1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
22 extern double ____strtod_l_internal (const char *, char **, int, __locale_t);
23 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
24 int, int, __locale_t);
26 /* Configuration part. These macros are defined by `strtold.c',
27 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
28 `long double' and `float' versions of the reader. */
30 # include <math_ldbl_opt.h>
34 # define STRTOF wcstod_l
35 # define __STRTOF __wcstod_l
37 # define STRTOF strtod_l
38 # define __STRTOF __strtod_l
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 # define SET_MANTISSA(flt, mant) \
43 do { union ieee754_double u; \
45 u.ieee_nan.mantissa0 = (mant) >> 32; \
46 u.ieee_nan.mantissa1 = (mant); \
47 if ((u.ieee.mantissa0 | u.ieee.mantissa1) != 0) \
51 /* End of configuration part. */
57 #include "../locale/localeinfo.h"
63 #include <rounding-mode.h>
66 /* The gmp headers need some configuration frobs. */
69 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
70 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
71 #include <gmp-mparam.h>
75 #include "fpioconst.h"
80 /* We use this code for the extended locale handling where the
81 function gets as an additional argument the locale which has to be
82 used. To access the values we have to redefine the _NL_CURRENT and
83 _NL_CURRENT_WORD macros. */
85 #define _NL_CURRENT(category, item) \
86 (current->values[_NL_ITEM_INDEX (item)].string)
87 #undef _NL_CURRENT_WORD
88 #define _NL_CURRENT_WORD(category, item) \
89 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
91 #if defined _LIBC || defined HAVE_WCHAR_H
97 # define STRING_TYPE wchar_t
98 # define CHAR_TYPE wint_t
100 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
101 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
102 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
103 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
104 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
105 # define STRNCASECMP(S1, S2, N) \
106 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
107 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
109 # define STRING_TYPE char
110 # define CHAR_TYPE char
112 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
113 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
114 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
115 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
116 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
117 # define STRNCASECMP(S1, S2, N) \
118 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
119 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
123 /* Constants we need from float.h; select the set for the FLOAT precision. */
124 #define MANT_DIG PASTE(FLT,_MANT_DIG)
125 #define DIG PASTE(FLT,_DIG)
126 #define MAX_EXP PASTE(FLT,_MAX_EXP)
127 #define MIN_EXP PASTE(FLT,_MIN_EXP)
128 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
129 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
130 #define MAX_VALUE PASTE(FLT,_MAX)
131 #define MIN_VALUE PASTE(FLT,_MIN)
133 /* Extra macros required to get FLT expanded before the pasting. */
134 #define PASTE(a,b) PASTE1(a,b)
135 #define PASTE1(a,b) a##b
137 /* Function to construct a floating point number from an MP integer
138 containing the fraction bits, a base 2 exponent, and a sign flag. */
139 extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
141 /* Definitions according to limb size used. */
142 #if BITS_PER_MP_LIMB == 32
143 # define MAX_DIG_PER_LIMB 9
144 # define MAX_FAC_PER_LIMB 1000000000UL
145 #elif BITS_PER_MP_LIMB == 64
146 # define MAX_DIG_PER_LIMB 19
147 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
149 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
152 extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1];
155 #define howmany(x,y) (((x)+((y)-1))/(y))
157 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
159 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
161 #define RETURN(val,end) \
162 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
163 return val; } while (0)
165 /* Maximum size necessary for mpn integers to hold floating point
166 numbers. The largest number we need to hold is 10^n where 2^-n is
167 1/4 ulp of the smallest representable value (that is, n = MANT_DIG
168 - MIN_EXP + 2). Approximate using 10^3 < 2^10. */
169 #define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
170 BITS_PER_MP_LIMB) + 2)
171 /* Declare an mpn integer variable that big. */
172 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
173 /* Copy an mpn integer value. */
174 #define MPN_ASSIGN(dst, src) \
175 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
178 /* Set errno and return an overflowing value with sign specified by
181 overflow_value (int negative)
183 __set_errno (ERANGE);
184 #if FLT_EVAL_METHOD != 0
187 FLOAT result = (negative ? -MAX_VALUE : MAX_VALUE) * MAX_VALUE;
192 /* Set errno and return an underflowing value with sign specified by
195 underflow_value (int negative)
197 __set_errno (ERANGE);
198 #if FLT_EVAL_METHOD != 0
201 FLOAT result = (negative ? -MIN_VALUE : MIN_VALUE) * MIN_VALUE;
206 /* Return a floating point number of the needed type according to the given
