1 /* ix87 specific implementation of pow function.
2 Copyright (C) 1996, 1997, 1998, 1999, 2001, 2004
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
22 #include <machine/asm.h>
31 ASM_TYPE_DIRECTIVE(infinity,@object)
34 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
35 ASM_SIZE_DIRECTIVE(infinity)
36 ASM_TYPE_DIRECTIVE(zero,@object)
38 ASM_SIZE_DIRECTIVE(zero)
39 ASM_TYPE_DIRECTIVE(minf_mzero,@object)
42 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
44 .byte 0, 0, 0, 0, 0, 0, 0, 0x80
45 ASM_SIZE_DIRECTIVE(minf_mzero)
46 ASM_TYPE_DIRECTIVE(one,@object)
48 ASM_SIZE_DIRECTIVE(one)
49 ASM_TYPE_DIRECTIVE(limit,@object)
51 ASM_SIZE_DIRECTIVE(limit)
52 ASM_TYPE_DIRECTIVE(p63,@object)
53 p63: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
54 ASM_SIZE_DIRECTIVE(p63)
57 #define MO(op) op##@GOTOFF(%ecx)
58 #define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
61 #define MOX(op,x,f) op(,x,f)
72 addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
78 cmpb $0x40, %ah // is y == 0 ?
81 cmpb $0x05, %ah // is y == ±inf ?
84 cmpb $0x01, %ah // is y == NaN ?
103 /* fistpll raises invalid exception for |y| >= 1L<<63. */
106 fcompl MO(p63) // y : x
111 /* First see whether `y' is a natural number. In this case we
112 can use a more precise algorithm. */
114 fistpll (%esp) // y : x
115 fildll (%esp) // int(y) : y : x
116 fucomp %st(1) // y : x
121 /* OK, we have an integer value for y. */
126 jns 4f // y >= 0, jump
127 fdivrl MO(one) // 1/x (now referred to as x)
131 4: fldl MO(one) // 1 : x
134 6: shrdl $1, %edx, %eax
137 fmul %st(1) // x : ST*x
139 5: fmul %st(0), %st // x*x : ST*x
148 30: fldt 4(%esp) // x : y
149 fldl MO(one) // 1.0 : x : y
150 fucomp %st(1) // x : y
159 2: /* y is a real number. */
161 fldl MO(one) // 1.0 : x : y
162 fld %st(1) // x : 1.0 : x : y
163 fsub %st(1) // x-1 : 1.0 : x : y
164 fabs // |x-1| : 1.0 : x : y
165 fcompl MO(limit) // 1.0 : x : y
170 fsub %st(1) // x-1 : 1.0 : y
171 fyl2xp1 // log2(x) : y
174 7: fyl2x // log2(x) : y
175 8: fmul %st(1) // y*log2(x) : y
179 cmpb $0x05, %ah // is y*log2(x) == ±inf ?
181 fst %st(1) // y*log2(x) : y*log2(x)
182 frndint // int(y*log2(x)) : y*log2(x)
183 fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
184 fxch // fract(y*log2(x)) : int(y*log2(x))
185 f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
186 faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
187 fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
189 fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
192 28: fstp %st(1) // y*log2(x)
193 fldl MO(one) // 1 : y*log2(x)
194 fscale // 2^(y*log2(x)) : y*log2(x)
196 fstp %st(1) // 2^(y*log2(x))
201 11: fstp %st(0) // pop y
207 12: fstp %st(0) // pop y
210 fcompl MO(one) // < 1, == 1, or > 1
214 je 13f // jump if x is NaN
217 je 14f // jump if |x| == 1
222 fldl MOX(inf_zero, %edx, 4)
230 13: fldt 4(%esp) // load x == NaN
237 jz 16f // jump if x == +inf
239 // We must find out whether y is an odd integer.
242 fildll (%esp) // int(y) : y
248 // OK, the value is an integer, but is it odd?
252 jz 18f // jump if not odd
253 // It's an odd integer.
255 fldl MOX(minf_mzero, %edx, 8)
264 fldl MOX(inf_zero, %eax, 1)
268 17: shll $30, %edx // sign bit for y in right position
271 fldl MOX(inf_zero, %edx, 8)
280 // x is ±0 and y is < 0. We must find out whether y is an odd integer.
286 fildll (%esp) // int(y) : y
292 // OK, the value is an integer, but is it odd?
296 jz 27f // jump if not odd
297 // It's an odd integer.
298 // Raise divide-by-zero exception and get minus infinity value.
306 27: // Raise divide-by-zero exception and get infinity value.
312 // x is ±0 and y is > 0. We must find out whether y is an odd integer.
318 fildll (%esp) // int(y) : y
324 // OK, the value is an integer, but is it odd?
328 jz 24f // jump if not odd
329 // It's an odd integer.
334 23: addl $8, %esp // Don't use 2 x pop