hw/arm: pass pristine kernel image to guest firmware over fw_cfg
[sdk/emulator/qemu.git] / target-ppc / fpu_helper.c
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "cpu.h"
20 #include "exec/helper-proto.h"
21
22 /*****************************************************************************/
23 /* Floating point operations helpers */
24 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
25 {
26     CPU_FloatU f;
27     CPU_DoubleU d;
28
29     f.l = arg;
30     d.d = float32_to_float64(f.f, &env->fp_status);
31     return d.ll;
32 }
33
34 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
35 {
36     CPU_FloatU f;
37     CPU_DoubleU d;
38
39     d.ll = arg;
40     f.f = float64_to_float32(d.d, &env->fp_status);
41     return f.l;
42 }
43
44 static inline int isden(float64 d)
45 {
46     CPU_DoubleU u;
47
48     u.d = d;
49
50     return ((u.ll >> 52) & 0x7FF) == 0;
51 }
52
53 static inline int ppc_float32_get_unbiased_exp(float32 f)
54 {
55     return ((f >> 23) & 0xFF) - 127;
56 }
57
58 static inline int ppc_float64_get_unbiased_exp(float64 f)
59 {
60     return ((f >> 52) & 0x7FF) - 1023;
61 }
62
63 uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf)
64 {
65     CPU_DoubleU farg;
66     int isneg;
67     int ret;
68
69     farg.ll = arg;
70     isneg = float64_is_neg(farg.d);
71     if (unlikely(float64_is_any_nan(farg.d))) {
72         if (float64_is_signaling_nan(farg.d)) {
73             /* Signaling NaN: flags are undefined */
74             ret = 0x00;
75         } else {
76             /* Quiet NaN */
77             ret = 0x11;
78         }
79     } else if (unlikely(float64_is_infinity(farg.d))) {
80         /* +/- infinity */
81         if (isneg) {
82             ret = 0x09;
83         } else {
84             ret = 0x05;
85         }
86     } else {
87         if (float64_is_zero(farg.d)) {
88             /* +/- zero */
89             if (isneg) {
90                 ret = 0x12;
91             } else {
92                 ret = 0x02;
93             }
94         } else {
95             if (isden(farg.d)) {
96                 /* Denormalized numbers */
97                 ret = 0x10;
98             } else {
99                 /* Normalized numbers */
100                 ret = 0x00;
101             }
102             if (isneg) {
103                 ret |= 0x08;
104             } else {
105                 ret |= 0x04;
106             }
107         }
108     }
109     if (set_fprf) {
110         /* We update FPSCR_FPRF */
111         env->fpscr &= ~(0x1F << FPSCR_FPRF);
112         env->fpscr |= ret << FPSCR_FPRF;
113     }
114     /* We just need fpcc to update Rc1 */
115     return ret & 0xF;
116 }
117
118 /* Floating-point invalid operations exception */
119 static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op,
120                                              int set_fpcc)
121 {
122     CPUState *cs = CPU(ppc_env_get_cpu(env));
123     uint64_t ret = 0;
124     int ve;
125
126     ve = fpscr_ve;
127     switch (op) {
128     case POWERPC_EXCP_FP_VXSNAN:
129         env->fpscr |= 1 << FPSCR_VXSNAN;
130         break;
131     case POWERPC_EXCP_FP_VXSOFT:
132         env->fpscr |= 1 << FPSCR_VXSOFT;
133         break;
134     case POWERPC_EXCP_FP_VXISI:
135         /* Magnitude subtraction of infinities */
136         env->fpscr |= 1 << FPSCR_VXISI;
137         goto update_arith;
138     case POWERPC_EXCP_FP_VXIDI:
139         /* Division of infinity by infinity */
140         env->fpscr |= 1 << FPSCR_VXIDI;
141         goto update_arith;
142     case POWERPC_EXCP_FP_VXZDZ:
143         /* Division of zero by zero */
144         env->fpscr |= 1 << FPSCR_VXZDZ;
145         goto update_arith;
146     case POWERPC_EXCP_FP_VXIMZ:
147         /* Multiplication of zero by infinity */
148         env->fpscr |= 1 << FPSCR_VXIMZ;
149         goto update_arith;
150     case POWERPC_EXCP_FP_VXVC:
151         /* Ordered comparison of NaN */
152         env->fpscr |= 1 << FPSCR_VXVC;
153         if (set_fpcc) {
154             env->fpscr &= ~(0xF << FPSCR_FPCC);
155             env->fpscr |= 0x11 << FPSCR_FPCC;
156         }
157         /* We must update the target FPR before raising the exception */
158         if (ve != 0) {
159             cs->exception_index = POWERPC_EXCP_PROGRAM;
160             env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
161             /* Update the floating-point enabled exception summary */
162             env->fpscr |= 1 << FPSCR_FEX;
163             /* Exception is differed */
164             ve = 0;
165         }
166         break;
167     case POWERPC_EXCP_FP_VXSQRT:
168         /* Square root of a negative number */
169         env->fpscr |= 1 << FPSCR_VXSQRT;
170     update_arith:
171         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
172         if (ve == 0) {
173             /* Set the result to quiet NaN */
174             ret = 0x7FF8000000000000ULL;
175             if (set_fpcc) {
176                 env->fpscr &= ~(0xF << FPSCR_FPCC);
177                 env->fpscr |= 0x11 << FPSCR_FPCC;
178             }
179         }
180         break;
181     case POWERPC_EXCP_FP_VXCVI:
182         /* Invalid conversion */
183         env->fpscr |= 1 << FPSCR_VXCVI;
184         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
185         if (ve == 0) {
186             /* Set the result to quiet NaN */
187             ret = 0x7FF8000000000000ULL;
188             if (set_fpcc) {
189                 env->fpscr &= ~(0xF << FPSCR_FPCC);
190                 env->fpscr |= 0x11 << FPSCR_FPCC;
191             }
192         }
193         break;
194     }
195     /* Update the floating-point invalid operation summary */
196     env->fpscr |= 1 << FPSCR_VX;
197     /* Update the floating-point exception summary */
198     env->fpscr |= 1 << FPSCR_FX;
199     if (ve != 0) {
200         /* Update the floating-point enabled exception summary */
201         env->fpscr |= 1 << FPSCR_FEX;
202         if (msr_fe0 != 0 || msr_fe1 != 0) {
203             helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
204                                        POWERPC_EXCP_FP | op);
205         }
206     }
207     return ret;
208 }
209
210 static inline void float_zero_divide_excp(CPUPPCState *env)
211 {
212     env->fpscr |= 1 << FPSCR_ZX;
213     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
214     /* Update the floating-point exception summary */
215     env->fpscr |= 1 << FPSCR_FX;
216     if (fpscr_ze != 0) {
217         /* Update the floating-point enabled exception summary */
218         env->fpscr |= 1 << FPSCR_FEX;
219         if (msr_fe0 != 0 || msr_fe1 != 0) {
220             helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
221                                        POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
222         }
223     }
224 }
225
226 static inline void float_overflow_excp(CPUPPCState *env)
227 {
228     CPUState *cs = CPU(ppc_env_get_cpu(env));
229
230     env->fpscr |= 1 << FPSCR_OX;
231     /* Update the floating-point exception summary */
232     env->fpscr |= 1 << FPSCR_FX;
233     if (fpscr_oe != 0) {
234         /* XXX: should adjust the result */
235         /* Update the floating-point enabled exception summary */
236         env->fpscr |= 1 << FPSCR_FEX;
237         /* We must update the target FPR before raising the exception */
238         cs->exception_index = POWERPC_EXCP_PROGRAM;
239         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
240     } else {
241         env->fpscr |= 1 << FPSCR_XX;
242         env->fpscr |= 1 << FPSCR_FI;
243     }
244 }
245
246 static inline void float_underflow_excp(CPUPPCState *env)
247 {
248     CPUState *cs = CPU(ppc_env_get_cpu(env));
249
250     env->fpscr |= 1 << FPSCR_UX;
251     /* Update the floating-point exception summary */
252     env->fpscr |= 1 << FPSCR_FX;
253     if (fpscr_ue != 0) {
254         /* XXX: should adjust the result */
255         /* Update the floating-point enabled exception summary */
256         env->fpscr |= 1 << FPSCR_FEX;
257         /* We must update the target FPR before raising the exception */
258         cs->exception_index = POWERPC_EXCP_PROGRAM;
259         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
260     }
261 }
262
263 static inline void float_inexact_excp(CPUPPCState *env)
264 {
265     CPUState *cs = CPU(ppc_env_get_cpu(env));
266
267     env->fpscr |= 1 << FPSCR_XX;
268     /* Update the floating-point exception summary */
269     env->fpscr |= 1 << FPSCR_FX;
270     if (fpscr_xe != 0) {
271         /* Update the floating-point enabled exception summary */
272         env->fpscr |= 1 << FPSCR_FEX;
273         /* We must update the target FPR before raising the exception */
274         cs->exception_index = POWERPC_EXCP_PROGRAM;
275         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
276     }
277 }
278
279 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
280 {
281     int rnd_type;
282
283     /* Set rounding mode */
284     switch (fpscr_rn) {
285     case 0:
286         /* Best approximation (round to nearest) */
287         rnd_type = float_round_nearest_even;
288         break;
289     case 1:
290         /* Smaller magnitude (round toward zero) */
291         rnd_type = float_round_to_zero;
292         break;
293     case 2:
294         /* Round toward +infinite */
295         rnd_type = float_round_up;
296         break;
297     default:
298     case 3:
299         /* Round toward -infinite */
300         rnd_type = float_round_down;
301         break;
302     }
303     set_float_rounding_mode(rnd_type, &env->fp_status);
304 }
305
306 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
307 {
308     int prev;
309
310     prev = (env->fpscr >> bit) & 1;
311     env->fpscr &= ~(1 << bit);
312     if (prev == 1) {
313         switch (bit) {
314         case FPSCR_RN1:
315         case FPSCR_RN:
316             fpscr_set_rounding_mode(env);
317             break;
318         default:
319             break;
320         }
321     }
322 }
323
324 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
325 {
326     CPUState *cs = CPU(ppc_env_get_cpu(env));
327     int prev;
328
329     prev = (env->fpscr >> bit) & 1;
330     env->fpscr |= 1 << bit;
331     if (prev == 0) {
332         switch (bit) {
333         case FPSCR_VX:
334             env->fpscr |= 1 << FPSCR_FX;
335             if (fpscr_ve) {
336                 goto raise_ve;
337             }
338             break;
339         case FPSCR_OX:
340             env->fpscr |= 1 << FPSCR_FX;
341             if (fpscr_oe) {
342                 goto raise_oe;
343             }
344             break;
345         case FPSCR_UX:
346             env->fpscr |= 1 << FPSCR_FX;
347             if (fpscr_ue) {
348                 goto raise_ue;
349             }
350             break;
351         case FPSCR_ZX:
352             env->fpscr |= 1 << FPSCR_FX;
353             if (fpscr_ze) {
354                 goto raise_ze;
355             }
356             break;
357         case FPSCR_XX:
358             env->fpscr |= 1 << FPSCR_FX;
359             if (fpscr_xe) {
360                 goto raise_xe;
361             }
362             break;
363         case FPSCR_VXSNAN:
364         case FPSCR_VXISI:
365         case FPSCR_VXIDI:
366         case FPSCR_VXZDZ:
367         case FPSCR_VXIMZ:
368         case FPSCR_VXVC:
369         case FPSCR_VXSOFT:
370         case FPSCR_VXSQRT:
371         case FPSCR_VXCVI:
372             env->fpscr |= 1 << FPSCR_VX;
373             env->fpscr |= 1 << FPSCR_FX;
374             if (fpscr_ve != 0) {
375                 goto raise_ve;
376             }
377             break;
378         case FPSCR_VE:
379             if (fpscr_vx != 0) {
380             raise_ve:
381                 env->error_code = POWERPC_EXCP_FP;
382                 if (fpscr_vxsnan) {
383                     env->error_code |= POWERPC_EXCP_FP_VXSNAN;
384                 }
385                 if (fpscr_vxisi) {
386                     env->error_code |= POWERPC_EXCP_FP_VXISI;
387                 }
388                 if (fpscr_vxidi) {
389                     env->error_code |= POWERPC_EXCP_FP_VXIDI;
390                 }
391                 if (fpscr_vxzdz) {
392                     env->error_code |= POWERPC_EXCP_FP_VXZDZ;
393                 }
394                 if (fpscr_vximz) {
395                     env->error_code |= POWERPC_EXCP_FP_VXIMZ;
396                 }
397                 if (fpscr_vxvc) {
398                     env->error_code |= POWERPC_EXCP_FP_VXVC;
399                 }
400                 if (fpscr_vxsoft) {
401                     env->error_code |= POWERPC_EXCP_FP_VXSOFT;
402                 }
403                 if (fpscr_vxsqrt) {
404                     env->error_code |= POWERPC_EXCP_FP_VXSQRT;
405                 }
406                 if (fpscr_vxcvi) {
407                     env->error_code |= POWERPC_EXCP_FP_VXCVI;
408                 }
409                 goto raise_excp;
410             }
411             break;
412         case FPSCR_OE:
413             if (fpscr_ox != 0) {
414             raise_oe:
415                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
416                 goto raise_excp;
417             }
418             break;
419         case FPSCR_UE:
420             if (fpscr_ux != 0) {
421             raise_ue:
422                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
423                 goto raise_excp;
424             }
425             break;
426         case FPSCR_ZE:
427             if (fpscr_zx != 0) {
428             raise_ze:
429                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
430                 goto raise_excp;
431             }
432             break;
433         case FPSCR_XE:
434             if (fpscr_xx != 0) {
435             raise_xe:
436                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
437                 goto raise_excp;
438             }
439             break;
440         case FPSCR_RN1:
441         case FPSCR_RN:
442             fpscr_set_rounding_mode(env);
443             break;
444         default:
445             break;
446         raise_excp:
447             /* Update the floating-point enabled exception summary */
448             env->fpscr |= 1 << FPSCR_FEX;
449             /* We have to update Rc1 before raising the exception */
450             cs->exception_index = POWERPC_EXCP_PROGRAM;
451             break;
452         }
453     }
454 }
455
456 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
457 {
458     CPUState *cs = CPU(ppc_env_get_cpu(env));
459     target_ulong prev, new;
460     int i;
461
462     prev = env->fpscr;
