1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
6 #define V8_X87_MACRO_ASSEMBLER_X87_H_
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
16 // Convenience for platform-independent signatures. We do not normally
17 // distinguish memory operands from other operands on ia32.
18 typedef Operand MemOperand;
20 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
21 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
22 enum PointersToHereCheck {
23 kPointersToHereMaybeInteresting,
24 kPointersToHereAreAlwaysInteresting
28 enum RegisterValueType {
29 REGISTER_VALUE_IS_SMI,
30 REGISTER_VALUE_IS_INT32
35 bool AreAliased(Register reg1,
37 Register reg3 = no_reg,
38 Register reg4 = no_reg,
39 Register reg5 = no_reg,
40 Register reg6 = no_reg,
41 Register reg7 = no_reg,
42 Register reg8 = no_reg);
46 // MacroAssembler implements a collection of frequently used macros.
47 class MacroAssembler: public Assembler {
49 // The isolate parameter can be NULL if the macro assembler should
50 // not use isolate-dependent functionality. In this case, it's the
51 // responsibility of the caller to never invoke such function on the
53 MacroAssembler(Isolate* isolate, void* buffer, int size);
55 void Load(Register dst, const Operand& src, Representation r);
56 void Store(Register src, const Operand& dst, Representation r);
58 // Operations on roots in the root-array.
59 void LoadRoot(Register destination, Heap::RootListIndex index);
60 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
61 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
62 // These methods can only be used with constant roots (i.e. non-writable
63 // and not in new space).
64 void CompareRoot(Register with, Heap::RootListIndex index);
65 void CompareRoot(const Operand& with, Heap::RootListIndex index);
67 // ---------------------------------------------------------------------------
69 enum RememberedSetFinalAction {
74 // Record in the remembered set the fact that we have a pointer to new space
75 // at the address pointed to by the addr register. Only works if addr is not
77 void RememberedSetHelper(Register object, // Used for debug code.
78 Register addr, Register scratch,
79 SaveFPRegsMode save_fp,
80 RememberedSetFinalAction and_then);
82 void CheckPageFlag(Register object,
87 Label::Distance condition_met_distance = Label::kFar);
89 void CheckPageFlagForMap(
94 Label::Distance condition_met_distance = Label::kFar);
96 // Check if object is in new space. Jumps if the object is not in new space.
97 // The register scratch can be object itself, but scratch will be clobbered.
98 void JumpIfNotInNewSpace(Register object,
101 Label::Distance distance = Label::kFar) {
102 InNewSpace(object, scratch, zero, branch, distance);
105 // Check if object is in new space. Jumps if the object is in new space.
106 // The register scratch can be object itself, but it will be clobbered.
107 void JumpIfInNewSpace(Register object,
110 Label::Distance distance = Label::kFar) {
111 InNewSpace(object, scratch, not_zero, branch, distance);
114 // Check if an object has a given incremental marking color. Also uses ecx!
115 void HasColor(Register object,
119 Label::Distance has_color_distance,
123 void JumpIfBlack(Register object,
127 Label::Distance on_black_distance = Label::kFar);
129 // Checks the color of an object. If the object is already grey or black
130 // then we just fall through, since it is already live. If it is white and
131 // we can determine that it doesn't need to be scanned, then we just mark it
132 // black and fall through. For the rest we jump to the label so the
133 // incremental marker can fix its assumptions.
134 void EnsureNotWhite(Register object,
137 Label* object_is_white_and_not_data,
138 Label::Distance distance);
140 // Notify the garbage collector that we wrote a pointer into an object.
141 // |object| is the object being stored into, |value| is the object being
142 // stored. value and scratch registers are clobbered by the operation.
143 // The offset is the offset from the start of the object, not the offset from
144 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
145 void RecordWriteField(
146 Register object, int offset, Register value, Register scratch,
147 SaveFPRegsMode save_fp,
148 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
149 SmiCheck smi_check = INLINE_SMI_CHECK,
150 PointersToHereCheck pointers_to_here_check_for_value =
151 kPointersToHereMaybeInteresting);
153 // As above, but the offset has the tag presubtracted. For use with
154 // Operand(reg, off).
