Update rive-cpp to 2.0 version
[platform/core/uifw/rive-tizen.git] / submodule / skia / src / pathops / SkOpAngle.cpp
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "src/core/SkTSort.h"
8 #include "src/pathops/SkOpAngle.h"
9 #include "src/pathops/SkOpSegment.h"
10 #include "src/pathops/SkPathOpsCurve.h"
11
12 /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
13    positive y. The largest angle has a positive x and a zero y. */
14
15 #if DEBUG_ANGLE
16     static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
17              bool compare) {
18         SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
19         SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
20         SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
21         SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
22         return compare;
23     }
24
25     #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
26             compare)
27 #else
28     #define COMPARE_RESULT(append, compare) compare
29 #endif
30
31 /*             quarter angle values for sector
32
33 31   x > 0, y == 0              horizontal line (to the right)
34 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
35 1    x > 0, y > 0, x > y        nearer horizontal angle
36 2                  x + e == y   quad/cubic 45 going horiz
37 3    x > 0, y > 0, x == y       45 angle
38 4                  x == y + e   quad/cubic 45 going vert
39 5    x > 0, y > 0, x < y        nearer vertical angle
40 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
41 7    x == 0, y > 0              vertical line (to the top)
42
43                                       8  7  6
44                                  9       |       5
45                               10         |          4
46                             11           |            3
47                           12  \          |           / 2
48                          13              |              1
49                         14               |               0
50                         15 --------------+------------- 31
51                         16               |              30
52                          17              |             29
53                           18  /          |          \ 28
54                             19           |           27
55                               20         |         26
56                                  21      |      25
57                                      22 23 24
58 */
59
60 // return true if lh < this < rh
61 bool SkOpAngle::after(SkOpAngle* test) {
62     SkOpAngle* lh = test;
63     SkOpAngle* rh = lh->fNext;
64     SkASSERT(lh != rh);
65     fPart.fCurve = fOriginalCurvePart;
66     lh->fPart.fCurve = lh->fOriginalCurvePart;
67     lh->fPart.fCurve.offset(lh->segment()->verb(), fPart.fCurve[0] - lh->fPart.fCurve[0]);
68     rh->fPart.fCurve = rh->fOriginalCurvePart;
69     rh->fPart.fCurve.offset(rh->segment()->verb(), fPart.fCurve[0] - rh->fPart.fCurve[0]);
70
71 #if DEBUG_ANGLE
72     SkString bugOut;
73     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
74                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
75                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
76             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
77             lh->fStart->t(), lh->fEnd->t(),
78             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
79             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
80             rh->fStart->t(), rh->fEnd->t());
81     SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
82 #endif
83     if (lh->fComputeSector && !lh->computeSector()) {
84         return COMPARE_RESULT(1, true);
85     }
86     if (fComputeSector && !this->computeSector()) {
87         return COMPARE_RESULT(2, true);
88     }
89     if (rh->fComputeSector && !rh->computeSector()) {
90         return COMPARE_RESULT(3, true);
91     }
92 #if DEBUG_ANGLE  // reset bugOut with computed sectors
93     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
94                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
95                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
96             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
97             lh->fStart->t(), lh->fEnd->t(),
98             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
99             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
100             rh->fStart->t(), rh->fEnd->t());
101 #endif
102     bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
103     bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
104     int lrOrder;  // set to -1 if either order works
105     if (!lrOverlap) {  // no lh/rh sector overlap
106         if (!ltrOverlap) {  // no lh/this/rh sector overlap
107             return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
108                     ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
109         }
110         int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
111         /* A tiny change can move the start +/- 4. The order can only be determined if
112            lr gap is not 12 to 20 or -12 to -20.
113                -31 ..-21      1
114                -20 ..-12     -1
115                -11 .. -1      0
116                  0          shouldn't get here
117                 11 ..  1      1
118                 12 .. 20     -1
119                 21 .. 31      0
120          */
121         lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
122     } else {
123         lrOrder = lh->orderable(rh);
124         if (!ltrOverlap && lrOrder >= 0) {
125             return COMPARE_RESULT(5, !lrOrder);
126         }
127     }
128     int ltOrder;
129     SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask) || -1 == lrOrder);
130     if (lh->fSectorMask & fSectorMask) {
131         ltOrder = lh->orderable(this);
132     } else {
133         int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
134         ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
135     }
136     int trOrder;
137     if (rh->fSectorMask & fSectorMask) {
138         trOrder = this->orderable(rh);
139     } else {
140         int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
141         trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
142     }
143     this->alignmentSameSide(lh, &ltOrder);
144     this->alignmentSameSide(rh, &trOrder);
145     if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
146         return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
147     }
148 //    SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
149 // There's not enough information to sort. Get the pairs of angles in opposite planes.