463     new = (target_ulong)arg;
464     new &= ~0x60000000LL;
465     new |= prev & 0x60000000LL;
466     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
467         if (mask & (1 << i)) {
468             env->fpscr &= ~(0xFLL << (4 * i));
469             env->fpscr |= new & (0xFLL << (4 * i));
470         }
471     }
472     /* Update VX and FEX */
473     if (fpscr_ix != 0) {
474         env->fpscr |= 1 << FPSCR_VX;
475     } else {
476         env->fpscr &= ~(1 << FPSCR_VX);
477     }
478     if ((fpscr_ex & fpscr_eex) != 0) {
479         env->fpscr |= 1 << FPSCR_FEX;
480         cs->exception_index = POWERPC_EXCP_PROGRAM;
481         /* XXX: we should compute it properly */
482         env->error_code = POWERPC_EXCP_FP;
483     } else {
484         env->fpscr &= ~(1 << FPSCR_FEX);
485     }
486     fpscr_set_rounding_mode(env);
487 }
488
489 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
490 {
491     helper_store_fpscr(env, arg, mask);
492 }
493
494 void helper_float_check_status(CPUPPCState *env)
495 {
496     CPUState *cs = CPU(ppc_env_get_cpu(env));
497     int status = get_float_exception_flags(&env->fp_status);
498
499     if (status & float_flag_divbyzero) {
500         float_zero_divide_excp(env);
501     } else if (status & float_flag_overflow) {
502         float_overflow_excp(env);
503     } else if (status & float_flag_underflow) {
504         float_underflow_excp(env);
505     } else if (status & float_flag_inexact) {
506         float_inexact_excp(env);
507     }
508
509     if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
510         (env->error_code & POWERPC_EXCP_FP)) {
511         /* Differred floating-point exception after target FPR update */
512         if (msr_fe0 != 0 || msr_fe1 != 0) {
513             helper_raise_exception_err(env, cs->exception_index,
514                                        env->error_code);
515         }
516     }
517 }
518
519 void helper_reset_fpstatus(CPUPPCState *env)
520 {
521     set_float_exception_flags(0, &env->fp_status);
522 }
523
524 /* fadd - fadd. */
525 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
526 {
527     CPU_DoubleU farg1, farg2;
528
529     farg1.ll = arg1;
530     farg2.ll = arg2;
531
532     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
533                  float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
534         /* Magnitude subtraction of infinities */
535         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
536     } else {
537         if (unlikely(float64_is_signaling_nan(farg1.d) ||
538                      float64_is_signaling_nan(farg2.d))) {
539             /* sNaN addition */
540             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
541         }
542         farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
543     }
544
545     return farg1.ll;
546 }
547
548 /* fsub - fsub. */
549 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
550 {
551     CPU_DoubleU farg1, farg2;
552
553     farg1.ll = arg1;
554     farg2.ll = arg2;
555
556     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
557                  float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
558         /* Magnitude subtraction of infinities */
559         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
560     } else {
561         if (unlikely(float64_is_signaling_nan(farg1.d) ||
562                      float64_is_signaling_nan(farg2.d))) {
563             /* sNaN subtraction */
564             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
565         }
566         farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
567     }
568
569     return farg1.ll;
570 }
571
572 /* fmul - fmul. */
573 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
574 {
575     CPU_DoubleU farg1, farg2;
576
577     farg1.ll = arg1;
578     farg2.ll = arg2;
579
580     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
581                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
582         /* Multiplication of zero by infinity */
583         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
584     } else {
585         if (unlikely(float64_is_signaling_nan(farg1.d) ||
586                      float64_is_signaling_nan(farg2.d))) {
587             /* sNaN multiplication */
588             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
589         }
590         farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
591     }
592
593     return farg1.ll;
594 }
595
596 /* fdiv - fdiv. */
597 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
598 {
599     CPU_DoubleU farg1, farg2;
600
601     farg1.ll = arg1;
602     farg2.ll = arg2;
603
604     if (unlikely(float64_is_infinity(farg1.d) &&
605                  float64_is_infinity(farg2.d))) {
606         /* Division of infinity by infinity */
607         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
608     } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
609         /* Division of zero by zero */
610         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
611     } else {
612         if (unlikely(float64_is_signaling_nan(farg1.d) ||
613                      float64_is_signaling_nan(farg2.d))) {
614             /* sNaN division */
615             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
616         }
617         farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
618     }
619
620     return farg1.ll;
621 }
622
623
624 #define FPU_FCTI(op, cvt, nanval)                                      \
625 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)                   \
626 {                                                                      \
627     CPU_DoubleU farg;                                                  \
628                                                                        \
629     farg.ll = arg;                                                     \
630     farg.ll = float64_to_##cvt(farg.d, &env->fp_status);               \
631                                                                        \
632     if (unlikely(env->fp_status.float_exception_flags)) {              \
633         if (float64_is_any_nan(arg)) {                                 \
634             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
635             if (float64_is_signaling_nan(arg)) {                       \
636                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
637             }                                                          \
638             farg.ll = nanval;                                          \
639         } else if (env->fp_status.float_exception_flags &              \
640                    float_flag_invalid) {                               \
641             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
642         }                                                              \
643         helper_float_check_status(env);                                \
644     }                                                                  \
645     return farg.ll;                                                    \
646  }
647
648 FPU_FCTI(fctiw, int32, 0x80000000U)
649 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
650 FPU_FCTI(fctiwu, uint32, 0x00000000U)
651 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
652 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
653 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
654 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
655 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
656
657 #define FPU_FCFI(op, cvtr, is_single)                      \
658 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
659 {                                                          \
660     CPU_DoubleU farg;                                      \
661                                                            \
662     if (is_single) {                                       \
663         float32 tmp = cvtr(arg, &env->fp_status);          \
664         farg.d = float32_to_float64(tmp, &env->fp_status); \
665     } else {                                               \
666         farg.d = cvtr(arg, &env->fp_status);               \
667     }                                                      \
668     helper_float_check_status(env);                        \
669     return farg.ll;                                        \
670 }
671
672 FPU_FCFI(fcfid, int64_to_float64, 0)
673 FPU_FCFI(fcfids, int64_to_float32, 1)
674 FPU_FCFI(fcfidu, uint64_to_float64, 0)
675 FPU_FCFI(fcfidus, uint64_to_float32, 1)
676
677 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
678                               int rounding_mode)
679 {
680     CPU_DoubleU farg;
681
682     farg.ll = arg;
683
684     if (unlikely(float64_is_signaling_nan(farg.d))) {
685         /* sNaN round */
686         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
687         farg.ll = arg | 0x0008000000000000ULL;
688     } else {
689         int inexact = get_float_exception_flags(&env->fp_status) &
690                       float_flag_inexact;
691         set_float_rounding_mode(rounding_mode, &env->fp_status);
692         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
693         /* Restore rounding mode from FPSCR */
694         fpscr_set_rounding_mode(env);
695
696         /* fri* does not set FPSCR[XX] */
697         if (!inexact) {
698             env->fp_status.float_exception_flags &= ~float_flag_inexact;
699         }
700     }
701     helper_float_check_status(env);
702     return farg.ll;
703 }
704
705 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
706 {
707     return do_fri(env, arg, float_round_ties_away);
708 }
709
710 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
711 {
712     return do_fri(env, arg, float_round_to_zero);
713 }
714
715 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
716 {
717     return do_fri(env, arg, float_round_up);
718 }
719
720 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
721 {
722     return do_fri(env, arg, float_round_down);
723 }
724
725 /* fmadd - fmadd. */
726 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
727                       uint64_t arg3)
728 {
729     CPU_DoubleU farg1, farg2, farg3;
730
731     farg1.ll = arg1;
732     farg2.ll = arg2;
733     farg3.ll = arg3;
734
735     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
736                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
737         /* Multiplication of zero by infinity */
738         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
739     } else {
740         if (unlikely(float64_is_signaling_nan(farg1.d) ||
741                      float64_is_signaling_nan(farg2.d) ||
742                      float64_is_signaling_nan(farg3.d))) {
743             /* sNaN operation */
744             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
745         }
746         /* This is the way the PowerPC specification defines it */
747         float128 ft0_128, ft1_128;
748
749         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
750         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
751         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
752         if (unlikely(float128_is_infinity(ft0_128) &&
753                      float64_is_infinity(farg3.d) &&
754                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
755             /* Magnitude subtraction of infinities */
756             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
757         } else {
758             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
759             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
760             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
761         }
762     }
763
764     return farg1.ll;
765 }
766
767 /* fmsub - fmsub. */
768 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
769                       uint64_t arg3)
770 {
771     CPU_DoubleU farg1, farg2, farg3;
772
773     farg1.ll = arg1;
774     farg2.ll = arg2;
775     farg3.ll = arg3;
776
777     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
778                  (float64_is_zero(farg1.d) &&
779                   float64_is_infinity(farg2.d)))) {
780         /* Multiplication of zero by infinity */
781         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
782     } else {
783         if (unlikely(float64_is_signaling_nan(farg1.d) ||
784                      float64_is_signaling_nan(farg2.d) ||
785                      float64_is_signaling_nan(farg3.d))) {
786             /* sNaN operation */
787             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
788         }
789         /* This is the way the PowerPC specification defines it */
790         float128 ft0_128, ft1_128;
791
792         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
793         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
794         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
795         if (unlikely(float128_is_infinity(ft0_128) &&
796                      float64_is_infinity(farg3.d) &&
797                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
798             /* Magnitude subtraction of infinities */
799             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
800         } else {
801             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
802             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
803             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
804         }
805     }
806     return farg1.ll;
807 }
808
809 /* fnmadd - fnmadd. */
810 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
811                        uint64_t arg3)
812 {
813     CPU_DoubleU farg1, farg2, farg3;
814
815     farg1.ll = arg1;
816     farg2.ll = arg2;
817     farg3.ll = arg3;
818
819     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
820                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
821         /* Multiplication of zero by infinity */
822         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
823     } else {
824         if (unlikely(float64_is_signaling_nan(farg1.d) ||
825                      float64_is_signaling_nan(farg2.d) ||
826                      float64_is_signaling_nan(farg3.d))) {
827             /* sNaN operation */
828             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
829         }
830         /* This is the way the PowerPC specification defines it */
831         float128 ft0_128, ft1_128;
832
833         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
