1 /* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>. */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
14 * Return the logarithm to base 2 of x
17 * 1. Argument Reduction: find k and f such that
19 * where sqrt(2)/2 < 1+f < sqrt(2) .
21 * 2. Approximation of log(1+f).
22 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
23 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25 * We use a special Reme algorithm on [0,0.1716] to generate
26 * a polynomial of degree 14 to approximate R The maximum error
27 * of this polynomial approximation is bounded by 2**-58.45. In
30 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
31 * (the values of Lg1 to Lg7 are listed in the program)
34 * | Lg1*s +...+Lg7*s - R(z) | <= 2
36 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
37 * In order to guarantee error in log below 1ulp, we compute log
39 * log(1+f) = f - s*(f - R) (if f is not too large)
40 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
42 * 3. Finally, log(x) = k + log(1+f).
43 * = k+(f-(hfsq-(s*(hfsq+R))))
46 * log2(x) is NaN with signal if x < 0 (including -INF) ;
47 * log2(+INF) is +INF; log(0) is -INF with signal;
48 * log2(NaN) is that NaN with no signal.
51 * The hexadecimal values are the intended ones for the following
52 * constants. The decimal values may be used, provided that the
53 * compiler will convert from decimal to binary accurately enough
54 * to produce the hexadecimal values shown.
58 #include "math_private.h"
65 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
66 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
67 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
68 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
69 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
70 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
71 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
72 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
75 static const double zero = 0.0;
77 static double zero = 0.0;
81 double __log2(double x)
87 double hfsq,f,s,z,R,w,t1,t2,dk;
91 EXTRACT_WORDS(hx,lx,x);
94 if (hx < 0x00100000) { /* x < 2**-1022 */
95 if (((hx&0x7fffffff)|lx)==0)
96 return -two54/(x-x); /* log(+-0)=-inf */
97 if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
98 k -= 54; x *= two54; /* subnormal number, scale up x */
101 if (hx >= 0x7ff00000) return x+x;
104 i = (hx+0x95f64)&0x100000;
105 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
109 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
110 if(f==zero) return dk;
111 R = f*f*(0.5-0.33333333333333333*f);
119 t1= w*(Lg2+w*(Lg4+w*Lg6));
120 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
125 return dk-((hfsq-(s*(hfsq+R)))-f);
127 return dk-((s*(f-R))-f);
131 weak_alias (__log2, log2)
132 #ifdef NO_LONG_DOUBLE
133 strong_alias (__log2, __log2l)
134 weak_alias (__log2, log2l)