150 // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
151     // FIXME : once all variants are understood, rewrite this more simply
152     if (ltOrder == 0 && lrOrder == 0) {
153         SkASSERT(trOrder < 0);
154         // FIXME : once this is verified to work, remove one opposite angle call
155         SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
156         bool ltOpposite = lh->oppositePlanes(this);
157         SkOPASSERT(lrOpposite != ltOpposite);
158         return COMPARE_RESULT(8, ltOpposite);
159     } else if (ltOrder == 1 && trOrder == 0) {
160         SkASSERT(lrOrder < 0);
161         bool trOpposite = oppositePlanes(rh);
162         return COMPARE_RESULT(9, trOpposite);
163     } else if (lrOrder == 1 && trOrder == 1) {
164         SkASSERT(ltOrder < 0);
165 //        SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
166         bool lrOpposite = lh->oppositePlanes(rh);
167 //        SkASSERT(lrOpposite != trOpposite);
168         return COMPARE_RESULT(10, lrOpposite);
169     }
170     // If a pair couldn't be ordered, there's not enough information to determine the sort.
171     // Refer to:  https://docs.google.com/drawings/d/1KV-8SJTedku9fj4K6fd1SB-8divuV_uivHVsSgwXICQ
172     if (fUnorderable || lh->fUnorderable || rh->fUnorderable) {
173         // limit to lines; should work with curves, but wait for a failing test to verify
174         if (!fPart.isCurve() && !lh->fPart.isCurve() && !rh->fPart.isCurve()) {
175             // see if original raw data is orderable
176             // if two share a point, check if third has both points in same half plane
177             int ltShare = lh->fOriginalCurvePart[0] == fOriginalCurvePart[0];
178             int lrShare = lh->fOriginalCurvePart[0] == rh->fOriginalCurvePart[0];
179             int trShare = fOriginalCurvePart[0] == rh->fOriginalCurvePart[0];
180             // if only one pair are the same, the third point touches neither of the pair
181             if (ltShare + lrShare + trShare == 1) {
182                 if (lrShare) {
183                     int ltOOrder = lh->linesOnOriginalSide(this);
184                     int rtOOrder = rh->linesOnOriginalSide(this);
185                     if ((rtOOrder ^ ltOOrder) == 1) {
186                         return ltOOrder;
187                     }
188                 } else if (trShare) {
189                     int tlOOrder = this->linesOnOriginalSide(lh);
190                     int rlOOrder = rh->linesOnOriginalSide(lh);
191                     if ((tlOOrder ^ rlOOrder) == 1) {
192                         return rlOOrder;
193                     }
194                 } else {
195                     SkASSERT(ltShare);
196                     int trOOrder = rh->linesOnOriginalSide(this);
197                     int lrOOrder = lh->linesOnOriginalSide(rh);
198                     // result must be 0 and 1 or 1 and 0 to be valid
199                     if ((lrOOrder ^ trOOrder) == 1) {
200                         return trOOrder;
201                     }
202                 }
203             }
204         }
205     }
206     if (lrOrder < 0) {
207         if (ltOrder < 0) {
208             return COMPARE_RESULT(11, trOrder);
209         }
210         return COMPARE_RESULT(12, ltOrder);
211     }
212     return COMPARE_RESULT(13, !lrOrder);
213 }
214
215 int SkOpAngle::lineOnOneSide(const SkDPoint& origin, const SkDVector& line, const SkOpAngle* test,
216         bool useOriginal) const {
217     double crosses[3];
218     SkPath::Verb testVerb = test->segment()->verb();
219     int iMax = SkPathOpsVerbToPoints(testVerb);
220 //    SkASSERT(origin == test.fCurveHalf[0]);
221     const SkDCurve& testCurve = useOriginal ? test->fOriginalCurvePart : test->fPart.fCurve;
222     for (int index = 1; index <= iMax; ++index) {
223         double xy1 = line.fX * (testCurve[index].fY - origin.fY);
224         double xy2 = line.fY * (testCurve[index].fX - origin.fX);
225         crosses[index - 1] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
226     }
227     if (crosses[0] * crosses[1] < 0) {
228         return -1;
229     }
230     if (SkPath::kCubic_Verb == testVerb) {
231         if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
232             return -1;
233         }
234     }
235     if (crosses[0]) {
236         return crosses[0] < 0;
237     }
238     if (crosses[1]) {
239         return crosses[1] < 0;
240     }
241     if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
242         return crosses[2] < 0;
243     }
244     return -2;
245 }
246
247 // given a line, see if the opposite curve's convex hull is all on one side
248 // returns -1=not on one side    0=this CW of test   1=this CCW of test
249 int SkOpAngle::lineOnOneSide(const SkOpAngle* test, bool useOriginal) {
250     SkASSERT(!fPart.isCurve());
251     SkASSERT(test->fPart.isCurve());
252     SkDPoint origin = fPart.fCurve[0];
253     SkDVector line = fPart.fCurve[1] - origin;
254     int result = this->lineOnOneSide(origin, line, test, useOriginal);
255     if (-2 == result) {
256         fUnorderable = true;
257         result = -1;
258     }
259     return result;
260 }
261
262 // experiment works only with lines for now
263 int SkOpAngle::linesOnOriginalSide(const SkOpAngle* test) {
264     SkASSERT(!fPart.isCurve());
265     SkASSERT(!test->fPart.isCurve());
266     SkDPoint origin = fOriginalCurvePart[0];
267     SkDVector line = fOriginalCurvePart[1] - origin;
268     double dots[2];
269     double crosses[2];
270     const SkDCurve& testCurve = test->fOriginalCurvePart;
271     for (int index = 0; index < 2; ++index) {
272         SkDVector testLine = testCurve[index] - origin;
273         double xy1 = line.fX * testLine.fY;
274         double xy2 = line.fY * testLine.fX;
275         dots[index] = line.fX * testLine.fX + line.fY * testLine.fY;
276         crosses[index] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
277     }
278     if (crosses[0] * crosses[1] < 0) {
279         return -1;
280     }
281     if (crosses[0]) {
282         return crosses[0] < 0;
283     }
284     if (crosses[1]) {
285         return crosses[1] < 0;
286     }
287     if ((!dots[0] && dots[1] < 0) || (dots[0] < 0 && !dots[1])) {
288         return 2;  // 180 degrees apart
289     }
290     fUnorderable = true;
291     return -1;
292 }
293
294 // To sort the angles, all curves are translated to have the same starting point.