834         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
835         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
836         if (unlikely(float128_is_infinity(ft0_128) &&
837                      float64_is_infinity(farg3.d) &&
838                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
839             /* Magnitude subtraction of infinities */
840             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
841         } else {
842             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
843             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
844             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
845         }
846         if (likely(!float64_is_any_nan(farg1.d))) {
847             farg1.d = float64_chs(farg1.d);
848         }
849     }
850     return farg1.ll;
851 }
852
853 /* fnmsub - fnmsub. */
854 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
855                        uint64_t arg3)
856 {
857     CPU_DoubleU farg1, farg2, farg3;
858
859     farg1.ll = arg1;
860     farg2.ll = arg2;
861     farg3.ll = arg3;
862
863     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
864                  (float64_is_zero(farg1.d) &&
865                   float64_is_infinity(farg2.d)))) {
866         /* Multiplication of zero by infinity */
867         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
868     } else {
869         if (unlikely(float64_is_signaling_nan(farg1.d) ||
870                      float64_is_signaling_nan(farg2.d) ||
871                      float64_is_signaling_nan(farg3.d))) {
872             /* sNaN operation */
873             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
874         }
875         /* This is the way the PowerPC specification defines it */
876         float128 ft0_128, ft1_128;
877
878         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
879         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
880         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
881         if (unlikely(float128_is_infinity(ft0_128) &&
882                      float64_is_infinity(farg3.d) &&
883                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
884             /* Magnitude subtraction of infinities */
885             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
886         } else {
887             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
888             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
889             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
890         }
891         if (likely(!float64_is_any_nan(farg1.d))) {
892             farg1.d = float64_chs(farg1.d);
893         }
894     }
895     return farg1.ll;
896 }
897
898 /* frsp - frsp. */
899 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
900 {
901     CPU_DoubleU farg;
902     float32 f32;
903
904     farg.ll = arg;
905
906     if (unlikely(float64_is_signaling_nan(farg.d))) {
907         /* sNaN square root */
908         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
909     }
910     f32 = float64_to_float32(farg.d, &env->fp_status);
911     farg.d = float32_to_float64(f32, &env->fp_status);
912
913     return farg.ll;
914 }
915
916 /* fsqrt - fsqrt. */
917 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
918 {
919     CPU_DoubleU farg;
920
921     farg.ll = arg;
922
923     if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
924         /* Square root of a negative nonzero number */
925         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
926     } else {
927         if (unlikely(float64_is_signaling_nan(farg.d))) {
928             /* sNaN square root */
929             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
930         }
931         farg.d = float64_sqrt(farg.d, &env->fp_status);
932     }
933     return farg.ll;
934 }
935
936 /* fre - fre. */
937 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
938 {
939     CPU_DoubleU farg;
940
941     farg.ll = arg;
942
943     if (unlikely(float64_is_signaling_nan(farg.d))) {
944         /* sNaN reciprocal */
945         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
946     }
947     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
948     return farg.d;
949 }
950
951 /* fres - fres. */
952 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
953 {
954     CPU_DoubleU farg;
955     float32 f32;
956
957     farg.ll = arg;
958
959     if (unlikely(float64_is_signaling_nan(farg.d))) {
960         /* sNaN reciprocal */
961         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
962     }
963     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
964     f32 = float64_to_float32(farg.d, &env->fp_status);
965     farg.d = float32_to_float64(f32, &env->fp_status);
966
967     return farg.ll;
968 }
969
970 /* frsqrte  - frsqrte. */
971 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
972 {
973     CPU_DoubleU farg;
974
975     farg.ll = arg;
976
977     if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
978         /* Reciprocal square root of a negative nonzero number */
979         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
980     } else {
981         if (unlikely(float64_is_signaling_nan(farg.d))) {
982             /* sNaN reciprocal square root */
983             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
984         }
985         farg.d = float64_sqrt(farg.d, &env->fp_status);
986         farg.d = float64_div(float64_one, farg.d, &env->fp_status);
987     }
988     return farg.ll;
989 }
990
991 /* fsel - fsel. */
992 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
993                      uint64_t arg3)
994 {
995     CPU_DoubleU farg1;
996
997     farg1.ll = arg1;
998
999     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1000         !float64_is_any_nan(farg1.d)) {
1001         return arg2;
1002     } else {
1003         return arg3;
1004     }
1005 }
1006
1007 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1008 {
1009     int fe_flag = 0;
1010     int fg_flag = 0;
1011
1012     if (unlikely(float64_is_infinity(fra) ||
1013                  float64_is_infinity(frb) ||
1014                  float64_is_zero(frb))) {
1015         fe_flag = 1;
1016         fg_flag = 1;
1017     } else {
1018         int e_a = ppc_float64_get_unbiased_exp(fra);
1019         int e_b = ppc_float64_get_unbiased_exp(frb);
1020
1021         if (unlikely(float64_is_any_nan(fra) ||
1022                      float64_is_any_nan(frb))) {
1023             fe_flag = 1;
1024         } else if ((e_b <= -1022) || (e_b >= 1021)) {
1025             fe_flag = 1;
1026         } else if (!float64_is_zero(fra) &&
1027                    (((e_a - e_b) >= 1023) ||
1028                     ((e_a - e_b) <= -1021) ||
1029                     (e_a <= -970))) {
1030             fe_flag = 1;
1031         }
1032
1033         if (unlikely(float64_is_zero_or_denormal(frb))) {
1034             /* XB is not zero because of the above check and */
1035             /* so must be denormalized.                      */
1036             fg_flag = 1;
1037         }
1038     }
1039
1040     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1041 }
1042
1043 uint32_t helper_ftsqrt(uint64_t frb)
1044 {
1045     int fe_flag = 0;
1046     int fg_flag = 0;
1047
1048     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1049         fe_flag = 1;
1050         fg_flag = 1;
1051     } else {
1052         int e_b = ppc_float64_get_unbiased_exp(frb);
1053
1054         if (unlikely(float64_is_any_nan(frb))) {
1055             fe_flag = 1;
1056         } else if (unlikely(float64_is_zero(frb))) {
1057             fe_flag = 1;
1058         } else if (unlikely(float64_is_neg(frb))) {
1059             fe_flag = 1;
1060         } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1061             fe_flag = 1;
1062         }
1063
1064         if (unlikely(float64_is_zero_or_denormal(frb))) {
1065             /* XB is not zero because of the above check and */
1066             /* therefore must be denormalized.               */
1067             fg_flag = 1;
1068         }
1069     }
1070
1071     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1072 }
1073
1074 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1075                   uint32_t crfD)
1076 {
1077     CPU_DoubleU farg1, farg2;
1078     uint32_t ret = 0;
1079
1080     farg1.ll = arg1;
1081     farg2.ll = arg2;
1082
1083     if (unlikely(float64_is_any_nan(farg1.d) ||
1084                  float64_is_any_nan(farg2.d))) {
1085         ret = 0x01UL;
1086     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1087         ret = 0x08UL;
1088     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1089         ret = 0x04UL;
1090     } else {
1091         ret = 0x02UL;
1092     }
1093
1094     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1095     env->fpscr |= ret << FPSCR_FPRF;
1096     env->crf[crfD] = ret;
1097     if (unlikely(ret == 0x01UL
1098                  && (float64_is_signaling_nan(farg1.d) ||
1099                      float64_is_signaling_nan(farg2.d)))) {
1100         /* sNaN comparison */
1101         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1102     }
1103 }
1104
1105 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1106                   uint32_t crfD)
1107 {
1108     CPU_DoubleU farg1, farg2;
1109     uint32_t ret = 0;
1110
1111     farg1.ll = arg1;
1112     farg2.ll = arg2;
1113
1114     if (unlikely(float64_is_any_nan(farg1.d) ||
1115                  float64_is_any_nan(farg2.d))) {
1116         ret = 0x01UL;
1117     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1118         ret = 0x08UL;
1119     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1120         ret = 0x04UL;
1121     } else {
1122         ret = 0x02UL;
1123     }
1124
1125     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1126     env->fpscr |= ret << FPSCR_FPRF;
1127     env->crf[crfD] = ret;
1128     if (unlikely(ret == 0x01UL)) {
1129         if (float64_is_signaling_nan(farg1.d) ||
1130             float64_is_signaling_nan(farg2.d)) {
1131             /* sNaN comparison */
1132             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1133                                   POWERPC_EXCP_FP_VXVC, 1);
1134         } else {
1135             /* qNaN comparison */
1136             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1137         }
1138     }
1139 }
1140
1141 /* Single-precision floating-point conversions */
1142 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1143 {
1144     CPU_FloatU u;
1145
1146     u.f = int32_to_float32(val, &env->vec_status);
1147
1148     return u.l;
1149 }
1150
1151 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1152 {
1153     CPU_FloatU u;
1154
1155     u.f = uint32_to_float32(val, &env->vec_status);
1156
1157     return u.l;
1158 }
1159
1160 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1161 {
1162     CPU_FloatU u;
1163
1164     u.l = val;
1165     /* NaN are not treated the same way IEEE 754 does */
1166     if (unlikely(float32_is_quiet_nan(u.f))) {
1167         return 0;
1168     }
1169
1170     return float32_to_int32(u.f, &env->vec_status);
1171 }
1172
1173 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1174 {
1175     CPU_FloatU u;
1176
1177     u.l = val;
1178     /* NaN are not treated the same way IEEE 754 does */
1179     if (unlikely(float32_is_quiet_nan(u.f))) {
1180         return 0;
1181     }
1182
1183     return float32_to_uint32(u.f, &env->vec_status);
1184 }
1185
1186 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1187 {
1188     CPU_FloatU u;
1189
1190     u.l = val;
1191     /* NaN are not treated the same way IEEE 754 does */
1192     if (unlikely(float32_is_quiet_nan(u.f))) {
1193         return 0;
1194     }
1195
1196     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1197 }
1198
1199 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1200 {
1201     CPU_FloatU u;
1202
1203     u.l = val;
1204     /* NaN are not treated the same way IEEE 754 does */
1205     if (unlikely(float32_is_quiet_nan(u.f))) {
1206         return 0;
1207     }
1208
1209     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1210 }
1211
1212 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1213 {
1214     CPU_FloatU u;
1215     float32 tmp;
1216
1217     u.f = int32_to_float32(val, &env->vec_status);
1218     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1219     u.f = float32_div(u.f, tmp, &env->vec_status);
1220
1221     return u.l;
1222 }
1223
1224 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1225 {
1226     CPU_FloatU u;
1227     float32 tmp;
1228
1229     u.f = uint32_to_float32(val, &env->vec_status);
1230     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1231     u.f = float32_div(u.f, tmp, &env->vec_status);
1232
1233     return u.l;
1234 }
1235
1236 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1237 {
1238     CPU_FloatU u;
1239     float32 tmp;
1240
1241     u.l = val;
1242     /* NaN are not treated the same way IEEE 754 does */
1243     if (unlikely(float32_is_quiet_nan(u.f))) {
1244         return 0;
1245     }
1246     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1247     u.f = float32_mul(u.f, tmp, &env->vec_status);
1248
1249     return float32_to_int32(u.f, &env->vec_status);
1250 }
1251
1252 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1253 {
1254     CPU_FloatU u;
1255     float32 tmp;
1256
1257     u.l = val;
1258     /* NaN are not treated the same way IEEE 754 does */
1259     if (unlikely(float32_is_quiet_nan(u.f))) {
1260         return 0;
1261     }
1262     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1263     u.f = float32_mul(u.f, tmp, &env->vec_status);
1264
1265     return float32_to_uint32(u.f, &env->vec_status);
1266 }
1267
1268 #define HELPER_SPE_SINGLE_CONV(name)                              \
1269     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1270     {                                                             \
1271         return e##name(env, val);                                 \
1272     }
1273 /* efscfsi */
1274 HELPER_SPE_SINGLE_CONV(fscfsi);
1275 /* efscfui */
1276 HELPER_SPE_SINGLE_CONV(fscfui);
1277 /* efscfuf */
1278 HELPER_SPE_SINGLE_CONV(fscfuf);
1279 /* efscfsf */
1280 HELPER_SPE_SINGLE_CONV(fscfsf);
1281 /* efsctsi */
1282 HELPER_SPE_SINGLE_CONV(fsctsi);
1283 /* efsctui */
1284 HELPER_SPE_SINGLE_CONV(fsctui);
1285 /* efsctsiz */
1286 HELPER_SPE_SINGLE_CONV(fsctsiz);
1287 /* efsctuiz */
1288 HELPER_SPE_SINGLE_CONV(fsctuiz);
1289 /* efsctsf */
1290 HELPER_SPE_SINGLE_CONV(fsctsf);
1291 /* efsctuf */
