792 dbreaka & mask, ~mask + 1);
796 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
798 uint32_t dbreakc = env->sregs[DBREAKC + i];
800 if ((dbreakc & DBREAKC_SB_LB) &&
801 env->sregs[DBREAKA + i] != v) {
802 set_dbreak(env, i, v, dbreakc);
804 env->sregs[DBREAKA + i] = v;
807 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
809 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
810 if (v & DBREAKC_SB_LB) {
811 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
813 if (env->cpu_watchpoint[i]) {
814 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
815 env->cpu_watchpoint[i] = NULL;
819 env->sregs[DBREAKC + i] = v;
822 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
824 static const int rounding_mode[] = {
825 float_round_nearest_even,
831 env->uregs[FCR] = v & 0xfffff07f;
832 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
835 float32 HELPER(abs_s)(float32 v)
837 return float32_abs(v);
840 float32 HELPER(neg_s)(float32 v)
842 return float32_chs(v);
845 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
847 return float32_add(a, b, &env->fp_status);
850 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
852 return float32_sub(a, b, &env->fp_status);
855 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
857 return float32_mul(a, b, &env->fp_status);
860 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
862 return float32_muladd(b, c, a, 0,
866 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
868 return float32_muladd(b, c, a, float_muladd_negate_product,
872 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
874 float_status fp_status = {0};
876 set_float_rounding_mode(rounding_mode, &fp_status);
877 return float32_to_int32(
878 float32_scalbn(v, scale, &fp_status), &fp_status);
881 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
883 float_status fp_status = {0};
886 set_float_rounding_mode(rounding_mode, &fp_status);
888 res = float32_scalbn(v, scale, &fp_status);
890 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
891 return float32_to_int32(res, &fp_status);
893 return float32_to_uint32(res, &fp_status);
897 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
899 return float32_scalbn(int32_to_float32(v, &env->fp_status),
900 (int32_t)scale, &env->fp_status);
903 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
905 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
906 (int32_t)scale, &env->fp_status);
909 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
912 env->sregs[BR] |= br;
914 env->sregs[BR] &= ~br;
918 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
920 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
923 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
925 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
928 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
930 int v = float32_compare_quiet(a, b, &env->fp_status);
931 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
934 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
936 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
939 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
941 int v = float32_compare_quiet(a, b, &env->fp_status);
942 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
945 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
947 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
950 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
952 int v = float32_compare_quiet(a, b, &env->fp_status);
953 set_br(env, v != float_relation_greater, br);