295 // If the curve's control point in its original position is on one side of a compared line,
296 // and translated is on the opposite side, reverse the previously computed order.
297 void SkOpAngle::alignmentSameSide(const SkOpAngle* test, int* order) const {
298     if (*order < 0) {
299         return;
300     }
301     if (fPart.isCurve()) {
302         // This should support all curve types, but only bug that requires this has lines
303         // Turning on for curves causes existing tests to fail
304         return;
305     }
306     if (test->fPart.isCurve()) {
307         return;
308     }
309     const SkDPoint& xOrigin = test->fPart.fCurve.fLine[0];
310     const SkDPoint& oOrigin = test->fOriginalCurvePart.fLine[0];
311     if (xOrigin == oOrigin) {
312         return;
313     }
314     int iMax = SkPathOpsVerbToPoints(this->segment()->verb());
315     SkDVector xLine = test->fPart.fCurve.fLine[1] - xOrigin;
316     SkDVector oLine = test->fOriginalCurvePart.fLine[1] - oOrigin;
317     for (int index = 1; index <= iMax; ++index) {
318         const SkDPoint& testPt = fPart.fCurve[index];
319         double xCross = oLine.crossCheck(testPt - xOrigin);
320         double oCross = xLine.crossCheck(testPt - oOrigin);
321         if (oCross * xCross < 0) {
322             *order ^= 1;
323             break;
324         }
325     }
326 }
327
328 bool SkOpAngle::checkCrossesZero() const {
329     int start = std::min(fSectorStart, fSectorEnd);
330     int end = std::max(fSectorStart, fSectorEnd);
331     bool crossesZero = end - start > 16;
332     return crossesZero;
333 }
334
335 bool SkOpAngle::checkParallel(SkOpAngle* rh) {
336     SkDVector scratch[2];
337     const SkDVector* sweep, * tweep;
338     if (this->fPart.isOrdered()) {
339         sweep = this->fPart.fSweep;
340     } else {
341         scratch[0] = this->fPart.fCurve[1] - this->fPart.fCurve[0];
342         sweep = &scratch[0];
343     }
344     if (rh->fPart.isOrdered()) {
345         tweep = rh->fPart.fSweep;
346     } else {
347         scratch[1] = rh->fPart.fCurve[1] - rh->fPart.fCurve[0];
348         tweep = &scratch[1];
349     }
350     double s0xt0 = sweep->crossCheck(*tweep);
351     if (tangentsDiverge(rh, s0xt0)) {
352         return s0xt0 < 0;
353     }
354     // compute the perpendicular to the endpoints and see where it intersects the opposite curve
355     // if the intersections within the t range, do a cross check on those
356     bool inside;
357     if (!fEnd->contains(rh->fEnd)) {
358         if (this->endToSide(rh, &inside)) {
359             return inside;
360         }
361         if (rh->endToSide(this, &inside)) {
362             return !inside;
363         }
364     }
365     if (this->midToSide(rh, &inside)) {
366         return inside;
367     }
368     if (rh->midToSide(this, &inside)) {
369         return !inside;
370     }
371     // compute the cross check from the mid T values (last resort)
372     SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
373     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
374     double m0xm1 = m0.crossCheck(m1);
375     if (m0xm1 == 0) {
376         this->fUnorderable = true;
377         rh->fUnorderable = true;
378         return true;
379     }
380     return m0xm1 < 0;
381 }
382
383 // the original angle is too short to get meaningful sector information
384 // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
385 // would cause it to intersect one of the adjacent angles
386 bool SkOpAngle::computeSector() {
387     if (fComputedSector) {
388         return !fUnorderable;
389     }
390     fComputedSector = true;
391     bool stepUp = fStart->t() < fEnd->t();
392     SkOpSpanBase* checkEnd = fEnd;
393     if (checkEnd->final() && stepUp) {
394         fUnorderable = true;
395         return false;
396     }
397     do {
398 // advance end
399         const SkOpSegment* other = checkEnd->segment();
400         const SkOpSpanBase* oSpan = other->head();
401         do {
402             if (oSpan->segment() != segment()) {
403                 continue;
404             }
405             if (oSpan == checkEnd) {
406                 continue;
407             }
408             if (!approximately_equal(oSpan->t(), checkEnd->t())) {
409                 continue;
410             }
411             goto recomputeSector;
412         } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
413         checkEnd = stepUp ? !checkEnd->final()
414                 ? checkEnd->upCast()->next() : nullptr
415                 : checkEnd->prev();
416     } while (checkEnd);
417 recomputeSector:
418     SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
419             : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
420     if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
421         fUnorderable = true;
422         return false;
423     }
424     if (stepUp != (fStart->t() < computedEnd->t())) {
425         fUnorderable = true;
426         return false;
427     }
428     SkOpSpanBase* saveEnd = fEnd;
429     fComputedEnd = fEnd = computedEnd;
430     setSpans();
431     setSector();
432     fEnd = saveEnd;
433     return !fUnorderable;
434 }
435