1292 HELPER_SPE_SINGLE_CONV(fsctuf);
1293
1294 #define HELPER_SPE_VECTOR_CONV(name)                            \
1295     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1296     {                                                           \
1297         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1298             (uint64_t)e##name(env, val);                        \
1299     }
1300 /* evfscfsi */
1301 HELPER_SPE_VECTOR_CONV(fscfsi);
1302 /* evfscfui */
1303 HELPER_SPE_VECTOR_CONV(fscfui);
1304 /* evfscfuf */
1305 HELPER_SPE_VECTOR_CONV(fscfuf);
1306 /* evfscfsf */
1307 HELPER_SPE_VECTOR_CONV(fscfsf);
1308 /* evfsctsi */
1309 HELPER_SPE_VECTOR_CONV(fsctsi);
1310 /* evfsctui */
1311 HELPER_SPE_VECTOR_CONV(fsctui);
1312 /* evfsctsiz */
1313 HELPER_SPE_VECTOR_CONV(fsctsiz);
1314 /* evfsctuiz */
1315 HELPER_SPE_VECTOR_CONV(fsctuiz);
1316 /* evfsctsf */
1317 HELPER_SPE_VECTOR_CONV(fsctsf);
1318 /* evfsctuf */
1319 HELPER_SPE_VECTOR_CONV(fsctuf);
1320
1321 /* Single-precision floating-point arithmetic */
1322 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1323 {
1324     CPU_FloatU u1, u2;
1325
1326     u1.l = op1;
1327     u2.l = op2;
1328     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1329     return u1.l;
1330 }
1331
1332 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1333 {
1334     CPU_FloatU u1, u2;
1335
1336     u1.l = op1;
1337     u2.l = op2;
1338     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1339     return u1.l;
1340 }
1341
1342 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1343 {
1344     CPU_FloatU u1, u2;
1345
1346     u1.l = op1;
1347     u2.l = op2;
1348     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1349     return u1.l;
1350 }
1351
1352 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1353 {
1354     CPU_FloatU u1, u2;
1355
1356     u1.l = op1;
1357     u2.l = op2;
1358     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1359     return u1.l;
1360 }
1361
1362 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1363     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1364     {                                                                   \
1365         return e##name(env, op1, op2);                                  \
1366     }
1367 /* efsadd */
1368 HELPER_SPE_SINGLE_ARITH(fsadd);
1369 /* efssub */
1370 HELPER_SPE_SINGLE_ARITH(fssub);
1371 /* efsmul */
1372 HELPER_SPE_SINGLE_ARITH(fsmul);
1373 /* efsdiv */
1374 HELPER_SPE_SINGLE_ARITH(fsdiv);
1375
1376 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1377     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1378     {                                                                   \
1379         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1380             (uint64_t)e##name(env, op1, op2);                           \
1381     }
1382 /* evfsadd */
1383 HELPER_SPE_VECTOR_ARITH(fsadd);
1384 /* evfssub */
1385 HELPER_SPE_VECTOR_ARITH(fssub);
1386 /* evfsmul */
1387 HELPER_SPE_VECTOR_ARITH(fsmul);
1388 /* evfsdiv */
1389 HELPER_SPE_VECTOR_ARITH(fsdiv);
1390
1391 /* Single-precision floating-point comparisons */
1392 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1393 {
1394     CPU_FloatU u1, u2;
1395
1396     u1.l = op1;
1397     u2.l = op2;
1398     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1399 }
1400
1401 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1402 {
1403     CPU_FloatU u1, u2;
1404
1405     u1.l = op1;
1406     u2.l = op2;
1407     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1408 }
1409
1410 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1411 {
1412     CPU_FloatU u1, u2;
1413
1414     u1.l = op1;
1415     u2.l = op2;
1416     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1417 }
1418
1419 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1420 {
1421     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1422     return efscmplt(env, op1, op2);
1423 }
1424
1425 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1426 {
1427     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1428     return efscmpgt(env, op1, op2);
1429 }
1430
1431 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1432 {
1433     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1434     return efscmpeq(env, op1, op2);
1435 }
1436
1437 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1438     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1439     {                                                                   \
1440         return e##name(env, op1, op2) << 2;                             \
1441     }
1442 /* efststlt */
1443 HELPER_SINGLE_SPE_CMP(fststlt);
1444 /* efststgt */
1445 HELPER_SINGLE_SPE_CMP(fststgt);
1446 /* efststeq */
1447 HELPER_SINGLE_SPE_CMP(fststeq);
1448 /* efscmplt */
1449 HELPER_SINGLE_SPE_CMP(fscmplt);
1450 /* efscmpgt */
1451 HELPER_SINGLE_SPE_CMP(fscmpgt);
1452 /* efscmpeq */
1453 HELPER_SINGLE_SPE_CMP(fscmpeq);
1454
1455 static inline uint32_t evcmp_merge(int t0, int t1)
1456 {
1457     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1458 }
1459
1460 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1461     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1462     {                                                                   \
1463         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1464                            e##name(env, op1, op2));                     \
1465     }
1466 /* evfststlt */
1467 HELPER_VECTOR_SPE_CMP(fststlt);
1468 /* evfststgt */
1469 HELPER_VECTOR_SPE_CMP(fststgt);
1470 /* evfststeq */
1471 HELPER_VECTOR_SPE_CMP(fststeq);
1472 /* evfscmplt */
1473 HELPER_VECTOR_SPE_CMP(fscmplt);
1474 /* evfscmpgt */
1475 HELPER_VECTOR_SPE_CMP(fscmpgt);
1476 /* evfscmpeq */
1477 HELPER_VECTOR_SPE_CMP(fscmpeq);
1478
1479 /* Double-precision floating-point conversion */
1480 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1481 {
1482     CPU_DoubleU u;
1483
1484     u.d = int32_to_float64(val, &env->vec_status);
1485
1486     return u.ll;
1487 }
1488
1489 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1490 {
1491     CPU_DoubleU u;
1492
1493     u.d = int64_to_float64(val, &env->vec_status);
1494
1495     return u.ll;
1496 }
1497
1498 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1499 {
1500     CPU_DoubleU u;
1501
1502     u.d = uint32_to_float64(val, &env->vec_status);
1503
1504     return u.ll;
1505 }
1506
1507 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1508 {
1509     CPU_DoubleU u;
1510
1511     u.d = uint64_to_float64(val, &env->vec_status);
1512
1513     return u.ll;
1514 }
1515
1516 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1517 {
1518     CPU_DoubleU u;
1519
1520     u.ll = val;
1521     /* NaN are not treated the same way IEEE 754 does */
1522     if (unlikely(float64_is_any_nan(u.d))) {
1523         return 0;
1524     }
1525
1526     return float64_to_int32(u.d, &env->vec_status);
1527 }
1528
1529 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1530 {
1531     CPU_DoubleU u;
1532
1533     u.ll = val;
1534     /* NaN are not treated the same way IEEE 754 does */
1535     if (unlikely(float64_is_any_nan(u.d))) {
1536         return 0;
1537     }
1538
1539     return float64_to_uint32(u.d, &env->vec_status);
1540 }
1541
1542 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1543 {
1544     CPU_DoubleU u;
1545
1546     u.ll = val;
1547     /* NaN are not treated the same way IEEE 754 does */
1548     if (unlikely(float64_is_any_nan(u.d))) {
1549         return 0;
1550     }
1551
1552     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1553 }
1554
1555 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1556 {
1557     CPU_DoubleU u;
1558
1559     u.ll = val;
1560     /* NaN are not treated the same way IEEE 754 does */
1561     if (unlikely(float64_is_any_nan(u.d))) {
1562         return 0;
1563     }
1564
1565     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1566 }
1567
1568 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1569 {
1570     CPU_DoubleU u;
1571
1572     u.ll = val;
1573     /* NaN are not treated the same way IEEE 754 does */
1574     if (unlikely(float64_is_any_nan(u.d))) {
1575         return 0;
1576     }
1577
1578     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1579 }
1580
1581 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1582 {
1583     CPU_DoubleU u;
1584
1585     u.ll = val;
1586     /* NaN are not treated the same way IEEE 754 does */
1587     if (unlikely(float64_is_any_nan(u.d))) {
1588         return 0;
1589     }
1590
1591     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1592 }
1593
1594 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1595 {
1596     CPU_DoubleU u;
1597     float64 tmp;
1598
1599     u.d = int32_to_float64(val, &env->vec_status);
1600     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1601     u.d = float64_div(u.d, tmp, &env->vec_status);
1602
1603     return u.ll;
1604 }
1605
1606 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1607 {
1608     CPU_DoubleU u;
1609     float64 tmp;
1610
1611     u.d = uint32_to_float64(val, &env->vec_status);
1612     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1613     u.d = float64_div(u.d, tmp, &env->vec_status);
1614
1615     return u.ll;
1616 }
1617
1618 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1619 {
1620     CPU_DoubleU u;
1621     float64 tmp;
1622
1623     u.ll = val;
1624     /* NaN are not treated the same way IEEE 754 does */
1625     if (unlikely(float64_is_any_nan(u.d))) {
1626         return 0;
1627     }
1628     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1629     u.d = float64_mul(u.d, tmp, &env->vec_status);
1630
1631     return float64_to_int32(u.d, &env->vec_status);
1632 }
1633
1634 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1635 {
1636     CPU_DoubleU u;
1637     float64 tmp;
1638
1639     u.ll = val;
1640     /* NaN are not treated the same way IEEE 754 does */
1641     if (unlikely(float64_is_any_nan(u.d))) {
1642         return 0;
1643     }
1644     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1645     u.d = float64_mul(u.d, tmp, &env->vec_status);
1646
1647     return float64_to_uint32(u.d, &env->vec_status);
1648 }
1649
1650 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1651 {
1652     CPU_DoubleU u1;
1653     CPU_FloatU u2;
1654
1655     u1.ll = val;
1656     u2.f = float64_to_float32(u1.d, &env->vec_status);
1657
1658     return u2.l;
1659 }
1660
1661 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1662 {
1663     CPU_DoubleU u2;
1664     CPU_FloatU u1;
1665
1666     u1.l = val;
1667     u2.d = float32_to_float64(u1.f, &env->vec_status);
1668
1669     return u2.ll;
1670 }
1671
1672 /* Double precision fixed-point arithmetic */
1673 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1674 {
1675     CPU_DoubleU u1, u2;
1676
1677     u1.ll = op1;
1678     u2.ll = op2;
1679     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1680     return u1.ll;
1681 }
1682
1683 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1684 {
1685     CPU_DoubleU u1, u2;
1686
1687     u1.ll = op1;
1688     u2.ll = op2;
1689     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1690     return u1.ll;
1691 }
1692
1693 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1694 {
1695     CPU_DoubleU u1, u2;
1696
1697     u1.ll = op1;
1698     u2.ll = op2;
1699     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1700     return u1.ll;
1701 }
1702
1703 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1704 {
1705     CPU_DoubleU u1, u2;
1706
1707     u1.ll = op1;
1708     u2.ll = op2;
1709     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1710     return u1.ll;
1711 }
1712
1713 /* Double precision floating point helpers */
1714 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1715 {
1716     CPU_DoubleU u1, u2;
1717
1718     u1.ll = op1;
1719     u2.ll = op2;
1720     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1721 }
1722
1723 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1724 {
1725     CPU_DoubleU u1, u2;
1726
1727     u1.ll = op1;
1728     u2.ll = op2;
1729     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1730 }
1731
1732 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1733 {
1734     CPU_DoubleU u1, u2;
1735
1736     u1.ll = op1;
1737     u2.ll = op2;
1738     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1739 }
1740
1741 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1742 {
1743     /* XXX: TODO: test special values (NaN, infinites, ...) */
1744     return helper_efdtstlt(env, op1, op2);
1745 }
1746
1747 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1748 {
1749     /* XXX: TODO: test special values (NaN, infinites, ...) */
1750     return helper_efdtstgt(env, op1, op2);
1751 }
1752
1753 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1754 {
1755     /* XXX: TODO: test special values (NaN, infinites, ...) */
1756     return helper_efdtsteq(env, op1, op2);
1757 }
1758
1759 #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1760     (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) |    \
1761      (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1762
1763 #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1764 #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1765 #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1766 #define xC(opcode) DECODE_SPLIT(opcode, 3, 1,  6, 5)
1767 #define BF(opcode) (((opcode) >> (31-8)) & 7)
1768
1769 typedef union _ppc_vsr_t {
1770     uint64_t u64[2];
1771     uint32_t u32[4];
1772     float32 f32[4];
1773     float64 f64[2];
1774 } ppc_vsr_t;
1775
1776 #if defined(HOST_WORDS_BIGENDIAN)
1777 #define VsrW(i) u32[i]
1778 #define VsrD(i) u64[i]
1779 #else
1780 #define VsrW(i) u32[3-(i)]
1781 #define VsrD(i) u64[1-(i)]
1782 #endif
1783
1784 static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1785 {
1786     if (n < 32) {
1787         vsr->VsrD(0) = env->fpr[n];
1788         vsr->VsrD(1) = env->vsr[n];
1789     } else {
1790         vsr->u64[0] = env->avr[n-32].u64[0];
1791         vsr->u64[1] = env->avr[n-32].u64[1];
1792     }
1793 }
1794
1795 static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1796 {
1797     if (n < 32) {
1798         env->fpr[n] = vsr->VsrD(0);
1799         env->vsr[n] = vsr->VsrD(1);
1800     } else {
1801         env->avr[n-32].u64[0] = vsr->u64[0];
1802         env->avr[n-32].u64[1] = vsr->u64[1];
1803     }
1804 }
1805
1806 #define float64_to_float64(x, env) x
1807
1808
1809 /* VSX_ADD_SUB - VSX floating point add/subract
1810  *   name  - instruction mnemonic
1811  *   op    - operation (add or sub)
1812  *   nels  - number of elements (1, 2 or 4)
