93c20b3db15c4d9da270566326cfad5079d36d06
[platform/upstream/glibc.git] / sysdeps / libm-ieee754 / s_log2.c
1 /* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>.  */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12
13 /* __log2(x)
14  * Return the logarithm to base 2 of x
15  *
16  * Method :
17  *   1. Argument Reduction: find k and f such that
18  *                      x = 2^k * (1+f),
19  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
20  *
21  *   2. Approximation of log(1+f).
22  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
23  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
24  *               = 2s + s*R
25  *      We use a special Reme algorithm on [0,0.1716] to generate
26  *      a polynomial of degree 14 to approximate R The maximum error
27  *      of this polynomial approximation is bounded by 2**-58.45. In
28  *      other words,
29  *                      2      4      6      8      10      12      14
30  *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
31  *      (the values of Lg1 to Lg7 are listed in the program)
32  *      and
33  *          |      2          14          |     -58.45
34  *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
35  *          |                             |
36  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
37  *      In order to guarantee error in log below 1ulp, we compute log
38  *      by
39  *              log(1+f) = f - s*(f - R)        (if f is not too large)
40  *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
41  *
42  *      3. Finally,  log(x) = k + log(1+f).
43  *                          = k+(f-(hfsq-(s*(hfsq+R))))
44  *
45  * Special cases:
46  *      log2(x) is NaN with signal if x < 0 (including -INF) ;
47  *      log2(+INF) is +INF; log(0) is -INF with signal;
48  *      log2(NaN) is that NaN with no signal.
49  *
50  * Constants:
51  * The hexadecimal values are the intended ones for the following
52  * constants. The decimal values may be used, provided that the
53  * compiler will convert from decimal to binary accurately enough
54  * to produce the hexadecimal values shown.
55  */
56
57 #include "math.h"
58 #include "math_private.h"
59
60 #ifdef __STDC__
61 static const double
62 #else
63 static double
64 #endif
65 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
66 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
67 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
68 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
69 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
70 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
71 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
72 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
73
74 #ifdef __STDC__
75 static const double zero   =  0.0;
76 #else
77 static double zero   =  0.0;
78 #endif
79
80 #ifdef __STDC__
81         double __log2(double x)
82 #else
83         double __log2(x)
84         double x;
85 #endif
86 {
87         double hfsq,f,s,z,R,w,t1,t2,dk;
88         int32_t k,hx,i,j;
89         u_int32_t lx;
90
91         EXTRACT_WORDS(hx,lx,x);
92
93         k=0;
94         if (hx < 0x00100000) {                  /* x < 2**-1022  */
95             if (((hx&0x7fffffff)|lx)==0)
96                 return -two54/(x-x);            /* log(+-0)=-inf */
97             if (hx<0) return (x-x)/(x-x);       /* log(-#) = NaN */
98             k -= 54; x *= two54; /* subnormal number, scale up x */
99             GET_HIGH_WORD(hx,x);
100         }
101         if (hx >= 0x7ff00000) return x+x;
102         k += (hx>>20)-1023;
103         hx &= 0x000fffff;
104         i = (hx+0x95f64)&0x100000;
105         SET_HIGH_WORD(x,hx|(i^0x3ff00000));     /* normalize x or x/2 */
106         k += (i>>20);
107         dk = (double) k;
108         f = x-1.0;
109         if((0x000fffff&(2+hx))<3) {     /* |f| < 2**-20 */
110             if(f==zero) return dk;
111             R = f*f*(0.5-0.33333333333333333*f);
112             return dk-(R-f);
113         }
114         s = f/(2.0+f);
115         z = s*s;
116         i = hx-0x6147a;
117         w = z*z;
118         j = 0x6b851-hx;
119         t1= w*(Lg2+w*(Lg4+w*Lg6));
120         t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
121         i |= j;
122         R = t2+t1;
123         if(i>0) {
124             hfsq=0.5*f*f;
125             return dk-((hfsq-(s*(hfsq+R)))-f);
126         } else {
127             return dk-((s*(f-R))-f);
128         }
129 }
130
131 weak_alias (__log2, log2)
132 #ifdef NO_LONG_DOUBLE
133 strong_alias (__log2, __log2l)
134 weak_alias (__log2, log2l)
135 #endif