207 multi-precision number after possible rounding. */
209 round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
210 mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
212 int mode = get_rounding_mode ();
214 if (exponent < MIN_EXP - 1)
216 if (exponent < MIN_EXP - 1 - MANT_DIG)
217 return underflow_value (negative);
219 mp_size_t shift = MIN_EXP - 1 - exponent;
222 more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
223 if (shift == MANT_DIG)
224 /* This is a special case to handle the very seldom case where
225 the mantissa will be empty after the shift. */
229 round_limb = retval[RETURN_LIMB_SIZE - 1];
230 round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
231 for (i = 0; i < RETURN_LIMB_SIZE; ++i)
232 more_bits |= retval[i] != 0;
233 MPN_ZERO (retval, RETURN_LIMB_SIZE);
235 else if (shift >= BITS_PER_MP_LIMB)
239 round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
240 round_bit = (shift - 1) % BITS_PER_MP_LIMB;
241 for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
242 more_bits |= retval[i] != 0;
243 more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
246 (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
247 RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
248 shift % BITS_PER_MP_LIMB);
249 MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
250 shift / BITS_PER_MP_LIMB);
254 if (TININESS_AFTER_ROUNDING && shift == 1)
256 /* Whether the result counts as tiny depends on whether,
257 after rounding to the normal precision, it still has
258 a subnormal exponent. */
259 mp_limb_t retval_normal[RETURN_LIMB_SIZE];
260 if (round_away (negative,
261 (retval[0] & 1) != 0,
263 & (((mp_limb_t) 1) << round_bit)) != 0,
266 & ((((mp_limb_t) 1) << round_bit) - 1))
270 mp_limb_t cy = __mpn_add_1 (retval_normal, retval,
271 RETURN_LIMB_SIZE, 1);
273 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
274 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
275 ((retval_normal[RETURN_LIMB_SIZE - 1]
276 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB)))
281 round_limb = retval[0];
282 round_bit = shift - 1;
283 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
285 /* This is a hook for the m68k long double format, where the
286 exponent bias is the same for normalized and denormalized
289 # define DENORM_EXP (MIN_EXP - 2)
291 exponent = DENORM_EXP;
293 && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
295 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
297 __set_errno (ERANGE);
298 volatile FLOAT force_underflow_exception = MIN_VALUE * MIN_VALUE;
299 (void) force_underflow_exception;
303 if (exponent > MAX_EXP)
306 if (round_away (negative,
307 (retval[0] & 1) != 0,
308 (round_limb & (((mp_limb_t) 1) << round_bit)) != 0,
310 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0),
313 mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
315 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
316 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
317 (retval[RETURN_LIMB_SIZE - 1]
318 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
321 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
322 retval[RETURN_LIMB_SIZE - 1]
323 |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
325 else if (exponent == DENORM_EXP
326 && (retval[RETURN_LIMB_SIZE - 1]
327 & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
329 /* The number was denormalized but now normalized. */
330 exponent = MIN_EXP - 1;
333 if (exponent > MAX_EXP)
335 return overflow_value (negative);
337 return MPN2FLOAT (retval, exponent, negative);
341 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
342 into N. Return the size of the number limbs in NSIZE at the first
343 character od the string that is not part of the integer as the function
344 value. If the EXPONENT is small enough to be taken as an additional
345 factor for the resulting number (see code) multiply by it. */
346 static const STRING_TYPE *
347 str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
349 #ifndef USE_WIDE_CHAR
350 , const char *decimal, size_t decimal_len, const char *thousands
355 /* Number of digits for actual limb. */
364 if (cnt == MAX_DIG_PER_LIMB)
374 cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
375 cy += __mpn_add_1 (n, n, *nsize, low);
378 assert (*nsize < MPNSIZE);
387 /* There might be thousands separators or radix characters in
388 the string. But these all can be ignored because we know the
389 format of the number is correct and we have an exact number
390 of characters to read. */
392 if (*str < L'0' || *str > L'9')
395 if (*str < '0' || *str > '9')
398 if (thousands != NULL && *str == *thousands
399 && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
400 if (thousands[inner] != str[inner])
402 thousands[inner] == '\0'; }))
408 low = low * 10 + *str++ - L_('0');
411 while (--digcnt > 0);
413 if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
415 low *= _tens_in_limb[*exponent];
416 start = _tens_in_limb[cnt + *exponent];
420 start = _tens_in_limb[cnt];
430 cy = __mpn_mul_1 (n, n, *nsize, start);
431 cy += __mpn_add_1 (n, n, *nsize, low);
434 assert (*nsize < MPNSIZE);
443 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
444 with the COUNT most significant bits of LIMB.