1813  *   tp    - type (float32 or float64)
1814  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1815  *   sfprf - set FPRF
1816  */
1817 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1818 void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
1819 {                                                                            \
1820     ppc_vsr_t xt, xa, xb;                                                    \
1821     int i;                                                                   \
1822                                                                              \
1823     getVSR(xA(opcode), &xa, env);                                            \
1824     getVSR(xB(opcode), &xb, env);                                            \
1825     getVSR(xT(opcode), &xt, env);                                            \
1826     helper_reset_fpstatus(env);                                              \
1827                                                                              \
1828     for (i = 0; i < nels; i++) {                                             \
1829         float_status tstat = env->fp_status;                                 \
1830         set_float_exception_flags(0, &tstat);                                \
1831         xt.fld = tp##_##op(xa.fld, xb.fld, &tstat);                          \
1832         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1833                                                                              \
1834         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1835             if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {      \
1836                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);    \
1837             } else if (tp##_is_signaling_nan(xa.fld) ||                      \
1838                        tp##_is_signaling_nan(xb.fld)) {                      \
1839                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1840             }                                                                \
1841         }                                                                    \
1842                                                                              \
1843         if (r2sp) {                                                          \
1844             xt.fld = helper_frsp(env, xt.fld);                               \
1845         }                                                                    \
1846                                                                              \
1847         if (sfprf) {                                                         \
1848             helper_compute_fprf(env, xt.fld, sfprf);                         \
1849         }                                                                    \
1850     }                                                                        \
1851     putVSR(xT(opcode), &xt, env);                                            \
1852     helper_float_check_status(env);                                          \
1853 }
1854
1855 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1856 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1857 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1858 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1859 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1860 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1861 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1862 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1863
1864 /* VSX_MUL - VSX floating point multiply
1865  *   op    - instruction mnemonic
1866  *   nels  - number of elements (1, 2 or 4)
1867  *   tp    - type (float32 or float64)
1868  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1869  *   sfprf - set FPRF
1870  */
1871 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1872 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1873 {                                                                            \
1874     ppc_vsr_t xt, xa, xb;                                                    \
1875     int i;                                                                   \
1876                                                                              \
1877     getVSR(xA(opcode), &xa, env);                                            \
1878     getVSR(xB(opcode), &xb, env);                                            \
1879     getVSR(xT(opcode), &xt, env);                                            \
1880     helper_reset_fpstatus(env);                                              \
1881                                                                              \
1882     for (i = 0; i < nels; i++) {                                             \
1883         float_status tstat = env->fp_status;                                 \
1884         set_float_exception_flags(0, &tstat);                                \
1885         xt.fld = tp##_mul(xa.fld, xb.fld, &tstat);                           \
1886         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1887                                                                              \
1888         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1889             if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) ||        \
1890                 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) {        \
1891                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf);    \
1892             } else if (tp##_is_signaling_nan(xa.fld) ||                      \
1893                        tp##_is_signaling_nan(xb.fld)) {                      \
1894                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1895             }                                                                \
1896         }                                                                    \
1897                                                                              \
1898         if (r2sp) {                                                          \
1899             xt.fld = helper_frsp(env, xt.fld);                               \
1900         }                                                                    \
1901                                                                              \
1902         if (sfprf) {                                                         \
1903             helper_compute_fprf(env, xt.fld, sfprf);                         \
1904         }                                                                    \
1905     }                                                                        \
1906                                                                              \
1907     putVSR(xT(opcode), &xt, env);                                            \
1908     helper_float_check_status(env);                                          \
1909 }
1910
1911 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1912 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1913 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1914 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1915
1916 /* VSX_DIV - VSX floating point divide
1917  *   op    - instruction mnemonic
1918  *   nels  - number of elements (1, 2 or 4)
1919  *   tp    - type (float32 or float64)
1920  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1921  *   sfprf - set FPRF
1922  */
1923 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1924 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1925 {                                                                             \
1926     ppc_vsr_t xt, xa, xb;                                                     \
1927     int i;                                                                    \
1928                                                                               \
1929     getVSR(xA(opcode), &xa, env);                                             \
1930     getVSR(xB(opcode), &xb, env);                                             \
1931     getVSR(xT(opcode), &xt, env);                                             \
1932     helper_reset_fpstatus(env);                                               \
1933                                                                               \
1934     for (i = 0; i < nels; i++) {                                              \
1935         float_status tstat = env->fp_status;                                  \
1936         set_float_exception_flags(0, &tstat);                                 \
1937         xt.fld = tp##_div(xa.fld, xb.fld, &tstat);                            \
1938         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1939                                                                               \
1940         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1941             if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {       \
1942                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf);     \
1943             } else if (tp##_is_zero(xa.fld) &&                                \
1944                 tp##_is_zero(xb.fld)) {                                       \
1945                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf);     \
1946             } else if (tp##_is_signaling_nan(xa.fld) ||                       \
1947                 tp##_is_signaling_nan(xb.fld)) {                              \
1948                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1949             }                                                                 \
1950         }                                                                     \
1951                                                                               \
1952         if (r2sp) {                                                           \
1953             xt.fld = helper_frsp(env, xt.fld);                                \
1954         }                                                                     \
1955                                                                               \
1956         if (sfprf) {                                                          \
1957             helper_compute_fprf(env, xt.fld, sfprf);                          \
1958         }                                                                     \
1959     }                                                                         \
1960                                                                               \
1961     putVSR(xT(opcode), &xt, env);                                             \
1962     helper_float_check_status(env);                                           \
1963 }
1964
1965 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1966 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1967 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1968 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1969
1970 /* VSX_RE  - VSX floating point reciprocal estimate
1971  *   op    - instruction mnemonic
1972  *   nels  - number of elements (1, 2 or 4)
1973  *   tp    - type (float32 or float64)
1974  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1975  *   sfprf - set FPRF
1976  */
1977 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
1978 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1979 {                                                                             \
1980     ppc_vsr_t xt, xb;                                                         \
1981     int i;                                                                    \
1982                                                                               \
1983     getVSR(xB(opcode), &xb, env);                                             \
1984     getVSR(xT(opcode), &xt, env);                                             \
1985     helper_reset_fpstatus(env);                                               \
1986                                                                               \
1987     for (i = 0; i < nels; i++) {                                              \
1988         if (unlikely(tp##_is_signaling_nan(xb.fld))) {                        \
1989                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1990         }                                                                     \
1991         xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \
1992                                                                               \
1993         if (r2sp) {                                                           \
1994             xt.fld = helper_frsp(env, xt.fld);                                \
1995         }                                                                     \
1996                                                                               \
1997         if (sfprf) {                                                          \
1998             helper_compute_fprf(env, xt.fld, sfprf);                          \
1999         }                                                                     \
2000     }                                                                         \
2001                                                                               \
2002     putVSR(xT(opcode), &xt, env);                                             \
2003     helper_float_check_status(env);                                           \
2004 }
2005
2006 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2007 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2008 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2009 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2010
2011 /* VSX_SQRT - VSX floating point square root
2012  *   op    - instruction mnemonic
2013  *   nels  - number of elements (1, 2 or 4)
2014  *   tp    - type (float32 or float64)
2015  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2016  *   sfprf - set FPRF
2017  */
2018 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
2019 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2020 {                                                                            \
2021     ppc_vsr_t xt, xb;                                                        \
2022     int i;                                                                   \
2023                                                                              \
2024     getVSR(xB(opcode), &xb, env);                                            \
2025     getVSR(xT(opcode), &xt, env);                                            \
2026     helper_reset_fpstatus(env);                                              \
