Update rive-cpp to 2.0 version
[platform/core/uifw/rive-tizen.git] / submodule / skia / src / utils / SkPatchUtils.cpp
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7
8 #include "src/utils/SkPatchUtils.h"
9
10 #include "include/core/SkAlphaType.h"
11 #include "include/core/SkColorSpace.h"
12 #include "include/core/SkColorType.h"
13 #include "include/core/SkImageInfo.h"
14 #include "include/core/SkMatrix.h"
15 #include "include/core/SkPoint.h"
16 #include "include/core/SkScalar.h"
17 #include "include/core/SkSize.h"
18 #include "include/core/SkTypes.h"
19 #include "include/core/SkVertices.h"
20 #include "include/private/SkColorData.h"
21 #include "include/private/SkFloatingPoint.h"
22 #include "include/private/SkTPin.h"
23 #include "include/private/SkTo.h"
24 #include "include/private/SkVx.h"
25 #include "src/core/SkArenaAlloc.h"
26 #include "src/core/SkColorSpacePriv.h"
27 #include "src/core/SkConvertPixels.h"
28 #include "src/core/SkGeometry.h"
29
30 #include <string.h>
31 #include <algorithm>
32
33 namespace {
34     enum CubicCtrlPts {
35         kTopP0_CubicCtrlPts = 0,
36         kTopP1_CubicCtrlPts = 1,
37         kTopP2_CubicCtrlPts = 2,
38         kTopP3_CubicCtrlPts = 3,
39
40         kRightP0_CubicCtrlPts = 3,
41         kRightP1_CubicCtrlPts = 4,
42         kRightP2_CubicCtrlPts = 5,
43         kRightP3_CubicCtrlPts = 6,
44
45         kBottomP0_CubicCtrlPts = 9,
46         kBottomP1_CubicCtrlPts = 8,
47         kBottomP2_CubicCtrlPts = 7,
48         kBottomP3_CubicCtrlPts = 6,
49
50         kLeftP0_CubicCtrlPts = 0,
51         kLeftP1_CubicCtrlPts = 11,
52         kLeftP2_CubicCtrlPts = 10,
53         kLeftP3_CubicCtrlPts = 9,
54     };
55
56     // Enum for corner also clockwise.
57     enum Corner {
58         kTopLeft_Corner = 0,
59         kTopRight_Corner,
60         kBottomRight_Corner,
61         kBottomLeft_Corner
62     };
63 }  // namespace
64
65 /**
66  * Evaluator to sample the values of a cubic bezier using forward differences.
67  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
68  * adding precalculated values.
69  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
70  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
71  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
72  * obtaining this value (mh) we could just add this constant step to our first sampled point
73  * to compute the next one.
74  *
75  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
76  * apply again forward differences and get linear function to which we can apply again forward
77  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
78  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
79  * difference values.
80  */
81
82 class FwDCubicEvaluator {
83
84 public:
85
86     /**
87      * Receives the 4 control points of the cubic bezier.
88      */
89
90     explicit FwDCubicEvaluator(const SkPoint points[4])
91             : fCoefs(points) {
92         memcpy(fPoints, points, 4 * sizeof(SkPoint));
93
94         this->restart(1);
95     }
96
97     /**
98      * Restarts the forward differences evaluator to the first value of t = 0.
99      */
100     void restart(int divisions)  {
101         fDivisions = divisions;
102         fCurrent    = 0;
103         fMax        = fDivisions + 1;
104         skvx::float2 h = 1.f / fDivisions;
105         skvx::float2 h2 = h * h;
106         skvx::float2 h3 = h2 * h;
107         skvx::float2 fwDiff3 = 6 * fCoefs.fA * h3;
108         fFwDiff[3] = to_point(fwDiff3);
109         fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2);
110         fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h);
111         fFwDiff[0] = to_point(fCoefs.fD);
112     }
113
114     /**
115      * Check if the evaluator is still within the range of 0<=t<=1
116      */
117     bool done() const {
118         return fCurrent > fMax;
119     }
120
121     /**
122      * Call next to obtain the SkPoint sampled and move to the next one.
123      */
124     SkPoint next() {
125         SkPoint point = fFwDiff[0];
126         fFwDiff[0]    += fFwDiff[1];
127         fFwDiff[1]    += fFwDiff[2];
128         fFwDiff[2]    += fFwDiff[3];
129         fCurrent++;
130         return point;
131     }
132
133     const SkPoint* getCtrlPoints() const {
134         return fPoints;
135     }
136
137 private:
138     SkCubicCoeff fCoefs;
139     int fMax, fCurrent, fDivisions;
140     SkPoint fFwDiff[4], fPoints[4];
141 };
142
143 ////////////////////////////////////////////////////////////////////////////////
144
145 // size in pixels of each partition per axis, adjust this knob
146 static const int kPartitionSize = 10;
147
148 /**
149  *  Calculate the approximate arc length given a bezier curve's control points.