446 Implemented as a macro, so that __builtin_constant_p works even at -O0.
448 Tege doesn't like this macro so I have to write it here myself. :)
450 #define __mpn_lshift_1(ptr, size, count, limb) \
453 mp_limb_t *__ptr = (ptr); \
454 if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \
457 for (i = (size) - 1; i > 0; --i) \
458 __ptr[i] = __ptr[i - 1]; \
463 /* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \
464 unsigned int __count = (count); \
465 (void) __mpn_lshift (__ptr, __ptr, size, __count); \
466 __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \
472 #define INTERNAL(x) INTERNAL1(x)
473 #define INTERNAL1(x) __##x##_internal
474 #ifndef ____STRTOF_INTERNAL
475 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
478 /* This file defines a function to check for correct grouping. */
479 #include "grouping.h"
482 /* Return a floating point number with the value of the given string NPTR.
483 Set *ENDPTR to the character after the last used one. If the number is
484 smaller than the smallest representable number, set `errno' to ERANGE and
485 return 0.0. If the number is too big to be represented, set `errno' to
486 ERANGE and return HUGE_VAL with the appropriate sign. */
488 ____STRTOF_INTERNAL (nptr, endptr, group, loc)
489 const STRING_TYPE *nptr;
490 STRING_TYPE **endptr;
494 int negative; /* The sign of the number. */
495 MPN_VAR (num); /* MP representation of the number. */
496 intmax_t exponent; /* Exponent of the number. */
498 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
501 /* When we have to compute fractional digits we form a fraction with a
502 second multi-precision number (and we sometimes need a second for
503 temporary results). */
506 /* Representation for the return value. */
507 mp_limb_t retval[RETURN_LIMB_SIZE];
508 /* Number of bits currently in result value. */
511 /* Running pointer after the last character processed in the string. */
512 const STRING_TYPE *cp, *tp;
513 /* Start of significant part of the number. */
514 const STRING_TYPE *startp, *start_of_digits;
515 /* Points at the character following the integer and fractional digits. */
516 const STRING_TYPE *expp;
517 /* Total number of digit and number of digits in integer part. */
518 size_t dig_no, int_no, lead_zero;
519 /* Contains the last character read. */
522 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
523 there. So define it ourselves if it remains undefined. */
525 typedef unsigned int wint_t;
527 /* The radix character of the current locale. */
534 /* The thousands character of the current locale. */
536 wchar_t thousands = L'\0';
538 const char *thousands = NULL;
540 /* The numeric grouping specification of the current locale,
541 in the format described in <locale.h>. */
542 const char *grouping;
543 /* Used in several places. */
546 struct __locale_data *current = loc->__locales[LC_NUMERIC];
548 if (__builtin_expect (group, 0))
550 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
551 if (*grouping <= 0 || *grouping == CHAR_MAX)
555 /* Figure out the thousands separator character. */
557 thousands = _NL_CURRENT_WORD (LC_NUMERIC,
558 _NL_NUMERIC_THOUSANDS_SEP_WC);
559 if (thousands == L'\0')
562 thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
563 if (*thousands == '\0')
574 /* Find the locale's decimal point character. */
576 decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
577 assert (decimal != L'\0');
578 # define decimal_len 1
580 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
581 decimal_len = strlen (decimal);
582 assert (decimal_len > 0);
585 /* Prepare number representation. */
590 /* Parse string to get maximal legal prefix. We need the number of
591 characters of the integer part, the fractional part and the exponent. */
593 /* Ignore leading white space. */
598 /* Get sign of the result. */
604 else if (c == L_('+'))
607 /* Return 0.0 if no legal string is found.
608 No character is used even if a sign was found. */
610 if (c == (wint_t) decimal
611 && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
613 /* We accept it. This funny construct is here only to indent
614 the code correctly. */
617 for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
618 if (cp[cnt] != decimal[cnt])
620 if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
622 /* We accept it. This funny construct is here only to indent
623 the code correctly. */
626 else if (c < L_('0') || c > L_('9'))
628 /* Check for `INF' or `INFINITY'. */
629 CHAR_TYPE lowc = TOLOWER_C (c);
631 if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
633 /* Return +/- infinity. */
635 *endptr = (STRING_TYPE *)
636 (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
639 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
642 if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
649 /* Match `(n-char-sequence-digit)'. */
652 const STRING_TYPE *startp = cp;
655 while ((*cp >= L_('0') && *cp <= L_('9'))
656 || ({ CHAR_TYPE lo = TOLOWER (*cp);
657 lo >= L_('a') && lo <= L_('z'); })
661 /* The closing brace is missing. Only match the NAN
666 /* This is a system-dependent way to specify the
667 bitmask used for the NaN. We expect it to be
668 a number which is put in the mantissa of the
671 unsigned long long int mant;
673 mant = STRTOULL (startp + 1, &endp, 0);
675 SET_MANTISSA (retval, mant);
677 /* Consume the closing brace. */
683 *endptr = (STRING_TYPE *) cp;
688 /* It is really a text we do not recognize. */
692 /* First look whether we are faced with a hexadecimal number. */
693 if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
695 /* Okay, it is a hexa-decimal number. Remember this and skip
696 the characters. BTW: hexadecimal numbers must not be
704 /* Record the start of the digits, in case we will check their grouping. */
705 start_of_digits = startp = cp;
707 /* Ignore leading zeroes. This helps us to avoid useless computations. */
709 while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
712 if (__builtin_expect (thousands == NULL, 1))
717 /* We also have the multibyte thousands string. */
722 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
723 if (thousands[cnt] != cp[cnt])
725 if (thousands[cnt] != '\0')
734 /* If no other digit but a '0' is found the result is 0.0.