2027                                                                              \
2028     for (i = 0; i < nels; i++) {                                             \
2029         float_status tstat = env->fp_status;                                 \
2030         set_float_exception_flags(0, &tstat);                                \
2031         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2032         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2033                                                                              \
2034         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2035             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2036                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2037             } else if (tp##_is_signaling_nan(xb.fld)) {                      \
2038                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2039             }                                                                \
2040         }                                                                    \
2041                                                                              \
2042         if (r2sp) {                                                          \
2043             xt.fld = helper_frsp(env, xt.fld);                               \
2044         }                                                                    \
2045                                                                              \
2046         if (sfprf) {                                                         \
2047             helper_compute_fprf(env, xt.fld, sfprf);                         \
2048         }                                                                    \
2049     }                                                                        \
2050                                                                              \
2051     putVSR(xT(opcode), &xt, env);                                            \
2052     helper_float_check_status(env);                                          \
2053 }
2054
2055 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2056 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2057 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2058 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2059
2060 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2061  *   op    - instruction mnemonic
2062  *   nels  - number of elements (1, 2 or 4)
2063  *   tp    - type (float32 or float64)
2064  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2065  *   sfprf - set FPRF
2066  */
2067 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2068 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2069 {                                                                            \
2070     ppc_vsr_t xt, xb;                                                        \
2071     int i;                                                                   \
2072                                                                              \
2073     getVSR(xB(opcode), &xb, env);                                            \
2074     getVSR(xT(opcode), &xt, env);                                            \
2075     helper_reset_fpstatus(env);                                              \
2076                                                                              \
2077     for (i = 0; i < nels; i++) {                                             \
2078         float_status tstat = env->fp_status;                                 \
2079         set_float_exception_flags(0, &tstat);                                \
2080         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2081         xt.fld = tp##_div(tp##_one, xt.fld, &tstat);                         \
2082         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2083                                                                              \
2084         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2085             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2086                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2087             } else if (tp##_is_signaling_nan(xb.fld)) {                      \
2088                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2089             }                                                                \
2090         }                                                                    \
2091                                                                              \
2092         if (r2sp) {                                                          \
2093             xt.fld = helper_frsp(env, xt.fld);                               \
2094         }                                                                    \
2095                                                                              \
2096         if (sfprf) {                                                         \
2097             helper_compute_fprf(env, xt.fld, sfprf);                         \
2098         }                                                                    \
2099     }                                                                        \
2100                                                                              \
2101     putVSR(xT(opcode), &xt, env);                                            \
2102     helper_float_check_status(env);                                          \
2103 }
2104
2105 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2106 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2107 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2108 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2109
2110 /* VSX_TDIV - VSX floating point test for divide
2111  *   op    - instruction mnemonic
2112  *   nels  - number of elements (1, 2 or 4)
2113  *   tp    - type (float32 or float64)
2114  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2115  *   emin  - minimum unbiased exponent
2116  *   emax  - maximum unbiased exponent
2117  *   nbits - number of fraction bits
2118  */
2119 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2120 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2121 {                                                                       \
2122     ppc_vsr_t xa, xb;                                                   \
2123     int i;                                                              \
2124     int fe_flag = 0;                                                    \
2125     int fg_flag = 0;                                                    \
2126                                                                         \
2127     getVSR(xA(opcode), &xa, env);                                       \
2128     getVSR(xB(opcode), &xb, env);                                       \
2129                                                                         \
2130     for (i = 0; i < nels; i++) {                                        \
2131         if (unlikely(tp##_is_infinity(xa.fld) ||                        \
2132                      tp##_is_infinity(xb.fld) ||                        \
2133                      tp##_is_zero(xb.fld))) {                           \
2134             fe_flag = 1;                                                \
2135             fg_flag = 1;                                                \
2136         } else {                                                        \
2137             int e_a = ppc_##tp##_get_unbiased_exp(xa.fld);              \
2138             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2139                                                                         \
2140             if (unlikely(tp##_is_any_nan(xa.fld) ||                     \
2141                          tp##_is_any_nan(xb.fld))) {                    \
2142                 fe_flag = 1;                                            \
2143             } else if ((e_b <= emin) || (e_b >= (emax-2))) {            \
2144                 fe_flag = 1;                                            \
2145             } else if (!tp##_is_zero(xa.fld) &&                         \
2146                        (((e_a - e_b) >= emax) ||                        \
2147                         ((e_a - e_b) <= (emin+1)) ||                    \
2148                          (e_a <= (emin+nbits)))) {                      \
2149                 fe_flag = 1;                                            \
2150             }                                                           \
2151                                                                         \
2152             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2153                 /* XB is not zero because of the above check and */     \
2154                 /* so must be denormalized.                      */     \
2155                 fg_flag = 1;                                            \
2156             }                                                           \
2157         }                                                               \
2158     }                                                                   \
2159                                                                         \
2160     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2161 }
2162
2163 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2164 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2165 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2166
2167 /* VSX_TSQRT - VSX floating point test for square root
2168  *   op    - instruction mnemonic
2169  *   nels  - number of elements (1, 2 or 4)
2170  *   tp    - type (float32 or float64)
2171  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2172  *   emin  - minimum unbiased exponent
2173  *   emax  - maximum unbiased exponent
2174  *   nbits - number of fraction bits
2175  */
2176 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2177 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2178 {                                                                       \
2179     ppc_vsr_t xa, xb;                                                   \
2180     int i;                                                              \
2181     int fe_flag = 0;                                                    \
2182     int fg_flag = 0;                                                    \
2183                                                                         \
2184     getVSR(xA(opcode), &xa, env);                                       \
2185     getVSR(xB(opcode), &xb, env);                                       \
2186                                                                         \
2187     for (i = 0; i < nels; i++) {                                        \
2188         if (unlikely(tp##_is_infinity(xb.fld) ||                        \
2189                      tp##_is_zero(xb.fld))) {                           \
2190             fe_flag = 1;                                                \
2191             fg_flag = 1;                                                \
2192         } else {                                                        \
2193             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2194                                                                         \
2195             if (unlikely(tp##_is_any_nan(xb.fld))) {                    \
2196                 fe_flag = 1;                                            \
2197             } else if (unlikely(tp##_is_zero(xb.fld))) {                \
2198                 fe_flag = 1;                                            \
2199             } else if (unlikely(tp##_is_neg(xb.fld))) {                 \
2200                 fe_flag = 1;                                            \
2201             } else if (!tp##_is_zero(xb.fld) &&                         \
2202                       (e_b <= (emin+nbits))) {                          \
2203                 fe_flag = 1;                                            \
2204             }                                                           \
2205                                                                         \
2206             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2207                 /* XB is not zero because of the above check and */     \
2208                 /* therefore must be denormalized.               */     \
2209                 fg_flag = 1;                                            \
2210             }                                                           \
2211         }                                                               \
2212     }                                                                   \
2213                                                                         \
2214     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2215 }
2216
2217 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2218 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2219 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2220
2221 /* VSX_MADD - VSX floating point muliply/add variations
2222  *   op    - instruction mnemonic
2223  *   nels  - number of elements (1, 2 or 4)
2224  *   tp    - type (float32 or float64)
2225  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2226  *   maddflgs - flags for the float*muladd routine that control the
2227  *           various forms (madd, msub, nmadd, nmsub)
2228  *   afrm  - A form (1=A, 0=M)
2229  *   sfprf - set FPRF
2230  */
2231 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \
2232 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2233 {                                                                             \
2234     ppc_vsr_t xt_in, xa, xb, xt_out;                                          \
2235     ppc_vsr_t *b, *c;                                                         \
2236     int i;                                                                    \
2237                                                                               \
2238     if (afrm) { /* AxB + T */                                                 \
2239         b = &xb;                                                              \
2240         c = &xt_in;                                                           \
2241     } else { /* AxT + B */                                                    \
2242         b = &xt_in;                                                           \
2243         c = &xb;                                                              \
2244     }                                                                         \
