1 /* Floating point output for `printf'.
2 Copyright (C) 1995, 1996 Free Software Foundation, Inc.
3 Written by Ulrich Drepper.
5 This file is part of the GNU C Library.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
20 Cambridge, MA 02139, USA. */
22 /* The gmp headers need some configuration frobs. */
34 #include <gmp-mparam.h>
35 #include "../stdlib/gmp.h"
36 #include "../stdlib/gmp-impl.h"
37 #include "../stdlib/longlong.h"
38 #include "../stdlib/fpioconst.h"
39 #include "../locale/localeinfo.h"
47 #define NDEBUG /* Undefine this for debugging assertions. */
50 /* This defines make it possible to use the same code for GNU C library and
51 the GNU I/O library. */
53 # define PUT(f, s, n) _IO_sputn (f, s, n)
54 # define PAD(f, c, n) _IO_padn (f, c, n)
55 /* We use this file GNU C library and GNU I/O library. So make
58 # define putc(c, f) _IO_putc (c, f)
59 # define size_t _IO_size_t
60 # define FILE _IO_FILE
61 #else /* ! USE_IN_LIBIO */
62 # define PUT(f, s, n) fwrite (s, 1, n, f)
63 # define PAD(f, c, n) __printf_pad (f, c, n)
64 ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */
65 #endif /* USE_IN_LIBIO */
67 /* Macros for doing the actual output. */
72 register CONST int outc = (ch); \
73 if (putc (outc, fp) == EOF) \
78 #define PRINT(ptr, len) \
81 register size_t outlen = (len); \
84 if (PUT (fp, ptr, outlen) != outlen) \
91 while (outlen-- > 0) \
96 #define PADN(ch, len) \
99 if (PAD (fp, ch, len) != len) \
105 /* We use the GNU MP library to handle large numbers.
107 An MP variable occupies a varying number of entries in its array. We keep
108 track of this number for efficiency reasons. Otherwise we would always
109 have to process the whole array. */
110 #define MPN_VAR(name) mp_limb *name; mp_size_t name##size
112 #define MPN_ASSIGN(dst,src) \
113 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb))
114 #define MPN_GE(u,v) \
115 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
117 extern int __isinfl (long double), __isnanl (long double);
119 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
120 int *expt, int *is_neg,
122 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
123 int *expt, int *is_neg,
127 static unsigned int guess_grouping (unsigned int intdig_max,
128 const char *grouping, wchar_t sepchar);
129 static char *group_number (char *buf, char *bufend, unsigned int intdig_no,
130 const char *grouping, wchar_t thousands_sep);
134 __printf_fp (FILE *fp,
135 const struct printf_info *info,
138 /* The floating-point value to output. */
146 /* Locale-dependent representation of decimal point. */
149 /* Locale-dependent thousands separator and grouping specification. */
150 wchar_t thousands_sep;
151 const char *grouping;
153 /* "NaN" or "Inf" for the special cases. */
154 CONST char *special = NULL;
156 /* We need just a few limbs for the input before shifting to the right
158 mp_limb fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
159 /* We need to shift the contents of fp_input by this amount of bits. */
162 /* The significant of the floting-point value in question */
164 /* and the exponent. */
166 /* Sign of the exponent. */
168 /* Sign of float number. */
171 /* Scaling factor. */
174 /* Temporary bignum value. */
177 /* Digit which is result of last hack_digit() call. */
180 /* The type of output format that will be used: 'e'/'E' or 'f'. */
183 /* Counter for number of written characters. */
186 /* General helper (carry limb). */
189 char hack_digit (void)
193 if (expsign != 0 && type == 'f' && exponent-- > 0)
195 else if (scalesize == 0)
197 hi = frac[fracsize - 1];
198 cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
199 frac[fracsize - 1] = cy;
203 if (fracsize < scalesize)
207 hi = __mpn_divmod (tmp, frac, fracsize, scale, scalesize);
208 tmp[fracsize - scalesize] = hi;
211 fracsize = __mpn_normal_size (frac, scalesize);
214 /* We're not prepared for an mpn variable with zero
221 cy = __mpn_mul_1 (frac, frac, fracsize, 10);
223 frac[fracsize++] = cy;
230 /* Figure out the decimal point character. */
231 if (mbtowc (&decimal, _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT),
232 strlen (_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT))) <= 0)
233 decimal = (wchar_t) *_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
238 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
239 if (*grouping <= 0 || *grouping == CHAR_MAX)
243 /* Figure out the thousands seperator character. */
244 if (mbtowc (&thousands_sep, _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP),
245 strlen (_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP))) <= 0)
246 thousands_sep = (wchar_t) *_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