155 void RecordWriteContextSlot(
156 Register context, int offset, Register value, Register scratch,
157 SaveFPRegsMode save_fp,
158 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
159 SmiCheck smi_check = INLINE_SMI_CHECK,
160 PointersToHereCheck pointers_to_here_check_for_value =
161 kPointersToHereMaybeInteresting) {
162 RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
163 remembered_set_action, smi_check,
164 pointers_to_here_check_for_value);
167 // Notify the garbage collector that we wrote a pointer into a fixed array.
168 // |array| is the array being stored into, |value| is the
169 // object being stored. |index| is the array index represented as a
170 // Smi. All registers are clobbered by the operation RecordWriteArray
171 // filters out smis so it does not update the write barrier if the
173 void RecordWriteArray(
174 Register array, Register value, Register index, SaveFPRegsMode save_fp,
175 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
176 SmiCheck smi_check = INLINE_SMI_CHECK,
177 PointersToHereCheck pointers_to_here_check_for_value =
178 kPointersToHereMaybeInteresting);
180 // For page containing |object| mark region covering |address|
181 // dirty. |object| is the object being stored into, |value| is the
182 // object being stored. The address and value registers are clobbered by the
183 // operation. RecordWrite filters out smis so it does not update the
184 // write barrier if the value is a smi.
186 Register object, Register address, Register value, SaveFPRegsMode save_fp,
187 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
188 SmiCheck smi_check = INLINE_SMI_CHECK,
189 PointersToHereCheck pointers_to_here_check_for_value =
190 kPointersToHereMaybeInteresting);
192 // For page containing |object| mark the region covering the object's map
193 // dirty. |object| is the object being stored into, |map| is the Map object
195 void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
196 Register scratch2, SaveFPRegsMode save_fp);
198 // ---------------------------------------------------------------------------
203 // Generates function and stub prologue code.
205 void Prologue(bool code_pre_aging);
207 // Enter specific kind of exit frame. Expects the number of
208 // arguments in register eax and sets up the number of arguments in
209 // register edi and the pointer to the first argument in register
211 void EnterExitFrame(bool save_doubles);
213 void EnterApiExitFrame(int argc);
215 // Leave the current exit frame. Expects the return value in
216 // register eax:edx (untouched) and the pointer to the first
217 // argument in register esi.
218 void LeaveExitFrame(bool save_doubles);
220 // Leave the current exit frame. Expects the return value in
221 // register eax (untouched).
222 void LeaveApiExitFrame(bool restore_context);
224 // Find the function context up the context chain.
225 void LoadContext(Register dst, int context_chain_length);
227 // Conditionally load the cached Array transitioned map of type
228 // transitioned_kind from the native context if the map in register
229 // map_in_out is the cached Array map in the native context of
231 void LoadTransitionedArrayMapConditional(
232 ElementsKind expected_kind,
233 ElementsKind transitioned_kind,
236 Label* no_map_match);
238 // Load the global function with the given index.
239 void LoadGlobalFunction(int index, Register function);
241 // Load the initial map from the global function. The registers
242 // function and map can be the same.
243 void LoadGlobalFunctionInitialMap(Register function, Register map);
245 // Push and pop the registers that can hold pointers.
246 void PushSafepointRegisters() { pushad(); }
247 void PopSafepointRegisters() { popad(); }
248 // Store the value in register/immediate src in the safepoint
249 // register stack slot for register dst.
250 void StoreToSafepointRegisterSlot(Register dst, Register src);
251 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
252 void LoadFromSafepointRegisterSlot(Register dst, Register src);
254 void LoadHeapObject(Register result, Handle<HeapObject> object);
255 void CmpHeapObject(Register reg, Handle<HeapObject> object);
256 void PushHeapObject(Handle<HeapObject> object);
258 void LoadObject(Register result, Handle<Object> object) {
259 AllowDeferredHandleDereference heap_object_check;
260 if (object->IsHeapObject()) {
261 LoadHeapObject(result, Handle<HeapObject>::cast(object));
263 Move(result, Immediate(object));
267 void CmpObject(Register reg, Handle<Object> object) {
268 AllowDeferredHandleDereference heap_object_check;
269 if (object->IsHeapObject()) {
270 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
272 cmp(reg, Immediate(object));
276 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
277 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
279 // ---------------------------------------------------------------------------
280 // JavaScript invokes
282 // Invoke the JavaScript function code by either calling or jumping.