735 Return current read pointer. */
736 CHAR_TYPE lowc = TOLOWER (c);
737 if (!((c >= L_('0') && c <= L_('9'))
738 || (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
741 c == (wint_t) decimal
743 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
744 if (decimal[cnt] != cp[cnt])
746 decimal[cnt] == '\0'; })
748 /* '0x.' alone is not a valid hexadecimal number.
749 '.' alone is not valid either, but that has been checked
752 || cp != start_of_digits
753 || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
754 || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
755 lo >= L_('a') && lo <= L_('f'); })))
756 || (base == 16 && (cp != start_of_digits
758 || (base != 16 && lowc == L_('e'))))
761 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
764 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
767 /* If TP is at the start of the digits, there was no correctly
768 grouped prefix of the string; so no number found. */
769 RETURN (negative ? -0.0 : 0.0,
770 tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
773 /* Remember first significant digit and read following characters until the
774 decimal point, exponent character or any non-FP number character. */
779 if ((c >= L_('0') && c <= L_('9'))
781 && ({ CHAR_TYPE lo = TOLOWER (c);
782 lo >= L_('a') && lo <= L_('f'); })))
787 if (__builtin_expect ((wint_t) thousands == L'\0', 1)
788 || c != (wint_t) thousands)
789 /* Not a digit or separator: end of the integer part. */
792 if (__builtin_expect (thousands == NULL, 1))
796 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
797 if (thousands[cnt] != cp[cnt])
799 if (thousands[cnt] != '\0')
808 if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
810 /* Check the grouping of the digits. */
812 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
815 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
820 /* Less than the entire string was correctly grouped. */
822 if (tp == start_of_digits)
823 /* No valid group of numbers at all: no valid number. */
827 /* The number is validly grouped, but consists
828 only of zeroes. The whole value is zero. */
829 RETURN (negative ? -0.0 : 0.0, tp);
831 /* Recompute DIG_NO so we won't read more digits than
832 are properly grouped. */
835 for (tp = startp; tp < cp; ++tp)
836 if (*tp >= L_('0') && *tp <= L_('9'))
846 /* We have the number of digits in the integer part. Whether these
847 are all or any is really a fractional digit will be decided
850 lead_zero = int_no == 0 ? (size_t) -1 : 0;
852 /* Read the fractional digits. A special case are the 'american
853 style' numbers like `16.' i.e. with decimal point but without
857 c == (wint_t) decimal
859 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
860 if (decimal[cnt] != cp[cnt])
862 decimal[cnt] == '\0'; })
868 while ((c >= L_('0') && c <= L_('9')) ||
869 (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
870 lo >= L_('a') && lo <= L_('f'); })))
872 if (c != L_('0') && lead_zero == (size_t) -1)
873 lead_zero = dig_no - int_no;
878 assert (dig_no <= (uintmax_t) INTMAX_MAX);
880 /* Remember start of exponent (if any). */
885 if ((base == 16 && lowc == L_('p'))
886 || (base != 16 && lowc == L_('e')))
888 int exp_negative = 0;
896 else if (c == L_('+'))
899 if (c >= L_('0') && c <= L_('9'))
903 /* Get the exponent limit. */
908 assert (int_no <= (uintmax_t) (INTMAX_MAX
909 + MIN_EXP - MANT_DIG) / 4);
910 exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
916 assert (lead_zero == 0
917 && int_no <= (uintmax_t) INTMAX_MAX / 4);
918 exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
920 else if (lead_zero == (size_t) -1)
922 /* The number is zero and this limit is
924 exp_limit = MAX_EXP + 3;
929 <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
931 + 4 * (intmax_t) lead_zero
941 <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
942 exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
948 assert (lead_zero == 0
949 && int_no <= (uintmax_t) INTMAX_MAX);
950 exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
952 else if (lead_zero == (size_t) -1)
954 /* The number is zero and this limit is
956 exp_limit = MAX_10_EXP + 1;
961 <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
962 exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
972 if (__builtin_expect ((exponent > exp_limit / 10
973 || (exponent == exp_limit / 10
974 && c - L_('0') > exp_limit % 10)), 0))
975 /* The exponent is too large/small to represent a valid