247 if (thousands_sep == L'\0')
254 /* Fetch the argument value. */
255 if (info->is_long_double && sizeof (long double) > sizeof (double))
257 fpnum.ldbl = *(const long double *) args[0];
259 /* Check for special values: not a number or infinity. */
260 if (__isnanl (fpnum.ldbl))
265 else if (__isinfl (fpnum.ldbl))
268 is_neg = fpnum.ldbl < 0;
272 fracsize = __mpn_extract_long_double (fp_input,
274 sizeof (fp_input[0])),
277 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
282 fpnum.dbl = *(const double *) args[0];
284 /* Check for special values: not a number or infinity. */
285 if (__isnan (fpnum.dbl))
290 else if (__isinf (fpnum.dbl))
293 is_neg = fpnum.dbl < 0;
297 fracsize = __mpn_extract_double (fp_input,
299 / sizeof (fp_input[0])),
300 &exponent, &is_neg, fpnum.dbl);
301 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
307 int width = info->prec > info->width ? info->prec : info->width;
309 if (is_neg || info->showsign || info->space)
313 if (!info->left && width > 0)
318 else if (info->showsign)
320 else if (info->space)
325 if (info->left && width > 0)
332 /* We need three multiprecision variables. Now that we have the exponent
333 of the number we can allocate the needed memory. It would be more
334 efficient to use variables of the fixed maximum size but because this
335 would be really big it could lead to memory problems. */
337 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
338 / BITS_PER_MP_LIMB + 3) * sizeof (mp_limb);
339 frac = (mp_limb *) alloca (bignum_size);
340 tmp = (mp_limb *) alloca (bignum_size);
341 scale = (mp_limb *) alloca (bignum_size);
344 /* We now have to distinguish between numbers with positive and negative
345 exponents because the method used for the one is not applicable/efficient
352 int explog = LDBL_MAX_10_EXP_LOG;
354 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
357 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
359 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
361 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
365 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
367 (exponent + to_shift) % BITS_PER_MP_LIMB);
368 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
370 frac[fracsize++] = cy;
372 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
374 assert (tens > &_fpioconst_pow10[0]);
379 /* The number of the product of two binary numbers with n and m
380 bits respectively has m+n or m+n-1 bits. */
381 if (exponent >= scaleexpo + tens->p_expo - 1)
384 MPN_ASSIGN (tmp, tens->array);
387 cy = __mpn_mul (tmp, scale, scalesize,
388 &tens->array[_FPIO_CONST_OFFSET],
389 tens->arraysize - _FPIO_CONST_OFFSET);
390 tmpsize = scalesize + tens->arraysize - _FPIO_CONST_OFFSET;
395 if (MPN_GE (frac, tmp))
398 MPN_ASSIGN (scale, tmp);
399 count_leading_zeros (cnt, scale[scalesize - 1]);
400 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
401 exp10 |= 1 << explog;
406 while (tens > &_fpioconst_pow10[0]);
409 /* Optimize number representations. We want to represent the numbers
410 with the lowest number of bytes possible without losing any
411 bytes. Also the highest bit in the scaling factor has to be set
412 (this is a requirement of the MPN division routines). */
415 /* Determine minimum number of zero bits at the end of
417 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
420 /* Determine number of bits the scaling factor is misplaced. */
421 count_leading_zeros (cnt_h, scale[scalesize - 1]);
425 /* The highest bit of the scaling factor is already set. So
426 we only have to remove the trailing empty limbs. */
429 MPN_COPY_INCR (scale, scale + i, scalesize - i);
431 MPN_COPY_INCR (frac, frac + i, fracsize - i);
439 count_trailing_zeros (cnt_l, scale[i]);
443 count_trailing_zeros (cnt_l2, frac[i]);
449 count_trailing_zeros (cnt_l, frac[i]);
451 /* Now shift the numbers to their optimal position. */
452 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
454 /* We cannot save any memory. So just roll both numbers
455 so that the scaling factor has its highest bit set. */
457 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
458 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
460 frac[fracsize++] = cy;
462 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
464 /* We can save memory by removing the trailing zero limbs
465 and by packing the non-zero limbs which gain another
468 (void) __mpn_rshift (scale, scale + i, scalesize - i,
469 BITS_PER_MP_LIMB - cnt_h);
471 (void) __mpn_rshift (frac, frac + i, fracsize - i,
472 BITS_PER_MP_LIMB - cnt_h);
473 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
477 /* We can only save the memory of the limbs which are zero.