283 void InvokeCode(Register code,
284 const ParameterCount& expected,
285 const ParameterCount& actual,
287 const CallWrapper& call_wrapper) {
288 InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
291 void InvokeCode(const Operand& code,
292 const ParameterCount& expected,
293 const ParameterCount& actual,
295 const CallWrapper& call_wrapper);
297 // Invoke the JavaScript function in the given register. Changes the
298 // current context to the context in the function before invoking.
299 void InvokeFunction(Register function,
300 const ParameterCount& actual,
302 const CallWrapper& call_wrapper);
304 void InvokeFunction(Register function,
305 const ParameterCount& expected,
306 const ParameterCount& actual,
308 const CallWrapper& call_wrapper);
310 void InvokeFunction(Handle<JSFunction> function,
311 const ParameterCount& expected,
312 const ParameterCount& actual,
314 const CallWrapper& call_wrapper);
316 // Invoke specified builtin JavaScript function. Adds an entry to
317 // the unresolved list if the name does not resolve.
318 void InvokeBuiltin(Builtins::JavaScript id,
320 const CallWrapper& call_wrapper = NullCallWrapper());
322 // Store the function for the given builtin in the target register.
323 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
325 // Store the code object for the given builtin in the target register.
326 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
328 // Expression support
329 // Support for constant splitting.
330 bool IsUnsafeImmediate(const Immediate& x);
331 void SafeMove(Register dst, const Immediate& x);
332 void SafePush(const Immediate& x);
334 // Compare object type for heap object.
335 // Incoming register is heap_object and outgoing register is map.
336 void CmpObjectType(Register heap_object, InstanceType type, Register map);
338 // Compare instance type for map.
339 void CmpInstanceType(Register map, InstanceType type);
341 // Check if a map for a JSObject indicates that the object has fast elements.
342 // Jump to the specified label if it does not.
343 void CheckFastElements(Register map,
345 Label::Distance distance = Label::kFar);
347 // Check if a map for a JSObject indicates that the object can have both smi
348 // and HeapObject elements. Jump to the specified label if it does not.
349 void CheckFastObjectElements(Register map,
351 Label::Distance distance = Label::kFar);
353 // Check if a map for a JSObject indicates that the object has fast smi only
354 // elements. Jump to the specified label if it does not.
355 void CheckFastSmiElements(Register map,
357 Label::Distance distance = Label::kFar);
359 // Check to see if maybe_number can be stored as a double in
360 // FastDoubleElements. If it can, store it at the index specified by key in
361 // the FastDoubleElements array elements, otherwise jump to fail.
362 void StoreNumberToDoubleElements(Register maybe_number,
369 // Compare an object's map with the specified map.
370 void CompareMap(Register obj, Handle<Map> map);
372 // Check if the map of an object is equal to a specified map and branch to
373 // label if not. Skip the smi check if not required (object is known to be a
374 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
375 // against maps that are ElementsKind transition maps of the specified map.
376 void CheckMap(Register obj,
379 SmiCheckType smi_check_type);
381 // Check if the map of an object is equal to a specified weak map and branch
382 // to a specified target if equal. Skip the smi check if not required
383 // (object is known to be a heap object)
384 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
385 Handle<WeakCell> cell, Handle<Code> success,
386 SmiCheckType smi_check_type);
388 // Check if the object in register heap_object is a string. Afterwards the
389 // register map contains the object map and the register instance_type
390 // contains the instance_type. The registers map and instance_type can be the
391 // same in which case it contains the instance type afterwards. Either of the
392 // registers map and instance_type can be the same as heap_object.