436 int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) {
437     const SkDVector* sweep = this->fPart.fSweep;
438     const SkDVector* tweep = rh->fPart.fSweep;
439     double s0xs1 = sweep[0].crossCheck(sweep[1]);
440     double s0xt0 = sweep[0].crossCheck(tweep[0]);
441     double s1xt0 = sweep[1].crossCheck(tweep[0]);
442     bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
443     double s0xt1 = sweep[0].crossCheck(tweep[1]);
444     double s1xt1 = sweep[1].crossCheck(tweep[1]);
445     tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
446     double t0xt1 = tweep[0].crossCheck(tweep[1]);
447     if (tBetweenS) {
448         return -1;
449     }
450     if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
451         return -1;
452     }
453     bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
454     sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
455     if (sBetweenT) {
456         return -1;
457     }
458     // if all of the sweeps are in the same half plane, then the order of any pair is enough
459     if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
460         return 0;
461     }
462     if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
463         return 1;
464     }
465     // if the outside sweeps are greater than 180 degress:
466         // first assume the inital tangents are the ordering
467         // if the midpoint direction matches the inital order, that is enough
468     SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
469     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
470     double m0xm1 = m0.crossCheck(m1);
471     if (s0xt0 > 0 && m0xm1 > 0) {
472         return 0;
473     }
474     if (s0xt0 < 0 && m0xm1 < 0) {
475         return 1;
476     }
477     if (tangentsDiverge(rh, s0xt0)) {
478         return s0xt0 < 0;
479     }
480     return m0xm1 < 0;
481 }
482
483 // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
484 double SkOpAngle::distEndRatio(double dist) const {
485     double longest = 0;
486     const SkOpSegment& segment = *this->segment();
487     int ptCount = SkPathOpsVerbToPoints(segment.verb());
488     const SkPoint* pts = segment.pts();
489     for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
490         for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
491             if (idx1 == idx2) {
492                 continue;
493             }
494             SkDVector v;
495             v.set(pts[idx2] - pts[idx1]);
496             double lenSq = v.lengthSquared();
497             longest = std::max(longest, lenSq);
498         }
499     }
500     return sqrt(longest) / dist;
501 }
502
503 bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
504     SkPath::Verb lVerb = this->segment()->verb();
505     SkPath::Verb rVerb = rh->segment()->verb();
506     int lPts = SkPathOpsVerbToPoints(lVerb);
507     int rPts = SkPathOpsVerbToPoints(rVerb);
508     SkDLine rays[] = {{{this->fPart.fCurve[0], rh->fPart.fCurve[rPts]}},
509             {{this->fPart.fCurve[0], this->fPart.fCurve[lPts]}}};
510     if (this->fEnd->contains(rh->fEnd)) {
511         return checkParallel(rh);
512     }
513     double smallTs[2] = {-1, -1};
514     bool limited[2] = {false, false};
515     for (int index = 0; index < 2; ++index) {
516         SkPath::Verb cVerb = index ? rVerb : lVerb;
517         // if the curve is a line, then the line and the ray intersect only at their crossing
518         if (cVerb == SkPath::kLine_Verb) {
519             continue;
520         }
521         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
522         SkIntersections i;
523         (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
524         double tStart = index ? rh->fStart->t() : this->fStart->t();
525         double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
526         bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
527         double t = testAscends ? 0 : 1;
528         for (int idx2 = 0; idx2 < i.used(); ++idx2) {
529             double testT = i[0][idx2];
530             if (!approximately_between_orderable(tStart, testT, tEnd)) {
531                 continue;
532             }
533             if (approximately_equal_orderable(tStart, testT)) {
534                 continue;
535             }
536             smallTs[index] = t = testAscends ? std::max(t, testT) : std::min(t, testT);
537             limited[index] = approximately_equal_orderable(t, tEnd);
538         }
539     }
540     bool sRayLonger = false;
541     SkDVector sCept = {0, 0};
542     double sCeptT = -1;
543     int sIndex = -1;
544     bool useIntersect = false;
545     for (int index = 0; index < 2; ++index) {
546         if (smallTs[index] < 0) {
547             continue;
548         }
549         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
550         const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
551         SkDVector cept = dPt - rays[index][0];
552         // If this point is on the curve, it should have been detected earlier by ordinary
553         // curve intersection. This may be hard to determine in general, but for lines,
554         // the point could be close to or equal to its end, but shouldn't be near the start.