478 The non-zero parts occupy the same number of limbs. */
480 (void) __mpn_rshift (scale, scale + (i - 1),
482 BITS_PER_MP_LIMB - cnt_h);
484 (void) __mpn_rshift (frac, frac + (i - 1),
486 BITS_PER_MP_LIMB - cnt_h);
487 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
492 else if (exponent < 0)
496 int explog = LDBL_MAX_10_EXP_LOG;
497 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
498 mp_size_t used_limbs = fracsize - 1;
500 /* Now shift the input value to its right place. */
501 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
502 frac[fracsize++] = cy;
503 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
506 exponent = -exponent;
508 assert (tens != &_fpioconst_pow10[0]);
513 if (exponent >= tens->m_expo)
515 int i, incr, cnt_h, cnt_l;
518 /* The __mpn_mul function expects the first argument to be
519 bigger than the second. */
520 if (fracsize < tens->arraysize - _FPIO_CONST_OFFSET)
521 cy = __mpn_mul (tmp, &tens->array[_FPIO_CONST_OFFSET],
522 tens->arraysize - _FPIO_CONST_OFFSET,
525 cy = __mpn_mul (tmp, frac, fracsize,
526 &tens->array[_FPIO_CONST_OFFSET],
527 tens->arraysize - _FPIO_CONST_OFFSET);
528 tmpsize = fracsize + tens->arraysize - _FPIO_CONST_OFFSET;
532 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
533 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
534 + BITS_PER_MP_LIMB - 1 - cnt_h;
536 assert (incr <= tens->p_expo);
538 /* If we increased the exponent by exactly 3 we have to test
539 for overflow. This is done by comparing with 10 shifted
540 to the right position. */
541 if (incr == exponent + 3)
542 if (cnt_h <= BITS_PER_MP_LIMB - 4)
546 = ((mp_limb) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
550 topval[0] = ((mp_limb) 10) << (BITS_PER_MP_LIMB - 4);
552 (void) __mpn_lshift (topval, topval, 2,
553 BITS_PER_MP_LIMB - cnt_h);
556 /* We have to be careful when multiplying the last factor.