980 /* We have to take care for special situation: a joker
981 might have written "0.0e100000" which is in fact
983 if (lead_zero == (size_t) -1)
984 result = negative ? -0.0 : 0.0;
987 /* Overflow or underflow. */
988 result = (exp_negative
989 ? underflow_value (negative)
990 : overflow_value (negative));
993 /* Accept all following digits as part of the exponent. */
996 while (*cp >= L_('0') && *cp <= L_('9'));
1003 exponent += c - L_('0');
1007 while (c >= L_('0') && c <= L_('9'));
1010 exponent = -exponent;
1016 /* We don't want to have to work with trailing zeroes after the radix. */
1017 if (dig_no > int_no)
1019 while (expp[-1] == L_('0'))
1024 assert (dig_no >= int_no);
1027 if (dig_no == int_no && dig_no > 0 && exponent < 0)
1030 while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
1033 if (expp[-1] != L_('0'))
1039 exponent += base == 16 ? 4 : 1;
1041 while (dig_no > 0 && exponent < 0);
1045 /* The whole string is parsed. Store the address of the next character. */
1047 *endptr = (STRING_TYPE *) cp;
1050 return negative ? -0.0 : 0.0;
1054 /* Find the decimal point */
1055 #ifdef USE_WIDE_CHAR
1056 while (*startp != decimal)
1061 if (*startp == decimal[0])
1063 for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
1064 if (decimal[cnt] != startp[cnt])
1066 if (decimal[cnt] == '\0')
1072 startp += lead_zero + decimal_len;
1073 assert (lead_zero <= (base == 16
1074 ? (uintmax_t) INTMAX_MAX / 4
1075 : (uintmax_t) INTMAX_MAX));
1076 assert (lead_zero <= (base == 16
1077 ? ((uintmax_t) exponent
1078 - (uintmax_t) INTMAX_MIN) / 4
1079 : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
1080 exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
1081 dig_no -= lead_zero;
1084 /* If the BASE is 16 we can use a simpler algorithm. */
1087 static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
1088 4, 4, 4, 4, 4, 4, 4, 4 };
1089 int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
1090 int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1093 while (!ISXDIGIT (*startp))
1095 while (*startp == L_('0'))
1097 if (ISDIGIT (*startp))
1098 val = *startp++ - L_('0');
1100 val = 10 + TOLOWER (*startp++) - L_('a');
1102 /* We cannot have a leading zero. */
1105 if (pos + 1 >= 4 || pos + 1 >= bits)
1107 /* We don't have to care for wrapping. This is the normal
1108 case so we add the first clause in the `if' expression as
1109 an optimization. It is a compile-time constant and so does
1110 not cost anything. */
1111 retval[idx] = val << (pos - bits + 1);
1116 retval[idx--] = val >> (bits - pos - 1);
1117 retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
1118 pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
1121 /* Adjust the exponent for the bits we are shifting in. */
1122 assert (int_no <= (uintmax_t) (exponent < 0
1123 ? (INTMAX_MAX - bits + 1) / 4
1124 : (INTMAX_MAX - exponent - bits + 1) / 4));
1125 exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
1127 while (--dig_no > 0 && idx >= 0)
1129 if (!ISXDIGIT (*startp))
1130 startp += decimal_len;
1131 if (ISDIGIT (*startp))
1132 val = *startp++ - L_('0');
1134 val = 10 + TOLOWER (*startp++) - L_('a');
1138 retval[idx] |= val << (pos - 4 + 1);
1143 retval[idx--] |= val >> (4 - pos - 1);
1144 val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
1147 int rest_nonzero = 0;
1148 while (--dig_no > 0)
1150 if (*startp != L_('0'))
1157 return round_and_return (retval, exponent, negative, val,
1158 BITS_PER_MP_LIMB - 1, rest_nonzero);
1162 pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
1166 /* We ran out of digits. */
1167 MPN_ZERO (retval, idx);
1169 return round_and_return (retval, exponent, negative, 0, 0, 0);
1172 /* Now we have the number of digits in total and the integer digits as well
1173 as the exponent and its sign. We can decide whether the read digits are
1174 really integer digits or belong to the fractional part; i.e. we normalize
1177 intmax_t incr = (exponent < 0
1178 ? MAX (-(intmax_t) int_no, exponent)
1179 : MIN ((intmax_t) dig_no - (intmax_t) int_no, exponent));
1184 if (__builtin_expect (exponent > MAX_10_EXP + 1 - (intmax_t) int_no, 0))
1185 return overflow_value (negative);
1187 if (__builtin_expect (exponent < MIN_10_EXP - (DIG + 1), 0))
1188 return underflow_value (negative);
1192 /* Read the integer part as a multi-precision number to NUM. */
1193 startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