2245                                                                               \
2246     getVSR(xA(opcode), &xa, env);                                             \
2247     getVSR(xB(opcode), &xb, env);                                             \
2248     getVSR(xT(opcode), &xt_in, env);                                          \
2249                                                                               \
2250     xt_out = xt_in;                                                           \
2251                                                                               \
2252     helper_reset_fpstatus(env);                                               \
2253                                                                               \
2254     for (i = 0; i < nels; i++) {                                              \
2255         float_status tstat = env->fp_status;                                  \
2256         set_float_exception_flags(0, &tstat);                                 \
2257         if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2258             /* Avoid double rounding errors by rounding the intermediate */   \
2259             /* result to odd.                                            */   \
2260             set_float_rounding_mode(float_round_to_zero, &tstat);             \
2261             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2262                                        maddflgs, &tstat);                     \
2263             xt_out.fld |= (get_float_exception_flags(&tstat) &                \
2264                               float_flag_inexact) != 0;                       \
2265         } else {                                                              \
2266             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2267                                         maddflgs, &tstat);                    \
2268         }                                                                     \
2269         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2270                                                                               \
2271         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2272             if (tp##_is_signaling_nan(xa.fld) ||                              \
2273                 tp##_is_signaling_nan(b->fld) ||                              \
2274                 tp##_is_signaling_nan(c->fld)) {                              \
2275                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
2276                 tstat.float_exception_flags &= ~float_flag_invalid;           \
2277             }                                                                 \
2278             if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) ||         \
2279                 (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) {         \
2280                 xt_out.fld = float64_to_##tp(fload_invalid_op_excp(env,       \
2281                     POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status);          \
2282                 tstat.float_exception_flags &= ~float_flag_invalid;           \
2283             }                                                                 \
2284             if ((tstat.float_exception_flags & float_flag_invalid) &&         \
2285                 ((tp##_is_infinity(xa.fld) ||                                 \
2286                   tp##_is_infinity(b->fld)) &&                                \
2287                   tp##_is_infinity(c->fld))) {                                \
2288                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);     \
2289             }                                                                 \
2290         }                                                                     \
2291                                                                               \
2292         if (r2sp) {                                                           \
2293             xt_out.fld = helper_frsp(env, xt_out.fld);                        \
2294         }                                                                     \
2295                                                                               \
2296         if (sfprf) {                                                          \
2297             helper_compute_fprf(env, xt_out.fld, sfprf);                      \
2298         }                                                                     \
2299     }                                                                         \
2300     putVSR(xT(opcode), &xt_out, env);                                         \
2301     helper_float_check_status(env);                                           \
2302 }
2303
2304 #define MADD_FLGS 0
2305 #define MSUB_FLGS float_muladd_negate_c
2306 #define NMADD_FLGS float_muladd_negate_result
2307 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2308
2309 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2310 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2311 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2312 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2313 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2314 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2315 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2316 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2317
2318 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2319 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2320 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2321 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2322 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2323 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2324 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2325 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2326
2327 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2328 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2329 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2330 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2331 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2332 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2333 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2334 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2335
2336 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2337 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2338 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2339 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2340 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2341 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2342 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2343 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2344
2345 #define VSX_SCALAR_CMP(op, ordered)                                      \
2346 void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
2347 {                                                                        \
2348     ppc_vsr_t xa, xb;                                                    \
2349     uint32_t cc = 0;                                                     \
2350                                                                          \
2351     getVSR(xA(opcode), &xa, env);                                        \
2352     getVSR(xB(opcode), &xb, env);                                        \
2353                                                                          \
2354     if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                       \
2355                  float64_is_any_nan(xb.VsrD(0)))) {                      \
2356         if (float64_is_signaling_nan(xa.VsrD(0)) ||                      \
2357             float64_is_signaling_nan(xb.VsrD(0))) {                      \
2358             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2359         }                                                                \
2360         if (ordered) {                                                   \
2361             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);         \
2362         }                                                                \
2363         cc = 1;                                                          \
2364     } else {                                                             \
2365         if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {       \
2366             cc = 8;                                                      \
2367         } else if (!float64_le(xa.VsrD(0), xb.VsrD(0),                   \
2368                                &env->fp_status)) { \
2369             cc = 4;                                                      \
2370         } else {                                                         \
2371             cc = 2;                                                      \
2372         }                                                                \
2373     }                                                                    \
2374                                                                          \
2375     env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \
2376     env->fpscr |= cc << FPSCR_FPRF;                                      \
2377     env->crf[BF(opcode)] = cc;                                           \
2378                                                                          \
2379     helper_float_check_status(env);                                      \
2380 }
2381
2382 VSX_SCALAR_CMP(xscmpodp, 1)
2383 VSX_SCALAR_CMP(xscmpudp, 0)
2384
2385 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
2386 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
2387
2388 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2389  *   name  - instruction mnemonic
2390  *   op    - operation (max or min)
2391  *   nels  - number of elements (1, 2 or 4)
2392  *   tp    - type (float32 or float64)
2393  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2394  */
2395 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2396 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2397 {                                                                             \
2398     ppc_vsr_t xt, xa, xb;                                                     \
2399     int i;                                                                    \
2400                                                                               \
2401     getVSR(xA(opcode), &xa, env);                                             \
2402     getVSR(xB(opcode), &xb, env);                                             \
2403     getVSR(xT(opcode), &xt, env);                                             \
2404                                                                               \
2405     for (i = 0; i < nels; i++) {                                              \
2406         xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \
2407         if (unlikely(tp##_is_signaling_nan(xa.fld) ||                         \
2408                      tp##_is_signaling_nan(xb.fld))) {                        \
2409             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
2410         }                                                                     \
2411     }                                                                         \
2412                                                                               \
2413     putVSR(xT(opcode), &xt, env);                                             \
2414     helper_float_check_status(env);                                           \
2415 }
2416
2417 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2418 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2419 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2420 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2421 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2422 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2423
2424 /* VSX_CMP - VSX floating point compare
2425  *   op    - instruction mnemonic
2426  *   nels  - number of elements (1, 2 or 4)
2427  *   tp    - type (float32 or float64)
2428  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2429  *   cmp   - comparison operation
2430  *   svxvc - set VXVC bit
2431  */
2432 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc)                            \
2433 void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2434 {                                                                         \
2435     ppc_vsr_t xt, xa, xb;                                                 \
2436     int i;                                                                \
2437     int all_true = 1;                                                     \
2438     int all_false = 1;                                                    \
2439                                                                           \
2440     getVSR(xA(opcode), &xa, env);                                         \
2441     getVSR(xB(opcode), &xb, env);                                         \
2442     getVSR(xT(opcode), &xt, env);                                         \
2443                                                                           \
2444     for (i = 0; i < nels; i++) {                                          \
2445         if (unlikely(tp##_is_any_nan(xa.fld) ||                           \
2446                      tp##_is_any_nan(xb.fld))) {                          \
2447             if (tp##_is_signaling_nan(xa.fld) ||                          \
2448                 tp##_is_signaling_nan(xb.fld)) {                          \
2449                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);    \
2450             }                                                             \
2451             if (svxvc) {                                                  \
2452                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);      \
2453             }                                                             \
2454             xt.fld = 0;                                                   \
2455             all_true = 0;                                                 \
2456         } else {                                                          \
2457             if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == 1) {       \
2458                 xt.fld = -1;                                              \
2459                 all_false = 0;                                            \