557 If the result is greater than 1.0 be have to test it
558 against 10.0. If it is greater or equal to 10.0 the
559 multiplication was not valid. This is because we cannot
560 determine the number of bits in the result in advance. */
561 if (incr < exponent + 3
562 || (incr == exponent + 3 &&
563 (tmp[tmpsize - 1] < topval[1]
564 || (tmp[tmpsize - 1] == topval[1]
565 && tmp[tmpsize - 2] < topval[0]))))
567 /* The factor is right. Adapt binary and decimal
570 exp10 |= 1 << explog;
572 /* If this factor yields a number greater or equal to
573 1.0, we must not shift the non-fractional digits down. */
577 /* Now we optimize the number representation. */
578 for (i = 0; tmp[i] == 0; ++i);
579 if (cnt_h == BITS_PER_MP_LIMB - 1)
581 MPN_COPY (frac, tmp + i, tmpsize - i);
582 fracsize = tmpsize - i;
586 count_trailing_zeros (cnt_l, tmp[i]);
588 /* Now shift the numbers to their optimal position. */
589 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
591 /* We cannot save any memory. Just roll the
592 number so that the leading digit is in a
595 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
596 fracsize = tmpsize + 1;
597 frac[fracsize - 1] = cy;
599 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
601 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
602 BITS_PER_MP_LIMB - 1 - cnt_h);
603 fracsize = tmpsize - i;
607 /* We can only save the memory of the limbs which
608 are zero. The non-zero parts occupy the same
611 (void) __mpn_rshift (frac, tmp + (i - 1),
613 BITS_PER_MP_LIMB - 1 - cnt_h);
614 fracsize = tmpsize - (i - 1);
617 used_limbs = fracsize - 1;
622 while (tens != &_fpioconst_pow10[1] && exponent > 0);
623 /* All factors but 10^-1 are tested now. */
626 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
628 assert (cy == 0 || tmp[tmpsize - 1] < 20);
630 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
633 assert (frac[fracsize - 1] < 10);
639 /* This is a special case. We don't need a factor because the
640 numbers are in the range of 0.0 <= fp < 8.0. We simply
641 shift it to the right place and divide it by 1.0 to get the
642 leading digit. (Of course this division is not really made.) */
643 assert (0 <= exponent && exponent < 3 &&
644 exponent + to_shift < BITS_PER_MP_LIMB);
646 /* Now shift the input value to its right place. */
647 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
648 frac[fracsize++] = cy;
653 int width = info->width;
654 char *buffer, *startp, *cp;
657 int intdig_max, intdig_no = 0;
658 int fracdig_min, fracdig_max, fracdig_no = 0;
662 if (tolower (info->spec) == 'e')
666 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
667 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
668 /* d . ddd e +- ddd */
669 dig_max = INT_MAX; /* Unlimited. */
670 significant = 1; /* Does not matter here. */
672 else if (info->spec == 'f')
675 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
678 intdig_max = exponent + 1;
679 /* This can be really big! */ /* XXX Maybe malloc if too big? */
680 chars_needed = exponent + 1 + 1 + fracdig_max;
685 chars_needed = 1 + 1 + fracdig_max;
687 dig_max = INT_MAX; /* Unlimited. */
688 significant = 1; /* Does not matter here. */
692 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
693 if ((expsign == 0 && exponent >= dig_max)
694 || (expsign != 0 && exponent > 4))
696 type = isupper (info->spec) ? 'E' : 'e';
697 fracdig_max = dig_max - 1;
699 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
704 intdig_max = expsign == 0 ? exponent + 1 : 0;
705 fracdig_max = dig_max - intdig_max;
706 /* We need space for the significant digits and perhaps for
707 leading zeros when < 1.0. Pessimistic guess: dig_max. */
708 chars_needed = dig_max + dig_max + 1;
710 fracdig_min = info->alt ? fracdig_max : 0;
711 significant = 0; /* We count significant digits. */
715 /* Guess the number of groups we will make, and thus how
716 many spaces we need for separator characters. */
717 chars_needed += guess_grouping (intdig_max, grouping, thousands_sep);
719 /* Allocate buffer for output. We need two more because while rounding
720 it is possible that we need two more characters in front of all the
722 buffer = alloca (2 + chars_needed);
723 cp = startp = buffer + 2; /* Let room for rounding. */
725 /* Do the real work: put digits in allocated buffer. */
726 if (expsign == 0 || type != 'f')
728 assert (expsign == 0 || intdig_max == 1);
729 while (intdig_no < intdig_max)
732 *cp++ = hack_digit ();
737 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
742 /* |fp| < 1.0 and the selected type is 'f', so put "0."
749 /* Generate the needed number of fractional digits. */
750 while (fracdig_no < fracdig_min
751 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
757 else if (significant == 0)
767 digit = hack_digit ();
773 /* This is the critical case. */
774 if (fracsize == 1 && frac[0] == 0)
775 /* Rest of the number is zero -> round to even.