1194 #ifndef USE_WIDE_CHAR
1195 , decimal, decimal_len, thousands
1201 /* We now multiply the gained number by the given power of ten. */
1202 mp_limb_t *psrc = num;
1203 mp_limb_t *pdest = den;
1205 const struct mp_power *ttab = &_fpioconst_pow10[0];
1209 if ((exponent & expbit) != 0)
1211 size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
1215 /* FIXME: not the whole multiplication has to be
1216 done. If we have the needed number of bits we
1217 only need the information whether more non-zero
1219 if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
1220 cy = __mpn_mul (pdest, psrc, numsize,
1221 &__tens[ttab->arrayoff
1222 + _FPIO_CONST_OFFSET],
1225 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1226 + _FPIO_CONST_OFFSET],
1227 size, psrc, numsize);
1231 (void) SWAP (psrc, pdest);
1236 while (exponent != 0);
1239 memcpy (num, den, numsize * sizeof (mp_limb_t));
1242 /* Determine how many bits of the result we already have. */
1243 count_leading_zeros (bits, num[numsize - 1]);
1244 bits = numsize * BITS_PER_MP_LIMB - bits;
1246 /* Now we know the exponent of the number in base two.
1247 Check it against the maximum possible exponent. */
1248 if (__builtin_expect (bits > MAX_EXP, 0))
1249 return overflow_value (negative);
1251 /* We have already the first BITS bits of the result. Together with
1252 the information whether more non-zero bits follow this is enough
1253 to determine the result. */
1254 if (bits > MANT_DIG)
1257 const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
1258 const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
1259 const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
1261 const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
1265 memcpy (retval, &num[least_idx],
1266 RETURN_LIMB_SIZE * sizeof (mp_limb_t));
1269 for (i = least_idx; i < numsize - 1; ++i)
1270 retval[i - least_idx] = (num[i] >> least_bit)
1272 << (BITS_PER_MP_LIMB - least_bit));
1273 if (i - least_idx < RETURN_LIMB_SIZE)
1274 retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
1277 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1278 for (i = 0; num[i] == 0; ++i)
1281 return round_and_return (retval, bits - 1, negative,
1282 num[round_idx], round_bit,
1283 int_no < dig_no || i < round_idx);
1286 else if (dig_no == int_no)
1288 const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1289 const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
1291 if (target_bit == is_bit)
1293 memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
1294 numsize * sizeof (mp_limb_t));
1295 /* FIXME: the following loop can be avoided if we assume a
1296 maximal MANT_DIG value. */
1297 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1299 else if (target_bit > is_bit)
1301 (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
1302 num, numsize, target_bit - is_bit);
1303 /* FIXME: the following loop can be avoided if we assume a
1304 maximal MANT_DIG value. */
1305 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1310 assert (numsize < RETURN_LIMB_SIZE);
1312 cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
1313 num, numsize, is_bit - target_bit);
1314 retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
1315 /* FIXME: the following loop can be avoided if we assume a
1316 maximal MANT_DIG value. */
1317 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
1320 return round_and_return (retval, bits - 1, negative, 0, 0, 0);
1324 /* Store the bits we already have. */
1325 memcpy (retval, num, numsize * sizeof (mp_limb_t));
1326 #if RETURN_LIMB_SIZE > 1
1327 if (numsize < RETURN_LIMB_SIZE)
1328 # if RETURN_LIMB_SIZE == 2
1329 retval[numsize] = 0;
1331 MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
1336 /* We have to compute at least some of the fractional digits. */
1338 /* We construct a fraction and the result of the division gives us
1339 the needed digits. The denominator is 1.0 multiplied by the
1340 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1341 123e-6 gives 123 / 1000000. */
1346 int need_frac_digits;
1348 mp_limb_t *psrc = den;
1349 mp_limb_t *pdest = num;
1350 const struct mp_power *ttab = &_fpioconst_pow10[0];
1352 assert (dig_no > int_no
1354 && exponent >= MIN_10_EXP - (DIG + 1));
1356 /* We need to compute MANT_DIG - BITS fractional bits that lie
1357 within the mantissa of the result, the following bit for
1358 rounding, and to know whether any subsequent bit is 0.