555         if ((index ? lPts : rPts) == 1) {
556             SkDVector total = rays[index][1] - rays[index][0];
557             if (cept.lengthSquared() * 2 < total.lengthSquared()) {
558                 continue;
559             }
560         }
561         SkDVector end = rays[index][1] - rays[index][0];
562         if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
563             continue;
564         }
565         double rayDist = cept.length();
566         double endDist = end.length();
567         bool rayLonger = rayDist > endDist;
568         if (limited[0] && limited[1] && rayLonger) {
569             useIntersect = true;
570             sRayLonger = rayLonger;
571             sCept = cept;
572             sCeptT = smallTs[index];
573             sIndex = index;
574             break;
575         }
576         double delta = fabs(rayDist - endDist);
577         double minX, minY, maxX, maxY;
578         minX = minY = SK_ScalarInfinity;
579         maxX = maxY = -SK_ScalarInfinity;
580         const SkDCurve& curve = index ? rh->fPart.fCurve : this->fPart.fCurve;
581         int ptCount = index ? rPts : lPts;
582         for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
583             minX = std::min(minX, curve[idx2].fX);
584             minY = std::min(minY, curve[idx2].fY);
585             maxX = std::max(maxX, curve[idx2].fX);
586             maxY = std::max(maxY, curve[idx2].fY);
587         }
588         double maxWidth = std::max(maxX - minX, maxY - minY);
589         delta = sk_ieee_double_divide(delta, maxWidth);
590         // FIXME: move these magic numbers
591         // This fixes skbug.com/8380
592         // Larger changes (like changing the constant in the next block) cause other
593         // tests to fail as documented in the bug.
594         // This could probably become a more general test: e.g., if translating the
595         // curve causes the cross product of any control point or end point to change
596         // sign with regard to the opposite curve's hull, treat the curves as parallel.
597
598         // Moreso, this points to the general fragility of this approach of assigning
599         // winding by sorting the angles of curves sharing a common point, as mentioned
600         // in the bug.
601         if (delta < 4e-3 && delta > 1e-3 && !useIntersect && fPart.isCurve()
602                 && rh->fPart.isCurve() && fOriginalCurvePart[0] != fPart.fCurve.fLine[0]) {
603             // see if original curve is on one side of hull; translated is on the other
604             const SkDPoint& origin = rh->fOriginalCurvePart[0];
605             int count = SkPathOpsVerbToPoints(rh->segment()->verb());
606             const SkDVector line = rh->fOriginalCurvePart[count] - origin;
607             int originalSide = rh->lineOnOneSide(origin, line, this, true);
608             if (originalSide >= 0) {
609                 int translatedSide = rh->lineOnOneSide(origin, line, this, false);
610                 if (originalSide != translatedSide) {
611                     continue;
612                 }
613             }
614         }
615         if (delta > 1e-3 && (useIntersect ^= true)) {
616             sRayLonger = rayLonger;
617             sCept = cept;
618             sCeptT = smallTs[index];
619             sIndex = index;
620         }
621     }
622     if (useIntersect) {
623         const SkDCurve& curve = sIndex ? rh->fPart.fCurve : this->fPart.fCurve;
624         const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
625         double tStart = sIndex ? rh->fStart->t() : fStart->t();
626         SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
627         double septDir = mid.crossCheck(sCept);
628         if (!septDir) {
629             return checkParallel(rh);
630         }
631         return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
632     } else {
633         return checkParallel(rh);
634     }
635 }
636
637 bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
638     const SkOpSegment* segment = this->segment();
639     SkPath::Verb verb = segment->verb();
640     SkDLine rayEnd;
641     rayEnd[0].set(this->fEnd->pt());
642     rayEnd[1] = rayEnd[0];
643     SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
644             this->fEnd->t());
645     rayEnd[1].fX += slopeAtEnd.fY;
646     rayEnd[1].fY -= slopeAtEnd.fX;
647     SkIntersections iEnd;
648     const SkOpSegment* oppSegment = rh->segment();
649     SkPath::Verb oppVerb = oppSegment->verb();
650     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
651     double endDist;
652     int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
653     if (closestEnd < 0) {
654         return false;
655     }
656     if (!endDist) {
657         return false;
658     }
659     SkDPoint start;
660     start.set(this->fStart->pt());
661     // OPTIMIZATION: multiple times in the code we find the max scalar
662     double minX, minY, maxX, maxY;
663     minX = minY = SK_ScalarInfinity;
664     maxX = maxY = -SK_ScalarInfinity;
665     const SkDCurve& curve = rh->fPart.fCurve;
666     int oppPts = SkPathOpsVerbToPoints(oppVerb);
667     for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
668         minX = std::min(minX, curve[idx2].fX);
669         minY = std::min(minY, curve[idx2].fY);
670         maxX = std::max(maxX, curve[idx2].fX);
671         maxY = std::max(maxY, curve[idx2].fY);
672     }
673     double maxWidth = std::max(maxX - minX, maxY - minY);
674     endDist = sk_ieee_double_divide(endDist, maxWidth);
675     if (!(endDist >= 5e-12)) {  // empirically found
676         return false; // ! above catches NaN
677     }
678     const SkDPoint* endPt = &rayEnd[0];
679     SkDPoint oppPt = iEnd.pt(closestEnd);
680     SkDVector vLeft = *endPt - start;
681     SkDVector vRight = oppPt - start;
682     double dir = vLeft.crossNoNormalCheck(vRight);
683     if (!dir) {
684         return false;
685     }
686     *inside = dir < 0;
687     return true;
688 }
689
690 /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
691     0    x                      x               x
692     1    x                      x          x
693     2    x                      x    x
694     3    x                  x        x
695     4    x             x             x
696     5    x             x                   x
697     6    x             x                        x
698     7         x        x                        x
699     8             x    x                        x
700     9             x    x                   x
701     10            x    x             x
702     11            x         x        x
703     12            x             x    x
704     13            x             x          x
705     14            x             x               x
706     15        x                 x               x
707 */
708 int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
709     double absX = fabs(x);
710     double absY = fabs(y);
711     double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
712     // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
713     // one could coin the term sedecimant for a space divided into 16 sections.