776 (IEEE 754-1985 4.1 says this is the default rounding.) */
777 if ((*(cp - 1) & 1) == 0)
782 /* Process fractional digits. Terminate if not rounded or
783 radix character is reached. */
784 while (*--tp != decimal && *tp == '9')
791 if (fracdig_no == 0 || *tp == decimal)
793 /* Round the integer digits. */
794 if (*(tp - 1) == decimal)
797 while (--tp >= startp && *tp == '9')
804 /* It is more citical. All digits were 9's. */
809 exponent += expsign == 0 ? 1 : -1;
811 else if (intdig_no == dig_max)
813 /* This is the case where for type %g the number fits
814 really in the range for %f output but after rounding
815 the number of digits is too big. */
819 if (info->alt || fracdig_no > 0)
821 /* Overwrite the old radix character. */
822 startp[intdig_no + 2] = '0';
826 fracdig_no += intdig_no;
828 fracdig_max = intdig_max - intdig_no;
830 /* Now we must print the exponent. */
831 type = isupper (info->spec) ? 'E' : 'e';
835 /* We can simply add another another digit before the
841 /* While rounding the number of digits can change.
842 If the number now exceeds the limits remove some
843 fractional digits. */
844 if (intdig_no + fracdig_no > dig_max)
846 cp -= intdig_no + fracdig_no - dig_max;
847 fracdig_no -= intdig_no + fracdig_no - dig_max;
854 /* Now remove unnecessary '0' at the end of the string. */
855 while (fracdig_no > fracdig_min && *(cp - 1) == '0')
860 /* If we eliminate all fractional digits we perhaps also can remove
861 the radix character. */
862 if (fracdig_no == 0 && !info->alt && *(cp - 1) == decimal)
866 /* Add in separator characters, overwriting the same buffer. */
867 cp = group_number (startp, cp, intdig_no, grouping, thousands_sep);
869 /* Write the exponent if it is needed. */
873 *cp++ = expsign ? '-' : '+';
875 /* Find the magnitude of the exponent. */
877 while (expscale <= exponent)
881 /* Exponent always has at least two digits. */
887 *cp++ = '0' + (exponent / expscale);
888 exponent %= expscale;
890 while (expscale > 10);
891 *cp++ = '0' + exponent;
894 /* Compute number of characters which must be filled with the padding
896 if (is_neg || info->showsign || info->space)
898 width -= cp - startp;
900 if (!info->left && info->pad != '0' && width > 0)
901 PADN (info->pad, width);
905 else if (info->showsign)
907 else if (info->space)
910 if (!info->left && info->pad == '0' && width > 0)
913 PRINT (startp, cp - startp);
915 if (info->left && width > 0)
916 PADN (info->pad, width);
921 /* Return the number of extra grouping characters that will be inserted
922 into a number with INTDIG_MAX integer digits. */
925 guess_grouping (unsigned int intdig_max, const char *grouping, wchar_t sepchar)
929 /* We treat all negative values like CHAR_MAX. */
931 if (*grouping == CHAR_MAX || *grouping <= 0)
932 /* No grouping should be done. */
936 while (intdig_max > (unsigned int) *grouping)
939 intdig_max -= *grouping++;
941 if (*grouping == CHAR_MAX || *grouping < 0)
942 /* No more grouping should be done. */
944 else if (*grouping == 0)
946 /* Same grouping repeats. */
947 groups += intdig_max / grouping[-1];
955 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
956 There is guaranteed enough space past BUFEND to extend it.
957 Return the new end of buffer. */
960 group_number (char *buf, char *bufend, unsigned int intdig_no,
961 const char *grouping, wchar_t thousands_sep)
963 unsigned int groups = guess_grouping (intdig_no, grouping, thousands_sep);
969 /* Move the fractional part down. */
970 memmove (buf + intdig_no + groups, buf + intdig_no,
971 bufend - (buf + intdig_no));
973 p = buf + intdig_no + groups - 1;
976 unsigned int len = *grouping++;
978 *p-- = buf[--intdig_no];
980 *p-- = thousands_sep;
982 if (*grouping == CHAR_MAX || *grouping < 0)
983 /* No more grouping should be done. */
985 else if (*grouping == 0)
986 /* Same grouping repeats. */
988 } while (intdig_no > (unsigned int) *grouping);
990 /* Copy the remaining ungrouped digits. */
992 *p-- = buf[--intdig_no];
995 return bufend + groups;