393 Condition IsObjectStringType(Register heap_object,
395 Register instance_type);
397 // Check if the object in register heap_object is a name. Afterwards the
398 // register map contains the object map and the register instance_type
399 // contains the instance_type. The registers map and instance_type can be the
400 // same in which case it contains the instance type afterwards. Either of the
401 // registers map and instance_type can be the same as heap_object.
402 Condition IsObjectNameType(Register heap_object,
404 Register instance_type);
406 // Check if a heap object's type is in the JSObject range, not including
407 // JSFunction. The object's map will be loaded in the map register.
408 // Any or all of the three registers may be the same.
409 // The contents of the scratch register will always be overwritten.
410 void IsObjectJSObjectType(Register heap_object,
415 // The contents of the scratch register will be overwritten.
416 void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
418 // FCmp is similar to integer cmp, but requires unsigned
419 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
421 void FXamMinusZero();
424 void X87SetRC(int rc);
425 void X87SetFPUCW(int cw);
427 void ClampUint8(Register reg);
428 void ClampTOSToUint8(Register result_reg);
430 void SlowTruncateToI(Register result_reg, Register input_reg,
431 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
433 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
434 void TruncateX87TOSToI(Register result_reg);
436 void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
437 Label* lost_precision, Label* is_nan, Label* minus_zero,
438 Label::Distance dst = Label::kFar);
440 // Smi tagging support.
441 void SmiTag(Register reg) {
442 STATIC_ASSERT(kSmiTag == 0);
443 STATIC_ASSERT(kSmiTagSize == 1);
446 void SmiUntag(Register reg) {
447 sar(reg, kSmiTagSize);
450 // Modifies the register even if it does not contain a Smi!
451 void SmiUntag(Register reg, Label* is_smi) {
452 STATIC_ASSERT(kSmiTagSize == 1);
453 sar(reg, kSmiTagSize);
454 STATIC_ASSERT(kSmiTag == 0);
455 j(not_carry, is_smi);
458 void LoadUint32NoSSE2(Register src) {
459 LoadUint32NoSSE2(Operand(src));
461 void LoadUint32NoSSE2(const Operand& src);
463 // Jump the register contains a smi.
464 inline void JumpIfSmi(Register value,
466 Label::Distance distance = Label::kFar) {
467 test(value, Immediate(kSmiTagMask));
468 j(zero, smi_label, distance);
470 // Jump if the operand is a smi.
471 inline void JumpIfSmi(Operand value,
473 Label::Distance distance = Label::kFar) {
474 test(value, Immediate(kSmiTagMask));
475 j(zero, smi_label, distance);
477 // Jump if register contain a non-smi.
478 inline void JumpIfNotSmi(Register value,
479 Label* not_smi_label,
480 Label::Distance distance = Label::kFar) {
481 test(value, Immediate(kSmiTagMask));
482 j(not_zero, not_smi_label, distance);
485 void LoadInstanceDescriptors(Register map, Register descriptors);
486 void EnumLength(Register dst, Register map);
487 void NumberOfOwnDescriptors(Register dst, Register map);
489 template<typename Field>
490 void DecodeField(Register reg) {
491 static const int shift = Field::kShift;
492 static const int mask = Field::kMask >> Field::kShift;
496 and_(reg, Immediate(mask));
499 template<typename Field>
500 void DecodeFieldToSmi(Register reg) {
501 static const int shift = Field::kShift;
502 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
503 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
504 STATIC_ASSERT(kSmiTag == 0);
505 if (shift < kSmiTagSize) {
506 shl(reg, kSmiTagSize - shift);
507 } else if (shift > kSmiTagSize) {
508 sar(reg, shift - kSmiTagSize);
510 and_(reg, Immediate(mask));
513 // Abort execution if argument is not a number, enabled via --debug-code.
514 void AssertNumber(Register object);
516 // Abort execution if argument is not a smi, enabled via --debug-code.
517 void AssertSmi(Register object);
519 // Abort execution if argument is a smi, enabled via --debug-code.
520 void AssertNotSmi(Register object);
522 // Abort execution if argument is not a string, enabled via --debug-code.
523 void AssertString(Register object);
525 // Abort execution if argument is not a name, enabled via --debug-code.