1359 Computing a bit with value 2^-n means looking at n digits after
1360 the decimal point. */
1363 /* The bits required are those immediately after the point. */
1364 assert (int_no > 0 && exponent == 0);
1365 need_frac_digits = 1 + MANT_DIG - bits;
1369 /* The number is in the form .123eEXPONENT. */
1370 assert (int_no == 0 && *startp != L_('0'));
1371 /* The number is at least 10^(EXPONENT-1), and 10^3 <
1373 int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
1374 /* The number is at least 2^-NEG_EXP_2. We need up to
1375 MANT_DIG bits following that bit. */
1376 need_frac_digits = neg_exp_2 + MANT_DIG;
1377 /* However, we never need bits beyond 1/4 ulp of the smallest
1378 representable value. (That 1/4 ulp bit is only needed to
1379 determine tinyness on machines where tinyness is determined
1381 if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
1382 need_frac_digits = MANT_DIG - MIN_EXP + 2;
1383 /* At this point, NEED_FRAC_DIGITS is the total number of
1384 digits needed after the point, but some of those may be
1386 need_frac_digits += exponent;
1387 /* Any cases underflowing enough that none of the fractional
1388 digits are needed should have been caught earlier (such
1389 cases are on the order of 10^-n or smaller where 2^-n is
1390 the least subnormal). */
1391 assert (need_frac_digits > 0);
1394 if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
1395 need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
1397 if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
1399 dig_no = int_no + need_frac_digits;
1405 neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
1407 /* Construct the denominator. */
1412 if ((neg_exp & expbit) != 0)
1419 densize = ttab->arraysize - _FPIO_CONST_OFFSET;
1420 memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
1421 densize * sizeof (mp_limb_t));
1425 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1426 + _FPIO_CONST_OFFSET],
1427 ttab->arraysize - _FPIO_CONST_OFFSET,
1429 densize += ttab->arraysize - _FPIO_CONST_OFFSET;
1432 (void) SWAP (psrc, pdest);
1438 while (neg_exp != 0);
1441 memcpy (den, num, densize * sizeof (mp_limb_t));
1443 /* Read the fractional digits from the string. */
1444 (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
1445 #ifndef USE_WIDE_CHAR
1446 , decimal, decimal_len, thousands
1450 /* We now have to shift both numbers so that the highest bit in the
1451 denominator is set. In the same process we copy the numerator to
1452 a high place in the array so that the division constructs the wanted
1453 digits. This is done by a "quasi fix point" number representation.
1455 num: ddddddddddd . 0000000000000000000000
1457 den: ddddddddddd n >= m
1461 count_leading_zeros (cnt, den[densize - 1]);
1465 /* Don't call `mpn_shift' with a count of zero since the specification
1466 does not allow this. */
1467 (void) __mpn_lshift (den, den, densize, cnt);
1468 cy = __mpn_lshift (num, num, numsize, cnt);
1470 num[numsize++] = cy;
1473 /* Now we are ready for the division. But it is not necessary to
1474 do a full multi-precision division because we only need a small
1475 number of bits for the result. So we do not use __mpn_divmod
1476 here but instead do the division here by hand and stop whenever
1477 the needed number of bits is reached. The code itself comes
1478 from the GNU MP Library by Torbj\"orn Granlund. */
1486 mp_limb_t d, n, quot;
1491 assert (numsize == 1 && n < d);
1495 udiv_qrnnd (quot, n, n, 0, d);
1502 cnt = BITS_PER_MP_LIMB; \
1504 count_leading_zeros (cnt, quot); \
1506 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1508 used = MANT_DIG + cnt; \
1509 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1510 bits = MANT_DIG + 1; \
1514 /* Note that we only clear the second element. */ \
1515 /* The conditional is determined at compile time. */ \
1516 if (RETURN_LIMB_SIZE > 1) \
1522 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1523 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1527 used = MANT_DIG - bits; \
1529 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1531 bits += BITS_PER_MP_LIMB
1535 while (bits <= MANT_DIG);
1537 return round_and_return (retval, exponent - 1, negative,
1538 quot, BITS_PER_MP_LIMB - 1 - used,
1539 more_bits || n != 0);
1543 mp_limb_t d0, d1, n0, n1;
1550 if (numsize < densize)
1554 /* The numerator of the number occupies fewer bits than
1555 the denominator but the one limb is bigger than the