150  *  Returns -1 if bad calc (i.e. non-finite)
151  */
152 static SkScalar approx_arc_length(const SkPoint points[], int count) {
153     if (count < 2) {
154         return 0;
155     }
156     SkScalar arcLength = 0;
157     for (int i = 0; i < count - 1; i++) {
158         arcLength += SkPoint::Distance(points[i], points[i + 1]);
159     }
160     return SkScalarIsFinite(arcLength) ? arcLength : -1;
161 }
162
163 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
164                        SkScalar c11) {
165     SkScalar a = c00 * (1.f - tx) + c10 * tx;
166     SkScalar b = c01 * (1.f - tx) + c11 * tx;
167     return a * (1.f - ty) + b * ty;
168 }
169
170 static skvx::float4 bilerp(SkScalar tx, SkScalar ty,
171                            const skvx::float4& c00,
172                            const skvx::float4& c10,
173                            const skvx::float4& c01,
174                            const skvx::float4& c11) {
175     auto a = c00 * (1.f - tx) + c10 * tx;
176     auto b = c01 * (1.f - tx) + c11 * tx;
177     return a * (1.f - ty) + b * ty;
178 }
179
180 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
181     // Approximate length of each cubic.
182     SkPoint pts[kNumPtsCubic];
183     SkPatchUtils::GetTopCubic(cubics, pts);
184     matrix->mapPoints(pts, kNumPtsCubic);
185     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
186
187     SkPatchUtils::GetBottomCubic(cubics, pts);
188     matrix->mapPoints(pts, kNumPtsCubic);
189     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
190
191     SkPatchUtils::GetLeftCubic(cubics, pts);
192     matrix->mapPoints(pts, kNumPtsCubic);
193     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
194
195     SkPatchUtils::GetRightCubic(cubics, pts);
196     matrix->mapPoints(pts, kNumPtsCubic);
197     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
198
199     if (topLength < 0 || bottomLength < 0 || leftLength < 0 || rightLength < 0) {
200         return {0, 0};  // negative length is a sentinel for bad length (i.e. non-finite)
201     }
202
203     // Level of detail per axis, based on the larger side between top and bottom or left and right
204     int lodX = static_cast<int>(std::max(topLength, bottomLength) / kPartitionSize);
205     int lodY = static_cast<int>(std::max(leftLength, rightLength) / kPartitionSize);
206
207     return SkISize::Make(std::max(8, lodX), std::max(8, lodY));
208 }
209
210 void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
211     points[0] = cubics[kTopP0_CubicCtrlPts];
212     points[1] = cubics[kTopP1_CubicCtrlPts];
213     points[2] = cubics[kTopP2_CubicCtrlPts];
214     points[3] = cubics[kTopP3_CubicCtrlPts];
215 }
216
217 void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
218     points[0] = cubics[kBottomP0_CubicCtrlPts];
219     points[1] = cubics[kBottomP1_CubicCtrlPts];
220     points[2] = cubics[kBottomP2_CubicCtrlPts];
221     points[3] = cubics[kBottomP3_CubicCtrlPts];
222 }
223
224 void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
225     points[0] = cubics[kLeftP0_CubicCtrlPts];
226     points[1] = cubics[kLeftP1_CubicCtrlPts];
227     points[2] = cubics[kLeftP2_CubicCtrlPts];
228     points[3] = cubics[kLeftP3_CubicCtrlPts];
229 }
230
231 void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
232     points[0] = cubics[kRightP0_CubicCtrlPts];
233     points[1] = cubics[kRightP1_CubicCtrlPts];
234     points[2] = cubics[kRightP2_CubicCtrlPts];
235     points[3] = cubics[kRightP3_CubicCtrlPts];
236 }
237
238 static void skcolor_to_float(SkPMColor4f* dst, const SkColor* src, int count, SkColorSpace* dstCS) {
239     SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType,
240                                             kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB());
241     SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType,
242                                             kPremul_SkAlphaType, sk_ref_sp(dstCS));
243     SkAssertResult(SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0));
244 }
245
246 static void float_to_skcolor(SkColor* dst, const SkPMColor4f* src, int count, SkColorSpace* srcCS) {
247     SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType,
248                                             kPremul_SkAlphaType, sk_ref_sp(srcCS));
249     SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType,
250                                             kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB());
251     SkAssertResult(SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0));
252 }
253
254 sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4],
255                                              const SkPoint srcTexCoords[4], int lodX, int lodY,
256                                              SkColorSpace* colorSpace) {
257     if (lodX < 1 || lodY < 1 || nullptr == cubics) {
258         return nullptr;
259     }
260
261     // check for overflow in multiplication
262     const int64_t lodX64 = (lodX + 1),
263     lodY64 = (lodY + 1),
264     mult64 = lodX64 * lodY64;
265     if (mult64 > SK_MaxS32) {
266         return nullptr;
267     }
268
269     // Treat null interpolation space as sRGB.