526 void AssertName(Register object);
528 // Abort execution if argument is not undefined or an AllocationSite, enabled
530 void AssertUndefinedOrAllocationSite(Register object);
532 // ---------------------------------------------------------------------------
533 // Exception handling
535 // Push a new try handler and link it into try handler chain.
536 void PushTryHandler(StackHandler::Kind kind, int handler_index);
538 // Unlink the stack handler on top of the stack from the try handler chain.
539 void PopTryHandler();
541 // Throw to the top handler in the try hander chain.
542 void Throw(Register value);
544 // Throw past all JS frames to the top JS entry frame.
545 void ThrowUncatchable(Register value);
547 // ---------------------------------------------------------------------------
548 // Inline caching support
550 // Generate code for checking access rights - used for security checks
551 // on access to global objects across environments. The holder register
552 // is left untouched, but the scratch register is clobbered.
553 void CheckAccessGlobalProxy(Register holder_reg,
558 void GetNumberHash(Register r0, Register scratch);
560 void LoadFromNumberDictionary(Label* miss,
569 // ---------------------------------------------------------------------------
570 // Allocation support
572 // Allocate an object in new space or old pointer space. If the given space
573 // is exhausted control continues at the gc_required label. The allocated
574 // object is returned in result and end of the new object is returned in
575 // result_end. The register scratch can be passed as no_reg in which case
576 // an additional object reference will be added to the reloc info. The
577 // returned pointers in result and result_end have not yet been tagged as
578 // heap objects. If result_contains_top_on_entry is true the content of
579 // result is known to be the allocation top on entry (could be result_end
580 // from a previous call). If result_contains_top_on_entry is true scratch
581 // should be no_reg as it is never used.
582 void Allocate(int object_size,
587 AllocationFlags flags);
589 void Allocate(int header_size,
590 ScaleFactor element_size,
591 Register element_count,
592 RegisterValueType element_count_type,
597 AllocationFlags flags);
599 void Allocate(Register object_size,
604 AllocationFlags flags);
606 // Undo allocation in new space. The object passed and objects allocated after
607 // it will no longer be allocated. Make sure that no pointers are left to the
608 // object(s) no longer allocated as they would be invalid when allocation is
610 void UndoAllocationInNewSpace(Register object);
612 // Allocate a heap number in new space with undefined value. The
613 // register scratch2 can be passed as no_reg; the others must be
614 // valid registers. Returns tagged pointer in result register, or
615 // jumps to gc_required if new space is full.
616 void AllocateHeapNumber(Register result,
620 MutableMode mode = IMMUTABLE);
622 // Allocate a sequential string. All the header fields of the string object
624 void AllocateTwoByteString(Register result,
630 void AllocateOneByteString(Register result, Register length,
631 Register scratch1, Register scratch2,
632 Register scratch3, Label* gc_required);
633 void AllocateOneByteString(Register result, int length, Register scratch1,
634 Register scratch2, Label* gc_required);
636 // Allocate a raw cons string object. Only the map field of the result is
638 void AllocateTwoByteConsString(Register result,
642 void AllocateOneByteConsString(Register result, Register scratch1,
643 Register scratch2, Label* gc_required);
645 // Allocate a raw sliced string object. Only the map field of the result is
647 void AllocateTwoByteSlicedString(Register result,
651 void AllocateOneByteSlicedString(Register result, Register scratch1,
652 Register scratch2, Label* gc_required);
654 // Copy memory, byte-by-byte, from source to destination. Not optimized for
655 // long or aligned copies.
656 // The contents of index and scratch are destroyed.
657 void CopyBytes(Register source,
658 Register destination,
662 // Initialize fields with filler values. Fields starting at |start_offset|
663 // not including end_offset are overwritten with the value in |filler|. At
664 // the end the loop, |start_offset| takes the value of |end_offset|.
665 void InitializeFieldsWithFiller(Register start_offset,
669 // ---------------------------------------------------------------------------
670 // Support functions.
672 // Check a boolean-bit of a Smi field.
673 void BooleanBitTest(Register object, int field_offset, int bit_index);
675 // Check if result is zero and op is negative.