2460             } else {                                                      \
2461                 xt.fld = 0;                                               \
2462                 all_true = 0;                                             \
2463             }                                                             \
2464         }                                                                 \
2465     }                                                                     \
2466                                                                           \
2467     putVSR(xT(opcode), &xt, env);                                         \
2468     if ((opcode >> (31-21)) & 1) {                                        \
2469         env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \
2470     }                                                                     \
2471     helper_float_check_status(env);                                       \
2472  }
2473
2474 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0)
2475 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1)
2476 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1)
2477 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0)
2478 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1)
2479 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1)
2480
2481 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2482  *   op    - instruction mnemonic
2483  *   nels  - number of elements (1, 2 or 4)
2484  *   stp   - source type (float32 or float64)
2485  *   ttp   - target type (float32 or float64)
2486  *   sfld  - source vsr_t field
2487  *   tfld  - target vsr_t field (f32 or f64)
2488  *   sfprf - set FPRF
2489  */
2490 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2491 void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2492 {                                                                  \
2493     ppc_vsr_t xt, xb;                                              \
2494     int i;                                                         \
2495                                                                    \
2496     getVSR(xB(opcode), &xb, env);                                  \
2497     getVSR(xT(opcode), &xt, env);                                  \
2498                                                                    \
2499     for (i = 0; i < nels; i++) {                                   \
2500         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
2501         if (unlikely(stp##_is_signaling_nan(xb.sfld))) {           \
2502             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2503             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2504         }                                                          \
2505         if (sfprf) {                                               \
2506             helper_compute_fprf(env, ttp##_to_float64(xt.tfld,     \
2507                                 &env->fp_status), sfprf);          \
2508         }                                                          \
2509     }                                                              \
2510                                                                    \
2511     putVSR(xT(opcode), &xt, env);                                  \
2512     helper_float_check_status(env);                                \
2513 }
2514
2515 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2516 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2517 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2518 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2519
2520 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2521 {
2522     float_status tstat = env->fp_status;
2523     set_float_exception_flags(0, &tstat);
2524
2525     return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2526 }
2527
2528 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2529 {
2530     float_status tstat = env->fp_status;
2531     set_float_exception_flags(0, &tstat);
2532
2533     return float32_to_float64(xb >> 32, &tstat);
2534 }
2535
2536 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2537  *   op    - instruction mnemonic
2538  *   nels  - number of elements (1, 2 or 4)
2539  *   stp   - source type (float32 or float64)
2540  *   ttp   - target type (int32, uint32, int64 or uint64)
2541  *   sfld  - source vsr_t field
2542  *   tfld  - target vsr_t field
2543  *   rnan  - resulting NaN
2544  */
2545 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2546 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2547 {                                                                            \
2548     ppc_vsr_t xt, xb;                                                        \
2549     int i;                                                                   \
2550                                                                              \
2551     getVSR(xB(opcode), &xb, env);                                            \
2552     getVSR(xT(opcode), &xt, env);                                            \
2553                                                                              \
2554     for (i = 0; i < nels; i++) {                                             \
2555         if (unlikely(stp##_is_any_nan(xb.sfld))) {                           \
2556             if (stp##_is_signaling_nan(xb.sfld)) {                           \
2557                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2558             }                                                                \
2559             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \
2560             xt.tfld = rnan;                                                  \
2561         } else {                                                             \
2562             xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld,                \
2563                           &env->fp_status);                                  \
2564             if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2565                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);        \
2566             }                                                                \
2567         }                                                                    \
2568     }                                                                        \
2569                                                                              \
2570     putVSR(xT(opcode), &xt, env);                                            \
2571     helper_float_check_status(env);                                          \
2572 }
2573
2574 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2575                   0x8000000000000000ULL)
2576 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2577                   0x80000000U)
2578 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2579 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2580 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2581                   0x8000000000000000ULL)
2582 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2583                   0x80000000U)
2584 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2585 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2586 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2587                   0x8000000000000000ULL)
2588 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2589 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2590 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2591
2592 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2593  *   op    - instruction mnemonic
2594  *   nels  - number of elements (1, 2 or 4)
2595  *   stp   - source type (int32, uint32, int64 or uint64)
2596  *   ttp   - target type (float32 or float64)
2597  *   sfld  - source vsr_t field
2598  *   tfld  - target vsr_t field
2599  *   jdef  - definition of the j index (i or 2*i)
2600  *   sfprf - set FPRF
2601  */
2602 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
2603 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2604 {                                                                       \
2605     ppc_vsr_t xt, xb;                                                   \
2606     int i;                                                              \
2607                                                                         \
2608     getVSR(xB(opcode), &xb, env);                                       \
2609     getVSR(xT(opcode), &xt, env);                                       \
2610                                                                         \
2611     for (i = 0; i < nels; i++) {                                        \
2612         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2613         if (r2sp) {                                                     \
2614             xt.tfld = helper_frsp(env, xt.tfld);                        \
2615         }                                                               \
2616         if (sfprf) {                                                    \
2617             helper_compute_fprf(env, xt.tfld, sfprf);                   \
2618         }                                                               \
2619     }                                                                   \
2620                                                                         \
2621     putVSR(xT(opcode), &xt, env);                                       \
2622     helper_float_check_status(env);                                     \
2623 }
2624
2625 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2626 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2627 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2628 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2629 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2630 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2631 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2632 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
2633 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
2634 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
2635 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2636 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2637
2638 /* For "use current rounding mode", define a value that will not be one of
2639  * the existing rounding model enums.
2640  */
2641 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2642   float_round_up + float_round_to_zero)
2643
2644 /* VSX_ROUND - VSX floating point round
2645  *   op    - instruction mnemonic
2646  *   nels  - number of elements (1, 2 or 4)
2647  *   tp    - type (float32 or float64)
2648  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2649  *   rmode - rounding mode
2650  *   sfprf - set FPRF
2651  */
2652 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
2653 void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
2654 {                                                                      \
2655     ppc_vsr_t xt, xb;                                                  \
2656     int i;                                                             \
2657     getVSR(xB(opcode), &xb, env);                                      \
2658     getVSR(xT(opcode), &xt, env);                                      \
2659                                                                        \
2660     if (rmode != FLOAT_ROUND_CURRENT) {                                \
2661         set_float_rounding_mode(rmode, &env->fp_status);               \
2662     }                                                                  \
2663                                                                        \
2664     for (i = 0; i < nels; i++) {                                       \
2665         if (unlikely(tp##_is_signaling_nan(xb.fld))) {                 \
2666             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);     \
2667             xt.fld = tp##_snan_to_qnan(xb.fld);                        \
2668         } else {                                                       \
2669             xt.fld = tp##_round_to_int(xb.fld, &env->fp_status);       \
2670         }                                                              \
2671         if (sfprf) {                                                   \
2672             helper_compute_fprf(env, xt.fld, sfprf);                   \
2673         }                                                              \
2674     }                                                                  \
2675                                                                        \
2676     /* If this is not a "use current rounding mode" instruction,       \
2677      * then inhibit setting of the XX bit and restore rounding         \
2678      * mode from FPSCR */                                              \
2679     if (rmode != FLOAT_ROUND_CURRENT) {                                \
2680         fpscr_set_rounding_mode(env);                                  \
2681         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
2682     }                                                                  \
2683                                                                        \
2684     putVSR(xT(opcode), &xt, env);                                      \
2685     helper_float_check_status(env);                                    \
2686 }
2687
2688 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_nearest_even, 1)
2689 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
2690 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
2691 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
2692 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
2693
2694 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_nearest_even, 0)
2695 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
2696 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
2697 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
2698 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
2699
2700 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_nearest_even, 0)
2701 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
2702 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
2703 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
2704 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
2705
2706 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2707 {
2708     helper_reset_fpstatus(env);
2709
2710     uint64_t xt = helper_frsp(env, xb);
2711
2712     helper_compute_fprf(env, xt, 1);
2713     helper_float_check_status(env);
2714     return xt;
2715 }