1556 high limb of the numerator. */
1563 exponent -= BITS_PER_MP_LIMB;
1566 if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
1567 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1568 BITS_PER_MP_LIMB, 0);
1571 used = MANT_DIG - bits;
1573 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1575 bits += BITS_PER_MP_LIMB;
1587 while (bits <= MANT_DIG)
1593 /* QUOT should be either 111..111 or 111..110. We need
1594 special treatment of this rare case as normal division
1595 would give overflow. */
1596 quot = ~(mp_limb_t) 0;
1599 if (r < d1) /* Carry in the addition? */
1601 add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
1604 n1 = d0 - (d0 != 0);
1609 udiv_qrnnd (quot, r, n1, n0, d1);
1610 umul_ppmm (n1, n0, d0, quot);
1614 if (n1 > r || (n1 == r && n0 > 0))
1616 /* The estimated QUOT was too large. */
1619 sub_ddmmss (n1, n0, n1, n0, 0, d0);
1621 if (r >= d1) /* If not carry, test QUOT again. */
1624 sub_ddmmss (n1, n0, r, 0, n1, n0);
1630 return round_and_return (retval, exponent - 1, negative,
1631 quot, BITS_PER_MP_LIMB - 1 - used,
1632 more_bits || n1 != 0 || n0 != 0);
1637 mp_limb_t cy, dX, d1, n0, n1;
1641 dX = den[densize - 1];
1642 d1 = den[densize - 2];
1644 /* The division does not work if the upper limb of the two-limb
1645 numerator is greater than the denominator. */
1646 if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
1649 if (numsize < densize)
1651 mp_size_t empty = densize - numsize;
1655 exponent -= empty * BITS_PER_MP_LIMB;
1658 if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
1660 /* We make a difference here because the compiler
1661 cannot optimize the `else' case that good and
1662 this reflects all currently used FLOAT types
1663 and GMP implementations. */
1664 #if RETURN_LIMB_SIZE <= 2
1665 assert (empty == 1);
1666 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1667 BITS_PER_MP_LIMB, 0);
1669 for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
1670 retval[i] = retval[i - empty];
1677 used = MANT_DIG - bits;
1678 if (used >= BITS_PER_MP_LIMB)
1681 (void) __mpn_lshift (&retval[used
1682 / BITS_PER_MP_LIMB],
1685 - used / BITS_PER_MP_LIMB),
1686 used % BITS_PER_MP_LIMB);
1687 for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
1691 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1693 bits += empty * BITS_PER_MP_LIMB;
1695 for (i = numsize; i > 0; --i)
1696 num[i + empty] = num[i - 1];
1697 MPN_ZERO (num, empty + 1);
1702 assert (numsize == densize);
1703 for (i = numsize; i > 0; --i)
1704 num[i] = num[i - 1];
1711 while (bits <= MANT_DIG)
1714 /* This might over-estimate QUOT, but it's probably not
1715 worth the extra code here to find out. */
1716 quot = ~(mp_limb_t) 0;
1721 udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
1722 umul_ppmm (n1, n0, d1, quot);
1724 while (n1 > r || (n1 == r && n0 > num[densize - 2]))
1728 if (r < dX) /* I.e. "carry in previous addition?" */
1735 /* Possible optimization: We already have (q * n0) and (1 * n1)
1736 after the calculation of QUOT. Taking advantage of this, we
1737 could make this loop make two iterations less. */
1739 cy = __mpn_submul_1 (num, den, densize + 1, quot);
1741 if (num[densize] != cy)
1743 cy = __mpn_add_n (num, num, den, densize);
1747 n0 = num[densize] = num[densize - 1];
1748 for (i = densize - 1; i > 0; --i)
1749 num[i] = num[i - 1];
1755 for (i = densize; i >= 0 && num[i] == 0; --i)
1757 return round_and_return (retval, exponent - 1, negative,
1758 quot, BITS_PER_MP_LIMB - 1 - used,
1759 more_bits || i >= 0);
1766 #if defined _LIBC && !defined USE_WIDE_CHAR
1767 libc_hidden_def (____STRTOF_INTERNAL)
1770 /* External user entry point. */
1773 #ifdef weak_function
1776 __STRTOF (nptr, endptr, loc)
1777 const STRING_TYPE *nptr;
1778 STRING_TYPE **endptr;
1781 return ____STRTOF_INTERNAL (nptr, endptr, 0, loc);
1784 libc_hidden_def (__STRTOF)
1785 libc_hidden_ver (__STRTOF, STRTOF)
1787 weak_alias (__STRTOF, STRTOF)
1789 #ifdef LONG_DOUBLE_COMPAT
1790 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1791 # ifdef USE_WIDE_CHAR
1792 compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1);
1794 compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1);
1797 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1798 # ifdef USE_WIDE_CHAR
1799 compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3);
1801 compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3);