714    // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
715     static const int sedecimant[3][3][3] = {
716     //       y<0           y==0           y>0
717     //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
718         {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
719         {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
720         {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
721     };
722     int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
723 //    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
724     return sector;
725 }
726
727 SkOpGlobalState* SkOpAngle::globalState() const {
728     return this->segment()->globalState();
729 }
730
731
732 // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
733 // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
734 bool SkOpAngle::insert(SkOpAngle* angle) {
735     if (angle->fNext) {
736         if (loopCount() >= angle->loopCount()) {
737             if (!merge(angle)) {
738                 return true;
739             }
740         } else if (fNext) {
741             if (!angle->merge(this)) {
742                 return true;
743             }
744         } else {
745             angle->insert(this);
746         }
747         return true;
748     }
749     bool singleton = nullptr == fNext;
750     if (singleton) {
751         fNext = this;
752     }
753     SkOpAngle* next = fNext;
754     if (next->fNext == this) {
755         if (singleton || angle->after(this)) {
756             this->fNext = angle;
757             angle->fNext = next;
758         } else {
759             next->fNext = angle;
760             angle->fNext = this;
761         }
762         debugValidateNext();
763         return true;
764     }
765     SkOpAngle* last = this;
766     bool flipAmbiguity = false;
767     do {
768         SkASSERT(last->fNext == next);
769         if (angle->after(last) ^ (angle->tangentsAmbiguous() & flipAmbiguity)) {
770             last->fNext = angle;
771             angle->fNext = next;
772             debugValidateNext();
773             return true;
774         }
775         last = next;
776         if (last == this) {
777             FAIL_IF(flipAmbiguity);
778             // We're in a loop. If a sort was ambiguous, flip it to end the loop.
779             flipAmbiguity = true;
780         }
781         next = next->fNext;
782     } while (true);
783     return true;
784 }
785
786 SkOpSpanBase* SkOpAngle::lastMarked() const {
787     if (fLastMarked) {
788         if (fLastMarked->chased()) {
789             return nullptr;
790         }
791         fLastMarked->setChased(true);
792     }
793     return fLastMarked;
794 }
795
796 bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
797     if (!fNext) {
798         return false;
799     }
800     const SkOpAngle* first = this;
801     const SkOpAngle* loop = this;
802     const SkOpSegment* tSegment = angle->fStart->segment();
803     double tStart = angle->fStart->t();
804     double tEnd = angle->fEnd->t();
805     do {
806         const SkOpSegment* lSegment = loop->fStart->segment();
807         if (lSegment != tSegment) {
808             continue;
809         }
810         double lStart = loop->fStart->t();
811         if (lStart != tEnd) {
812             continue;
813         }
814         double lEnd = loop->fEnd->t();
815         if (lEnd == tStart) {
816             return true;
817         }
818     } while ((loop = loop->fNext) != first);
819     return false;
820 }
821
822 int SkOpAngle::loopCount() const {
823     int count = 0;
824     const SkOpAngle* first = this;
825     const SkOpAngle* next = this;
826     do {
827         next = next->fNext;
828         ++count;
829     } while (next && next != first);
830     return count;
831 }
832
833 bool SkOpAngle::merge(SkOpAngle* angle) {
834     SkASSERT(fNext);
835     SkASSERT(angle->fNext);
836     SkOpAngle* working = angle;
837     do {
838         if (this == working) {
839             return false;
840         }
841         working = working->fNext;
842     } while (working != angle);
843     do {
844         SkOpAngle* next = working->fNext;
845         working->fNext = nullptr;
846         insert(working);
847         working = next;
848     } while (working != angle);
849     // it's likely that a pair of the angles are unorderable
850     debugValidateNext();
851     return true;
852 }
853
854 double SkOpAngle::midT() const {
855     return (fStart->t() + fEnd->t()) / 2;
856 }
857
858 bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
859     const SkOpSegment* segment = this->segment();
860     SkPath::Verb verb = segment->verb();
861     const SkPoint& startPt = this->fStart->pt();
862     const SkPoint& endPt = this->fEnd->pt();
863     SkDPoint dStartPt;
864     dStartPt.set(startPt);
865     SkDLine rayMid;
866     rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
867     rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
868     rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
869     rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
870     SkIntersections iMid;
871     (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
872     int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
873     if (iOutside < 0) {
874         return false;
875     }
876     const SkOpSegment* oppSegment = rh->segment();
877     SkPath::Verb oppVerb = oppSegment->verb();