676 void NegativeZeroTest(Register result, Register op, Label* then_label);
678 // Check if result is zero and any of op1 and op2 are negative.
679 // Register scratch is destroyed, and it must be different from op2.
680 void NegativeZeroTest(Register result, Register op1, Register op2,
681 Register scratch, Label* then_label);
683 // Try to get function prototype of a function and puts the value in
684 // the result register. Checks that the function really is a
685 // function and jumps to the miss label if the fast checks fail. The
686 // function register will be untouched; the other registers may be
688 void TryGetFunctionPrototype(Register function,
692 bool miss_on_bound_function = false);
694 // Picks out an array index from the hash field.
696 // hash - holds the index's hash. Clobbered.
697 // index - holds the overwritten index on exit.
698 void IndexFromHash(Register hash, Register index);
700 // ---------------------------------------------------------------------------
703 // Call a code stub. Generate the code if necessary.
704 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
706 // Tail call a code stub (jump). Generate the code if necessary.
707 void TailCallStub(CodeStub* stub);
709 // Return from a code stub after popping its arguments.
710 void StubReturn(int argc);
712 // Call a runtime routine.
713 void CallRuntime(const Runtime::Function* f, int num_arguments,
714 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
715 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
716 const Runtime::Function* function = Runtime::FunctionForId(id);
717 CallRuntime(function, function->nargs, kSaveFPRegs);
720 // Convenience function: Same as above, but takes the fid instead.
721 void CallRuntime(Runtime::FunctionId id, int num_arguments,
722 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
723 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
726 // Convenience function: call an external reference.
727 void CallExternalReference(ExternalReference ref, int num_arguments);
729 // Tail call of a runtime routine (jump).
730 // Like JumpToExternalReference, but also takes care of passing the number
732 void TailCallExternalReference(const ExternalReference& ext,
736 // Convenience function: tail call a runtime routine (jump).
737 void TailCallRuntime(Runtime::FunctionId fid,
741 // Before calling a C-function from generated code, align arguments on stack.
742 // After aligning the frame, arguments must be stored in esp[0], esp[4],
743 // etc., not pushed. The argument count assumes all arguments are word sized.
744 // Some compilers/platforms require the stack to be aligned when calling
746 // Needs a scratch register to do some arithmetic. This register will be
748 void PrepareCallCFunction(int num_arguments, Register scratch);
750 // Calls a C function and cleans up the space for arguments allocated
751 // by PrepareCallCFunction. The called function is not allowed to trigger a
752 // garbage collection, since that might move the code and invalidate the
753 // return address (unless this is somehow accounted for by the called
755 void CallCFunction(ExternalReference function, int num_arguments);
756 void CallCFunction(Register function, int num_arguments);
758 // Prepares stack to put arguments (aligns and so on). Reserves
759 // space for return value if needed (assumes the return value is a handle).
760 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
761 // etc. Saves context (esi). If space was reserved for return value then
762 // stores the pointer to the reserved slot into esi.
763 void PrepareCallApiFunction(int argc);
765 // Calls an API function. Allocates HandleScope, extracts returned value
766 // from handle and propagates exceptions. Clobbers ebx, edi and
767 // caller-save registers. Restores context. On return removes
768 // stack_space * kPointerSize (GCed).
769 void CallApiFunctionAndReturn(Register function_address,
770 ExternalReference thunk_ref,
771 Operand thunk_last_arg, int stack_space,
772 Operand* stack_space_operand,
773 Operand return_value_operand,
774 Operand* context_restore_operand);
776 // Jump to a runtime routine.
777 void JumpToExternalReference(const ExternalReference& ext);
779 // ---------------------------------------------------------------------------
784 // Return and drop arguments from stack, where the number of arguments
785 // may be bigger than 2^16 - 1. Requires a scratch register.
786 void Ret(int bytes_dropped, Register scratch);
788 // Emit code to discard a non-negative number of pointer-sized elements
789 // from the stack, clobbering only the esp register.