270     if (!colorSpace) {
271         colorSpace = sk_srgb_singleton();
272     }
273
274     int vertexCount = SkToS32(mult64);
275     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
276     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
277     if (vertexCount > 10000 || lodX > 200 || lodY > 200) {
278         float weightX = static_cast<float>(lodX) / (lodX + lodY);
279         float weightY = static_cast<float>(lodY) / (lodX + lodY);
280
281         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
282         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
283         // Need a min of 1 since we later divide by lod
284         lodX = std::max(1, sk_float_floor2int_no_saturate(weightX * 200));
285         lodY = std::max(1, sk_float_floor2int_no_saturate(weightY * 200));
286         vertexCount = (lodX + 1) * (lodY + 1);
287     }
288     const int indexCount = lodX * lodY * 6;
289     uint32_t flags = 0;
290     if (srcTexCoords) {
291         flags |= SkVertices::kHasTexCoords_BuilderFlag;
292     }
293     if (srcColors) {
294         flags |= SkVertices::kHasColors_BuilderFlag;
295     }
296
297     SkSTArenaAlloc<2048> alloc;
298     SkPMColor4f* cornerColors = srcColors ? alloc.makeArray<SkPMColor4f>(4) : nullptr;
299     SkPMColor4f* tmpColors = srcColors ? alloc.makeArray<SkPMColor4f>(vertexCount) : nullptr;
300
301     SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags);
302     SkPoint* pos = builder.positions();
303     SkPoint* texs = builder.texCoords();
304     uint16_t* indices = builder.indices();
305
306     if (cornerColors) {
307         skcolor_to_float(cornerColors, srcColors, kNumCorners, colorSpace);
308     }
309
310     SkPoint pts[kNumPtsCubic];
311     SkPatchUtils::GetBottomCubic(cubics, pts);
312     FwDCubicEvaluator fBottom(pts);
313     SkPatchUtils::GetTopCubic(cubics, pts);
314     FwDCubicEvaluator fTop(pts);
315     SkPatchUtils::GetLeftCubic(cubics, pts);
316     FwDCubicEvaluator fLeft(pts);
317     SkPatchUtils::GetRightCubic(cubics, pts);
318     FwDCubicEvaluator fRight(pts);
319
320     fBottom.restart(lodX);
321     fTop.restart(lodX);
322
323     SkScalar u = 0.0f;
324     int stride = lodY + 1;
325     for (int x = 0; x <= lodX; x++) {
326         SkPoint bottom = fBottom.next(), top = fTop.next();
327         fLeft.restart(lodY);
328         fRight.restart(lodY);
329         SkScalar v = 0.f;
330         for (int y = 0; y <= lodY; y++) {
331             int dataIndex = x * (lodY + 1) + y;
332
333             SkPoint left = fLeft.next(), right = fRight.next();
334
335             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
336                                        (1.0f - v) * top.y() + v * bottom.y());
337             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
338                                        (1.0f - u) * left.y() + u * right.y());
339             SkPoint s2 = SkPoint::Make(
340                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
341                                                      + u * fTop.getCtrlPoints()[3].x())
342                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
343                                               + u * fBottom.getCtrlPoints()[3].x()),
344                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
345                                                      + u * fTop.getCtrlPoints()[3].y())
346                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
347                                               + u * fBottom.getCtrlPoints()[3].y()));
348             pos[dataIndex] = s0 + s1 - s2;
349
350             if (cornerColors) {
351                 bilerp(u, v, skvx::float4::Load(cornerColors[kTopLeft_Corner].vec()),
352                              skvx::float4::Load(cornerColors[kTopRight_Corner].vec()),
353                              skvx::float4::Load(cornerColors[kBottomLeft_Corner].vec()),
354                              skvx::float4::Load(cornerColors[kBottomRight_Corner].vec()))
355                     .store(tmpColors[dataIndex].vec());
356             }
357
358             if (texs) {
359                 texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(),
360                                                        srcTexCoords[kTopRight_Corner].x(),
361                                                        srcTexCoords[kBottomLeft_Corner].x(),
362                                                        srcTexCoords[kBottomRight_Corner].x()),
363                                                 bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(),
364                                                        srcTexCoords[kTopRight_Corner].y(),
365                                                        srcTexCoords[kBottomLeft_Corner].y(),
366                                                        srcTexCoords[kBottomRight_Corner].y()));
367
368             }
369
370             if(x < lodX && y < lodY) {
371                 int i = 6 * (x * lodY + y);
372                 indices[i] = x * stride + y;
373                 indices[i + 1] = x * stride + 1 + y;
374                 indices[i + 2] = (x + 1) * stride + 1 + y;
375                 indices[i + 3] = indices[i];
376                 indices[i + 4] = indices[i + 2];
377                 indices[i + 5] = (x + 1) * stride + y;
378             }
379             v = SkTPin(v + 1.f / lodY, 0.0f, 1.0f);
380         }
381         u = SkTPin(u + 1.f / lodX, 0.0f, 1.0f);
382     }
383
384     if (tmpColors) {
385         float_to_skcolor(builder.colors(), tmpColors, vertexCount, colorSpace);
386     }
387     return builder.detach();
388 }