878     SkIntersections oppMid;
879     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
880     int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
881     if (oppOutside < 0) {
882         return false;
883     }
884     SkDVector iSide = iMid.pt(iOutside) - dStartPt;
885     SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
886     double dir = iSide.crossCheck(oppSide);
887     if (!dir) {
888         return false;
889     }
890     *inside = dir < 0;
891     return true;
892 }
893
894 bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
895     int startSpan = SkTAbs(rh->fSectorStart - fSectorStart);
896     return startSpan >= 8;
897 }
898
899 int SkOpAngle::orderable(SkOpAngle* rh) {
900     int result;
901     if (!fPart.isCurve()) {
902         if (!rh->fPart.isCurve()) {
903             double leftX = fTangentHalf.dx();
904             double leftY = fTangentHalf.dy();
905             double rightX = rh->fTangentHalf.dx();
906             double rightY = rh->fTangentHalf.dy();
907             double x_ry = leftX * rightY;
908             double rx_y = rightX * leftY;
909             if (x_ry == rx_y) {
910                 if (leftX * rightX < 0 || leftY * rightY < 0) {
911                     return 1;  // exactly 180 degrees apart
912                 }
913                 goto unorderable;
914             }
915             SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
916             return x_ry < rx_y ? 1 : 0;
917         }
918         if ((result = this->lineOnOneSide(rh, false)) >= 0) {
919             return result;
920         }
921         if (fUnorderable || approximately_zero(rh->fSide)) {
922             goto unorderable;
923         }
924     } else if (!rh->fPart.isCurve()) {
925         if ((result = rh->lineOnOneSide(this, false)) >= 0) {
926             return result ? 0 : 1;
927         }
928         if (rh->fUnorderable || approximately_zero(fSide)) {
929             goto unorderable;
930         }
931     } else if ((result = this->convexHullOverlaps(rh)) >= 0) {
932         return result;
933     }
934     return this->endsIntersect(rh) ? 1 : 0;
935 unorderable:
936     fUnorderable = true;
937     rh->fUnorderable = true;
938     return -1;
939 }
940
941 // OPTIMIZE: if this shows up in a profile, add a previous pointer
942 // as is, this should be rarely called
943 SkOpAngle* SkOpAngle::previous() const {
944     SkOpAngle* last = fNext;
945     do {
946         SkOpAngle* next = last->fNext;
947         if (next == this) {
948             return last;
949         }
950         last = next;
951     } while (true);
952 }
953
954 SkOpSegment* SkOpAngle::segment() const {
955     return fStart->segment();
956 }
957
958 void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
959     fStart = start;
960     fComputedEnd = fEnd = end;
961     SkASSERT(start != end);
962     fNext = nullptr;
963     fComputeSector = fComputedSector = fCheckCoincidence = fTangentsAmbiguous = false;
964     setSpans();
965     setSector();
966     SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
967 }
968
969 void SkOpAngle::setSpans() {
970     fUnorderable = false;
971     fLastMarked = nullptr;
972     if (!fStart) {
973         fUnorderable = true;
974         return;
975     }
976     const SkOpSegment* segment = fStart->segment();
977     const SkPoint* pts = segment->pts();
978     SkDEBUGCODE(fPart.fCurve.fVerb = SkPath::kCubic_Verb);  // required for SkDCurve debug check
979     SkDEBUGCODE(fPart.fCurve[2].fX = fPart.fCurve[2].fY = fPart.fCurve[3].fX = fPart.fCurve[3].fY
980             = SK_ScalarNaN);   //  make the non-line part uninitialized
981     SkDEBUGCODE(fPart.fCurve.fVerb = segment->verb());  //  set the curve type for real
982     segment->subDivide(fStart, fEnd, &fPart.fCurve);  //  set at least the line part if not more
983     fOriginalCurvePart = fPart.fCurve;
984     const SkPath::Verb verb = segment->verb();
985     fPart.setCurveHullSweep(verb);
986     if (SkPath::kLine_Verb != verb && !fPart.isCurve()) {
987         SkDLine lineHalf;
988         fPart.fCurve[1] = fPart.fCurve[SkPathOpsVerbToPoints(verb)];
989         fOriginalCurvePart[1] = fPart.fCurve[1];
990         lineHalf[0].set(fPart.fCurve[0].asSkPoint());
991         lineHalf[1].set(fPart.fCurve[1].asSkPoint());
992         fTangentHalf.lineEndPoints(lineHalf);
993         fSide = 0;
994     }
995     switch (verb) {
996     case SkPath::kLine_Verb: {
997         SkASSERT(fStart != fEnd);
998         const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
999         SkDLine lineHalf;
1000         lineHalf[0].set(fStart->pt());
1001         lineHalf[1].set(cP1);
1002         fTangentHalf.lineEndPoints(lineHalf);
1003         fSide = 0;
1004         } return;
1005     case SkPath::kQuad_Verb:
1006     case SkPath::kConic_Verb: {
1007         SkLineParameters tangentPart;
1008         (void) tangentPart.quadEndPoints(fPart.fCurve.fQuad);
1009         fSide = -tangentPart.pointDistance(fPart.fCurve[2]);  // not normalized -- compare sign only
1010         } break;
1011     case SkPath::kCubic_Verb: {
1012         SkLineParameters tangentPart;
1013         (void) tangentPart.cubicPart(fPart.fCurve.fCubic);
1014         fSide = -tangentPart.pointDistance(fPart.fCurve[3]);
1015         double testTs[4];
1016         // OPTIMIZATION: keep inflections precomputed with cubic segment?