790 void Drop(int element_count);
792 void Call(Label* target) { call(target); }
793 void Push(Register src) { push(src); }
794 void Pop(Register dst) { pop(dst); }
796 // Emit call to the code we are currently generating.
798 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
799 call(self, RelocInfo::CODE_TARGET);
802 // Move if the registers are not identical.
803 void Move(Register target, Register source);
805 // Move a constant into a destination using the most efficient encoding.
806 void Move(Register dst, const Immediate& x);
807 void Move(const Operand& dst, const Immediate& x);
809 // Push a handle value.
810 void Push(Handle<Object> handle) { push(Immediate(handle)); }
811 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
813 Handle<Object> CodeObject() {
814 DCHECK(!code_object_.is_null());
818 // Insert code to verify that the x87 stack has the specified depth (0-7)
819 void VerifyX87StackDepth(uint32_t depth);
821 // Emit code for a truncating division by a constant. The dividend register is
822 // unchanged, the result is in edx, and eax gets clobbered.
823 void TruncatingDiv(Register dividend, int32_t divisor);
825 // ---------------------------------------------------------------------------
826 // StatsCounter support
828 void SetCounter(StatsCounter* counter, int value);
829 void IncrementCounter(StatsCounter* counter, int value);
830 void DecrementCounter(StatsCounter* counter, int value);
831 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
832 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
835 // ---------------------------------------------------------------------------
838 // Calls Abort(msg) if the condition cc is not satisfied.
839 // Use --debug_code to enable.
840 void Assert(Condition cc, BailoutReason reason);
842 void AssertFastElements(Register elements);
844 // Like Assert(), but always enabled.
845 void Check(Condition cc, BailoutReason reason);
847 // Print a message to stdout and abort execution.
848 void Abort(BailoutReason reason);
850 // Check that the stack is aligned.
851 void CheckStackAlignment();
853 // Verify restrictions about code generated in stubs.
854 void set_generating_stub(bool value) { generating_stub_ = value; }
855 bool generating_stub() { return generating_stub_; }
856 void set_has_frame(bool value) { has_frame_ = value; }
857 bool has_frame() { return has_frame_; }
858 inline bool AllowThisStubCall(CodeStub* stub);
860 // ---------------------------------------------------------------------------
863 // Generate code to do a lookup in the number string cache. If the number in
864 // the register object is found in the cache the generated code falls through
865 // with the result in the result register. The object and the result register
866 // can be the same. If the number is not found in the cache the code jumps to
867 // the label not_found with only the content of register object unchanged.
868 void LookupNumberStringCache(Register object,
874 // Check whether the instance type represents a flat one-byte string. Jump to
875 // the label if not. If the instance type can be scratched specify same
876 // register for both instance type and scratch.
877 void JumpIfInstanceTypeIsNotSequentialOneByte(
878 Register instance_type, Register scratch,
879 Label* on_not_flat_one_byte_string);
881 // Checks if both objects are sequential one-byte strings, and jumps to label
883 void JumpIfNotBothSequentialOneByteStrings(
884 Register object1, Register object2, Register scratch1, Register scratch2,
885 Label* on_not_flat_one_byte_strings);
887 // Checks if the given register or operand is a unique name
888 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
889 Label::Distance distance = Label::kFar) {
890 JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
893 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
894 Label::Distance distance = Label::kFar);
896 void EmitSeqStringSetCharCheck(Register string,
899 uint32_t encoding_mask);
901 static int SafepointRegisterStackIndex(Register reg) {
902 return SafepointRegisterStackIndex(reg.code());
905 // Activation support.
906 void EnterFrame(StackFrame::Type type);
907 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
908 void LeaveFrame(StackFrame::Type type);
910 // Expects object in eax and returns map with validated enum cache
911 // in eax. Assumes that any other register can be used as a scratch.
912 void CheckEnumCache(Label* call_runtime);
914 // AllocationMemento support. Arrays may have an associated
915 // AllocationMemento object that can be checked for in order to pretransition
917 // On entry, receiver_reg should point to the array object.
918 // scratch_reg gets clobbered.
919 // If allocation info is present, conditional code is set to equal.
920 void TestJSArrayForAllocationMemento(Register receiver_reg,
921 Register scratch_reg,
922 Label* no_memento_found);
924 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
925 Register scratch_reg,
926 Label* memento_found) {
927 Label no_memento_found;
928 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
930 j(equal, memento_found);
931 bind(&no_memento_found);
934 // Jumps to found label if a prototype map has dictionary elements.
935 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
936 Register scratch1, Label* found);
939 bool generating_stub_;
941 // This handle will be patched with the code object on installation.
942 Handle<Object> code_object_;
944 // Helper functions for generating invokes.
945 void InvokePrologue(const ParameterCount& expected,
946 const ParameterCount& actual,
947 Handle<Code> code_constant,
948 const Operand& code_operand,
950 bool* definitely_mismatches,
952 Label::Distance done_distance,
953 const CallWrapper& call_wrapper = NullCallWrapper());
955 void EnterExitFramePrologue();
956 void EnterExitFrameEpilogue(int argc, bool save_doubles);
958 void LeaveExitFrameEpilogue(bool restore_context);
960 // Allocation support helpers.
961 void LoadAllocationTopHelper(Register result,
963 AllocationFlags flags);
965 void UpdateAllocationTopHelper(Register result_end,
967 AllocationFlags flags);
969 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
970 void InNewSpace(Register object,
973 Label* condition_met,
974 Label::Distance condition_met_distance = Label::kFar);
976 // Helper for finding the mark bits for an address. Afterwards, the
977 // bitmap register points at the word with the mark bits and the mask
978 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
980 inline void GetMarkBits(Register addr_reg,
984 // Helper for throwing exceptions. Compute a handler address and jump to
985 // it. See the implementation for register usage.
986 void JumpToHandlerEntry();
988 // Compute memory operands for safepoint stack slots.
989 Operand SafepointRegisterSlot(Register reg);
990 static int SafepointRegisterStackIndex(int reg_code);
992 // Needs access to SafepointRegisterStackIndex for compiled frame
994 friend class StandardFrame;
998 // The code patcher is used to patch (typically) small parts of code e.g. for
999 // debugging and other types of instrumentation. When using the code patcher
1000 // the exact number of bytes specified must be emitted. Is not legal to emit
1001 // relocation information. If any of these constraints are violated it causes
1005 CodePatcher(byte* address, int size);
1006 virtual ~CodePatcher();
1008 // Macro assembler to emit code.
1009 MacroAssembler* masm() { return &masm_; }
1012 byte* address_; // The address of the code being patched.
1013 int size_; // Number of bytes of the expected patch size.
1014 MacroAssembler masm_; // Macro assembler used to generate the code.
1018 // -----------------------------------------------------------------------------
1019 // Static helper functions.
1021 // Generate an Operand for loading a field from an object.
1022 inline Operand FieldOperand(Register object, int offset) {
1023 return Operand(object, offset - kHeapObjectTag);
1027 // Generate an Operand for loading an indexed field from an object.
1028 inline Operand FieldOperand(Register object,
1032 return Operand(object, index, scale, offset - kHeapObjectTag);
1036 inline Operand FixedArrayElementOperand(Register array,
1037 Register index_as_smi,
1038 int additional_offset = 0) {
1039 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1040 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1044 inline Operand ContextOperand(Register context, int index) {
1045 return Operand(context, Context::SlotOffset(index));
1049 inline Operand GlobalObjectOperand() {
1050 return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
1054 // Generates an Operand for saving parameters after PrepareCallApiFunction.
1055 Operand ApiParameterOperand(int index);
1058 #ifdef GENERATED_CODE_COVERAGE
1059 extern void LogGeneratedCodeCoverage(const char* file_line);
1060 #define CODE_COVERAGE_STRINGIFY(x) #x
1061 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1062 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1063 #define ACCESS_MASM(masm) { \
1064 byte* ia32_coverage_function = \
1065 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1068 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1069 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1076 #define ACCESS_MASM(masm) masm->
1080 } } // namespace v8::internal
1082 #endif // V8_X87_MACRO_ASSEMBLER_X87_H_