1017         int testCount = SkDCubic::FindInflections(pts, testTs);
1018         double startT = fStart->t();
1019         double endT = fEnd->t();
1020         double limitT = endT;
1021         int index;
1022         for (index = 0; index < testCount; ++index) {
1023             if (!::between(startT, testTs[index], limitT)) {
1024                 testTs[index] = -1;
1025             }
1026         }
1027         testTs[testCount++] = startT;
1028         testTs[testCount++] = endT;
1029         SkTQSort<double>(testTs, testTs + testCount);
1030         double bestSide = 0;
1031         int testCases = (testCount << 1) - 1;
1032         index = 0;
1033         while (testTs[index] < 0) {
1034             ++index;
1035         }
1036         index <<= 1;
1037         for (; index < testCases; ++index) {
1038             int testIndex = index >> 1;
1039             double testT = testTs[testIndex];
1040             if (index & 1) {
1041                 testT = (testT + testTs[testIndex + 1]) / 2;
1042             }
1043             // OPTIMIZE: could avoid call for t == startT, endT
1044             SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
1045             SkLineParameters testPart;
1046             testPart.cubicEndPoints(fPart.fCurve.fCubic);
1047             double testSide = testPart.pointDistance(pt);
1048             if (fabs(bestSide) < fabs(testSide)) {
1049                 bestSide = testSide;
1050             }
1051         }
1052         fSide = -bestSide;  // compare sign only
1053         } break;
1054     default:
1055         SkASSERT(0);
1056     }
1057 }
1058
1059 void SkOpAngle::setSector() {
1060     if (!fStart) {
1061         fUnorderable = true;
1062         return;
1063     }
1064     const SkOpSegment* segment = fStart->segment();
1065     SkPath::Verb verb = segment->verb();
1066     fSectorStart = this->findSector(verb, fPart.fSweep[0].fX, fPart.fSweep[0].fY);
1067     if (fSectorStart < 0) {
1068         goto deferTilLater;
1069     }
1070     if (!fPart.isCurve()) {  // if it's a line or line-like, note that both sectors are the same
1071         SkASSERT(fSectorStart >= 0);
1072         fSectorEnd = fSectorStart;
1073         fSectorMask = 1 << fSectorStart;
1074         return;
1075     }
1076     SkASSERT(SkPath::kLine_Verb != verb);
1077     fSectorEnd = this->findSector(verb, fPart.fSweep[1].fX, fPart.fSweep[1].fY);
1078     if (fSectorEnd < 0) {
1079 deferTilLater:
1080         fSectorStart = fSectorEnd = -1;
1081         fSectorMask = 0;
1082         fComputeSector = true;  // can't determine sector until segment length can be found
1083         return;
1084     }
1085     if (fSectorEnd == fSectorStart
1086             && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
1087         fSectorMask = 1 << fSectorStart;
1088         return;
1089     }
1090     bool crossesZero = this->checkCrossesZero();
1091     int start = std::min(fSectorStart, fSectorEnd);
1092     bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
1093     // bump the start and end of the sector span if they are on exact compass points
1094     if ((fSectorStart & 3) == 3) {
1095         fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
1096     }
1097     if ((fSectorEnd & 3) == 3) {
1098         fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
1099     }
1100     crossesZero = this->checkCrossesZero();
1101     start = std::min(fSectorStart, fSectorEnd);
1102     int end = std::max(fSectorStart, fSectorEnd);
1103     if (!crossesZero) {
1104         fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
1105     } else {
1106         fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end);
1107     }
1108 }
1109
1110 SkOpSpan* SkOpAngle::starter() {
1111     return fStart->starter(fEnd);
1112 }
1113
1114 bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) {
1115     if (s0xt0 == 0) {
1116         return false;
1117     }
1118     // if the ctrl tangents are not nearly parallel, use them
1119     // solve for opposite direction displacement scale factor == m
1120     // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
1121     // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
1122     // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
1123     //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
1124     // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
1125     // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
1126     // m = v1.cross(v2) / v1.dot(v2)
1127     const SkDVector* sweep = fPart.fSweep;
1128     const SkDVector* tweep = rh->fPart.fSweep;
1129     double s0dt0 = sweep[0].dot(tweep[0]);
1130     if (!s0dt0) {
1131         return true;
1132     }
1133     SkASSERT(s0dt0 != 0);
1134     double m = s0xt0 / s0dt0;
1135     double sDist = sweep[0].length() * m;
1136     double tDist = tweep[0].length() * m;
1137     bool useS = fabs(sDist) < fabs(tDist);
1138     double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
1139     fTangentsAmbiguous = mFactor >= 50 && mFactor < 200;
1140     return mFactor < 50;   // empirically found limit
1141 }